1
|
Chong TN, Shapiro L. Bacterial cell differentiation enables population level survival strategies. mBio 2024; 15:e0075824. [PMID: 38771034 PMCID: PMC11237816 DOI: 10.1128/mbio.00758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Clonal reproduction of unicellular organisms ensures the stable inheritance of genetic information. However, this means of reproduction lacks an intrinsic basis for genetic variation, other than spontaneous mutation and horizontal gene transfer. To make up for this lack of genetic variation, many unicellular organisms undergo the process of cell differentiation to achieve phenotypic heterogeneity within isogenic populations. Cell differentiation is either an inducible or obligate program. Induced cell differentiation can occur as a response to a stimulus, such as starvation or host cell invasion, or it can be a stochastic process. In contrast, obligate cell differentiation is hardwired into the organism's life cycle. Whether induced or obligate, bacterial cell differentiation requires the activation of a signal transduction pathway that initiates a global change in gene expression and ultimately results in a morphological change. While cell differentiation is considered a hallmark in the development of multicellular organisms, many unicellular bacteria utilize this process to implement survival strategies. In this review, we describe well-characterized cell differentiation programs to highlight three main survival strategies used by bacteria capable of differentiation: (i) environmental adaptation, (ii) division of labor, and (iii) bet-hedging.
Collapse
Affiliation(s)
- Trisha N Chong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Black ME, Fei C, Alert R, Wingreen NS, Shaevitz JW. Capillary interactions drive the self-organization of bacterial colonies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596252. [PMID: 38853967 PMCID: PMC11160631 DOI: 10.1101/2024.05.28.596252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Many bacteria inhabit thin layers of water on solid surfaces both naturally in soils or on hosts or textiles and in the lab on agar hydrogels. In these environments, cells experience capillary forces, yet an understanding of how these forces shape bacterial collective behaviors remains elusive. Here, we show that the water menisci formed around bacteria lead to capillary attraction between cells while still allowing them to slide past one another. We develop an experimental apparatus that allows us to control bacterial collective behaviors by varying the strength and range of capillary forces. Combining 3D imaging and cell tracking with agent-based modeling, we demonstrate that capillary attraction organizes rod-shaped bacteria into densely packed, nematic groups, and profoundly influences their collective dynamics and morphologies. Our results suggest that capillary forces may be a ubiquitous physical ingredient in shaping microbial communities in partially hydrated environments.
Collapse
|
3
|
Fiegna F, Pande S, Peitz H, Velicer GJ. Widespread density dependence of bacterial growth under acid stress. iScience 2023; 26:106952. [PMID: 37332671 PMCID: PMC10275722 DOI: 10.1016/j.isci.2023.106952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Many microbial phenotypes are density-dependent, including group-level phenotypes emerging from cooperation. However, surveys for the presence of a particular form of density dependence across diverse species are rare, as are direct tests for the Allee effect, i.e., positive density dependence of fitness. Here, we test for density-dependent growth under acid stress in five diverse bacterial species and find the Allee effect in all. Yet social protection from acid stress appears to have evolved by multiple mechanisms. In Myxococcus xanthus, a strong Allee effect is mediated by pH-regulated secretion of a diffusible molecule by high-density populations. In other species, growth from low density under acid stress was not enhanced by high-density supernatant. In M. xanthus, high cell density may promote predation on other microbes that metabolically acidify their environment, and acid-mediated density dependence may impact the evolution of fruiting-body development. More broadly, high density may protect most bacterial species against acid stress.
Collapse
Affiliation(s)
- Francesca Fiegna
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Samay Pande
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Gregory J. Velicer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
4
|
Wang Y, Li T, Xue W, Zheng Y, Wang Y, Zhang N, Zhao Y, Wang J, Li Y, Wang C, Hu W. Physicochemical and Biological Insights Into the Molecular Interactions Between Extracellular DNA and Exopolysaccharides in Myxococcus xanthus Biofilms. Front Microbiol 2022; 13:861865. [PMID: 35531272 PMCID: PMC9073016 DOI: 10.3389/fmicb.2022.861865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular DNA (eDNA) is a critical component in the extracellular matrix (ECM) of bacterial biofilms, while little is known about the mechanisms underlying how eDNA integrates into the ECM through potential macromolecular interactions. Myxococcus xanthus biofilm was employed as a suitable model for the investigation due to the co-distribution of eDNA and exopolysaccharides (EPS) owing to their direct interactions in the ECM. DNA is able to combine with M. xanthus EPS to form a macromolecular conjugate, which is dominated by the electrostatic forces participating in the polymer-polymer interactions. Without intercalation binding, DNA-EPS interactions exhibit a certain degree of reversibility. Acting as a strong extracellular framework during biofilm formation process, the eDNA-EPS complex not only facilitates the initial cell adhesion and subsequent establishment of ECM architecture, but also renders cells within biofilms stress resistances that are relevant to the survival of M. xanthus in some hostile environments. Furthermore, the EPS protects the conjugated DNA from the degradation by nucleic acid hydrolases, which leads to the continuous and stable existence of eDNA in the native ECM of M. xanthus biofilms. These results will shed light on developing prevention and treatment strategies against biofilm-related risks.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Tingyi Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Weiwei Xue
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yue Zheng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yipeng Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ning Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yue Zhao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
- *Correspondence: Chuandong Wang,
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
- Wei Hu,
| |
Collapse
|
5
|
Alternative functions of CRISPR-Cas systems in the evolutionary arms race. Nat Rev Microbiol 2022; 20:351-364. [PMID: 34992260 DOI: 10.1038/s41579-021-00663-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
CRISPR-Cas systems of bacteria and archaea comprise chromosomal loci with typical repetitive clusters and associated genes encoding a range of Cas proteins. Adaptation of CRISPR arrays occurs when virus-derived and plasmid-derived sequences are integrated as new CRISPR spacers. Cas proteins use CRISPR-derived RNA guides to specifically recognize and cleave nucleic acids of invading mobile genetic elements. Apart from this role as an adaptive immune system, some CRISPR-associated nucleases are hijacked by mobile genetic elements: viruses use them to attack their prokaryotic hosts, and transposons have adopted CRISPR systems for guided transposition. In addition, some CRISPR-Cas systems control the expression of genes involved in bacterial physiology and virulence. Moreover, pathogenic bacteria may use their Cas nuclease activity indirectly to evade the human immune system or directly to invade the nucleus and damage the chromosomal DNA of infected human cells. Thus, the evolutionary arms race has led to the expansion of exciting variations in CRISPR mechanisms and functionalities. In this Review, we explore the latest insights into the diverse functions of CRISPR-Cas systems beyond adaptive immunity and discuss the implications for the development of CRISPR-based applications.
Collapse
|
6
|
Abstract
A wide range of biological systems, from microbial swarms to bird flocks, display emergent behaviors driven by coordinated movement of individuals. To this end, individual organisms interact by recognizing their kin and adjusting their motility based on others around them. However, even in the best-studied systems, the mechanistic basis of the interplay between kin recognition and motility coordination is not understood. Here, using a combination of experiments and mathematical modeling, we uncover the mechanism of an emergent social behavior in Myxococcus xanthus. By overexpressing the cell surface adhesins TraA and TraB, which are involved in kin recognition, large numbers of cells adhere to one another and form organized macroscopic circular aggregates that spin clockwise or counterclockwise. Mechanistically, TraAB adhesion results in sustained cell-cell contacts that trigger cells to suppress cell reversals, and circular aggregates form as the result of cells’ ability to follow their own cellular slime trails. Furthermore, our in silico simulations demonstrate a remarkable ability to predict self-organization patterns when phenotypically distinct strains are mixed. For example, defying naive expectations, both models and experiments found that strains engineered to overexpress different and incompatible TraAB adhesins nevertheless form mixed circular aggregates. Therefore, this work provides key mechanistic insights into M. xanthus social interactions and demonstrates how local cell contacts induce emergent collective behaviors by millions of cells. IMPORTANCE In many species, large populations exhibit emergent behaviors whereby all related individuals move in unison. For example, fish in schools can all dart in one direction simultaneously to avoid a predator. Currently, it is impossible to explain how such animals recognize kin through brain cognition and elicit such behaviors at a molecular level. However, microbes also recognize kin and exhibit emergent collective behaviors that are experimentally tractable. Here, using a model social bacterium, we engineer dispersed individuals to organize into synchronized collectives that create emergent patterns. With experimental and mathematical approaches, we explain how this occurs at both molecular and population levels. The results demonstrate how the combination of local physical interactions triggers intracellular signaling, which in turn leads to emergent behaviors on a population scale.
Collapse
|
7
|
van Gestel J, Wagner A. Cryptic surface-associated multicellularity emerges through cell adhesion and its regulation. PLoS Biol 2021; 19:e3001250. [PMID: 33983920 PMCID: PMC8148357 DOI: 10.1371/journal.pbio.3001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/25/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The repeated evolution of multicellularity led to a wide diversity of organisms, many of which are sessile, including land plants, many fungi, and colonial animals. Sessile organisms adhere to a surface for most of their lives, where they grow and compete for space. Despite the prevalence of surface-associated multicellularity, little is known about its evolutionary origin. Here, we introduce a novel theoretical approach, based on spatial lineage tracking of cells, to study this origin. We show that multicellularity can rapidly evolve from two widespread cellular properties: cell adhesion and the regulatory control of adhesion. By evolving adhesion, cells attach to a surface, where they spontaneously give rise to primitive cell collectives that differ in size, life span, and mode of propagation. Selection in favor of large collectives increases the fraction of adhesive cells until a surface becomes fully occupied. Through kin recognition, collectives then evolve a central-peripheral polarity in cell adhesion that supports a division of labor between cells and profoundly impacts growth. Despite this spatial organization, nascent collectives remain cryptic, lack well-defined boundaries, and would require experimental lineage tracking technologies for their identification. Our results suggest that cryptic multicellularity could readily evolve and originate well before multicellular individuals become morphologically evident.
Collapse
Affiliation(s)
- Jordi van Gestel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
8
|
Smith RP, Barraza I, Quinn RJ, Fortoul MC. The mechanisms and cell signaling pathways of programmed cell death in the bacterial world. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:1-53. [PMID: 32334813 DOI: 10.1016/bs.ircmb.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
While programmed cell death was once thought to be exclusive to eukaryotic cells, there are now abundant examples of well regulated cell death mechanisms in bacteria. The mechanisms by which bacteria undergo programmed cell death are diverse, and range from the use of toxin-antitoxin systems, to prophage-driven cell lysis. Moreover, some bacteria have learned how to coopt programmed cell death systems in competing bacteria. Interestingly, many of the potential reasons as to why bacteria undergo programmed cell death may parallel those observed in eukaryotic cells, and may be altruistic in nature. These include protection against infection, recycling of nutrients, to ensure correct morphological development, and in response to stressors. In the following chapter, we discuss the molecular and signaling mechanisms by which bacteria undergo programmed cell death. We conclude by discussing the current open questions in this expanding field.
Collapse
Affiliation(s)
- Robert P Smith
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Ivana Barraza
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Rebecca J Quinn
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Marla C Fortoul
- Department of Biological Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
9
|
When We Stop Thinking about Microbes as Cells. J Mol Biol 2019; 431:2487-2492. [DOI: 10.1016/j.jmb.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 12/21/2022]
|
10
|
Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. Cell-fate determination inMyxococcus xanthusdevelopment: Network dynamics and novel predictions. Dev Growth Differ 2018; 60:121-129. [DOI: 10.1111/dgd.12424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Juan A. Arias Del Angel
- National Laboratory for Sustainability Sciences (LANCIS); Institute of Ecology; National Autonomous University of Mexico; Mexico City Mexico
- Center for Complexity Sciences; National Autonomous University of Mexico; Mexico City Mexico
- Graduate Program in Biomedical Sciences; National Autonomous University of Mexico; Mexico City Mexico
| | - Ana E. Escalante
- National Laboratory for Sustainability Sciences (LANCIS); Institute of Ecology; National Autonomous University of Mexico; Mexico City Mexico
| | - León Patricio Martínez-Castilla
- Department of Biochemistry; Faculty of Chemistry; National Autonomous University of Mexico; Mexico City Mexico
- Center for Complexity Sciences; National Autonomous University of Mexico; Mexico City Mexico
| | - Mariana Benítez
- National Laboratory for Sustainability Sciences (LANCIS); Institute of Ecology; National Autonomous University of Mexico; Mexico City Mexico
- Center for Complexity Sciences; National Autonomous University of Mexico; Mexico City Mexico
| |
Collapse
|
11
|
Bacterial tweets and podcasts #signaling#eavesdropping#microbialfightclub. Mol Biochem Parasitol 2016; 208:41-8. [PMID: 27208877 DOI: 10.1016/j.molbiopara.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 11/22/2022]
Abstract
Once thought to live independently, bacteria are now known to be highly social organisms. Their behaviors ranges from cooperatively forming complex multispecies communities to fiercely competing for resources. Work over the past fifty years has shown that bacteria communicate through diverse mechanisms, such as exchanging diffusible molecules, exporting molecules in membrane vesicles, and interacting through direct cell-cell contact. These methods allow bacteria to sense and respond to other cells around them and coordinate group behavior. In this review, we share the discoveries and lessons learned in the field of bacterial communication with the aim of providing insights to parasitologists and other researchers working on related questions.
Collapse
|
12
|
How Myxobacteria Cooperate. J Mol Biol 2015; 427:3709-21. [PMID: 26254571 DOI: 10.1016/j.jmb.2015.07.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/22/2022]
Abstract
Prokaryotes often reside in groups where a high degree of relatedness has allowed the evolution of cooperative behaviors. However, very few bacteria or archaea have made the successful transition from unicellular to obligate multicellular life. A notable exception is the myxobacteria, in which cells cooperate to perform group functions highlighted by fruiting body development, an obligate multicellular function. Like all multicellular organisms, myxobacteria face challenges in how to organize and maintain multicellularity. These challenges include maintaining population homeostasis, carrying out tissue repair and regulating the behavior of non-cooperators. Here, we describe the major cooperative behaviors that myxobacteria use: motility, predation and development. In addition, this review emphasizes recent discoveries in the social behavior of outer membrane exchange, wherein kin share outer membrane contents. Finally, we review evidence that outer membrane exchange may be involved in regulating population homeostasis, thus serving as a social tool for myxobacteria to make the cyclic transitions from unicellular to multicellular states.
Collapse
|
13
|
Janulevicius A, van Loosdrecht M, Picioreanu C. Short-range guiding can result in the formation of circular aggregates in myxobacteria populations. PLoS Comput Biol 2015; 11:e1004213. [PMID: 25928112 PMCID: PMC4415783 DOI: 10.1371/journal.pcbi.1004213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/25/2015] [Indexed: 12/02/2022] Open
Abstract
Myxobacteria are social bacteria that upon starvation form multicellular fruiting bodies whose shape in different species can range from simple mounds to elaborate tree-like structures. The formation of fruiting bodies is a result of collective cell movement on a solid surface. In the course of development, groups of flexible rod-shaped cells form streams and move in circular or spiral patterns to form aggregation centers that can become sites of fruiting body formation. The mechanisms of such cell movement patterns are not well understood. It has been suggested that myxobacterial development depends on short-range contact-mediated interactions between individual cells, i.e. cell aggregation does not require long-range signaling in the population. In this study, by means of a computational mass-spring model, we investigate what types of short-range interactions between cells can result in the formation of streams and circular aggregates during myxobacterial development. We consider short-range head-to-tail guiding between individual cells, whereby movement direction of the head of one cell is affected by the nearby presence of the tail of another cell. We demonstrate that stable streams and circular aggregates can arise only when the trailing cell, in addition to being steered by the tail of the leading cell, is able to speed up to catch up with it. It is suggested that necessary head-to-tail interactions between cells can arise from physical adhesion, response to a diffusible substance or slime extruded by cells, or pulling by motility engine pili. Finally, we consider a case of long-range guiding between cells and show that circular aggregates are able to form without cells increasing speed. These findings present a possibility to discriminate between short-range and long-range guiding mechanisms in myxobacteria by experimentally measuring distribution of cell speeds in circular aggregates. Myxobacteria are social bacteria that upon starvation form multicellular fruiting bodies whose shape in different species can range from simple mounds to elaborate tree-like structures. The formation of fruiting bodies is a result of collective cell movement on a solid surface. Since collective cell motility during biological morphogenesis is also common in higher organisms, myxobacteria serve as a relatively simple model organism to study multicellular movement, organization and development. In the course of myxobacterial development, groups of flexible rod-shaped cells form streams and move in circular or spiral patterns to form aggregation centers that can become sites of fruiting body formation. The mechanisms of such cell movement patterns are not well understood. In this study, by means of a computational mass-spring model, we demonstrate that the formation of streams and circular aggregates during myxobacterial development can be explained by short-range head-to-tail guiding between individual cells, whereby movement direction of the head of one cell is affected by the nearby presence of the tail of another cell. We suggest that such interactions between cells can result from physical adhesion, response to a diffusible substance or slime extruded by cells, or the action of cell motility engine.
Collapse
Affiliation(s)
- Albertas Janulevicius
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- * E-mail:
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Cristian Picioreanu
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
14
|
van Gestel J, Vlamakis H, Kolter R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol 2015; 13:e1002141. [PMID: 25894589 PMCID: PMC4403855 DOI: 10.1371/journal.pbio.1002141] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/24/2015] [Indexed: 01/11/2023] Open
Abstract
The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.
Collapse
Affiliation(s)
- Jordi van Gestel
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Theoretical Biology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hera Vlamakis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Mendes-Soares H, Chen ICK, Fitzpatrick K, Velicer GJ. Chimaeric load among sympatric social bacteria increases with genotype richness. Proc Biol Sci 2015; 281:rspb.2014.0285. [PMID: 24870038 DOI: 10.1098/rspb.2014.0285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The total productivity of social groups can be determined by interactions among their constituents. Chimaeric load--the reduction of group productivity caused by antagonistic within-group heterogeneity--may be common in heterogeneous microbial groups due to dysfunctional behavioural interactions between distinct individuals. However, some instances of chimaerism in social microbes can increase group productivity, thus making a general relationship between chimaerism and group-level performance non-obvious. Using genetically similar strains of the soil bacterium Myxococcus xanthus that were isolated from a single centimetre-scale patch of soil, we tested for a relationship between degree of chimaerism (genotype richness) and total group performance at social behaviours displayed by this species. Within-group genotype richness was found to correlate negatively with total group performance at most traits examined, including swarming in both predatory and prey-free environments and spore production during development. These results suggest that interactions between such neighbouring strains in the wild will tend to be mutually antagonistic. Negative correlations between group performance and average genetic distance among group constituents at three known social genes were not found, suggesting that divergence at other loci that govern social interaction phenotypes is responsible for the observed chimaeric load. The potential for chimaeric load to result from co-aggregation among even closely related neighbours may promote the maintenance and strengthening of kin discrimination mechanisms, such as colony-merger incompatibilities observed in M. xanthus. The findings reported here may thus have implications for understanding the evolution and maintenance of diversity in structured populations of soil microbes.
Collapse
Affiliation(s)
| | - I-Chen Kimberly Chen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Kara Fitzpatrick
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gregory J Velicer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Describing Myxococcus xanthus aggregation using Ostwald ripening equations for thin liquid films. Sci Rep 2014; 4:6376. [PMID: 25231319 PMCID: PMC4166949 DOI: 10.1038/srep06376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/22/2014] [Indexed: 11/25/2022] Open
Abstract
When starved, a swarm of millions of Myxococcus xanthus cells coordinate their movement from outward swarming to inward coalescence. The cells then execute a synchronous program of multicellular development, arranging themselves into dome shaped aggregates. Over the course of development, about half of the initial aggregates disappear, while others persist and mature into fruiting bodies. This work seeks to develop a quantitative model for aggregation that accurately simulates which will disappear and which will persist. We analyzed time-lapse movies of M. xanthus development, modeled aggregation using the equations that describe Ostwald ripening of droplets in thin liquid films, and predicted the disappearance and persistence of aggregates with an average accuracy of 85%. We then experimentally validated a prediction that is fundamental to this model by tracking individual fluorescent cells as they moved between aggregates and demonstrating that cell movement towards and away from aggregates correlates with aggregate disappearance. Describing development through this model may limit the number and type of molecular genetic signals needed to complete M. xanthus development, and it provides numerous additional testable predictions.
Collapse
|
17
|
He X, Li R, Huang G, Hwang HM, Jiang X. Influence of marine oligosaccharides on the response of various biological systems to UV irradiation. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
Could DNA uptake be a side effect of bacterial adhesion and twitching motility? Arch Microbiol 2013; 195:279-89. [PMID: 23381940 PMCID: PMC3597990 DOI: 10.1007/s00203-013-0870-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 12/11/2022]
Abstract
DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence-a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila.
Collapse
|
19
|
Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. J Bacteriol 2012; 194:3058-68. [PMID: 22493014 DOI: 10.1128/jb.06756-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus undergoes a starvation-induced multicellular developmental program during which cells partition into three known fates: (i) aggregation into fruiting bodies followed by differentiation into spores, (ii) lysis, or (iii) differentiation into nonaggregating persister-like cells, termed peripheral rods. As a first step to characterize cell fate segregation, we enumerated total, aggregating, and nonaggregating cells throughout the developmental program. We demonstrate that both cell lysis and cell aggregation begin with similar timing at approximately 24 h after induction of development. Examination of several known regulatory proteins in the separated aggregated and nonaggregated cell fractions revealed previously unknown heterogeneity in the accumulation patterns of proteins involved in type IV pilus (T4P)-mediated motility (PilC and PilA) and regulation of development (MrpC, FruA, and C-signal). As part of our characterization of the cell lysis fate, we set out to investigate the unorthodox MazF-MrpC toxin-antitoxin system which was previously proposed to induce programmed cell death (PCD). We demonstrate that deletion of mazF in two different wild-type M. xanthus laboratory strains does not significantly reduce developmental cell lysis, suggesting that MazF's role in promoting PCD is an adaption to the mutant background strain used previously.
Collapse
|
20
|
Hu W, Hossain M, Lux R, Wang J, Yang Z, Li Y, Shi W. Exopolysaccharide-independent social motility of Myxococcus xanthus. PLoS One 2011; 6:e16102. [PMID: 21245931 PMCID: PMC3016331 DOI: 10.1371/journal.pone.0016102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/13/2010] [Indexed: 11/19/2022] Open
Abstract
Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that "S motility" is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS(-) cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces.
Collapse
Affiliation(s)
- Wei Hu
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan, China
| | - Muhaiminu Hossain
- Molecular Biology Institute, University
of California Los Angeles, Los Angeles, California, United States of America
| | - Renate Lux
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
| | - Jing Wang
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan, China
| | - Zhe Yang
- Molecular Biology Institute, University
of California Los Angeles, Los Angeles, California, United States of America
| | - Yuezhong Li
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan, China
| | - Wenyuan Shi
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University
of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
21
|
Hendrata M, Birnir B. Dynamic-energy-budget-driven fruiting-body formation in myxobacteria. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:061902. [PMID: 20866435 DOI: 10.1103/physreve.81.061902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 03/11/2010] [Indexed: 05/29/2023]
Abstract
We develop an interacting particle model to simulate the life cycle of myxobacteria, which consists of two main stages--the swarming stage and the development (fruiting body formation) stage. As experiments have shown that the phase transition from swarming to development stage is triggered by starvation, we incorporate into the simulation a system of ordinary differential equations (ODEs) called the dynamic energy budget, which controls the uptake and use of energy by individuals. This inclusion successfully automates the phase transition in our simulation. Only one parameter, namely, the food density, controls the entire simulation of the life cycle.
Collapse
Affiliation(s)
- M Hendrata
- Department of Mathematics, California State University, 5151 State University Drive, Los Angeles, California 90032, USA.
| | | |
Collapse
|
22
|
Pattern formation in Pseudomonas aeruginosa biofilms. Curr Opin Microbiol 2008; 11:560-6. [DOI: 10.1016/j.mib.2008.09.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/22/2008] [Accepted: 09/22/2008] [Indexed: 12/23/2022]
|
23
|
Häussler S, Becker T. The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 2008; 4:e1000166. [PMID: 18818733 PMCID: PMC2533401 DOI: 10.1371/journal.ppat.1000166] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/28/2008] [Indexed: 11/18/2022] Open
Abstract
When environmental conditions deteriorate and become inhospitable, generic survival strategies for populations of bacteria may be to enter a dormant state that slows down metabolism, to develop a general tolerance to hostile parameters that characterize the habitat, and to impose a regime to eliminate damaged members. Here, we provide evidence that the pseudomonas quinolone signal (PQS) mediates induction of all of these phenotypes. For individual cells, PQS, an interbacterial signaling molecule of Pseudomonas aeruginosa, has both deleterious and beneficial activities: on the one hand, it acts as a pro-oxidant and sensitizes the bacteria towards oxidative and other stresses and, on the other, it efficiently induces a protective anti-oxidative stress response. We propose that this dual function fragments populations into less and more stress tolerant members which respond differentially to developing stresses in deteriorating habitats. This suggests that a little poison may be generically beneficial to populations, in promoting survival of the fittest, and in contributing to bacterial multi-cellular behavior. It further identifies PQS as an essential mediator of the shaping of the population structure of Pseudomonas and of its response to and survival in hostile environmental conditions.
Collapse
Affiliation(s)
- Susanne Häussler
- Department of Cell Biology, Helmholtz Center for Infection Research, Braunschweig, Germany.
| | | |
Collapse
|
24
|
The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS One 2008; 3:e2103. [PMID: 18461135 PMCID: PMC2330069 DOI: 10.1371/journal.pone.0002103] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 03/19/2008] [Indexed: 11/29/2022] Open
Abstract
Anaeromyxobacter dehalogenans strain 2CP-C is a versaphilic delta-Proteobacterium distributed throughout many diverse soil and sediment environments. 16S rRNA gene phylogenetic analysis groups A. dehalogenans together with the myxobacteria, which have distinguishing characteristics including strictly aerobic metabolism, sporulation, fruiting body formation, and surface motility. Analysis of the 5.01 Mb strain 2CP-C genome substantiated that this organism is a myxobacterium but shares genotypic traits with the anaerobic majority of the delta-Proteobacteria (i.e., the Desulfuromonadales). Reflective of its respiratory versatility, strain 2CP-C possesses 68 genes coding for putative c-type cytochromes, including one gene with 40 heme binding motifs. Consistent with its relatedness to the myxobacteria, surface motility was observed in strain 2CP-C and multiple types of motility genes are present, including 28 genes for gliding, adventurous (A-) motility and 17 genes for type IV pilus-based motility (i.e., social (S-) motility) that all have homologs in Myxococcus xanthus. Although A. dehalogenans shares many metabolic traits with the anaerobic majority of the delta-Proteobacteria, strain 2CP-C grows under microaerophilic conditions and possesses detoxification systems for reactive oxygen species. Accordingly, two gene clusters coding for NADH dehydrogenase subunits and two cytochrome oxidase gene clusters in strain 2CP-C are similar to those in M. xanthus. Remarkably, strain 2CP-C possesses a third NADH dehydrogenase gene cluster and a cytochrome cbb3 oxidase gene cluster, apparently acquired through ancient horizontal gene transfer from a strictly anaerobic green sulfur bacterium. The mosaic nature of the A. dehalogenans strain 2CP-C genome suggests that the metabolically versatile, anaerobic members of the delta-Proteobacteria may have descended from aerobic ancestors with complex lifestyles.
Collapse
|
25
|
Abstract
Mutations within the -12 and -24 elements provide evidence that the act promoter is recognized by sigma-54 RNA polymerase. Deletion of the -20 base pair, which lies between the two conserved elements of sigma-54 promoters, decreased expression by 90%. In addition, mutation of a potential enhancer sequence, around -120, led to an 80% reduction in act gene expression. actB, the second gene in the act operon, encodes a sigma-54 activator protein that is proposed to be an enhancer-binding protein for the act operon. All act genes, actA to actE, are expressed together and constitute an operon, because an in-frame deletion of actB decreased expression of actA and actE to the same extent. After an initially slow phase of act operon expression, which depends on FruA, there is a rapid phase. The rapid phase is shown to be due to the activation of the operon expression by ActB, which completes a positive feedback loop. That loop appears to be nested within a larger positive loop in which ActB is activated by the C signal via ActA, and the act operon activates transcription of the csgA gene. We propose that, as cells engage in more C signaling, positive feedback raises the number of C-signal molecules per cell and drives the process of fruiting body development forward.
Collapse
Affiliation(s)
- Thomas M A Gronewold
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | |
Collapse
|
26
|
Abstract
Fortunately, I began research in 1950 when the basic concepts of microbial genetics could be explored experimentally. I began with bacteriophage lambda and tried to establish the colinearity of its linkage map with its DNA molecule. My students and I worked out the regulation of lambda repressor synthesis for the establishment and maintenance of lysogeny. We also investigated the proteins responsible for assembly of the phage head. Using cell extracts, we discovered how to package DNA inside the head in vitro. Around 1972, I began to use molecular genetics to understand the developmental biology of Myxococcus xanthus. In particular, I wanted to learn how myxococcus builds its multicellular fruiting body within which it differentiates spores. We identified two cell-to-cell signals used to coordinate development. We have elucidated, in part, the signal transduction pathway for C-signal that directs the morphogenesis of a fruiting body.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
27
|
Sliusarenko O, Zusman DR, Oster G. Aggregation during fruiting body formation in Myxococcus xanthus is driven by reducing cell movement. J Bacteriol 2006; 189:611-9. [PMID: 17098901 PMCID: PMC1797407 DOI: 10.1128/jb.01206-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When starved, Myxococcus xanthus cells assemble themselves into aggregates of about 10(5) cells that grow into complex structures called fruiting bodies, where they later sporulate. Here we present new observations on the velocities of the cells, their orientations, and reversal rates during the early stages of fruiting body formation. Most strikingly, we find that during aggregation, cell velocities slow dramatically and cells orient themselves in parallel inside the aggregates, while later cell orientations are circumferential to the periphery. The slowing of cell velocity, rather than changes in reversal frequency, can account for the accumulation of cells into aggregates. These observations are mimicked by a continuous agent-based computational model that reproduces the early stages of fruiting body formation. We also show, both experimentally and computationally, how changes in reversal frequency controlled by the Frz system mutants affect the shape of these early fruiting bodies.
Collapse
|
28
|
Stein EA, Cho K, Higgs PI, Zusman DR. Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. Mol Microbiol 2006; 60:1414-31. [PMID: 16796678 DOI: 10.1111/j.1365-2958.2006.05195.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myxococcus xanthus has a complex life cycle that involves vegetative growth and development. Previously, we described the espAB locus that is involved in timing events during the initial stages of fruiting body formation. Deletion of espA caused early aggregation and sporulation, whereas deletion of espB caused delayed aggregation and sporulation resulting in reduced spore yields. In this study, we describe two genes, pktA5 and pktB8, that flank the espAB locus and encode Ser/Thr protein kinase (STPK) homologues. Cells deficient in pktA5 or pktB8 formed translucent mounds and produced low spore yields, similar in many respects to espB mutants. Double mutant analysis revealed that espA was epistatic to pktA5 and pktB8 with respect to aggregation and fruiting body morphology, but that pktA5 and pktB8 were epistatic to espA with respect to sporulation efficiency. Expression profiles of pktA5-lacZ and pktB8-lacZ fusions and Western blot analysis showed that the STPKs are expressed under vegetative and developmental conditions. In vitro kinase assays demonstrated that the RD kinase, PktA5, autophosphorylated on threonine residue(s) and phosphorylated the artificial substrate, myelin basic protein. In contrast, autophosphorylation of the non-RD kinase, PktB8, was not observed in vitro; however, the phenotype of a pktB8 kinase-dead point mutant resembled the pktB8 deletion mutant, indicating that this residue was important for function and that it likely functions as a kinase in vivo. Immunoprecipitation of Tap-tagged PktA5 and PktB8 revealed an interaction with EspA during development in M. xanthus. These results, taken together, suggest that PktA5 and PktB8 are STPKs that function during development by interacting with EspA and EspB to regulate M. xanthus development.
Collapse
Affiliation(s)
- Emily A Stein
- Graduate Group in Microbial Biology, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
29
|
Abstract
We analyze the phenomenon of spreading of a Myxococcus xanthus bacterial colony on plates coated with nutrient. The bacteria spread by gliding on the surface. In the first few hours, cell growth is irrelevant to colony spread. In this case, bacteria spread through peninsular protrusions from the edge of the initial colony. We analyze the diffusion through the narrowing reticulum of cells on the surface mathematically and derive formulae for the spreading rates. On the time scale of tens of hours, effective diffusion of the bacteria, combined with cell division and growth, causes a constant linear increase in the colony's radius. Mathematical analysis and numerical solution of reaction-diffusion equations describing the bacterial and nutrient dynamics demonstrate that, in this regime, the spreading rate is proportional to the square root of both the effective diffusion coefficient and the nutrient concentration. The model predictions agree with the data on spreading rate dependence on the type of gliding motility.
Collapse
Affiliation(s)
- Angela Gallegos
- Department of Mathematics, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
30
|
Abstract
The long, rod-shaped cells of myxobacteria are polarized by their gliding engines. At the rear, A-engines push while pili pull the front end forward. An hypothesis is developed whereby both engines are partially dis-assembled, then re-assembled at the opposite pole when cells reverse their movement direction. Reversals are induced by an Mgl G-protein switch that controls engine polarity. The switch is driven by an oscillatory circuit of Frizzy proteins. In growing cells, the circuit gives rise to an occasional reversal that makes swarming possible. Then, as myxobacteria begin fruiting body development, a rising level of C-signal input drives the oscillator and changes the reversal pattern. Cells reverse regularly every eight minutes in traveling waves, the reversal period is then prolonged enabling cells to form streams that enlarge tiny random aggregates into fruiting bodies.
Collapse
Affiliation(s)
- Dale Kaiser
- B300 Beckman Center, Department of Developmental Biology, 279 Campus Drive, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
31
|
Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA. Contact-dependent inhibition of growth in Escherichia coli. Science 2005; 309:1245-8. [PMID: 16109881 DOI: 10.1126/science.1115109] [Citation(s) in RCA: 328] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacteria have developed mechanisms to communicate and compete with each other for limited environmental resources. We found that certain Escherichia coli, including uropathogenic strains, contained a bacterial growth-inhibition system that uses direct cell-to-cell contact. Inhibition was conditional, dependent upon the growth state of the inhibitory cell and the pili expression state of the target cell. Both a large cell-surface protein designated Contact-dependent inhibitor A (CdiA) and two-partner secretion family member CdiB were required for growth inhibition. The CdiAB system may function to regulate the growth of specific cells within a differentiated bacterial population.
Collapse
Affiliation(s)
- Stephanie K Aoki
- Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara (UCSB), Santa Barbara, CA 93106, USA
| | | | | | | | | | | |
Collapse
|
32
|
Groisman A, Lobo C, Cho H, Campbell JK, Dufour YS, Stevens AM, Levchenko A. A microfluidic chemostat for experiments with bacterial and yeast cells. Nat Methods 2005; 2:685-9. [PMID: 16118639 DOI: 10.1038/nmeth784] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 07/18/2005] [Indexed: 11/09/2022]
Abstract
Bacteria and yeast frequently exist as populations capable of reaching extremely high cell densities. With conventional culturing techniques, however, cell proliferation and ultimate density are limited by depletion of nutrients and accumulation of metabolites in the medium. Here we describe design and operation of microfabricated elastomer chips, in which chemostatic conditions are maintained for bacterial and yeast colonies growing in an array of shallow microscopic chambers. Walls of the chambers are impassable for the cells, but allow diffusion of chemicals. Thus, the chemical contents of the chambers are maintained virtually identical to those of the nearby channels with continuous flowthrough of a dynamically defined medium. We demonstrate growth of cell cultures to densely packed ensembles that proceeds exponentially in a temperature-dependent fashion, and we use the devices to monitor colony growth from a single cell and to analyze the cell response to an exogenously added autoinducer.
Collapse
Affiliation(s)
- Alex Groisman
- Department of Physics, University of California San Diego, 9500 Gilman Dr., MC 0374, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sozinova O, Jiang Y, Kaiser D, Alber M. A three-dimensional model of myxobacterial aggregation by contact-mediated interactions. Proc Natl Acad Sci U S A 2005; 102:11308-12. [PMID: 16061806 PMCID: PMC1183571 DOI: 10.1073/pnas.0504259102] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myxobacteria provide one of the simplest models of cell-cell interaction and organized cell movement leading to cellular differentiation. When starved, tens of thousands of cells change their movement pattern from outward spreading to inward concentration; they form aggregates that become fruiting bodies. Cells inside fruiting bodies differentiate into round, nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis; a long-range cell interaction. However, myxobacterial aggregation is the consequence of direct cell-contact interactions, not chemotaxis. We present here a 3D stochastic lattice-gas cellular automata model of cell aggregation based on local cell-cell contact, and no chemotaxis. We demonstrate that a 3D discrete stochastic model can simulate two stages of cell aggregation. First, a "traffic jam" forms embedded in a field of motile cells. The jam then becomes an aggregation center that accumulates more cells. We show that, at high cell density, cells stream around the traffic jam, generating a 3D hemispherical mound. Later, when the nuclear traffic jam dissolves, the aggregation center becomes a 3D ring of streaming cells.
Collapse
Affiliation(s)
- Olga Sozinova
- Department of Mathematics and Center for the Study of Biocomplexity, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | | | | | | |
Collapse
|
34
|
Igoshin OA, Goldbeter A, Kaiser D, Oster G. A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. Proc Natl Acad Sci U S A 2004; 101:15760-5. [PMID: 15496464 PMCID: PMC524859 DOI: 10.1073/pnas.0407111101] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development, Myxococcus xanthus cells produce a series of spatial patterns by coordinating their motion through a contact-dependent signal, the C-signal. C-signaling modulates the frequency at which cells reverse their gliding direction. It does this by interacting with the Frz system (a homolog of the Escherichia coli chemosensory system) via a cascade of covalent modifications. Here we show that introducing a negative feedback into this cascade results in oscillatory behavior of the signaling circuit. The model explains several aspects of M. xanthus behavior during development, including the nonrandom distribution of reversal times, and the differences in response of the reversal frequency to both moderate and high levels of C-signaling at different developmental stages. We also propose experiments to test the model.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
35
|
Igoshin OA, Neu J, Oster G. Developmental waves in myxobacteria: A distinctive pattern formation mechanism. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:041911. [PMID: 15600439 DOI: 10.1103/physreve.70.041911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Indexed: 05/24/2023]
Abstract
In early stages of their development, starving myxobacteria organize their motion to produce a periodic pattern of traveling cell density waves. These waves arise from coordination of individual cell reversals by contact signaling when they collide. Unlike waves generated by reaction-diffusion instabilities, which annihilate on collision, myxobacteria waves appear to pass through one another unaffected. Here we analyze a mathematical model of these waves developed earlier [Proc. Natl. Acad. Sci. USA 98, 14 913 (2001)]]. The mechanisms which generate and maintain the density waves are clearly revealed by tracing the reversal loci of individual cells. An evolution equation of reversal point density is derived in the weak-signaling limit. Linear stability analysis determines parameters favorable for the development of the waves. Numerical solutions demonstrate the stability of the fully developed nonlinear waves.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Physics, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
36
|
Abstract
Myxobacteria use soluble and cell-contact signals during their starvation-induced formation of fruiting bodies. These signals coordinate developmental gene expression with the cell movements that build fruiting bodies. Early in development, the quorum-sensing A-signal in Myxococcus xanthus helps to assess starvation and induce the first stage of aggregation. Later, the morphogenetic C-signal helps to pattern cell movement and shape the fruiting body. C-signal is a 17-kDa cell surface protein that signals by contact between the ends of two cells. The number of C-signal molecules per cell rises 100-fold from the beginning of fruiting body development to the end, when spores are formed. Traveling waves, streams, and sporulation have increasing thresholds for C-signal activity, and this progression ensures that spores form inside fruiting bodies.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
37
|
Alber MS, Kiskowski MA, Jiang Y. Two-stage aggregate formation via streams in myxobacteria. PHYSICAL REVIEW LETTERS 2004; 93:068102. [PMID: 15323665 DOI: 10.1103/physrevlett.93.068102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Indexed: 05/24/2023]
Abstract
In response to adverse conditions, myxobacteria form aggregates that develop into fruiting bodies. We model myxobacteria aggregation with a lattice cell model based entirely on short-range (nonchemotactic) cell-cell interactions. Local rules result in a two-stage process of aggregation mediated by transient streams. Aggregates resemble those observed in experiment and are stable against even very large perturbations. Noise in individual cell behavior increases the effects of streams and results in larger, more stable aggregates.
Collapse
Affiliation(s)
- M S Alber
- Mathematics Department, University of Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
38
|
Igoshin OA, Welch R, Kaiser D, Oster G. Waves and aggregation patterns in myxobacteria. Proc Natl Acad Sci U S A 2004; 101:4256-61. [PMID: 15020771 PMCID: PMC384728 DOI: 10.1073/pnas.0400704101] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under starvation conditions, a population of myxobacteria aggregates to build a fruiting body whose shape is species-specific and within which the cells sporulate. Early in this process, cells often pass through a "ripple phase" characterized by traveling linear, concentric, and spiral waves. These waves are different from the waves observed during slime mold aggregation that depend on diffusible morphogens, because myxobacteria communicate by direct contact. The difference is most dramatic when waves collide: rather than annihilating one another, myxobacterial waves appear to pass through one another unchanged. Under certain conditions, the spacing and location of the nascent fruiting bodies is determined by the wavelength and pattern of the waves. Later in fruiting body development, waves are replaced by streams of cells that circulate around small initial aggregates enlarging and rounding them. Still later, pairs of motile aggregates coalesce to form larger aggregates that develop into fruiting bodies. Here we present a mathematical model that quantitatively explains these wave and aggregation phenomena.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
39
|
Winzer K, Hardie KR, Williams P. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:291-396. [PMID: 14696323 DOI: 10.1016/s0065-2164(03)53009-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Klaus Winzer
- Institute of Infection, Immunity and Inflammation, Queen's Medical Centre, C-Floor, West Block, Nottingham, NG7 2UH, U.K
| | | | | |
Collapse
|
40
|
Abstract
Twitching motility is a flagella-independent form of bacterial translocation over moist surfaces. It occurs by the extension, tethering, and then retraction of polar type IV pili, which operate in a manner similar to a grappling hook. Twitching motility is equivalent to social gliding motility in Myxococcus xanthus and is important in host colonization by a wide range of plant and animal pathogens, as well as in the formation of biofilms and fruiting bodies. The biogenesis and function of type IV pili is controlled by a large number of genes, almost 40 of which have been identified in Pseudomonas aeruginosa. A number of genes required for pili assembly are homologous to genes involved in type II protein secretion and competence for DNA uptake, suggesting that these systems share a common architecture. Twitching motility is also controlled by a range of signal transduction systems, including two-component sensor-regulators and a complex chemosensory system.
Collapse
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane Qld. 4072, Australia.
| |
Collapse
|
41
|
Mulec J, Podlesek Z, Mrak P, Kopitar A, Ihan A, Zgur-Bertok D. A cka-gfp transcriptional fusion reveals that the colicin K activity gene is induced in only 3 percent of the population. J Bacteriol 2003; 185:654-9. [PMID: 12511512 PMCID: PMC145340 DOI: 10.1128/jb.185.2.654-659.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In prokaryotes, only a few examples of differential gene expression in cell populations have been described. Colicin production in natural populations of Escherichia coli, while providing a competitive advantage in the natural habitat, also leads to lysis of the toxin-producing cell. Colicin K synthesis has been found to be induced due to an increase in ppGpp (I. Kuhar, J. P. van Putten, D. Zgur-Bertok, W. Gaastra, and B. J. Jordi, Mol. Microbiol. 41:207-216). Using two transcriptional fusions, cka-gfp and cki-gfp, we show that at the single-cell level, the colicin K activity gene cka is expressed in only 3% of the bacterial population upon induction by nutrient starvation. In contrast, the immunity gene cki is expressed in the large majority of the cells. Expression of the cka-gfp fusion in a lexA-defective strain and in a relA spoT mutant strain indicates that differential expression of cka is established primarily at the level of transcription.
Collapse
Affiliation(s)
- Janez Mulec
- Karst Research Institute, Scientific Centre of the Slovenian Academy of Sciences and Arts, Postojna, Slovenia
| | | | | | | | | | | |
Collapse
|
42
|
Alber MS, Kiskowski MA, Glazier JA, Jiang Y. On Cellular Automaton Approaches to Modeling Biological Cells. MATHEMATICAL SYSTEMS THEORY IN BIOLOGY, COMMUNICATIONS, COMPUTATION, AND FINANCE 2003. [DOI: 10.1007/978-0-387-21696-6_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Bourret RB, Charon NW, Stock AM, West AH. Bright lights, abundant operons--fluorescence and genomic technologies advance studies of bacterial locomotion and signal transduction: review of the BLAST meeting, Cuernavaca, Mexico, 14 to 19 January 2001. J Bacteriol 2002; 184:1-17. [PMID: 11741839 PMCID: PMC134778 DOI: 10.1128/jb.184.1.1-17.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Robert B Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA
| | | | | | | |
Collapse
|
44
|
Igoshin OA, Mogilner A, Welch RD, Kaiser D, Oster G. Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc Natl Acad Sci U S A 2001; 98:14913-8. [PMID: 11752439 PMCID: PMC64958 DOI: 10.1073/pnas.221579598] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent experiments have provided new quantitative measurements of the rippling phenomenon in fields of developing myxobacteria cells. These measurements have enabled us to develop a mathematical model for the ripple phenomenon on the basis of the biochemistry of the C-signaling system, whereby individuals signal by direct cell contact. The model quantitatively reproduces all of the experimental observations and illustrates how intracellular dynamics, contact-mediated intercellular communication, and cell motility can coordinate to produce collective behavior. This pattern of waves is qualitatively different from that observed in other social organisms, especially Dictyostelium discoideum, which depend on diffusible morphogens.
Collapse
Affiliation(s)
- O A Igoshin
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
45
|
Gronewold TM, Kaiser D. The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 2001; 40:744-56. [PMID: 11359579 DOI: 10.1046/j.1365-2958.2001.02428.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C-signal is a morphogen that controls the assembly of fruiting bodies and the differentiation of myxospores. Production of this signal, which is encoded by the csgA gene, is regulated by the act operon of four genes that are co-transcribed from the same start site. The act A and act B genes regulate the maximum level of the C-signal, which never rises above one-quarter of the maximum wild-type level of CsgA protein in null mutants of either gene. The act A and act B mutants have the same developmental phenotype: both aggregate, neither sporulates, both prolong rippling. By sequence homology, act A encodes a response regulator, and act B encodes a sigma-54 activator protein of the NTRC class. The similar phenotypes of act A and act B deletion mutants suggest that the two gene products are part of the same signal transduction pathway. That pathway responds to C-signal and also regulates the production of CsgA protein, thus creating a positive feedback loop. The act C and act D genes regulate the time pattern of CsgA production, while achieving the same maximum level. An act C null mutant raises CsgA production 15 h earlier than the wild type, whereas an act D null mutant does so 6 h later than wild type. The loop explains how the C-signal rises continuously from early development to a peak at the time of sporulation, and the act genes govern the time course of that rise.
Collapse
Affiliation(s)
- T M Gronewold
- Departments of Biochemistry and Developmental Biology, Stanford University School of Medicine, 297 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
46
|
Abstract
Forceful retraction of a bacterial pilus has been directly observed for the first time. As retraction clarifies the basic mechanochemistry of single cell twitching and gliding movements, so cell-to-cell signalling by contact clarifies the coordination of multicellular gliding movements.
Collapse
Affiliation(s)
- D Kaiser
- Departments of Biochemistry and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| |
Collapse
|