1
|
Ejenavi O, Teng T, Huang W, Wang X, Zhang W, Zhang D. Online detection of alkanes by a biological-phase microextraction and biosensing (BPME-BS) device. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131316. [PMID: 37003003 DOI: 10.1016/j.jhazmat.2023.131316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Oil spill incidents occur frequently and threaten ecosystems and human health. Solid-phase microextraction allows direct alkane extraction from environmental matrices to improve the limit of detection but is unable to measure alkanes on site. A biological-phase microextraction and biosensing (BPME-BS) device was developed by immobilising an alkane chemotactic Acinetobacter bioreporter ADPWH_alk in agarose gel to achieve online alkane quantification with the aid of a photomultiplier. The BPME-BS device had a high enrichment factor (average 7.07) and a satisfactory limit of detection (0.075 mg/L) for alkanes. The quantification range was 0.1-100 mg/L, comparable to a gas chromatography flame ionisation detector and better than a bioreporter without immobilisation. ADPWH_alk cells in the BPME-BS device maintained good sensitivity under a wide range of environmental conditions, including pH (4.0-9.0), temperature (20-40 °C), and salinity (0.0-3.0%), and its response remained stable within 30 days at 4 °C. In a 7-day continual measurement, the BPME-BS device successfully visualised the dynamic concentration of alkanes, and a 7-day field test successfully captured an oil spill event, helping in source apportionment and on-scene law enforcement. Our work proved that the BPME-BS device is a powerful tool for online alkane measurement, showing substantial potential for fast detection and rapid response to oil spills on site and in situ.
Collapse
Affiliation(s)
- Odafe Ejenavi
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK
| | - Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Wenxin Huang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China; College of New Energy and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
2
|
Genomic Features Predict Bacterial Life History Strategies in Soil, as Identified by Metagenomic Stable Isotope Probing. mBio 2023; 14:e0358422. [PMID: 36877031 PMCID: PMC10128055 DOI: 10.1128/mbio.03584-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Bacteria catalyze the formation and destruction of soil organic matter, but the bacterial dynamics in soil that govern carbon (C) cycling are not well understood. Life history strategies explain the complex dynamics of bacterial populations and activities based on trade-offs in energy allocation to growth, resource acquisition, and survival. Such trade-offs influence the fate of soil C, but their genomic basis remains poorly characterized. We used multisubstrate metagenomic DNA stable isotope probing to link genomic features of bacteria to their C acquisition and growth dynamics. We identify several genomic features associated with patterns of bacterial C acquisition and growth, notably genomic investment in resource acquisition and regulatory flexibility. Moreover, we identify genomic trade-offs defined by numbers of transcription factors, membrane transporters, and secreted products, which match predictions from life history theory. We further show that genomic investment in resource acquisition and regulatory flexibility can predict bacterial ecological strategies in soil. IMPORTANCE Soil microbes are major players in the global carbon cycle, yet we still have little understanding of how the carbon cycle operates in soil communities. A major limitation is that carbon metabolism lacks discrete functional genes that define carbon transformations. Instead, carbon transformations are governed by anabolic processes associated with growth, resource acquisition, and survival. We use metagenomic stable isotope probing to link genome information to microbial growth and carbon assimilation dynamics as they occur in soil. From these data, we identify genomic traits that can predict bacterial ecological strategies which define bacterial interactions with soil carbon.
Collapse
|
3
|
Behroozian S, Sampedro I, Dhodary B, Her S, Yu Q, Stanton BA, Hill JE. Pseudomonas aeruginosa PAO1 Is Attracted to Bovine Bile in a Novel, Cystic Fibrosis-Derived Bronchial Epithelial Cell Model. Microorganisms 2022; 10:716. [PMID: 35456767 PMCID: PMC9032244 DOI: 10.3390/microorganisms10040716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is a life-threatening, inherited, multi-organ disease that renders patients susceptible throughout their lives to chronic and ultimately deteriorating protracted pulmonary infections. Those infections are dominated in adulthood by the opportunistic pathogen, Pseudomonas aeruginosa (Pa). As with other advancing respiratory illnesses, people with CF (pwCF) also frequently suffer from gastroesophageal reflux disease (GERD), including bile aspiration into the lung. GERD is a major co-morbidity factor in pwCF, with a reported prevalence of 35-81% in affected individuals. Bile is associated with the early acquisition of Pa in CF patients and in vitro studies show that it causes Pa to adopt a chronic lifestyle. We hypothesized that Pa is chemoattracted to bile in the lung environment. To evaluate, we developed a novel chemotaxis experimental system mimicking the lung environment using CF-derived bronchial epithelial (CFBE) cells which allowed for the evaluation of Pa (strain PAO1) chemotaxis in a physiological scenario superior to the standard in vitro systems. We performed qualitative and quantitative chemotaxis tests using this new experimental system, and microcapillary assays to demonstrate that bovine bile is a chemoattractant for Pa and is positively correlated with bile concentration. These results further buttress the hypothesis that bile likely contributes to the colonization and pathogenesis of Pa in the lung, particularly in pwCF.
Collapse
Affiliation(s)
- Shekooh Behroozian
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; (S.B.); (B.D.)
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, GR, Spain;
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, GR, Spain
| | - Basanta Dhodary
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; (S.B.); (B.D.)
| | - Stephanie Her
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| | - Qianru Yu
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| | - Bruce A. Stanton
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| | - Jane E. Hill
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC V6T 1Z3, Canada; (S.B.); (B.D.)
- Thayer School of Engineering, Dartmouth College, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (S.H.); (Q.Y.); (B.A.S.)
| |
Collapse
|
4
|
Martínez-Toledo Á, del Carmen Cuevas-Díaz M, Guzmán-López O, López-Luna J, Ilizaliturri-Hernández C. Evaluation of in situ biosurfactant production by inoculum of P. putida and nutrient addition for the removal of polycyclic aromatic hydrocarbons from aged oil-polluted soil. Biodegradation 2022; 33:135-155. [DOI: 10.1007/s10532-022-09973-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/18/2022] [Indexed: 12/07/2022]
|
5
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
6
|
Polyhydroxyalkanoate (PHA) Production in Pseudomonas sp. phDV1 Strain Grown on Phenol as Carbon Sources. Microorganisms 2021; 9:microorganisms9081636. [PMID: 34442715 PMCID: PMC8398824 DOI: 10.3390/microorganisms9081636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas strains have a variety of potential uses in bioremediation and biosynthesis of biodegradable plastics. Pseudomonas sp. strain phDV1, a Gram-negative phenol degrading bacterium, has been found to utilize monocyclic aromatic compounds as sole carbon source via the meta-cleavage pathway. The degradation of aromatic compounds comprises an important step in the removal of pollutants. The present study aimed to investigate the ability of the Pseudomonas sp. strain phDV1 to produce polyhydroxyalkanoates (PHAs) and examining the effect of phenol concentration on PHA production. The bacterium was cultivated in minimal medium supplemented with different concentrations of phenol ranging from 200-600 mg/L. The activity of the PHA synthase, the key enzyme which produces PHA, was monitored spectroscopically in cells extracts. Furthermore, the PHA synthase was identified by mass spectrometry in cell extracts analyzed by SDS-PAGE. Transmission electron micrographs revealed abundant electron-transparent intracellular granules. The isolated biopolymer was confirmed to be polyhydroxybutyrate (PHB) by FTIR, NMR and MALDI-TOF/TOF analyses. The ability of strain Pseudomonas sp. phDV1 to remove phenol and to produce PHB makes the strain a promising biocatalyst in bioremediation and biosynthesis of biodegradable plastics.
Collapse
|
7
|
Shi L, Zhang P, He Y, Zeng F, Xu J, He L. Enantioselective effects of cyflumetofen on microbial community and related nitrogen cycle gene function in acid-soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144831. [PMID: 33548698 DOI: 10.1016/j.scitotenv.2020.144831] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/26/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Cyflumetofen (CYF) is a novel chiral acaricide widely used in commercial crops to control mites. The environmental risks exposed by CYF in the soil, especially at the enantiomer level, remain unclear. We found that the (+)-CYF enantiomer was preferentially degraded in acid-soil, resulting in (-)-CYF enrichment. 16S rRNA and qPCR analysis indicated that decreased bacterial abundance by 12.79-61.80% and 2.52-52.48% in (-)-CYF treatment and (+)-CYF treatment, respectively. Diversity was also decreased with (-)-CYF treatment. Interestingly, several beneficial bacteria, for instance, Alphaproteobacteria (class), Sphingomonadaceae (family), and Arthrobacter (specise) were more enriched following (-)-CYF. The abundance of N2-fixing bacteria showed a sustained reduction with time, and the decrease was 3.24-72.94% with (-)-CYF and 25.37-73.11% with (+)-CYF treatment. Compared with the (+)-CYF treatment could positively promote nitrification, while the treatment (-)-CYF significantly reduced the abundance of amoA gene; namely it significantly negatively affected the nitrification in the nitrogen cycle. Through our further research, we found that Actinobacteria, Alphaproteobacteria, Lysobacter; Sphingomonas, Patescibacteria, Saccharimonadia, and Saccharimonadales showed synergistic effects with the nitrogen cycling-related genes nifH and amoA. These results contribute to a comprehensive environmental risk assessment of CYF in acid-soil at the enantiomer level.
Collapse
Affiliation(s)
- Linlin Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Yuhan He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Fanzhan Zeng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Liang K, Gao R, Wang C, Wang W, Yan W. Chemotaxis Toward Crude Oil by an Oil-Degrading Pseudomonas aeruginosa 6-1B Strain. Pol J Microbiol 2021; 70:69-78. [PMID: 33815528 PMCID: PMC8008757 DOI: 10.33073/pjm-2021-006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 11/24/2022] Open
Abstract
The chemotactic properties of an oil-degrading Pseudomonas aeruginosa strain 6-1B, isolated from Daqing Oilfield, China, have been investigated. The strain 6-1B could grow well in crude oil with a specific rhamnolipid biosurfactant production. Furthermore, it exhibits chemotaxis toward various substrates, including glycine, glycerol, glucose, and sucrose. Compared with another oil-degrading strain, T7-2, the strain 6-1B presented a better chemotactic response towards crude oil and its vital component, n-alkenes. Based on the observed distribution of the strain 6-1B cells around the oil droplet in the chemotactic assays, the potential chemotaxis process of bacteria toward crude oil could be summarized in the following steps: searching, moving and consuming.
Collapse
Affiliation(s)
- Kaiqiang Liang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China.,Research Institute of Yanchang Petroleum (Group) Co. Ltd., Xi'an, China
| | - Ruimin Gao
- Research Institute of Yanchang Petroleum (Group) Co. Ltd., Xi'an, China
| | - Chengjun Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, China
| | - Weibo Wang
- Research Institute of Yanchang Petroleum (Group) Co. Ltd., Xi'an, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol 2021; 61:366-379. [PMID: 33687766 DOI: 10.1002/jobm.202000661] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Li H, Zhang D, Luo J, Jones KC, Martin FL. Applying Raman Microspectroscopy to Evaluate the Effects of Nutrient Cations on Alkane Bioavailability to Acinetobacter baylyi ADP1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15800-15810. [PMID: 33274919 DOI: 10.1021/acs.est.0c04944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contamination with petroleum hydrocarbons causes extensive damage to ecological systems. On oil-contaminated sites, alkanes are major components; many indigenous bacteria can access and/or degrade alkanes. However, their ability to do so is affected by external properties of the soil, including nutrient cations. This study used Raman microspectroscopy to study how nutrient cations affect alkanes' bioavailability to Acinetobacter baylyi ADP1 (a known degrader). Treated with Na, K, Mg, and Ca at 10 mM, A. baylyi was exposed to seven n-alkanes (decane, dodecane, tetradecane, hexadecane, nonadecane, eicosane, and tetracosane) and one alkane mixture (mineral oil). Raman spectral analysis indicated that bioavailability of alkanes varied with carbon chain lengths, and additional cations altered the bacterial response to n-alkanes. Sodium significantly increased the bacterial affinity toward decane and dodecane, and K and Mg enhanced the bioavailability of tetradecane and hexadecane. In contrast, the bacterial response was inhibited by Ca for all alkanes. Similar results were observed in mineral oil exposure. Our study employed Raman spectral assay to offer a deep insight into how nutrient cations affect the bioavailability of alkanes, suggesting that nutrient cations can play a key role in influencing the harmful effects of hydrocarbons and could be optimized to enhance the bioremediation strategy.
Collapse
Affiliation(s)
- Hanbing Li
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
- School of Environment, Tsinghua University, Beijing 100086, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | | |
Collapse
|
11
|
Ibrar M, Zhang H. Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136400. [PMID: 31982734 DOI: 10.1016/j.scitotenv.2019.136400] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Apparent solubility and bioavailability of hydrophobic compounds are the major problems in the bioremediation process, which could be overcome by the bacteria capable of biosurfactant production and concurrent hydrocarbon degradation. In this work, we constructed an artificial bacterial consortium containing Lysinibacillus, Paenibacillus, Gordonia and Cupriavidus spp. from glyceryl tributyrate enriched bacteria collected from the non-contaminated site. The consortium was capable of using common raw materials (olive oil, paraffin oil, and glycerol) and polyaromatic hydrocarbons pollutants (naphthalene and anthracene) as the sole carbon source with simultaneous biosurfactant production. Two new lipopeptide isoforms, containing heptapeptide and lipid moieties, were structurally elucidated by LC-MS/MS, FTIR, NMR and molecular networking analysis. Our findings indicate that hydrocarbons degradation and biosurfactant production is an intrinsic property of non-contaminated soil community. Interestingly, we observed the hyper chemotactic activity of Lysinibacillus strains towards glyceryl tributyrate, which has not been reported before. The study may deepen our understanding of microbial strains and consortium with the potential to be used for bioremediation of hydrocarbons contaminated environments.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China; Key Laboratory of Molecular Biophysics, Ministry of education, Wuhan, Hubei, PR China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China; Key Laboratory of Molecular Biophysics, Ministry of education, Wuhan, Hubei, PR China.
| |
Collapse
|
12
|
Sampedro I, Pérez-Mendoza D, Toral L, Palacios E, Arriagada C, Llamas I. Effects of Halophyte Root Exudates and Their Components on Chemotaxis, Biofilm Formation and Colonization of the Halophilic Bacterium Halomonas Anticariensis FP35 T. Microorganisms 2020; 8:E575. [PMID: 32316222 PMCID: PMC7232322 DOI: 10.3390/microorganisms8040575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
Increase in soil salinity poses an enormous problem for agriculture and highlights the need for sustainable crop production solutions. Plant growth-promoting bacteria can be used to boost the growth of halophytes in saline soils. Salicornia is considered to be a promising salt-accumulating halophyte for capturing large amounts of carbon from the atmosphere. In addition, colonization and chemotaxis could play an important role in Salicornia-microbe interactions. In this study, the role of chemotaxis in the colonization of the halophilic siredophore-producing bacteria, Halomonas anticariensis FP35T, on Salicornia hispanica plants was investigated. The chemotactic response of FP35T to Salicornia root exudates showed optimum dependence at a salt concentration of 5 % NaCl (w/v). Oleanolic acid, the predominant compound in the exudates detected by HPLC and identified by UPLC-HRMS Q-TOF, acts as a chemoattractant. In vitro experiments demonstrated the enhanced positive effects of wild-type H. anticariensis strain FP35T on root length, shoot length, germination and the vigour index of S. hispanica. Furthermore, these positive effects partially depend on an active chemotaxis system, as the chemotaxis mutant H. anticariensis FP35 ΔcheA showed reduced plant growth promotion for all the parameters tested. Overall, our results suggest that chemotaxis responses to root exudates play an important role in interactions between Salicornia and halophilic bacteria, enhance their colonization and boost plant growth promotion. Preliminary results also indicate that root exudates have a positive impact on H. anticariensis FP35T biofilm formation under saline conditions, an effect which totally depends on the presence of the cheA gene.
Collapse
Affiliation(s)
- Inmaculada Sampedro
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - Daniel Pérez-Mendoza
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Laura Toral
- Xtrem Biotech S.L., European Business Innovation Center, Avenida de la Innovación, 1, 18016 Armilla, Granada, Spain;
| | - Esther Palacios
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - César Arriagada
- Department of Forestry Science, Bioremediation Laboratory, Faculty of Agricultural and Forestry Science, University of La Frontera, 01145 Temuco, Chile;
| | - Inmaculada Llamas
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, 18071 Granada, Spain; (D.P.-M.); (E.P.); (I.L.)
- Biomedical Research Center (CIBM), Biotechnology Institute, Avda del Conocimiento s/n, 18100 Armilla, Granada, Spain
| |
Collapse
|
13
|
Kim LH, Vrouwenvelder JS. Insignificant Impact of Chemotactic Responses of Pseudomonas aeruginosa on the Bacterial Attachment to Organic Pre-Conditioned RO Membranes. MEMBRANES 2019; 9:membranes9120162. [PMID: 31810273 PMCID: PMC6950137 DOI: 10.3390/membranes9120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022]
Abstract
We investigated the impact of conditioning compositions on the way bacteria move and adhere to reverse osmosis (RO) membranes that have been pre-conditioned by organic compounds. We used humic acid (HA), bovine serum albumin (BSA), and sodium alginate (SA) to simulate conditioning layers on the RO membranes. First, we investigated the chemotactic responses of Pseudomonas aeruginosa PAO1 to the organic substances and the impact of changes in physicochemical characteristics of pre-conditioned membranes on bacterial attachment. Second, we observed bacterial attachment under the presence or absence of nutrients or microbial metabolic activity. Results showed that there was no relationship between the chemotactic response of P. aeruginosa PAO1 and the organic substances, and the changes in hydrophobicity, surface free energy, and surface charge resulting from changing the composition of the conditioning layer did not seem to affect bacterial attachment, whereas changing the roughness of the conditioned membrane exponentially did (exponential correlation coefficient, R2 = 0.85). We found that the initial bacterial attachment on the membrane surface is influenced by (i) the nutrients in the feed solution and (ii) the microbial metabolic activity, whereas the chemotaxis response has a negligible impact. This study would help to establish a suitable strategy to manage bacterial attachment.
Collapse
Affiliation(s)
- Lan Hee Kim
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Johannes S. Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Correspondence:
| |
Collapse
|
14
|
Goetghebuer L, Bonal M, Faust K, Servais P, George IF. The Dynamic of a River Model Bacterial Community in Two Different Media Reveals a Divergent Succession and an Enhanced Growth of Most Strains Compared to Monocultures. MICROBIAL ECOLOGY 2019; 78:313-323. [PMID: 30680433 DOI: 10.1007/s00248-019-01322-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The dynamic of a community of 20 bacterial strains isolated from river water was followed in R2 broth and in autoclaved river water medium for 27 days in batch experiments. At an early stage of incubation, a fast-growing specialist strain, Acinetobater sp., dominated the community in both media. Later on, the community composition in both media diverged but was highly reproducible across replicates. In R2, several strains previously reported to degrade multiple simple carbon sources prevailed. In autoclaved river water, the community was more even and became dominated by several strains growing faster or exclusively in that medium. Those strains have been reported in the literature to degrade complex compounds. Their growth rate in the community was 1.5- to 7-fold greater than that observed in monoculture. Furthermore, those strains developed simultaneously in the community. Together, our results suggest the existence of cooperative interactions within the community incubated in autoclaved river water.
Collapse
Affiliation(s)
- Lise Goetghebuer
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium
| | - Mathias Bonal
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Pierre Servais
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium
| | - Isabelle F George
- Ecology of Aquatic Systems, Université libre de Bruxelles, Campus Plaine, CP 221, 1050, Brussels, Belgium.
| |
Collapse
|
15
|
Tena-Garitaonaindia M, Llamas I, Toral L, Sampedro I. Chemotaxis of halophilic bacterium Halomonas anticariensis FP35 towards the environmental pollutants phenol and naphthalene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:631-636. [PMID: 30889450 DOI: 10.1016/j.scitotenv.2019.02.444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Chemotaxis can play an important role in bioremediation and substrate bioavailability. The bioremediation of hydrocarbons in saline environments can be carried out by technologies using halophilic bacteria. The aim of this study is to analyse chemotactic responses of the halophilic bacterium Halomonas anticariensis FP35T to environmental pollutants, as well as its catabolic potential for biotechnological use in bioremediation processes under saline conditions. Chemotaxis was detected and quantified using a modified Adler capillary assay. PCR amplification with degenerate primers for genes encoding ring-cleaving enzymes was used to characterize the catabolic versatility of FP35T. The results indicate that phenol (100-1,000 ppm) and naphthalene (100-500 ppm) are chemoattractants for H. anticariensis FP35T in a dose-dependent manner. These hydrocarbons were observed to act as chemoattractants for FP35T grown in a wide range of sea salt solutions (5-12.5% (w/v). However, the 7.5% (w/v) saline concentration was found to have the strongest chemotactic response. We also detected genes encoding ring-cleaving enzymes in the β-ketoadipate pathway for aromatic catabolism. These results suggest that H. anticariensis FP35T has the potential to catabolize aromatic compounds and to be used in bioremediation processes under saline conditions.
Collapse
Affiliation(s)
- M Tena-Garitaonaindia
- Department of Microbiology, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; Biomedical Research Center (CIBM), Institute of Biotechnology, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - I Llamas
- Department of Microbiology, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; Biomedical Research Center (CIBM), Institute of Biotechnology, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain
| | - L Toral
- Xtrem Biotech S.L., European Business Innovation Center, Avenida de la Innovación, 1, 18016 Armilla, Granada, Spain
| | - I Sampedro
- Department of Microbiology, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; Biomedical Research Center (CIBM), Institute of Biotechnology, Avenida del Conocimiento s/n, 18100 Armilla, Granada, Spain.
| |
Collapse
|
16
|
Chemotaxis Towards Aromatic Compounds: Insights from Comamonas testosteroni. Int J Mol Sci 2019; 20:ijms20112701. [PMID: 31159416 PMCID: PMC6600141 DOI: 10.3390/ijms20112701] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Chemotaxis is an important physiological adaptation that allows many motile bacteria to orientate themselves for better niche adaptation. Chemotaxis is best understood in Escherichia coli. Other representative bacteria, such as Rhodobacter sphaeroides, Pseudomonas species, Helicobacter pylori, and Bacillus subtilis, also have been deeply studied and systemically summarized. These bacteria belong to α-, γ-, ε-Proteobacteria, or Firmicutes. However, β-Proteobacteria, of which many members have been identified as holding chemotactic pathways, lack a summary of chemotaxis. Comamonas testosteroni, belonging to β-Proteobacteria, grows with and chemotactically responds to a range of aromatic compounds. This paper summarizes the latest research on chemotaxis towards aromatic compounds, mainly from investigations of C. testosteroni and other Comamonas species.
Collapse
|
17
|
Gregson BH, Metodieva G, Metodiev MV, Golyshin PN, McKew BA. Differential Protein Expression During Growth on Medium Versus Long-Chain Alkanes in the Obligate Marine Hydrocarbon-Degrading Bacterium Thalassolituus oleivorans MIL-1. Front Microbiol 2018; 9:3130. [PMID: 30619200 PMCID: PMC6304351 DOI: 10.3389/fmicb.2018.03130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 02/02/2023] Open
Abstract
The marine obligate hydrocarbonoclastic bacterium Thalassolituus oleivorans MIL-1 metabolizes a broad range of aliphatic hydrocarbons almost exclusively as carbon and energy sources. We used LC-MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on medium- (n-C14) or long-chain (n-C28) alkanes. During growth on n-C14, T. oleivorans expresses an alkane monooxygenase system involved in terminal oxidation including two alkane 1-monooxygenases, a ferredoxin, a ferredoxin reductase and an aldehyde dehydrogenase. In contrast, during growth on long-chain alkanes (n-C28), T. oleivorans may switch to a subterminal alkane oxidation pathway evidenced by significant upregulation of Baeyer-Villiger monooxygenase and an esterase, proteins catalyzing ketone and ester metabolism, respectively. The metabolite (primary alcohol) generated from terminal oxidation of an alkane was detected during growth on n-C14 but not on n-C28 also suggesting alternative metabolic pathways. Expression of both active and passive transport systems involved in uptake of long-chain alkanes was higher when compared to the non-hydrocarbon control, including a TonB-dependent receptor, a FadL homolog and a specialized porin. Also, an inner membrane transport protein involved in the export of an outer membrane protein was expressed. This study has demonstrated the substrate range of T. oleivorans is larger than previously reported with growth from n-C10 up to n-C32. It has also greatly enhanced our understanding of the fundamental physiology of T. oleivorans, a key bacterium that plays a significant role in natural attenuation of marine oil pollution, by identifying key enzymes expressed during the catabolism of n-alkanes.
Collapse
Affiliation(s)
- Benjamin H Gregson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Gergana Metodieva
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Bangor, United Kingdom.,School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, United Kingdom
| | - Boyd A McKew
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
18
|
Heterologous Expression of Pseudomonas putida Methyl-Accepting Chemotaxis Proteins Yields Escherichia coli Cells Chemotactic to Aromatic Compounds. Appl Environ Microbiol 2018; 84:AEM.01362-18. [PMID: 30006400 DOI: 10.1128/aem.01362-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli, commonly used in chemotaxis studies, is attracted mostly by amino acids, sugars, and peptides. We envisioned modifying the chemotaxis specificity of E. coli by expressing heterologous chemoreceptors from Pseudomonas putida enabling attraction either to toluene or benzoate. The mcpT gene encoding the type 40-helical bundle (40H) methyl-accepting chemoreceptor for toluene from Pseudomonas putida MT53 and the pcaY gene for the type 40H receptor for benzoate and related molecules from P. putida F1 were expressed from the trg promoter on a plasmid in motile wild-type E. coli MG1655. E. coli cells expressing McpT accumulated in chemoattraction assays to sources with 60 to 200 μM toluene, although less strongly than the response to 100 μM serine, but statistically significantly stronger than that to sources without any added attractant. An McpT-mCherry fusion protein was detectably expressed in E. coli and yielded weak but distinguishable membranes and polar foci in 1% of cells. E. coli cells expressing PcaY showed weak attraction to 0.1 to 1 mM benzoate, but 50 to 70% of cells localized the PcaY-mCherry fusion to their membrane. We conclude that implementing heterologous receptors in the E. coli chemotaxis network is possible and, upon improvement of the compatibility of the type 40H chemoreceptors, may bear interest for biosensing.IMPORTANCE Bacterial chemotaxis might be harnessed for the development of rapid biosensors, in which chemical availability is deduced from cell accumulation to chemoattractants over time. Chemotaxis of Escherichia coli has been well studied, but the bacterium is not attracted to chemicals of environmental concern, such as aromatic solvents. We show here that heterologous chemoreceptors for aromatic compounds from Pseudomonas putida at least partly functionally complement the E. coli chemotaxis network, yielding cells attracted to toluene or benzoate. Complementation was still inferior to native chemoattractants, like serine, but our study demonstrates the potential for obtaining selective sensing for aromatic compounds in E. coli.
Collapse
|
19
|
Du P, Wu X, Xu J, Dong F, Liu X, Zheng Y. Effects of trifluralin on the soil microbial community and functional groups involved in nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:204-213. [PMID: 29674095 DOI: 10.1016/j.jhazmat.2018.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Large amounts of trifluralin are applied each year for weed control; however, its effects on soil microbial communities and functions are unknown. Two agricultural soils, one silty loam and one silty clay were spiked with TFL (0, 0.84, 8.4, and 84 mg kg-1) and studied the effects using a laboratory microcosm approach. The half-lives were 44.19-61.83 d in all cases. Bacterial abundance increased 1.12-5.56 times by TFL, but the diversity decreased. From the next-generation sequencing results, TFL altered the bacterial community structure, which initially diverged from the control community structure, then recovered, and then diverged again. Linear discriminant analysis effect size indicated that Sphingomonas and Xanthomonadaceae were the predominant species on day 7 and 15 in TFL treatments. N2-fixing bacteria were initially increased, then decreased, and then recovered, and it was positively correlated with NH4+-N content. Compared with the control, ammonia-oxidizing bacteria were decreased by 25.51-92.63%, ammonia-oxidizing archaea were decreased by 17.12-85.21% (except day 7), and the NO3--N concentration was also inhibited. In contrast to bacteria, fungal abundance was inhibited without any observable effects on fungal diversity or community structure. These results suggest that TFL impacts soil bacterial community and alters functional microorganisms involved in soil N processing.
Collapse
Affiliation(s)
- Pengqiang Du
- College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan, 430079, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yongquan Zheng
- College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan, 430079, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
20
|
New Findings on Aromatic Compounds’ Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3. Curr Microbiol 2018; 75:1108-1118. [DOI: 10.1007/s00284-018-1497-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/19/2018] [Indexed: 11/26/2022]
|
21
|
Gasperotti AF, Revuelta MV, Studdert CA, Herrera Seitz MK. Identification of two different chemosensory pathways in representatives of the genus Halomonas. BMC Genomics 2018; 19:266. [PMID: 29669514 PMCID: PMC5907407 DOI: 10.1186/s12864-018-4655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/10/2018] [Indexed: 11/22/2022] Open
Abstract
Background Species of the genus Halomonas are salt-tolerant organisms that have a versatile metabolism and can degrade a variety of xenobiotic compounds, utilizing them as their sole carbon source. In this study, we examined the genome of a Halomonas isolate from a hydrocarbon-contaminated site to search for chemosensory genes that might be responsible for the observed chemotactic behavior of this organism as well as for other responses to environmental cues. Results Using genome-wide comparative tools, our isolate was identified as a strain of Halomonas titanicae (strain KHS3), together with two other Halomonas strains with available genomes that had not been previously identified at a species level. The search for the main components of chemosensory pathways resulted in the identification of two clusters of chemosensory genes and a total of twenty-five chemoreceptor genes. One of the gene clusters is very similar to the che cluster from Escherichia coli and, presumably, it is responsible for the chemotactic behavior towards a variety of compounds. This gene cluster is present in 47 out of 56 analyzed Halomonas strains with available genomes. A second che-like cluster includes a gene coding for a diguanylate cyclase with a phosphotransfer and two receiver domains, as well as a gene coding for a chemoreceptor with a longer cytoplasmic domain than the other twenty-four. This seemingly independent pathway resembles the wsp pathway from Pseudomonas aeruginosa although it also presents several differences in gene order and domain composition. This second chemosensory gene cluster is only present in a sub-group within the genus Halomonas. Moreover, remarkably similar gene clusters are also found in some orders of Proteobacteria phylogenetically more distant from the Oceanospirillales, suggesting the occurrence of lateral transfer events. Conclusions Chemosensory pathways were investigated within the genus Halomonas. A canonical chemotaxis pathway, controlled by a variable number of chemoreceptors, is widespread among Halomonas species. A second chemosensory pathway of unique organization that involves some type of c-di-GMP signaling was found to be present only in one branch of the genus, as well as in other proteobacterial lineages. Electronic supplementary material The online version of this article (10.1186/s12864-018-4655-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Florencia Gasperotti
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María Victoria Revuelta
- Department of Medicine, Hematology and Oncology Division, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Claudia Alicia Studdert
- Instituto de Agrobiotecnología del Litoral, CONICET - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
22
|
Physiological and transcriptome changes induced by Pseudomonas putida acquisition of an integrative and conjugative element. Sci Rep 2018; 8:5550. [PMID: 29615803 PMCID: PMC5882942 DOI: 10.1038/s41598-018-23858-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Integrative and conjugative elements (ICEs) comprise ubiquitous large mobile regions in prokaryotic chromosomes that transmit vertically to daughter cells and transfer horizontally to distantly related lineages. Their evolutionary success originates in maximized combined ICE-host fitness trade-offs, but how the ICE impacts on the host metabolism and physiology is poorly understood. Here we investigate global changes in the host genetic network and physiology of Pseudomonas putida with or without an integrated ICEclc, a model ICE widely distributed in proteobacterial genomes. Genome-wide gene expression differences were analyzed by RNA-seq using exponentially growing or stationary phase-restimulated cultures on 3-chlorobenzoate, an aromatic compound metabolizable thanks to specific ICEclc-located genes. We found that the presence of ICEclc imposes a variety of changes in global pathways such as cell cycle and amino acid metabolism, which were more numerous in stationary-restimulated than exponential phase cells. Unexpectedly, ICEclc stimulates cellular motility and leads to more rapid growth on 3-chlorobenzoate than cells carrying only the integrated clc genes. ICEclc also concomitantly activates the P. putida Pspu28-prophage, but this in itself did not provoke measurable fitness effects. ICEclc thus interferes in a number of cellular pathways, inducing both direct benefits as well as indirect costs in P. putida.
Collapse
|
23
|
Chen Z, Zheng W, Yang L, Boughner LA, Tian Y, Zheng T, Xu H. Lytic and Chemotactic Features of the Plaque-Forming Bacterium KD531 on Phaeodactylum tricornutum. Front Microbiol 2018; 8:2581. [PMID: 29312256 PMCID: PMC5742596 DOI: 10.3389/fmicb.2017.02581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Phaeodactylum tricornutum is a dominant bloom forming species and potential biofuel feedstock. To control P. tricornutum bloom or to release lipids from P. tricornutum, we previously screened and identified the lytic bacterium Labrenzia sp. KD531 toward P. tricornutum. In the present study, we evaluated the lytic activity of Labrenzia sp. KD531 on microalgae and investigated its lytic mechanism. The results indicated that the lytic activity of KD531 was temperature- and pH-dependent, but light-independent. In addition to P. tricornutum, KD531 also showed lytic activity against other algal species, especially green algae. A quantitative analysis of algal cellular protein, carbohydrate and lipid content together with measurements of dry weight after exposure to bacteria-infected algal lysate indicated that the bacterium KD531 influenced the algal biomass by disrupting the algal cells. Both chemotactic analysis and microscopic observations of subsamples from different regions of formed plaques showed that KD531 could move toward and then directly contact algal cells. Direct contact between P. tricornutum and KD531 cells was essential for the lytic process.
Collapse
Affiliation(s)
- Zhangran Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| | - Wei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Luxi Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Lisa A Boughner
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Tianling Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hong Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, School of Life Sciences, and State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae. Sci Rep 2018; 8:341. [PMID: 29321600 PMCID: PMC5762655 DOI: 10.1038/s41598-017-18578-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Dickeya zeae is the causal agent of rice foot rot disease, which has recently become a great threat to rice planting countries and regions. The pathogen produces a family of phytotoxins named zeamines that is critical for bacterial virulence, but little is known about the signaling pathways and regulatory mechanisms that govern zeamine production. In this study, we showed that a conserved transcriptional regulator Fis is involved in the regulation of zeamine production in D. zeae strain EC1. Deletion mutants were markedly attenuated in the virulence against rice seed germination. Transcriptome and phenotype analyses showed that Fis is a potent global transcriptional regulator modulating various virulence traits, including production of extracellular enzymes and exopolysaccharides, swimming and swarming motility, biofilm formation and cell aggregation. DNA gel retardation analysis showed that Fis directly regulates the transcription of key virulence genes and the genes encoding Vfm quorum sensing system through DNA/protein interaction. Our findings unveil a key regulator associated with the virulence of D. zeae EC1, and present useful clues for further elucidation of the regulatory complex and signaling pathways which govern the virulence of this important pathogen.
Collapse
|
25
|
Roggo C, Picioreanu C, Richard X, Mazza C, van Lintel H, van der Meer JR. Quantitative chemical biosensing by bacterial chemotaxis in microfluidic chips. Environ Microbiol 2017; 20:241-258. [DOI: 10.1111/1462-2920.13982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Clémence Roggo
- Department of Fundamental Microbiology; University of Lausanne; Lausanne Switzerland 1015
| | - Cristian Picioreanu
- Department of Biotechnology Faculty of Applied Sciences; Delft University of Technology; Delft 2629 HZ The Netherlands
| | - Xavier Richard
- Department of Mathematics; University of Fribourg, CH-1700; Fribourg Switzerland
| | - Christian Mazza
- Department of Mathematics; University of Fribourg, CH-1700; Fribourg Switzerland
| | - Harald van Lintel
- Microsystems Laboratory LMIS4; École Polytechnique Fédérale de Lausanne (EPFL), Station 17; Lausanne Switzerland CH-1015
| | | |
Collapse
|
26
|
Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp. Biodegradation 2017; 29:1-10. [DOI: 10.1007/s10532-017-9809-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/09/2017] [Indexed: 11/26/2022]
|
27
|
Genome Sequence of Pseudomonas putida Strain ASAD, an Acetylsalicylic Acid-Degrading Bacterium. GENOME ANNOUNCEMENTS 2017; 5:5/41/e01169-17. [PMID: 29025955 PMCID: PMC5637515 DOI: 10.1128/genomea.01169-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Pseudomonas putida
strain ASAD was isolated from compost because of its ability to utilize aspirin (acetylsalicylic acid) as a carbon and energy source. We report the draft genome sequence of strain ASAD, with an estimated length of 6.9 Mb. Study of this isolate will provide insight into the aspirin biodegradation pathway.
Collapse
|
28
|
Yang L, Li S, Qin X, Jiang G, Chen J, Li B, Yao X, Liang P, Zhang Y, Ding W. Exposure to Umbelliferone Reduces Ralstonia solanacearum Biofilm Formation, Transcription of Type III Secretion System Regulators and Effectors and Virulence on Tobacco. Front Microbiol 2017; 8:1234. [PMID: 28713361 PMCID: PMC5492427 DOI: 10.3389/fmicb.2017.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/19/2017] [Indexed: 12/04/2022] Open
Abstract
Ralstonia solanacearum is one of the most devastating phytopathogens and causes bacterial wilt, which leads to severe economic loss due to its worldwide distribution and broad host range. Certain plant-derived compounds (PDCs) can impair bacterial virulence by suppressing pathogenic factors of R. solanacearum. However, the inhibitory mechanisms of PDCs in bacterial virulence remain largely unknown. In this study, we screened a library of coumarins and derivatives, natural PDCs with fused benzene and α-pyrone rings, for their effects on expression of the type III secretion system (T3SS) of R. solanacearum. Here, we show that umbelliferone (UM), a 7-hydroxycoumarin, suppressed T3SS regulator gene expression through HrpG–HrpB and PrhG–HrpB pathways. UM decreased gene expression of six type III effectors (RipX, RipD, RipP1, RipR, RipTAL, and RipW) of 10 representative effector genes but did not alter T2SS expression. In addition, biofilm formation of R. solanacearum was significantly reduced by UM, though swimming activity was not affected. We then observed that UM suppressed the wilting disease process by reducing colonization and proliferation in tobacco roots and stems. In summary, the findings reveal that UM may serve as a plant-derived inhibitor to manipulate R. solanacearum T3SS and biofilm formation, providing proof of concept that these key virulence factors are potential targets for the integrated control of bacterial wilt.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Xiyun Qin
- Yunnan Academy of Tobacco Agricultural ResearchYuxi, China
| | - Gaofei Jiang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China.,Laboratoire des Interactions Plantes-Microorganismes, UMR441, Institut National de la Recherche AgronomiqueCastanet-Tolosan, France
| | - Juanni Chen
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Bide Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Xiaoyuan Yao
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Peibo Liang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Yong Zhang
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| |
Collapse
|
29
|
Li H, Martin FL, Zhang D. Quantification of Chemotaxis-Related Alkane Accumulation in Acinetobacter baylyi Using Raman Microspectroscopy. Anal Chem 2017; 89:3909-3918. [DOI: 10.1021/acs.analchem.6b02297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hanbing Li
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Francis Luke Martin
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
- School
of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, U.K
| | - Dayi Zhang
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| |
Collapse
|
30
|
Fedi S, Barberi TT, Nappi MR, Sandri F, Booth S, Turner RJ, Attimonelli M, Cappelletti M, Zannoni D. The Role of cheA Genes in Swarming and Swimming Motility of Pseudomonas pseudoalcaligenes KF707. Microbes Environ 2016; 31:169-72. [PMID: 27151656 PMCID: PMC4912153 DOI: 10.1264/jsme2.me15164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A genome analysis of Pseudomonas pseudoalcaligenes KF707, a PCBs degrader and metal-resistant soil microorganism, revealed the presence of two novel gene clusters named che2 and che3, which were predicted to be involved in chemotaxis-like pathways, in addition to a che1 gene cluster. We herein report that the histidine kinase coding genes, cheA2 and cheA3, have no role in swimming or chemotaxis in P. pseudoalcaligenes KF707, in contrast to cheA1. However, the cheA1 and cheA2 genes were both necessary for cell swarming, whereas the cheA3 gene product had a negative effect on the optimal swarming phenotype of KF707 cells.
Collapse
Affiliation(s)
- Stefano Fedi
- Department of Pharmacy and Biotechnology, University of Bologna
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huang Z, Ni B, Jiang CY, Wu YF, He YZ, Parales RE, Liu SJ. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds inComamonas testosteroni. Mol Microbiol 2016; 101:224-37. [DOI: 10.1111/mmi.13385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Zhou Huang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Bin Ni
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| | - Yu-Fan Wu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yun-Zhe He
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; University of California; Davis CA 95616 USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| |
Collapse
|
32
|
Webb BA, Helm RF, Scharf BE. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:231-9. [PMID: 26713349 DOI: 10.1094/mpmi-12-15-0264-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant seeds and roots exude a spectrum of molecules into the soil that attract bacteria to the spermosphere and rhizosphere, respectively. The alfalfa symbiont Sinorhizobium meliloti utilizes eight chemoreceptors (McpT to McpZ and IcpA) to mediate chemotaxis. Using a modified hydrogel capillary chemotaxis assay that allows data quantification and larger throughput screening, we defined the role of S. meliloti chemoreceptors in sensing its host, Medicago sativa, and a closely related nonhost, Medicago arabica. S. meliloti wild type and most single-deletion strains displayed comparable chemotaxis responses to host or nonhost seed exudate. However, while the mcpZ mutant responded like wild type to M. sativa exudate, its reaction to M. arabica exudate was reduced by 80%. Even though the amino acid (AA) amounts released by both plant species were similar, synthetic AA mixtures that matched exudate profiles contributed differentially to the S. meliloti wild-type response to M. sativa (23%) and M. arabica (37%) exudates, with McpU identified as the most important chemoreceptor for AA. Our results show that S. meliloti is equally attracted to host and nonhost legumes; however, AA play a greater role in attraction to M. arabica than to M. sativa, with McpZ being specifically important in sensing M. arabica.
Collapse
Affiliation(s)
| | - Richard F Helm
- 2 Virginia Tech Department of Biochemistry, Life Sciences I, Blacksburg, VA 24061, U.S.A
| | | |
Collapse
|
33
|
Microscopic and proteomic analysis of Zea mays roots (P30F53 variety) inoculated with Azospirillum brasilense strain FP2. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s12892-014-0061-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Parales RE, Luu RA, Hughes JG, Ditty JL. Bacterial chemotaxis to xenobiotic chemicals and naturally-occurring analogs. Curr Opin Biotechnol 2015; 33:318-26. [DOI: 10.1016/j.copbio.2015.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
|
35
|
Jimenez-Sanchez C, Wick LY, Cantos M, Ortega-Calvo JJ. Impact of dissolved organic matter on bacterial tactic motility, attachment, and transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4498-505. [PMID: 25734420 DOI: 10.1021/es5056484] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacterial dispersal is a key driver of the ecology of microbial contaminant degradation in soils. This work investigated the role of dissolved organic matter (DOM) in the motility, attachment, and transport of the soil bacterium Pseudomonas putida G7 in saturated porous media. The study is based on the hypothesis that DOM quality is critical to triggering tactic motility and, consequently, affects bacterial transport and dispersal. Sunflower root exudates, humic acids (HA), and the synthetic oleophilic fertilizer S-200 were used as representatives of fresh, weathered, and artificially processed DOM with high nitrogen and phosphorus contents, respectively. We studied DOM levels of 16-130 mg L(-1), which are representative of DOM concentrations typically found in agricultural soil pore water. In contrast to its responses to HA and S-200, strain G7 exhibited a tactic behavior toward root exudates, as quantified by chemotaxis assays and single-cell motility observations. All DOM types promoted bacterial transport through sand at high concentrations (∼ 130 mg L(-1)). At low DOM concentrations (∼ 16 mg L(-1)), the enhancement occurred only in the presence of sunflower root exudates, and this enhancement did not occur with G7 bacteria devoid of flagella. Our results suggest that tactic DOM effectors strongly influence bacterial transport and the interception probability of motile bacteria by collector surfaces.
Collapse
Affiliation(s)
- Celia Jimenez-Sanchez
- †Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apartado 1052, E-41080-Seville, Spain
| | - Lukas Y Wick
- ‡Helmholtz Centre for Environmental Research - UFZ, Permosertraße 15, D-04318 Leipzig, Germany
| | - Manuel Cantos
- †Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apartado 1052, E-41080-Seville, Spain
| | - José-Julio Ortega-Calvo
- †Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apartado 1052, E-41080-Seville, Spain
| |
Collapse
|
36
|
Liu H, Sun WB, Liang RB, Huang L, Hou JL, Liu JH. iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1: A global response to n-octadecane induced stress. J Proteomics 2015; 123:14-28. [PMID: 25845586 DOI: 10.1016/j.jprot.2015.03.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/14/2015] [Accepted: 03/29/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED N-octadecane, the shortest solid-state alkane, was efficiently consumed by Pseudomonas aeruginosa SJTD-1. To reveal its mechanism, the iTRAQ-LC-MS/MS strategy was applied for quantification of proteins in response to alkane. As a result, 383 alkane-responsive proteins were identified and these proteins could be linked to multiple biochemical pathways. Above all, the level of alkane hydroxylase AlkB2 has been significantly higher in alkane condition. Also, the presence of a putative novel AlmA-like monooxygenase and its role on alkane hydroxylation were firstly proposed in Pseudomonas. In addition, other proteins for chemotaxic, β-oxidation, glyoxylate bypass, alkane uptake, cross membrane transport, enzymatic steps and the carbon flow may have important roles in the cellular response to alkane. Most of those differently expressed proteins were functionally mapped into pathways of alkane degradation or metabolism thereof. In this sense, findings in this study provide critical clues to reveal biodegradation of long chain n-alkanes and rationally be important for potent biocatalyst for bioremediation in future. BIOLOGICAL SIGNIFICANCE We use iTRAQ strategy firstly to compare the proteomes of Pseudomonas SJTD-1 degrading alkane. Changes in protein clearly provide a comprehensive overview on alkane hydroxylation of SJTD-1, including those proteins for chemotaxis, alkane uptake, cross membrane transport, enzymatic steps and the carbon flow. AlkB2 and a putative novel AlmA-like monooxygenase have been highlighted for their outstanding contribution to alkane use. We found that several chemotaxic proteins were altered in abundance in alkane-grown cells. These results may be helpful for understanding alkane use for Pseudomonas.
Collapse
Affiliation(s)
- Huan Liu
- School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Wen-Bing Sun
- School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Ru-Bing Liang
- School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Li Huang
- Department of Plastic and Aesthetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing-Li Hou
- Instrumental Analysis Center of Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| | - Jian-Hua Liu
- School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|
37
|
Rosi-Marshall EJ, Snow D, Bartelt-Hunt SL, Paspalof A, Tank JL. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2015; 282:18-25. [PMID: 25062553 DOI: 10.1016/j.jhazmat.2014.06.062] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/19/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Although illicit drugs are detected in surface waters throughout the world, their environmental fate and ecological effects are not well understood. Many illicit drugs and their breakdown products have been detected in surface waters and temporal and spatial variability in use translates into "hot spots and hot moments" of occurrence. Illicit drug occurrence in regions of production and use and areas with insufficient wastewater treatment are not well studied and should be targeted for further study. Evidence suggests that illicit drugs may not be persistent, as their half-lives are relatively short, but may exhibit "pseudo-persistence" wherein continual use results in persistent occurrence. We reviewed the literature on the ecological effects of these compounds on aquatic organisms and although research is limited, a wide array of aquatic organisms, including bacteria, algae, invertebrates, and fishes, have receptors that make them potentially sensitive to these compounds. In summary, illicit drugs occur in surface waters and aquatic organisms may be affected by these compounds; research is needed that focuses on concentrations of illicit drugs in areas of production and high use, environmental fate of these compounds, and effects of these compounds on aquatic ecosystems at the concentrations that typically occur in the environment.
Collapse
Affiliation(s)
- E J Rosi-Marshall
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY 12545, USA.
| | - D Snow
- University of Nebraska-Lincoln, Lincoln, NE 68583-0844, USA
| | | | - A Paspalof
- University of Nebraska-Lincoln, Lincoln, NE 68583-0844, USA
| | - J L Tank
- University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
38
|
A novel chemoreceptor MCP2983 from Comamonas testosteroni specifically binds to cis-aconitate and triggers chemotaxis towards diverse organic compounds. Appl Microbiol Biotechnol 2014; 99:2773-81. [DOI: 10.1007/s00253-014-6216-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 01/25/2023]
|
39
|
Abstract
Pseudomonads sense changes in the concentration of chemicals in their environment and exhibit a behavioral response mediated by flagella or pili coupled with a chemosensory system. The two known chemotaxis pathways, a flagella-mediated pathway and a putative pili-mediated system, are described in this review. Pseudomonas shows chemotaxis response toward a wide range of chemicals, and this review includes a summary of them organized by chemical structure. The assays used to measure positive and negative chemotaxis swimming and twitching Pseudomonas as well as improvements to those assays and new assays are also described. This review demonstrates that there is ample research and intellectual space for future investigators to elucidate the role of chemotaxis in important processes such as pathogenesis, bioremediation, and the bioprotection of plants and animals.
Collapse
Affiliation(s)
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | - Tino Krell
- Department of Environmental Protection, CSIC, Estacion Experimental del Zaidin, Granada, Spain
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
40
|
Qiu M, Xu Z, Li X, Li Q, Zhang N, Shen Q, Zhang R. Comparative proteomics analysis of Bacillus amyloliquefaciens SQR9 revealed the key proteins involved in in situ root colonization. J Proteome Res 2014; 13:5581-91. [PMID: 25299960 DOI: 10.1021/pr500565m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus Amyloliquefaciens SQR9 is a well-investigated plant growth-promoting rhizobacteria with strong root colonization capability. To identify the key proteins involved in in situ root colonization and biofilm formation, the proteomic profiles of planktonic and root colonized SQR9 cells were compared. A total of 755 proteins were identified, of which 78 and 95 proteins were significantly increased and deceased, respectively, when SQR9 was colonized on the root. The proteins that were closely affiliated with the root colonization belonged to the functional categories of biocontrol, detoxification, biofilm formation, cell motility and chemotaxis, transport, and degradation of plant polysaccharides. A two-component system protein ResE was increased 100-fold when compared to the planktonic status; impairment of the resE gene postponed the formation of cell biofilm and decreased the root colonization capability, which may be regulated through the spo0A-sinI-yqxM pathway. The SQR9 proteomic data provide valuable clues for screening key proteins in the plant-rhizobacteria interaction.
Collapse
Affiliation(s)
- Meihua Qiu
- National Engineering Research Center for Organic-Based Fertilizers and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University , Nanjing 210095, P.R. China
| | | | | | | | | | | | | |
Collapse
|
41
|
Metabolism Dependent Chemotaxis of Pseudomonas aeruginosa N1 Towards Anionic Detergent Sodium Dodecyl Sulfate. Indian J Microbiol 2014; 54:134-8. [PMID: 25320412 DOI: 10.1007/s12088-013-0426-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 09/09/2013] [Indexed: 10/26/2022] Open
Abstract
Sodium dodecyl sulfate (SDS) is one of the most commonly used detergent, which exhibits excellent biocidal activity against various bacteria and fungi. It is commonly employed in many detergent formulations and is employed for disinfection purposes. It is shown to be toxic to fishes, aquatic animals and is also inhibitory to microbes and cyanobacteria. We had isolated a strain belonging to Pseudomonas aeruginosa N1, from a detergent contaminated pond situated in Varanasi city India, which was able to degrade and metabolize SDS as a source of carbon. In the present investigation, we have studied chemotactic response of this strain towards SDS. The results clearly indicate that this strain showed chemotactic response towards SDS. The nature of chemotaxis was found to be metabolism dependent as glucose grown cells showed a delayed chemotactic response towards SDS. This is first study that reported chemotaxis response for P. aeruginosa towards anionic detergent SDS.
Collapse
|
42
|
Joshi H, Dave R, Venugopalan VP. Protein as chemical cue: non-nutritional growth enhancement by exogenous protein in Pseudomonas putida KT2440. PLoS One 2014; 9:e103730. [PMID: 25117434 PMCID: PMC4130607 DOI: 10.1371/journal.pone.0103730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
Research pertaining to microbe-microbe and microbe-plant interactions has been largely limited to small molecules like quorum sensing chemicals. However, a few recent reports have indicated the role of complex molecules like proteins and polysaccharides in microbial communication. Here we demonstrate that exogenous proteins present in culture media can considerably accelerate the growth of Pseudomonas putida KT2440, even when such proteins are not internalized by the cells. The growth enhancement is observed when the exogenous protein is not used as a source of carbon or nitrogen. The data show non-specific nature of the protein inducing growth; growth enhancement was observed irrespective of the protein type. It is shown that growth enhancement is mediated via increased siderophore secretion in response to the exogenous protein, leading to better iron uptake. We highlight the ecological significance of the observation and hypothesize that exogenous proteins serve as chemical cues in the case of P.putida and are perceived as indicator of the presence of competitors in the environment. It is argued that enhanced siderophore secretion in response to exogenous protein helps P.putida establish numerical superiority over competitors by way of enhanced iron assimilation and quicker utilization of aromatic substrates.
Collapse
Affiliation(s)
- Hiren Joshi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, India
| | - Rachna Dave
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, India
| | - Vayalam P. Venugopalan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, India
- * E-mail:
| |
Collapse
|
43
|
Joshi H, Dave R, Venugopalan VP. Pumping iron to keep fit: modulation of siderophore secretion helps efficient aromatic utilization in Pseudomonas putida KT2440. Microbiology (Reading) 2014; 160:1393-1400. [DOI: 10.1099/mic.0.079277-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of biotechnology applications of Pseudomonas putida KT2440 have been predominantly focused on regulation and expression of the toluene degradation (TOL) pathway. Unfortunately, there is limited information on the role of other physiological factors influencing aromatic utilization. In this report, we demonstrate that P. putida KT2440 increases its siderophore secretion in response to the availability of benzyl alcohol, a model aromatic substrate. It is argued that accelerated siderophore secretion in response to aromatic substrates provides an iron ‘boost’ which is required for the effective functioning of the iron-dependent oxygenases responsible for ring opening. Direct evidence for the cardinal role of siderophores in aromatic utilization is provided by evaluation of per capita siderophore secretion and comparative growth assessments of wild-type and siderophore-negative mutant strains grown on an alternative carbon source. Accelerated siderophore secretion can be viewed as a compensatory mechanism in P. putida in the context of its inability to secrete more than one type of siderophore (pyoverdine) or to utilize heterologous siderophores. Stimulated siderophore secretion might be a key factor in successful integration and proliferation of this organism as a bio-augmentation agent for aromatic degradation. It not only facilitates efficient aromatic utilization, but also provides better opportunities for iron assimilation amongst diverse microbial communities, thereby ensuring better survival and proliferation.
Collapse
Affiliation(s)
- Hiren Joshi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, India
| | - Rachna Dave
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, India
| | - V. P. Venugopalan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, India
| |
Collapse
|
44
|
Shamim S, Rehman A, Qazi MH. Swimming, swarming, twitching, and chemotactic responses of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 in the presence of cadmium. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 66:407-14. [PMID: 24306627 DOI: 10.1007/s00244-013-9966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/01/2013] [Indexed: 05/10/2023]
Abstract
To use of microorganisms for bioremediation purposes, the study of their motility behavior toward metals is essential. In the present study, Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to evaluate the effects of Cd on their motility behaviors. Potassium morpholinopropane sulfonate (MOPS) buffer was used to observe the motility behavior of both isolates. Movement of mt2 was less in MOPS buffer compared with CH34, likely reflecting the mono-flagellated nature of mt2 and the peritrichous nature of CH34. The swimming, swarming, twitching, and chemotaxis behaviors of mt2 were greater in the presence of glucose than that of Cd. mt2 exhibited negative motility behaviors when exposed to Cd, but the opposite effect was seen in CH34. Cd was found to be a chemorepellent for mt2 but a chemoattractant for CH34, suggesting that CH34 is a potential candidate for metal (Cd) bioremediation.
Collapse
Affiliation(s)
- Saba Shamim
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan,
| | | | | |
Collapse
|
45
|
Singh AK, Dhanjal S, Cameotra SS. Surfactin restores and enhances swarming motility under heavy metal stress. Colloids Surf B Biointerfaces 2013; 116:26-31. [PMID: 24441179 DOI: 10.1016/j.colsurfb.2013.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
The present work reports the importance of lipopeptide biosurfactant on swarming motility of multi-metal resistant (MMR) bacterium under heavy metal stress. The MMR bacteria strain CM100B, identified as Bacillus cereus, was isolated from the coal mine sample. The strain was able to grow and reduce several metals namely Cd(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Pb(2+) ions which are common environmental pollutants. Presence of toxic heavy metal ions in the swarming medium significantly altered the motility of CM100B. Presence of Cd(2+) and Pb(2+) ions inhibited development of peritrichous flagella, thus inhibiting swarming motility. However, the addition of anionic biosurfactant surfactin restored (in case of Cd(2+) and Pb(2+) ions) or enhanced (in case of Co(2+), Cu(2+), Ni(2+) and Mn(2+)) the swarming ability of CM100B. Zeta potential studies for determining bacterial cell surface charge indicated that surfactin provided a suitable swarming environment to bacteria even under metal stress by chelating to cationic metal ions. Non-ionic surfactant Triton X-100 was unable to restore swarming under Cd(2+) and Pb(2+) ion stress. Thus, suggesting that surfactin can aid in motility not only by reducing the surface tension of swarming medium but also by binding to metal ions in the presence of metal ions stress.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Biotechnology and Microbial Biochemistry Laboratory, Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160 036, India
| | - Soniya Dhanjal
- Environmental Biotechnology and Microbial Biochemistry Laboratory, Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160 036, India
| | - Swaranjit Singh Cameotra
- Environmental Biotechnology and Microbial Biochemistry Laboratory, Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160 036, India.
| |
Collapse
|
46
|
Ni B, Huang Z, Fan Z, Jiang CY, Liu SJ. Comamonas testosteroniuses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 2013; 90:813-23. [DOI: 10.1111/mmi.12400] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Bin Ni
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zheng Fan
- Core facility at Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- Environmental Microbiology Research Center; Chinese Academy of Sciences; Beijing 100101 China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources; Chinese Academy of Sciences; Beijing 100101 China
- Environmental Microbiology Research Center; Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
47
|
Mishra S, Upadhyay RS, Nautiyal CS. Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds. Appl Microbiol Biotechnol 2013; 97:5659-68. [DOI: 10.1007/s00253-013-4885-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/25/2013] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
|
48
|
Wang W, Shao Z. Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 2013; 4:116. [PMID: 23755043 PMCID: PMC3664771 DOI: 10.3389/fmicb.2013.00116] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/25/2013] [Indexed: 12/15/2022] Open
Abstract
Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes, transport across cell membrane of alkanes, the regulation of alkane degradation gene and initial oxidation.
Collapse
Affiliation(s)
- Wanpeng Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources Xiamen, China ; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China
| | | |
Collapse
|
49
|
Nisenbaum M, Sendra GH, Gilbert GAC, Scagliola M, González JF, Murialdo SE. Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration. J Environ Sci (China) 2013; 25:613-625. [PMID: 23923436 DOI: 10.1016/s1001-0742(12)60020-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report on the biodegradation of pure hydrocarbons and chemotaxis towards these compounds by an isolated chlorophenol degrader, Pseudomonas strain H. The biochemical and phylogenetic analysis of the 16S rDNA sequence identified Pseudomonas strain H as having 99.56% similarity with P. aeruginosa PA01. This strain was able to degrade n-hexadecane, 1-undecene, 1-nonene, 1-decene, 1-dodecene and kerosene. It grew in the presence of 1-octene, while this hydrocarbons is toxic to other hydrocarbons degraders. Pseudomonas strain H was also chemotactic towards n-hexadecane, kerosene, 1-undecene and 1-dodecene. These results show that this Pseudomonas strain H is an attractive candidate for hydrocarbon-containing wastewater bioremediation in controlled environments. Since the classical standard techniques for detecting chemotaxis are not efficient at low bacterial concentrations, we demonstrate the use of the dynamic speckle laser method, which is simple and inexpensive, to confirm bacterial chemotaxis at low cell concentrations (less than 10(5) colony-forming unit per millilitre (CFU/mL)) when hydrocarbons are the attractants.
Collapse
Affiliation(s)
- Melina Nisenbaum
- National University of Mar del Plata, Faculty of Engineering, Department of Chemistry, Biochemical Engineering Group, Juan B. Justo 4302, (7600), Mar del Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
50
|
Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri. Appl Environ Microbiol 2013; 79:1889-96. [PMID: 23315744 DOI: 10.1128/aem.03794-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flagellar motility and chemotaxis by Vibrio fischeri are important behaviors mediating the colonization of its mutualistic host, the Hawaiian bobtail squid. However, none of the 43 putative methyl-accepting chemotaxis proteins (MCPs) encoded in the V. fischeri genome has been previously characterized. Using both an available transposon mutant collection and directed mutagenesis, we isolated mutants for 19 of these genes, and screened them for altered chemotaxis to six previously identified chemoattractants. Only one mutant was defective in responding to any of the tested compounds; the disrupted gene was thus named vfcA (Vibrio fischeri chemoreceptor A; locus tag VF_0777). In soft-agar plates, mutants disrupted in vfcA did not exhibit the serine-sensing chemotactic ring, and the pattern of migration in the mutant was not affected by the addition of exogenous serine. Using a capillary chemotaxis assay, we showed that, unlike wild-type V. fischeri, the vfcA mutant did not undergo chemotaxis toward serine and that expression of vfcA on a plasmid in the mutant was sufficient to restore the behavior. In addition to serine, we demonstrated that alanine, cysteine, and threonine are strong attractants for wild-type V. fischeri and that the attraction is also mediated by VfcA. This study thus provides the first insights into how V. fischeri integrates information from one of its 43 MCPs to respond to environmental stimuli.
Collapse
|