1
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
2
|
Roberts JM, Milo S, Metcalf DG. Harnessing the Power of Our Immune System: The Antimicrobial and Antibiofilm Properties of Nitric Oxide. Microorganisms 2024; 12:2543. [PMID: 39770746 PMCID: PMC11677572 DOI: 10.3390/microorganisms12122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide (NO) is a free radical of the human innate immune response to invading pathogens. NO, produced by nitric oxide synthases (NOSs), is used by the immune system to kill microorganisms encapsulated within phagosomes via protein and DNA disruption. Owing to its ability to disperse biofilm-bound microorganisms, penetrate the biofilm matrix, and act as a signal molecule, NO may also be effective as an antibiofilm agent. NO can be considered an underappreciated antimicrobial that could be levied against infected, at-risk, and hard-to-heal wounds due to the inherent lack of bacterial resistance, and tolerance by human tissues. NO produced within a wound dressing may be an effective method of disrupting biofilms and killing microorganisms in hard-to-heal wounds such as diabetic foot ulcers, venous leg ulcers, and pressure injuries. We have conducted a narrative review of the evidence underlying the key antimicrobial and antibiofilm mechanisms of action of NO for it to serve as an exogenously-produced antimicrobial agent in dressings used in the treatment of hard-to-heal wounds.
Collapse
Affiliation(s)
| | | | - Daniel Gary Metcalf
- Advanced Wound Care Research & Development, Convatec, Deeside Industrial Park, Deeside CH5 2NU, UK; (J.M.R.); (S.M.)
| |
Collapse
|
3
|
Huang Y, Jia KZ, Zhao W, Zhu LW. Insights into the regulatory mechanisms and application prospects of the transcription factor Cra. Appl Environ Microbiol 2024; 90:e0122824. [PMID: 39494897 PMCID: PMC11577769 DOI: 10.1128/aem.01228-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Cra (catabolite repressor/activator) is a global transcription factor (TF) that plays a pleiotropic role in controlling the transcription of several genes involved in carbon utilization and energy metabolism. Multiple studies have investigated the regulatory mechanism of Cra and its rational use for metabolic regulation, but due to the complexity of its regulation, there remain challenges in the efficient use of Cra. Here, the structure, mechanism of action, and regulatory function of Cra in carbon and nitrogen flow are reviewed. In addition, this paper highlights the application of Cra in metabolic engineering, including the promotion of metabolite biosynthesis, the regulation of stress tolerance and virulence, the use of a Cra-based biosensor, and its coupling with other transcription factors. Finally, the prospects of Cra-related regulatory strategies are discussed. This review provides guidance for the rational design and construction of Cra-based metabolic regulation systems.
Collapse
Affiliation(s)
- Ying Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Kai-Zhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Wei Zhao
- State Key Laboratory of MicrobialTechnology, University, Qingdao, China
| | - Li-Wen Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
4
|
Lo Sciuto A, D'Angelo F, Spinnato MC, Garcia PS, Genah S, Matteo C, Séchet E, Banin E, Barras F, Imperi F. A molecular comparison of [Fe-S] cluster-based homeostasis in Escherichia coli and Pseudomonas aeruginosa. mBio 2024; 15:e0120624. [PMID: 39360836 PMCID: PMC11559095 DOI: 10.1128/mbio.01206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 11/14/2024] Open
Abstract
Iron-sulfur [Fe-S] clusters are essential protein cofactors allowing bacteria to perceive environmental redox modification and to adapt to iron limitation. Escherichia coli, which served as a bacterial model, contains two [Fe-S] cluster biogenesis systems, ISC and SUF, which ensure [Fe-S] cluster synthesis under balanced and stress conditions, respectively. However, our recent phylogenomic analyses revealed that most bacteria possess only one [Fe-S] cluster biogenesis system, most often SUF. The opportunist human pathogen Pseudomonas aeruginosa is atypical as it harbors only ISC. Here, we confirmed the essentiality of ISC in P. aeruginosa under both normal and stress conditions. Moreover, P. aeruginosa ISC restored viability, under balanced growth conditions, to an E. coli strain lacking both ISC and SUF. Reciprocally, the E. coli SUF system sustained growth and [Fe-S] cluster-dependent enzyme activities of ISC-deficient P. aeruginosa. Surprisingly, an ISC-deficient P. aeruginosa strain expressing E. coli SUF showed defects in resistance to H2O2 stress and paraquat, a superoxide generator. Similarly, the P. aeruginosa ISC system did not confer stress resistance to a SUF-deficient E. coli mutant. A survey of 120 Pseudomonadales genomes confirmed that all but five species have selected ISC over SUF. While highlighting the great versatility of bacterial [Fe-S] cluster biogenesis systems, this study emphasizes that their contribution to cellular homeostasis must be assessed in the context of each species and its own repertoire of stress adaptation functions. As a matter of fact, despite having only one ISC system, P. aeruginosa shows higher fitness in the face of ROS and iron limitation than E. coli. IMPORTANCE ISC and SUF molecular systems build and transfer Fe-S cluster to cellular apo protein clients. The model Escherichia coli has both ISC and SUF and study of the interplay between the two systems established that the ISC system is the house-keeping one and SUF the stress-responding one. Unexpectedly, our recent phylogenomic analysis revealed that in contrast to E. coli (and related enterobacteria such as Salmonella), most bacteria have only one system, and, in most cases, it is SUF. Pseudomonas aeruginosa fits the general rule of having only one system but stands against the rule by having ISC. This study aims at engineering P. aeruginosa harboring E. coli systems and vice versa. Comparison of the recombinants allowed to assess the functional versatility of each system while appreciating their contribution to cellular homeostasis in different species context.
Collapse
Affiliation(s)
| | - Francesca D'Angelo
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | | | - Pierre Simon Garcia
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | - Shirley Genah
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Rome, Italy
| | | | - Emmanuel Séchet
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | - Ehud Banin
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Frédéric Barras
- Department of Microbiology, Stress Adaptation and Metabolism Unit, UMR CNRS 6047, Université Paris-Cité, Institut Pasteur, Paris, France
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
5
|
Zhang Q, Zhu W, He S, Lei J, Xu L, Hu S, Zhang Z, Cai D, Chen S. Understanding energy fluctuation during the transition state: The role of AbrB in Bacillus licheniformis. Microb Cell Fact 2024; 23:296. [PMID: 39491006 PMCID: PMC11533420 DOI: 10.1186/s12934-024-02572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Limited research has been conducted on energy fluctuation during the transition state, despite the critical role of energy supply in microbial physiological metabolism. RESULTS This study aimed to investigate the regulatory function of transition state transcription factor AbrB on energy metabolism in Bacillus licheniformis WX-02. Firstly, the deletion of abrB was found to prolong the cell generation time, significantly reducing the intercellular ATP concentration and NADH/NAD+ ratio at the early stage. Subsequently, various target genes and transcription factors regulated by AbrB were identified through in vitro verification assays. Specifically, AbrB was shown to modulate energy metabolism by directly regulating the expression of genes pyk and pgk in substrate-level phosphorylation, as well as genes narK and narGHIJ associated with nitrate respiration. In terms of oxidative phosphorylation, AbrB not only directly regulated ATP generation genes, including cyd, atpB, hmp, ndh, qoxA and sdhC, but also influenced the expression of NAD-dependent enzymes and intracellular NADH/NAD+ ratio. Additionally, AbrB positively affected the expression of transcription factors CcpN, Fnr, Rex, and ResD involved in energy supply, while negatively affected the regulator CcpA. Overall, this study found that AbrB positively regulates both substrate-level phosphorylation and oxidative phosphorylation, while negatively regulating nitrate respiration. CONCLUSIONS This study proposes a comprehensive regulatory network of AbrB on energy metabolism in Bacillus, expanding the understanding of regulatory mechanisms of AbrB and elucidating energy fluctuations during the transition state.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Wanying Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Shisi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Jiaqi Lei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Liangsheng Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Shiying Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Zheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, PR China.
| |
Collapse
|
6
|
Shrivastava D, Abboud E, Ramchandra JP, Jha A, Marq JB, Chaurasia A, Mitra K, Sadik M, Siddiqi MI, Soldati-Favre D, Kloehn J, Habib S. ATM1, an essential conserved transporter in Apicomplexa, bridges mitochondrial and cytosolic [Fe-S] biogenesis. PLoS Pathog 2024; 20:e1012593. [PMID: 39348385 PMCID: PMC11476691 DOI: 10.1371/journal.ppat.1012593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
The Apicomplexa phylum encompasses numerous obligate intracellular parasites, some associated with severe implications for human health, including Plasmodium, Cryptosporidium, and Toxoplasma gondii. The iron-sulfur cluster [Fe-S] biogenesis ISC pathway, localized within the mitochondrion or mitosome of these parasites, is vital for parasite survival and development. Previous work on T. gondii and Plasmodium falciparum provided insights into the mechanisms of [Fe-S] biogenesis within this phylum, while the transporter linking mitochondria-generated [Fe-S] with the cytosolic [Fe-S] assembly (CIA) pathway remained elusive. This critical step is catalyzed by a well-conserved ABC transporter, termed ATM1 in yeast, ATM3 in plants and ABCB7 in mammals. Here, we identify and characterize this transporter in two clinically relevant Apicomplexa. We demonstrate that depletion of TgATM1 does not specifically impair mitochondrial metabolism. Instead, proteomic analyses reveal that TgATM1 expression levels inversely correlate with the abundance of proteins that participate in the transfer of [Fe-S] to cytosolic proteins at the outer mitochondrial membrane. Further insights into the role of TgATM1 are gained through functional complementation with the well-characterized yeast homolog. Biochemical characterization of PfATM1 confirms its role as a functional ABC transporter, modulated by oxidized glutathione (GSSG) and [4Fe-4S].
Collapse
Affiliation(s)
- Deepti Shrivastava
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ernest Abboud
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Jadhav Prasad Ramchandra
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Akanksha Jha
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Animesh Chaurasia
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Sadik
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Ganske A, Busch LM, Hentschker C, Reder A, Michalik S, Surmann K, Völker U, Mäder U. Exploring the targetome of IsrR, an iron-regulated sRNA controlling the synthesis of iron-containing proteins in Staphylococcus aureus. Front Microbiol 2024; 15:1439352. [PMID: 39035440 PMCID: PMC11257911 DOI: 10.3389/fmicb.2024.1439352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Staphylococcus aureus is a common colonizer of the skin and nares of healthy individuals, but also a major cause of severe human infections. During interaction with the host, pathogenic bacteria must adapt to a variety of adverse conditions including nutrient deprivation. In particular, they encounter severe iron limitation in the mammalian host through iron sequestration by haptoglobin and iron-binding proteins, a phenomenon called "nutritional immunity." In most bacteria, including S. aureus, the ferric uptake regulator (Fur) is the key regulator of iron homeostasis, which primarily acts as a transcriptional repressor of genes encoding iron acquisition systems. Moreover, Fur can control the expression of trans-acting small regulatory RNAs that play an important role in the cellular iron-sparing response involving major changes in cellular metabolism under iron-limiting conditions. In S. aureus, the sRNA IsrR is controlled by Fur, and most of its predicted targets are iron-containing proteins and other proteins related to iron metabolism and iron-dependent pathways. To characterize the IsrR targetome on a genome-wide scale, we combined proteomics-based identification of potential IsrR targets using S. aureus strains either lacking or constitutively expressing IsrR with an in silico target prediction approach, thereby suggesting 21 IsrR targets, of which 19 were negatively affected by IsrR based on the observed protein patterns. These included several Fe-S cluster- and heme-containing proteins, such as TCA cycle enzymes and catalase encoded by katA. IsrR affects multiple metabolic pathways connected to the TCA cycle as well as the oxidative stress response of S. aureus and links the iron limitation response to metabolic remodeling. In contrast to the majority of target mRNAs, the IsrR-katA mRNA interaction is predicted upstream of the ribosome binding site, and further experiments including mRNA half-life measurements demonstrated that IsrR, in addition to inhibiting translation initiation, can downregulate target protein levels by affecting mRNA stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Yang X, Hu T, Liang J, Xiong Z, Lin Z, Zhao Y, Zhou X, Gao Y, Sun S, Yang X, Guddat LW, Yang H, Rao Z, Zhang B. An oligopeptide permease, OppABCD, requires an iron-sulfur cluster domain for functionality. Nat Struct Mol Biol 2024; 31:1072-1082. [PMID: 38548954 DOI: 10.1038/s41594-024-01256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024]
Abstract
Oligopeptide permease, OppABCD, belongs to the type I ABC transporter family. Its role is to import oligopeptides into bacteria for nutrient uptake and to modulate the host immune response. OppABCD consists of a cluster C substrate-binding protein (SBP), OppA, membrane-spanning OppB and OppC subunits, and an ATPase, OppD, that contains two nucleotide-binding domains (NBDs). Here, using cryo-electron microscopy, we determined the high-resolution structures of Mycobacterium tuberculosis OppABCD in the resting state, oligopeptide-bound pre-translocation state, AMPPNP-bound pre-catalytic intermediate state and ATP-bound catalytic intermediate state. The structures show an assembly of a cluster C SBP with its ABC translocator and a functionally required [4Fe-4S] cluster-binding domain in OppD. Moreover, the ATP-bound OppABCD structure has an outward-occluded conformation, although no substrate was observed in the transmembrane cavity. Here, we reveal an oligopeptide recognition and translocation mechanism of OppABCD, which provides a perspective on how this and other type I ABC importers facilitate bulk substrate transfer across the lipid bilayer.
Collapse
Affiliation(s)
- Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Zhenli Lin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaoting Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane Queensland, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
9
|
Kümpel C, Grosser M, Tanabe TS, Dahl C. Fe/S proteins in microbial sulfur oxidation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119732. [PMID: 38631440 DOI: 10.1016/j.bbamcr.2024.119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Iron-sulfur clusters serve as indispensable cofactors within proteins across all three domains of life. Fe/S clusters emerged early during the evolution of life on our planet and the biogeochemical cycle of sulfur is one of the most ancient and important element cycles. It is therefore no surprise that Fe/S proteins have crucial roles in the multiple steps of microbial sulfur metabolism. During dissimilatory sulfur oxidation in prokaryotes, Fe/S proteins not only serve as electron carriers in several steps, but also perform catalytic roles, including unprecedented reactions. Two cytoplasmic enzyme systems that oxidize sulfane sulfur to sulfite are of particular interest in this context: The rDsr pathway employs the reverse acting dissimilatory sulfite reductase rDsrAB as its key enzyme, while the sHdr pathway utilizes polypeptides resembling the HdrA, HdrB and HdrC subunits of heterodisulfide reductase from methanogenic archaea. Both pathways involve components predicted to bind unusual noncubane Fe/S clusters acting as catalysts for the formation of disulfide or sulfite. Mapping of Fe/S cluster machineries on the sulfur-oxidizing prokaryote tree reveals that ISC, SUF, MIS and SMS are all sufficient to meet the Fe/S cluster maturation requirements for operation of the sHdr or rDsr pathways. The sHdr pathway is dependent on lipoate-binding proteins that are assembled by a novel pathway, involving two Radical SAM proteins, namely LipS1 and LipS2. These proteins coordinate sulfur-donating auxiliary Fe/S clusters in atypical patterns by three cysteines and one histidine and act as lipoyl synthases by jointly inserting two sulfur atoms to an octanoyl residue. This article is part of a Special Issue entitled: Biogenesis and Function of Fe/S proteins.
Collapse
Affiliation(s)
- Carolin Kümpel
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martina Grosser
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Ma S, Mao S, Shi J, Zou J, Zhang J, Liu Y, Wang X, Ma Z, Yu C. Exploring the synergistic interplay of sulfur metabolism and electron transfer in Cr(VI) and Cd(II) removal by Clostridium thiosulfatireducens: Genomic and mechanistic insights. CHEMOSPHERE 2024; 352:141289. [PMID: 38281604 DOI: 10.1016/j.chemosphere.2024.141289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
In this study, a sulfate-reducing bacterium, Clostridium thiosulfatireducens (CT) was reported and the performance and removal mechanism of Cr(VI) and Cd(II) removal were investigated. It is noteworthy that the dsrAB gene is absent in this strain, but the strain is capable of producing sulfide. The conversion rate of Cr(VI) by CT was 84.24 % at a concentration of 25 mg/L, and the conversion rate of Cd(II) was 94.19 % at a concentration of 28 mg/L. The complete genome is 6,106,624 bp and the genome consisted of a single chromosome. The GC content of the chromosomes was 29.65 %. The mechanism of heavy metal removal by CT bacteria mainly includes biosorption, electron transfer and redox, with reduction combined with S2- precipitation as the main pathway. The product characterization results showed that the formation of mainly ionic crystals and precipitates (CdS, Cd(OH)2, Cr(OH)3, Cr2O3) after adsorption. Genome-wide techniques have shown that the clearance of Cr(VI) and Cd(II) by CT is largely dependent on sulfate transport, sulfur metabolism, and energy metabolism to some extent. In addition, genes related to ATP binding, electron carrier activity, transporter protein genes, and DNA repair are also important factors to improve the heavy metal resistance and transformation ability of CT strains. Both the Fe-S cycle and the ROS-resistant system can enhance the electron transfer activity and thus slow down the damage of heavy metals to microorganisms. This study fills the gap in the understanding of the basic properties and heavy metal transformation mechanism of CT.
Collapse
Affiliation(s)
- Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Shuaixian Mao
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Jinshuai Shi
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Jiacheng Zou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Jiale Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Yingchao Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Xinrong Wang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Zizhen Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China.
| |
Collapse
|
11
|
Shikha S, Kumar V, Jain A, Dutta D, Bhattacharyya MS. Unraveling the mechanistic insights of sophorolipid-capped gold nanoparticle-induced cell death in Vibrio cholerae. Microbiol Spectr 2023; 11:e0017523. [PMID: 37811987 PMCID: PMC10715219 DOI: 10.1128/spectrum.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Vibrio cholerae, a Gram-negative bacterium, is the causative agent of a fatal disease, "cholera." Prevention of cholera outbreak is possible by eliminating the bacteria from the environment. However, antimicrobial resistance developed in microorganisms has posed a threat and challenges to its treatment. Application of nanoparticles is a useful and effective option for the elimination of such microorganisms. Metal-based nanopaticles exhibit microbial toxicity through non-specific mechanisms. To prevent resistance development and increase antibacterial efficiency, rational designing of nanoparticles is required. Thus, knowledge on the exact mechanism of action of nanoparticles is highly essential. In this study, we explore the possible mechanisms of antibacterial activity of AuNPs-SL against V. cholerae. We show that the interaction of AuNPs-SL with V. cholerae enhances ROS production and membrane depolarization, change in permeability, and leakage of intracellular content. This action leads to the depletion of cellular ATP level, DNA damage, and subsequent cell death.
Collapse
Affiliation(s)
- Sristy Shikha
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Vineet Kumar
- Molecular Microbiology Laboratory, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Ankita Jain
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Dipak Dutta
- Molecular Microbiology Laboratory, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mani Shankar Bhattacharyya
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
12
|
Ren H, Zhong Z, Zhou S, Wei Y, Liang Y, He H, Zheng Z, Li M, He Q, Long T, Lian X, Liao X, Liu Y, Sun J. CpxA/R-Controlled Nitroreductase Expression as Target for Combinatorial Therapy against Uropathogens by Promoting Reactive Oxygen Species Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300938. [PMID: 37407509 PMCID: PMC10477892 DOI: 10.1002/advs.202300938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/07/2023] [Indexed: 07/07/2023]
Abstract
The antibiotic resistances emerged in uropathogens lead to accumulative treatment failure and recurrent episodes of urinary tract infection (UTI), necessitating more innovative therapeutics to curb UTI before systematic infection. In the current study, the combination of amikacin and nitrofurantoin is found to synergistically eradicate Gram-negative uropathogens in vitro and in vivo. The mechanistic analysis demonstrates that the amikacin, as an aminoglycoside, induced bacterial envelope stress by introducing mistranslated proteins, thereby constitutively activating the cpxA/R two-component system (Cpx signaling). The activation of Cpx signaling stimulates the expression of bacterial major nitroreductases (nfsA/nfsB) through soxS/marA regulons. As a result, the CpxA/R-dependent nitroreductases overexpression generates considerable quantity of lethal reactive intermediates via nitroreduction and promotes the prodrug activation of nitrofurantoin. As such, these actions together disrupt the bacterial cellular redox balance with excessively-produced reactive oxygen species (ROS) as "Domino effect", accelerating the clearance of uropathogens. Although aminoglycosides are used as proof-of-principle to elucidate the mechanism, the synergy between nitrofurantoin is generally applicable to other Cpx stimuli. To summarize, this study highlights the potential of aminoglycoside-nitrofurantoin combination to replenish the arsenal against recurrent Gram-negative uropathogens and shed light on the Cpx signaling-controlled nitroreductase as a potential target to manipulate the antibiotic susceptibility.
Collapse
Affiliation(s)
- Hao Ren
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Zixing Zhong
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Shuang Zhou
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Yiyang Wei
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Yujiao Liang
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Huiling He
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Zijian Zheng
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Mengyuan Li
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Qian He
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Tengfei Long
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhou225009China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhou225009China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern AgricultureNational Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary MedicineSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Veterinary PharmaceuticsDevelopment and Safety EvaluationSouth China Agricultural UniversityGuangzhou510642China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhou225009China
| |
Collapse
|
13
|
Zhang Y, Zhang Y, Zhao J, He J, Xuanyuan Z, Pan W, Sword GA, Chen F, Wan G. Probing Transcriptional Crosstalk between Cryptochromes and Iron-sulfur Cluster Assembly 1 ( MagR) in the Magnetoresponse of a Migratory Insect. Int J Mol Sci 2023; 24:11101. [PMID: 37446278 DOI: 10.3390/ijms241311101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Many organisms can sense and respond to magnetic fields (MFs), with migratory species in particular utilizing geomagnetic field information for long-distance migration. Cryptochrome proteins (Crys) along with a highly conserved Iron-sulfur cluster assembly protein (i.e., MagR) have garnered significant attention for their involvement in magnetoresponse (including magnetoreception). However, in vivo investigations of potential transcriptional crosstalk between Crys and MagR genes have been limited. The brown planthopper, Nilaparvata lugens, is a major migratory pest insect and an emerging model for studying MF intensity-related magnetoresponse. Here, we explored in vivo transcriptional crosstalk between Crys (Cry1 and Cry2) and MagR in N. lugens. The expression of Crys and MagR were found to be sensitive to MF intensity changes as small as several micro-teslas. Knocking down MagR expression led to a significant downregulation of Cry1, but not Cry2. The knockdown of either Cry1 or Cry2 individually did not significantly affect MagR expression. However, their double knockdown resulted in significant upregulation of MagR. Our findings clearly indicate transcriptional crosstalk between MagR and Crys known to be involved in magnetoresponse. This work advances the understanding of magnetoresponse signaling and represents a key initial step towards elucidating the functional consequences of these novel in vivo interactions.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyu Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinglan He
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongjin Xuanyuan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guijun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Fu T, Fan Z, Li Y, Li Z, Zhao H, Feng Y, Xue G, Cui J, Yan C, Gan L, Feng J, Yuan J, You F. Roles of the Crp/Fnr Family Regulator ArcR in the Hemolysis and Biofilm of Staphylococcus aureus. Microorganisms 2023; 11:1656. [PMID: 37512829 PMCID: PMC10384999 DOI: 10.3390/microorganisms11071656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen that is often involved in severe infections such as pneumonia and sepsis in which bacterial virulence factors play a key role. Infections caused by S. aureus are often difficult to eradicate, particularly when they are associated with biofilm. The physiological roles of the Crp/Fnr family regulator ArcR are elusive in S. aureus. In this study, it was found that the deletion of arcR increased the hemolytic ability and biofilm formation in S. aureus. Differential gene expression analysis by RNA-seq and real-time quantitative reverse transcription PCR showed that genes associated with hemolytic ability (hla and hlb) and biofilm formation (icaA, icaB, icaC and icaD) were significantly upregulated compared with those in the wild-type strain. The results revealed that ArcR regulated the expression of the hla and ica operon by binding to their promoter regions, respectively. This study provided new insights into the functional importance of ArcR in regulating the virulence and biofilm of S. aureus.
Collapse
Affiliation(s)
- Tongtong Fu
- School of Basic Medical Sciences, Peking University, Beijing 100020, China
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yujie Li
- Department of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhoufei Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fuping You
- School of Basic Medical Sciences, Peking University, Beijing 100020, China
| |
Collapse
|
15
|
A Diverged Transcriptional Network for Usage of Two Fe-S Cluster Biogenesis Machineries in the Delta-Proteobacterium Myxococcus xanthus. mBio 2023; 14:e0300122. [PMID: 36656032 PMCID: PMC9973013 DOI: 10.1128/mbio.03001-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Myxococcus xanthus possesses two Fe-S cluster biogenesis machineries, ISC (iron-sulfur cluster) and SUF (sulfur mobilization). Here, we show that in comparison to the phylogenetically distant Enterobacteria, which also have both machineries, M. xanthus evolved an independent transcriptional scheme to coordinately regulate the expression of these machineries. This transcriptional response is directed by RisR, which we show to belong to a phylogenetically distant and biochemically distinct subgroup of the Rrf2 transcription factor family, in comparison to IscR that regulates the isc and suf operons in Enterobacteria. We report that RisR harbors an Fe-S cluster and that holo-RisR acts as a repressor of both the isc and suf operons, in contrast to Escherichia coli, where holo-IscR represses the isc operon whereas apo-IscR activates the suf operon. In addition, we establish that the nature of the cluster and the DNA binding sites of RisR, in the isc and suf operons, diverge from those of IscR. We further show that in M. xanthus, the two machineries appear to be fully interchangeable in maintaining housekeeping levels of Fe-S cluster biogenesis and in synthesizing the Fe-S cluster for their common regulator, RisR. We also demonstrate that in response to oxidative stress and iron limitation, transcriptional upregulation of the M. xanthus isc and suf operons was mediated solely by RisR and that the contribution of the SUF machinery was greater than the ISC machinery. Altogether, these findings shed light on the diversity of homeostatic mechanisms exploited by bacteria to coordinately use two Fe-S cluster biogenesis machineries. IMPORTANCE Fe-S proteins are ubiquitous and control a wide variety of key biological processes; therefore, maintaining Fe-S cluster homeostasis is an essential task for all organisms. Here, we provide the first example of how a bacterium from the Deltaproteobacteria branch coordinates expression of two Fe-S cluster biogenesis machineries. The results revealed a new model of coordination, highlighting the unique and common features that have independently emerged in phylogenetically distant bacteria to maintain Fe-S cluster homeostasis in response to environmental changes. Regulation is orchestrated by a previously uncharacterized transcriptional regulator, RisR, belonging to the Rrf2 superfamily, whose members are known to sense diverse environmental stresses frequently encountered by bacteria. Understanding how M. xanthus maintains Fe-S cluster homeostasis via RisR regulation revealed a strategy reflective of the aerobic lifestyle of this organsim. This new knowledge also paves the way to improve production of Fe-S-dependent secondary metabolites using M. xanthus as a chassis.
Collapse
|
16
|
Zhou Y, Tong T, Wei M, Zhang P, Fei F, Zhou X, Guo Z, Zhang J, Xu H, Zhang L, Wang S, Wang J, Cai T, Zhang X, Xie C. Towards magnetism in pigeon MagR: Iron- and iron-sulfur binding work indispensably and synergistically. Zool Res 2023; 44:142-152. [PMID: 36484226 PMCID: PMC9841195 DOI: 10.24272/j.issn.2095-8137.2022.423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to navigate long distances is essential for many animals to locate shelter, food, and breeding grounds. Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnetic field. A highly conserved iron-sulfur cluster assembly protein IscA is proposed as an animal magnetoreceptor (MagR). Iron-sulfur cluster binding is also suggested to play an essential role in MagR magnetism and is thus critical in animal magnetoreception. In the current study, we provide evidence for distinct iron binding and iron-sulfur cluster binding in MagR in pigeons, an avian species that relies on the geomagnetic field for navigation and homing. Pigeon MagR showed significantly higher total iron content from both iron- and iron-sulfur binding. Y65 in pigeon MagR was shown to directly mediate mononuclear iron binding, and its mutation abolished iron-binding capacity of the protein. Surprisingly, both iron binding and iron-sulfur binding demonstrated synergistic effects, and thus appear to be integral and indispensable to pigeon MagR magnetism. These results not only extend our current understanding of the origin and complexity of MagR magnetism, but also imply a possible molecular explanation for the huge diversity in animal magnetoreception.
Collapse
Affiliation(s)
- Yajie Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Tianyang Tong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Mengke Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Peng Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Fan Fei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Xiujuan Zhou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Zhen Guo
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Huangtao Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Shun Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Junfeng Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China,International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Tiantian Cai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China,International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Can Xie
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, Anhui 230031, China,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230036, China,International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China,E-mail:
| |
Collapse
|
17
|
Hsueh KL, Yu LK, Hsieh YC, Hsiao YY, Chen CJ. FeoC from Klebsiella pneumoniae uses its iron sulfur cluster to regulate the GTPase activity of the ferrous iron channel. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140855. [PMID: 36182071 DOI: 10.1016/j.bbapap.2022.140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Bacteria depend on the ferrous iron transport (Feo) system for the uptake of ferrous iron (Fe2+). The Feo system is crucial for colonization and virulence of pathogens. In γ-proteobacteria, the system consists of FeoA, FeoB, and FeoC. The function of FeoA remains unknown. FeoB likely forms the channel, whose regulation has been suggested to involve its GTPase domain (part of its NFeoB domain). FeoC from Klebsiella pneumonia was found to contain a [4Fe4S] cofactor, whose presence was speculated to enhance the GTPase activity of FeoB (Hsueh, K.-L., et al., J. Bacteriol. 2013 195(20): 4726-34). We present results here that support and extend that hypothesis. We monitored the GTPase activity of FeoB by NMR spectroscopy and found that the presence of 7% FeoC-[4Fe-4S]3+ (the highest level of cofactor achieved in vitro) increased the GTPase rate of NFeoB by 3.6-fold over NFeoB. The effect depends on the oxidation state of the cluster; with reduction of the cluster to [4Fe-4S]2+ the GTPase greatly decreased the GTPase rate. From the effects of point mutations in FeoC on GTPase rates, we conclude that Lys62 and Lys68 on FeoC each contribute to increased GTPase activity on NFeoB. Mutation of Thr37 of NFeoB to Ser nearly abolished the GTPase activity. The GTPase activity of the isolated K. pneumoniae NFeoB-FeoC complex (NFeoBC) was found to be higher in KCl than in NaCl solution. We solved the X-ray structure of the NFeoBC crystallized from KCl and compared it with a prior X-ray structure crystalized from NaCl. We propose a hypothesis, consistent with these results, to explain the factors that influence the GTPase activity. Bacteria may use the oxygen-sensitive cluster as a sensor to up-regulate the gate closing speed.
Collapse
Affiliation(s)
- Kuang-Lung Hsueh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan; Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224, Taiwan.
| | - Liang-Kun Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan
| | - Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Ya-Yun Hsiao
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| |
Collapse
|
18
|
Tong T, Zhou Y, Fei F, Zhou X, Guo Z, Wang S, Zhang J, Zhang P, Cai T, Li G, Zhang Y, Wang J, Xie C. The rational design of iron-sulfur cluster binding site for prolonged stability in magnetoreceptor MagR. Front Mol Biosci 2022; 9:1051943. [DOI: 10.3389/fmolb.2022.1051943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Iron-sulfur proteins play essential roles in a wide variety of cellular processes such as respiration, photosynthesis, nitrogen fixation and magnetoreception. The stability of iron-sulfur clusters varies significantly between anaerobic and aerobic conditions due to their intrinsic sensitivity to oxygen. Iron-sulfur proteins are well suited to various practical applications as molecular redox sensors or molecular “wires” for electron transfer. Various technologies have been developed recently using one particular iron-sulfur protein, MagR, as a magnetic tag. However, the limited protein stability and low magnetic sensitivity of MagR hindered its wide application. Here in this study, the iron-sulfur binding site of pigeon clMagR was rationally re-designed. One such mutation, T57C in pigeon MagR, showed improved iron-sulfur binding efficiency and higher iron content, as well as prolonged thermostability. Thus, clMagRT57C can serve as a prototype for further design of more stable and sensitive magnetic toolbox for magnetogenetics in the future.
Collapse
|
19
|
Iron–Sulfur Clusters toward Stresses: Implication for Understanding and Fighting Tuberculosis. INORGANICS 2022. [DOI: 10.3390/inorganics10100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) remains the leading cause of death due to a single pathogen, accounting for 1.5 million deaths annually on the global level. Mycobacterium tuberculosis, the causative agent of TB, is persistently exposed to stresses such as reactive oxygen species (ROS), reactive nitrogen species (RNS), acidic conditions, starvation, and hypoxic conditions, all contributing toward inhibiting bacterial proliferation and survival. Iron–sulfur (Fe-S) clusters, which are among the most ancient protein prosthetic groups, are good targets for ROS and RNS, and are susceptible to Fe starvation. Mtb holds Fe-S containing proteins involved in essential biological process for Mtb. Fe-S cluster assembly is achieved via complex protein machineries. Many organisms contain several Fe-S assembly systems, while the SUF system is the only one in some pathogens such as Mtb. The essentiality of the SUF machinery and its functionality under the stress conditions encountered by Mtb underlines how it constitutes an attractive target for the development of novel anti-TB.
Collapse
|
20
|
Mejuto-Zaera C, Tzeli D, Williams-Young D, Tubman NM, Matoušek M, Brabec J, Veis L, Xantheas SS, de Jong WA. The Effect of Geometry, Spin, and Orbital Optimization in Achieving Accurate, Correlated Results for Iron-Sulfur Cubanes. J Chem Theory Comput 2022; 18:687-702. [PMID: 35034448 DOI: 10.1021/acs.jctc.1c00830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Iron-sulfur clusters comprise an important functional motif in the catalytic centers of biological systems, capable of enabling important chemical transformations at ambient conditions. This remarkable capability derives from a notoriously complex electronic structure that is characterized by a high density of states that is sensitive to geometric changes. The spectral sensitivity to subtle geometric changes has received little attention from correlated, large active space calculations, owing partly to the exceptional computational complexity for treating these large and correlated systems accurately. To provide insight into this aspect, we report the first Complete Active Space Self Consistent Field (CASSCF) calculations for different geometries of the [Fe(II/III)4S4(SMe)4]-2 clusters using two complementary, correlated solvers: spin-pure Adaptive Sampling Configuration Interaction (ASCI) and Density Matrix Renormalization Group (DMRG). We find that the previously established picture of a double-exchange driven magnetic structure, with minute energy gaps (<1 mHa) between consecutive spin states, has a weak dependence on the underlying geometry. However, the spin gap between the singlet and the spin state 2S + 1 = 19, corresponding to a maximal number of Fe-d electrons being unpaired and of parallel spin, is strongly geometry dependent, changing by a factor of 3 upon slight deformations that are still within biologically relevant parameters. The CASSCF orbital optimization procedure, using active spaces as large as 86 electrons in 52 orbitals, was found to reduce this gap compared to typical mean-field orbital approaches. Our results show the need for performing large active space calculations to unveil the challenging electronic structure of these complex catalytic centers and should serve as accurate starting points for fully correlated treatments upon inclusion of dynamical correlation outside the active space.
Collapse
Affiliation(s)
- Carlos Mejuto-Zaera
- University of California, Berkeley, California 94720, United States.,Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15784, Greece.,Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
| | - David Williams-Young
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Norm M Tubman
- Quantum Artificial Intelligence Lab. (QuAIL), Exploration Technology Directorate, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Mikuláš Matoušek
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jiri Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98185, United States
| | - Wibe A de Jong
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Oakley KM, Lehane RL, Zhao Z, Kim E. Dioxygen reactivity of a biomimetic [4Fe-4S] compound exhibits [4Fe-4S] to [2Fe-2S] cluster conversion. J Inorg Biochem 2022; 228:111714. [PMID: 35032923 DOI: 10.1016/j.jinorgbio.2022.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/16/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
Abstract
Fumarate and nitrate reductase (FNR) is a gene regulatory protein that controls anaerobic to aerobic respiration in Escherichia coli, for which O2 serves as a control switch to induce a protein structural change by converting [4Fe-4S] cofactors to [2Fe-2S] clusters. Although biomimetic models can aid in understanding the complex functions of their protein counterparts, the inherent sensitivity of discrete [Fe-S] molecules to aerobic conditions poses a unique challenge to mimic the O2-sensing capability of FNR. Herein, we report unprecedented biomimetic O2 reactivity of a discrete [4Fe-4S] complex, [Fe4S4(SPhF)4]2- (1) where SPhF is 4-fluorothiophenolate, in which the reaction of 1 with O2(g) in the presence of thiolate produces its [2Fe-2S] analogue, [Fe2S2(SPhF)4]2- (2), at room temperature. The cluster conversion of 1 to 2 can also be achieved by employing disulfide as an oxidant under the same reaction conditions. The [4Fe-4S] to [2Fe-2S] cluster conversion by O2 was found to be significantly faster than that by disulfide, while the reaction with disulfide produced higher yields of 2.
Collapse
Affiliation(s)
- Kady M Oakley
- Brown University, Providence, RI, United States of America
| | - Ryan L Lehane
- Brown University, Providence, RI, United States of America
| | - Ziyi Zhao
- Brown University, Providence, RI, United States of America
| | - Eunsuk Kim
- Brown University, Providence, RI, United States of America.
| |
Collapse
|
22
|
Yang M, Zhang J, Wei Y, Zhang J, Tao C. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. NANO RESEARCH 2022; 15:6220-6242. [PMID: 35578616 PMCID: PMC9094125 DOI: 10.1007/s12274-022-4302-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The rapid spread of staphylococcus aureus (S. aureus) causes an increased morbidity and mortality, as well as great economic losses in the world. Anti-S. aureus infection becomes a major challenge for clinicians and nursing professionals to address drug resistance. Hence, it is urgent to explore high efficiency, low toxicity, and environmental-friendly methods against S. aureus. Metal-organic frameworks (MOFs) represent great potential in treating S. aureus infection due to the unique features of MOFs including tunable chemical constitute, open crystalline structure, and high specific surface area. Especially, these properties endow MOF-based materials outstanding antibacterial effect, which can be mainly attributed to the continuously released active components and the exerted catalytic activity to fight bacterial infection. Herein, the structural characteristics of MOFs and evaluation method of antimicrobial activity are briefly summarized. Then we systematically give an overview on their recent progress on antibacterial mechanisms, metal ion sustained-release system, controlled delivery system, catalytic system, and energy conversion system based on MOF materials. Finally, suggestions and direction for future research to develop and mechanism understand MOF-based materials are discussed in antibacterial application.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Yinhao Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
23
|
Guo Z, Xu S, Chen X, Wang C, Yang P, Qin S, Zhao C, Fei F, Zhao X, Tan PH, Wang J, Xie C. Modulation of MagR magnetic properties via iron-sulfur cluster binding. Sci Rep 2021; 11:23941. [PMID: 34907239 PMCID: PMC8671422 DOI: 10.1038/s41598-021-03344-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Iron-sulfur clusters are essential cofactors found in all kingdoms of life and play essential roles in fundamental processes, including but not limited to respiration, photosynthesis, and nitrogen fixation. The chemistry of iron-sulfur clusters makes them ideal for sensing various redox environmental signals, while the physics of iron-sulfur clusters and its host proteins have been long overlooked. One such protein, MagR, has been proposed as a putative animal magnetoreceptor. It forms a rod-like complex with cryptochromes (Cry) and possesses intrinsic magnetic moment. However, the magnetism modulation of MagR remains unknown. Here in this study, iron-sulfur cluster binding in MagR has been characterized. Three conserved cysteines of MagR play different roles in iron-sulfur cluster binding. Two forms of iron-sulfur clusters binding have been identified in pigeon MagR and showed different magnetic properties: [3Fe-4S]-MagR appears to be superparamagnetic and has saturation magnetization at 5 K but [2Fe-2S]-MagR is paramagnetic. While at 300 K, [2Fe-2S]-MagR is diamagnetic but [3Fe-4S]-MagR is paramagnetic. Together, the different types of iron-sulfur cluster binding in MagR attribute distinguished magnetic properties, which may provide a fascinating mechanism for animals to modulate the sensitivity in magnetic sensing.
Collapse
Affiliation(s)
- Zhen Guo
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuai Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Xue Chen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Changhao Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Peilin Yang
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Siying Qin
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Cuiping Zhao
- Department of Microbiology and Biochemistry, Rutgers University, New Brunswick, NJ, USA
| | - Fan Fei
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Xianglong Zhao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
| | - Ping-Heng Tan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230031, China
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, 100871, China.
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, 230031, China.
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230031, China.
| |
Collapse
|
24
|
Bombaywala S, Purohit HJ, Dafale NA. Mobility of antibiotic resistance and its co-occurrence with metal resistance in pathogens under oxidative stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113315. [PMID: 34298350 DOI: 10.1016/j.jenvman.2021.113315] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The bacterial communities are challenged with oxidative stress during their exposure to bactericidal antibiotics, metals, and different levels of dissolved oxygen (DO) encountered in diverse environmental habitats. The frequency of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) co-selection is increased by selective pressure posed by oxidative stress. Hence, study of resistance acquisition is important from an evolutionary perspective. To understand the dependence of oxidative stress on the dissemination of ARGs and MRGs through a pathogenic bacterial population, 12 metagenomes belonging to gut, water and soil habitats were evaluated. The metagenome-wide analysis showed the chicken gut to pose the most diverse pool of ARGs (30.4 ppm) and pathogenic bacteria (Simpson diversity = 0.98). The most common types of resistances found in all the environmental samples were efflux pumps (13.22 ppm) and genes conferring resistance to vancomycin (12.4 ppm), tetracycline (12.1 ppm), or beta-lactam (9.4 ppm) antibiotics. Additionally, limiting DO level in soil was observed to increase the abundance of excision nucleases (uvrA and uvrB), DNA polymerase (polA), catalases (katG), and other oxidative stress response genes (OSGs). This was further evident from major variations occurred in antibiotic efflux genes due to the effect of DO concentration on two human pathogens, namely Salmonella enterica and Shigella sonnei found in all the selected habitats. In conclusion, the microbial community, when challenged with oxidative stress caused by environmental variations in oxygen level, tends to accumulate higher amounts of ARGs with increased dissemination potential through triggering non-lethal mutagenesis. Furthermore, the genetic linkage or co-occurrence of ARGs and MRGs provides evidence for selecting ARGs under high concentrations of heavy metals.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
25
|
Rydz L, Wróbel M, Jurkowska H. Sulfur Administration in Fe-S Cluster Homeostasis. Antioxidants (Basel) 2021; 10:antiox10111738. [PMID: 34829609 PMCID: PMC8614886 DOI: 10.3390/antiox10111738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are the key organelles of Fe–S cluster synthesis. They contain the enzyme cysteine desulfurase, a scaffold protein, iron and electron donors, and specific chaperons all required for the formation of Fe–S clusters. The newly formed cluster can be utilized by mitochondrial Fe–S protein synthesis or undergo further transformation. Mitochondrial Fe–S cluster biogenesis components are required in the cytosolic iron–sulfur cluster assembly machinery for cytosolic and nuclear cluster supplies. Clusters that are the key components of Fe–S proteins are vulnerable and prone to degradation whenever exposed to oxidative stress. However, once degraded, the Fe–S cluster can be resynthesized or repaired. It has been proposed that sulfurtransferases, rhodanese, and 3-mercaptopyruvate sulfurtransferase, responsible for sulfur transfer from donor to nucleophilic acceptor, are involved in the Fe–S cluster formation, maturation, or reconstitution. In the present paper, we attempt to sum up our knowledge on the involvement of sulfurtransferases not only in sulfur administration but also in the Fe–S cluster formation in mammals and yeasts, and on reconstitution-damaged cluster or restoration of enzyme’s attenuated activity.
Collapse
|
26
|
Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome. mSystems 2021; 6:e0090621. [PMID: 34636676 PMCID: PMC8510549 DOI: 10.1128/msystems.00906-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms must respond to environmental changes to survive, often by controlling transcription initiation. Intermittent aeration during wastewater treatment presents a cyclically changing environment to which microorganisms must react. We used an intermittently aerated bioreactor performing partial nitritation and anammox (PNA) to investigate how the microbiome responds to recurring change. Meta-transcriptomic analysis revealed a dramatic disconnect between the relative DNA abundance and gene expression within the metagenome-assembled genomes (MAGs) of community members, suggesting the importance of transcriptional regulation in this microbiome. To explore how community members responded to cyclic aeration via transcriptional regulation, we searched for homologs of the catabolite repressor protein/fumarate and nitrate reductase regulatory protein (CRP/FNR) family of transcription factors (TFs) within the MAGs. Using phylogenetic analyses, evaluation of sequence conservation in important amino acid residues, and prediction of genes regulated by TFs in the MAGs, we identified homologs of the oxygen-sensing FNR in Nitrosomonas and Rhodocyclaceae, nitrogen-sensing dissimilative nitrate respiration regulator that responds to nitrogen species (DNR) in Rhodocyclaceae, and nitrogen-sensing nitrite and nitric oxide reductase regulator that responds to nitrogen species (NnrR) in Nitrospira MAGs. Our data also predict that CRP/FNR homologs in Ignavibacteria, Flavobacteriales, and Saprospiraceae MAGs sense carbon availability. In addition, a CRP/FNR homolog in a Brocadia MAG was most closely related to CRP TFs known to sense carbon sources in well-studied organisms. However, we predict that in autotrophic Brocadia, this TF most likely regulates a diverse set of functions, including a response to stress during the cyclic aerobic/anoxic conditions. Overall, this analysis allowed us to define a meta-regulon of the PNA microbiome that explains functions and interactions of the most active community members. IMPORTANCE Microbiomes are important contributors to many ecosystems, including ones where nutrient cycling is stimulated by aeration control. Optimizing cyclic aeration helps reduce energy needs and maximize microbiome performance during wastewater treatment; however, little is known about how most microbial community members respond to these alternating conditions. We defined the meta-regulon of a PNA microbiome by combining existing knowledge of how the CRP/FNR family of bacterial TFs respond to stimuli, with metatranscriptomic analyses to characterize gene expression changes during aeration cycles. Our results indicated that, for some members of the community, prior knowledge is sufficient for high-confidence assignments of TF function, whereas other community members have CRP/FNR TFs for which inferences of function are limited by lack of prior knowledge. This study provides a framework to begin elucidating meta-regulons in microbiomes, where pure cultures are not available for traditional transcriptional regulation studies. Defining the meta-regulon can help in optimizing microbiome performance.
Collapse
|
27
|
Corless EI, Antony E. Methods for Heterologous Overproduction of Fe-S Proteins. Methods Mol Biol 2021; 2353:69-78. [PMID: 34292544 DOI: 10.1007/978-1-0716-1605-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Proteins carrying iron-sulfur ([Fe-S]) clusters are critical to the basic metabolism of all organisms. Structural and biochemical investigations of many such [Fe-S] cluster proteins depend on recombinant overproduction using heterologous bacterial hosts such as Escherichia coli . Here, we describe a detailed procedure for the overproduction and purification of two oxygen-sensitive component proteins of the dark-operative protochlorophyllide oxidoreductase (DPOR) complex. The method relies on an engineered Escherichia coli cell line carrying a correction in its genome to restore the loss of a key [Fe-S] cluster biogenesis pathway. The method can also be potentially adapted for the overproduction of other Fe-S proteins.
Collapse
Affiliation(s)
- Elliot I Corless
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Ellepola K, Huang X, Riley RP, Bitoun JP, Wen ZT. Streptococcus mutans Lacking sufCDSUB Is Viable, but Displays Major Defects in Growth, Stress Tolerance Responses and Biofilm Formation. Front Microbiol 2021; 12:671533. [PMID: 34248879 PMCID: PMC8264796 DOI: 10.3389/fmicb.2021.671533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans appears to possess a sole iron-sulfur (Fe-S) cluster biosynthesis system encoded by the sufCDSUB cluster. This study was designed to examine the role of sufCDSUB in S. mutans physiology. Allelic exchange mutants deficient of the whole sufCDSUB cluster and in individual genes were constructed. Compared to the wild-type, UA159, the sufCDSUB-deficient mutant, Δsuf::kanr, had a significantly reduced growth rate, especially in medium with the absence of isoleucine, leucine or glutamate/glutamine, amino acids that require Fe-S clusters for biosynthesis and when grown with medium adjusted to pH 6.0 and under oxidative and nitrosative stress conditions. Relative to UA159, Δsuf::kanr had major defects in stress tolerance responses with reduced survival rate of > 2-logs following incubation at low pH environment or after hydrogen peroxide challenge. When compared to UA159, Δsuf::kanr tended to form aggregates in broth medium and accumulated significantly less biofilm. As shown by luciferase reporter fusion assays, the expression of sufCDSUB was elevated by > 5.4-fold when the reporter strain was transferred from iron sufficient medium to iron-limiting medium. Oxidative stress induced by methyl viologen increased sufCDSUB expression by > 2-fold, and incubation in a low pH environment led to reduction of sufCDSUB expression by > 7-fold. These results suggest that lacking of SufCDSUB in S. mutans causes major defects in various cellular processes of the deficient mutant, including growth, stress tolerance responses and biofilm formation. In addition, the viability of the deficient mutant also suggests that SUF, the sole Fe-S cluster machinery identified is non-essential in S. mutans, which is not known in any other bacterium lacking the NIF and/or ISC system. However, how the bacterium compensates the Fe-S deficiency and if any novel Fe-S assembly systems exist in this bacterium await further investigation.
Collapse
Affiliation(s)
- Kassapa Ellepola
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Xiaochang Huang
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ryan P Riley
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob P Bitoun
- Department of Microbiology, Tulane University, New Orleans, LA, United States
| | - Zezhang Tom Wen
- Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
29
|
Mortimer M, Wang Y, Holden PA. Molecular Mechanisms of Nanomaterial-Bacterial Interactions Revealed by Omics-The Role of Nanomaterial Effect Level. Front Bioeng Biotechnol 2021; 9:683520. [PMID: 34195180 PMCID: PMC8236600 DOI: 10.3389/fbioe.2021.683520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology is employed across a wide range of antibacterial applications in clinical settings, food, pharmaceutical and textile industries, water treatment and consumer goods. Depending on type and concentration, engineered nanomaterials (ENMs) can also benefit bacteria in myriad contexts including within the human body, in biotechnology, environmental bioremediation, wastewater treatment, and agriculture. However, to realize the full potential of nanotechnology across broad applications, it is necessary to understand conditions and mechanisms of detrimental or beneficial effects of ENMs to bacteria. To study ENM effects, bacterial population growth or viability are commonly assessed. However, such endpoints alone may be insufficiently sensitive to fully probe ENM effects on bacterial physiology. To reveal more thoroughly how bacteria respond to ENMs, molecular-level omics methods such as transcriptomics, proteomics, and metabolomics are required. Because omics methods are increasingly utilized, a body of literature exists from which to synthesize state-of-the-art knowledge. Here we review relevant literature regarding ENM impacts on bacterial cellular pathways obtained by transcriptomic, proteomic, and metabolomic analyses across three growth and viability effect levels: inhibitory, sub-inhibitory or stimulatory. As indicated by our analysis, a wider range of pathways are affected in bacteria at sub-inhibitory vs. inhibitory ENM effect levels, underscoring the importance of ENM exposure concentration in elucidating ENM mechanisms of action and interpreting omics results. In addition, challenges and future research directions of applying omics approaches in studying bacterial-ENM interactions are discussed.
Collapse
Affiliation(s)
- Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, China
| | - Ying Wang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Patricia A Holden
- Bren School of Environmental Science and Management and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
30
|
Boedicker JQ, Gangan M, Naughton K, Zhao F, Gralnick JA, El-Naggar MY. Engineering Biological Electron Transfer and Redox Pathways for Nanoparticle Synthesis. Bioelectricity 2021; 3:126-135. [PMID: 34476388 DOI: 10.1089/bioe.2021.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many species of bacteria are naturally capable of types of electron transport not observed in eukaryotic cells. Some species live in environments containing heavy metals not typically encountered by cells of multicellular organisms, such as arsenic, cadmium, and mercury, leading to the evolution of enzymes to deal with these environmental toxins. Bacteria also inhabit a variety of extreme environments, and are capable of respiration even in the absence of oxygen as a terminal electron acceptor. Over the years, several of these exotic redox and electron transport pathways have been discovered and characterized in molecular-level detail, and more recently synthetic biology has begun to utilize these pathways to engineer cells capable of detecting and processing a variety of metals and semimetals. One such application is the biologically controlled synthesis of nanoparticles. This review will introduce the basic concepts of bacterial metal reduction, summarize recent work in engineering bacteria for nanoparticle production, and highlight the most cutting-edge work in the characterization and application of bacterial electron transport pathways.
Collapse
Affiliation(s)
- James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Manasi Gangan
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Kyle Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Fengjie Zhao
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA.,Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Xu Y, Yang S, You G, Hou J. Antibiotic resistance genes attenuation in anaerobic microorganisms during iron uptake from zero valent iron: An iron-dependent form of homeostasis and roles as regulators. WATER RESEARCH 2021; 195:116979. [PMID: 33690012 DOI: 10.1016/j.watres.2021.116979] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Zero valent iron (ZVI) has been previously documented to attenuate the propagation of antibiotic resistance genes (ARGs) in microbes, while how ZVI affects the evolution of ARGs remains unclear. Herein, we investigated the influences of ZVI on ARGs dissemination in anaerobic bioreactor treating oxytetracycline (tet) containing wastewater, by deciphering the roles of iron homeostasis and regulatory effects. A net reduction of tet gene targets ranging from 0.75 to 1.88 and 0.67 to 2.08 log unit in intracellular and extracellular DNA was achieved at the optimal dosage of 5 g/L ZVI, whereas 20 g/L ZVI made no effects on ARGs reduction. The reduced ARGs abundance by ZVI was directly related to the inhibited horizontal transfer of ARGs and decreased proliferation of resistant strains (mainly Paludibacter and WCHB1-32). The potential mechanisms included the increased antioxidant capacity, the depressed efflux pump system and the weakened energy driving force by Fur regulon in microbes (especially for Cloacibacterium and Dechloromonas). The negligible influence of 20 g/L ZVI on ARGs reduction was ascribed to the iron-catalyzed oxidative damage and reduced physiological activity. This study firstly illustrated the potential relationships among activation of iron uptake regulator leading to protection against oxidative stress, alternation of physiological metabolisms and reduction of ARGs dissemination. This work extents our understanding about the priority of ZVI in mitigating ARGs proliferation and sheds light on its potential application in wastewater treatment plants.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Engineering, Hohai University, Nanjing, 210098, PR China; Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shihong Yang
- College of Agricultural Engineering, Hohai University, Nanjing, 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| |
Collapse
|
32
|
Chhetri G, Kim J, Kim I, Kang M, Lee B, Jang W, Seo T. Flavobacterium baculatum sp. nov., a carotenoid and flexirubin-type pigment producing species isolated from flooded paddy field. Int J Syst Evol Microbiol 2021; 71. [PMID: 33709901 DOI: 10.1099/ijsem.0.004736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, asporogenous, motile by gliding, dull-yellow, long rod-shaped bacterial strain, designated SNL9T, was isolated from a flooded paddy field near Dongguk University, Republic of Korea. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that SNL9T represents a member of the genus Flavobacterium and is most closely related to Flavobacterium ummariense DS-12T (96.2%) and Flavobacterium viscosum YIM 102796T (96.3%). The average nucleotide identity and in silico DNA-DNA hybridization (DDH) values with F. ummariense DS-12T and F. viscosum YIM 102796T were 89.3/39.1 and 87.1/33 %, respectively. The major fatty acids of SNL9T were identified as iso-C15 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and summed feature 9 (comprising iso-C17 : 1ω9c and/or 10 methyl C16 : 0). SNL9T contained MK-6 as the major respiratory quinone. The polar lipids were phoshatidylethanolamine, one unidentified aminophosphoglycolipid, three unidentified aminoglycolipids, two unidentified glycolipids and one unidentified phosphoglycolipid. The DNA G+C content was 34.2 mol%. SNL9T produces carotenoid and flexirubin-type pigments. Among them, carotenoids are particularly valuable for the biotechnological and pharmaceutical industries due to their antioxidant activity. Aryl polyenes (APE) pigments were also found in SNL9T which are responsible for yellow pigment in bacteria. They are stored in the bacterial membrane and protect the bacteria from oxidative stress, particularly from reactive oxygen species. In this paper, we describe a novel isolate, SNL9T, which protect itself from the attack of free radicals using specific natural products in the membrane. Because of their anti-oxidation properties, aryl polyenes may also be of interest to the cosmetic industry. On the basis of the results of phenotypic, genotypic and chemotaxonomic analyses, SNL9T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium baculatum sp. nov. is proposed. The type is SNL9T (=KACC 21170T=NBRC 113746T).
Collapse
Affiliation(s)
- Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Jiyoun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Minchung Kang
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Byungjo Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Wonhee Jang
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, South Korea
| |
Collapse
|
33
|
Abstract
Iron-Sulfur (Fe-S) clusters function as core prosthetic groups known to modulate the activity of metalloenzymes, act as trafficking vehicles for biological iron and sulfur, and participate in several intersecting metabolic pathways. The formation of these clusters is initiated by a class of enzymes called cysteine desulfurases, whose primary function is to shuttle sulfur from the amino acid L-cysteine to a variety of sulfur transfer proteins involved in Fe-S cluster synthesis as well as in the synthesis of other thiocofactors. Thus, sulfur and Fe-S cluster metabolism are connected through shared enzyme intermediates, and defects in their associated pathways cause a myriad of pleiotropic phenotypes, which are difficult to dissect. Post-transcriptionally modified transfer RNA (tRNA) represents a large class of analytes whose synthesis often requires the coordinated participation of sulfur transfer and Fe-S enzymes. Therefore, these molecules can be used as biologically relevant readouts for cellular Fe and S status. Methods employing LC-MS technology provide a valuable experimental tool to determine the relative levels of tRNA modification in biological samples and, consequently, to assess genetic, nutritional, and environmental factors modulating reactions dependent on Fe-S clusters. Herein, we describe a robust method for extracting RNA and analytically evaluating the degree of Fe-S-dependent and -independent tRNA modifications via an LC-MS platform.
Collapse
Affiliation(s)
- Ashley M Edwards
- Department of Chemistry, Wake Forest University, Winston Salem, NC, USA
| | - Maame A Addo
- Department of Chemistry, Wake Forest University, Winston Salem, NC, USA
| | | |
Collapse
|
34
|
RirA of Dinoroseobacter shibae senses iron via a [3Fe-4S]1+ cluster co-ordinated by three cysteine residues. Biochem J 2020; 477:191-212. [PMID: 31860023 DOI: 10.1042/bcj20180734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
In the marine bacterium, Dinoroseobacter shibae the transcription factor rhizobial iron regulator A (RirA) is involved in the adaptation to iron-limited growth conditions. In vitro iron and sulfide content determinations in combination with UV/Vis and electron paramagnetic resonance (EPR) spectroscopic analyses using anaerobically purified, recombinant RirA protein suggested a [3Fe-4S]1+ cluster as a cofactor. In vivo Mössbauer spectroscopy also corroborated the presence of a [3Fe-4S]1+ cluster in RirA. Moreover, the cluster was found to be redox stable. Three out of four highly conserved cysteine residues of RirA (Cys 91, Cys 99, Cys 105) were found essential for the [3Fe-4S]1+ cluster coordination. The dimeric structure of the RirA protein was independent of the presence of the [3Fe-4S]1+ cluster. Electro mobility shift assays demonstrated the essential role of an intact [3Fe-4S]1+ cluster for promoter binding by RirA. The DNA binding site was identified by DNase I footprinting. Mutagenesis studies in combination with DNA binding assays confirmed the promoter binding site as 3'-TTAAN10AATT-5'. This work describes a novel mechanism for the direct sensing of cellular iron levels in bacteria by an iron-responsive transcriptional regulator using the integrity of a redox-inactive [3Fe-4S]1+ cluster, and further contributes to the general understanding of iron regulation in marine bacteria.
Collapse
|
35
|
Mansour M, Ismail S, Abou-Aisha K. Bacterial delivery of the anti-tumor azurin-like protein Laz to glioblastoma cells. AMB Express 2020; 10:59. [PMID: 32221741 PMCID: PMC7099546 DOI: 10.1186/s13568-020-00995-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Salmonella typhimurium VNP-20009 (VNP) is a non-pathogenic attenuated strain, which, as a facultative anaerobe, preferentially accumulates in hypoxic regions of solid tumors. Here, VNP was utilized as a delivery vehicle of the anti-tumor protein Lipidated azurin, Laz, which is produced by the meningitis-causing bacterium Neisseria meningitides. In brain cancer cells, Laz has been demonstrated to induce apoptosis through an interaction with the tumor suppressor protein p53. In this study, the laz gene, including its signal sequence, was cloned downstream of a hypoxia inducible promoter (HIP-1), before being electroporated into VNP. Successful ectopic expression and export of the Laz protein by VNP under hypoxic conditions were confirmed by Western blot analysis of the cell-free culture medium. Effective expression of Laz by VNP was investigated in two glioblastoma cell lines: LN-229 and U-373, with the latter line carrying a mutated version of p53; as well as in the breast cancer line MCF-7. Cytotoxicity of the VNP-Laz was assessed by determining the fluorescence of the apoptotic marker caspases 3/7. Compared to the purified Laz, VNP-Laz, significantly induced apoptosis in MCF-7, LN-229 and, to a much lower extent in U-373 cells, suggesting a p53-linked mechanism. Our results might represent a new approach of targeted gene delivery and suggest a potential application in brain tumor therapy.
Collapse
Affiliation(s)
- Manar Mansour
- Department of Microbiology and Immunology, The German University in Cairo (GUC), Main Entrance Fifth Settlement, Cairo, Egypt.
| | - Shehab Ismail
- The Cancer Research Institute CRUK Beatson Institute, Glasgow, UK
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, The German University in Cairo (GUC), Main Entrance Fifth Settlement, Cairo, Egypt
| |
Collapse
|
36
|
Zhang Q, Zhang L, Ross P, Zhao J, Zhang H, Chen W. Comparative Genomics of Lactobacillus crispatus from the Gut and Vagina Reveals Genetic Diversity and Lifestyle Adaptation. Genes (Basel) 2020; 11:genes11040360. [PMID: 32230824 PMCID: PMC7230607 DOI: 10.3390/genes11040360] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Lactobacillus crispatus colonizes the human feces, human vagina, and the crops and ceca of chicken. To explore the genetic characteristics and evolutionary relationships of L. crispatus isolated from different niches, we selected 37 strains isolated from the human vagina (n = 17), human feces (n = 11), and chicken feces (n = 9), and used comparative genomics to explore the genetic information of L. crispatus from the feces and vagina. No significant difference was found in the three sources of genomic features such as genome size, GC content, and number of protein coding sequences (CDS). However, in a phylogenetic tree constructed based on core genes, vagina-derived L. crispatus and feces-derived strains were each clustered separately. Therefore, the niche exerted an important impact on the evolution of L. crispatus. According to gene annotation, the L. crispatus derived from the vagina possessed a high abundance of genes related to acid tolerance, redox reactions, pullulanase, and carbohydrate-binding modules (CBMs). These genes helped L. crispatus to better adapt to the acidic environment of the vagina and obtain more nutrients, maintaining its dominance in the vagina in competition with other strains. In feces-derived bacteria, more genes encoding CRISPR/Cas system, glycoside hydrolases (GHs) family, and tetracycline/lincomycin resistance genes were found to adapt to the complex intestinal environment. This study highlights the evolutionary relationship of L. crispatus strains isolated from the vagina and feces, and the adaptation of L. crispatus to the host environment.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
| | - Lili Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.Z.); (L.Z.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: ; Tel.: +86-510-859-12155
| |
Collapse
|
37
|
Alvarado A, Behrens W, Josenhans C. Protein Activity Sensing in Bacteria in Regulating Metabolism and Motility. Front Microbiol 2020; 10:3055. [PMID: 32010106 PMCID: PMC6978683 DOI: 10.3389/fmicb.2019.03055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved complex sensing and signaling systems to react to their changing environments, most of which are present in all domains of life. Canonical bacterial sensing and signaling modules, such as membrane-bound ligand-binding receptors and kinases, are very well described. However, there are distinct sensing mechanisms in bacteria that are less studied. For instance, the sensing of internal or external cues can also be mediated by changes in protein conformation, which can either be implicated in enzymatic reactions, transport channel formation or other important cellular functions. These activities can then feed into pathways of characterized kinases, which translocate the information to the DNA or other response units. This type of bacterial sensory activity has previously been termed protein activity sensing. In this review, we highlight the recent findings about this non-canonical sensory mechanism, as well as its involvement in metabolic functions and bacterial motility. Additionally, we explore some of the specific proteins and protein-protein interactions that mediate protein activity sensing and their downstream effects. The complex sensory activities covered in this review are important for bacterial navigation and gene regulation in their dynamic environment, be it host-associated, in microbial communities or free-living.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany
| | - Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Christine Josenhans
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
38
|
Elevated Expression of a Functional Suf Pathway in Escherichia coli BL21(DE3) Enhances Recombinant Production of an Iron-Sulfur Cluster-Containing Protein. J Bacteriol 2020; 202:JB.00496-19. [PMID: 31712282 DOI: 10.1128/jb.00496-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Structural and spectroscopic analysis of iron-sulfur [Fe-S] cluster-containing proteins is often limited by the occupancy and yield of recombinantly produced proteins. Here we report that Escherichia coli BL21(DE3), a strain routinely used to overproduce [Fe-S] cluster-containing proteins, has a nonfunctional Suf pathway, one of two E. coli [Fe-S] cluster biogenesis pathways. We confirmed that BL21(DE3) and commercially available derivatives carry a deletion that results in an in-frame fusion of sufA and sufB genes within the sufABCDSE operon. We show that this fusion protein accumulates in cells but is inactive in [Fe-S] cluster biogenesis. Restoration of an intact Suf pathway combined with enhanced suf operon expression led to a remarkable (∼3-fold) increase in the production of the [4Fe-4S] cluster-containing BchL protein, a key component of the dark-operative protochlorophyllide oxidoreductase complex. These results show that this engineered "SufFeScient" derivative of BL21(DE3) is suitable for enhanced large-scale synthesis of an [Fe-S] cluster-containing protein.IMPORTANCE Large quantities of recombinantly overproduced [Fe-S] cluster-containing proteins are necessary for their in-depth biochemical characterization. Commercially available E. coli strain BL21(DE3) and its derivatives have a mutation that inactivates the function of one of the two native pathways (Suf pathway) responsible for cluster biogenesis. Correction of the mutation, combined with sequence changes that elevate Suf protein levels, can increase yield and cluster occupancy of [Fe-S] cluster-containing enzymes, facilitating the biochemical analysis of this fascinating group of proteins.
Collapse
|
39
|
Amitouche F, Saad F, Tazibt S, Bouarab S, Vega A. Structural and Electronic Rearrangements in Fe 2S 2, Fe 3S 4, and Fe 4S 4 Atomic Clusters under the Attack of NO, CO, and O 2. J Phys Chem A 2019; 123:10919-10929. [PMID: 31794213 DOI: 10.1021/acs.jpca.9b08201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report results, based on density functional theory-generalized gradient approximation calculations, that shed light on how NO, CO, and O2 interact with Fe2S2, Fe3S4, and Fe4S4 clusters and how they modify their structural and electronic properties. The interest in these small iron sulfide clusters comes from the fact that they are at the protein cores and that elucidating fundamental aspects of their interaction with those light molecules which are known to modify their functionality may help in understanding complex behaviors in biological systems. CO and NO are found to bind molecularly, leading to moderate relaxations in the clusters, but nevertheless to changes in the spin-polarized electronic structure and related properties. In contrast, dissociative chemisorption of O2 is much more stable than molecular adsorption, giving rise to significant structural distortions, particularly in Fe4S4 that splits into two Fe2S2 subclusters. As a consequence, oxygen tends to strongly reduce the spin polarization in Fe and to weaken the Fe-Fe interaction inducing antiparallel couplings that, in the case of Fe4S4, clearly arise from indirect Fe-Fe exchange coupling mediated by O. The three molecules (particularly CO) enhance the stability of the iron-sulfur clusters. This increase is noticeably more pronounced for Fe2S2 than for the other iron-sulfur clusters of different compositions, a result that correlates with the fact that in recent experiments of CO reaction with FemSm (m = 1-4), the Fe2S2CO product results as a prominent one.
Collapse
Affiliation(s)
| | | | | | | | - Andrés Vega
- Departamento de Física Teórica, Atómica y Óptica , Universidad de Valladolid , Paseo Belèn 7 , E-47011 Valladolid , Spain
| |
Collapse
|
40
|
Lebedev N, Stroud RM, Yates MD, Tender LM. Spatially Resolved Chemical Analysis of Geobacter sulfurreducens Cell Surface. ACS NANO 2019; 13:4834-4842. [PMID: 30943001 DOI: 10.1021/acsnano.9b02032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Geobacter sulfurreducens is of interest for the highest efficiency of power generation and extremely long extracellular electron transfer (EET) between the bacterium and electrodes. Despite more than 15 years of intensive molecular biological research, there is still no clear answer which molecules are responsible for these processes. In the present work, we look at the problem from another (atomic) perspective and identify the location and shape of the compounds that are known to be conductive, particularly those containing Fe atoms. By using highly sophisticated energy dispersive X-ray spectroscopy combined with high-angle annular dark-field transmission electron microscopy enabling detection, identification, and localization of chemical compounds on the surface at nearly atomic spatial resolution, we analyze Fe spatial distribution within the G. sulfurreducens community. We discover the presence of small Fe-containing particles on the surface of the bacterium cells. The size of the particles (diameter 5.6 nm) is highly reproducible and comparable with the size of a single protein. The particles cover about 2% of the cell surface, which is similar to that expected for molecular conductors responsible for electron transfer through the bacterium cell wall. We find that G. sulfurreducens filaments ("bacterial molecular wires") also contain Fe atoms in their bundles. We observe that the bacterium enable changing the distance between the Fe-containing bundles in the filaments from separated to attached (the latter is needed for the efficient electron transfer between the Fe-containing particles), depending on the bacterium metabolic activity and attachment to extracellular substrates. These results are consistent with the recently published research about the role of Fe atoms in protein molecular conductance ( Phys. Chem. Chem. Phys. , 2018 , 20 , 14072 - 14081 ) and show what type of Fe-containing particles are involved in the bacterial extracellular communication. They can be used for the design and construction of artificial biomolecular wires and bioinorganic interfaces.
Collapse
Affiliation(s)
- Nikolai Lebedev
- Center for Bio/Molecular Science and Engineering , U.S. Naval Research Laboratory , Washington , DC 20375 , United States
| | - Rhonda M Stroud
- Materials Science and Technology Division , U.S. Naval Research Laboratory , Washington , DC 20375 , United States
| | - Matthew D Yates
- Center for Bio/Molecular Science and Engineering , U.S. Naval Research Laboratory , Washington , DC 20375 , United States
| | - Leonard Martin Tender
- Center for Bio/Molecular Science and Engineering , U.S. Naval Research Laboratory , Washington , DC 20375 , United States
| |
Collapse
|
41
|
A small RNA controls bacterial sensitivity to gentamicin during iron starvation. PLoS Genet 2019; 15:e1008078. [PMID: 31009454 PMCID: PMC6497325 DOI: 10.1371/journal.pgen.1008078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/02/2019] [Accepted: 03/10/2019] [Indexed: 02/06/2023] Open
Abstract
Phenotypic resistance describes a bacterial population that becomes transiently resistant to an antibiotic without requiring a genetic change. We here investigated the role of the small regulatory RNA (sRNA) RyhB, a key contributor to iron homeostasis, in the phenotypic resistance of Escherichia coli to various classes of antibiotics. We found that RyhB induces phenotypic resistance to gentamicin, an aminoglycoside that targets the ribosome, when iron is scarce. RyhB induced resistance is due to the inhibition of respiratory complexes Nuo and Sdh activities. These complexes, which contain numerous Fe-S clusters, are crucial for generating a proton motive force (pmf) that allows gentamicin uptake. RyhB regulates negatively the expression of nuo and sdh, presumably by binding to their mRNAs and, as a consequence, inhibiting their translation. We further show that Isc Fe-S biogenesis machinery is essential for the maturation of Nuo. As RyhB also limits levels of the Isc machinery, we propose that RyhB may also indirectly impact the maturation of Nuo and Sdh. Notably, our study shows that respiratory complexes activity levels are predictive of the bacterial sensitivity to gentamicin. Altogether, these results unveil a new role for RyhB in the adaptation to antibiotic stress, an unprecedented consequence of its role in iron starvation stress response. Understanding the mechanisms at work behind bacterial antibiotic resistance has become a major health issue in the face of the antibiotics crisis. Here, we show that RyhB, a bacterial small regulatory RNA, decreases the sensitivity of Escherichia coli to the antibiotic gentamicin when iron is scarce, an environmental situation prevalent during host-pathogen interactions. This phenotypic resistance is related to the activity of the respiratory complexes Nuo and Sdh, which are producing the proton motive force allowing antibiotic uptake. Altogether, this study points out to a major role for RyhB in escaping antibacterial action.
Collapse
|
42
|
Zhu K, Li G, Wei R, Mao Y, Zhao Y, He A, Bai Z, Deng Y. Systematic analysis of the effects of different nitrogen source and ICDH knockout on glycolate synthesis in Escherichia coli. J Biol Eng 2019; 13:30. [PMID: 30988698 PMCID: PMC6449901 DOI: 10.1186/s13036-019-0159-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Glycolate is an important α-hydroxy carboxylic acid widely used in industrial and consumer applications. The production of glycolate from glucose in Escherichia coli is generally carried out by glycolysis and glyoxylate shunt pathways, followed by reduction to glycolate. Glycolate accumulation was significantly affected by nitrogen sources and isocitrate dehydrogenase (ICDH), which influenced carbon flux distribution between the tricarboxylic acid (TCA) cycle and the glyoxylate shunt, however, the mechanism was unclear. RESULTS Herein, we used RNA-Seq to explore the effects of nitrogen sources and ICDH knockout on glycolate production. The Mgly534 strain and the Mgly624 strain (with the ICDH deletion in Mgly534), displaying different phenotypes on organic nitrogen sources, were also adopted for the exploration. Though the growth of Mgly534 was improved on organic nitrogen sources, glycolate production decreased and acetate accumulated, while Mgly624 achieved a balance between cell growth and glycolate production, reaching 0.81 g glycolate/OD (2.6-fold higher than Mgly534). To further study Mgly624, the significant changed genes related to N-regulation, oxidative stress response and iron transport were analyzed. Glutamate and serine were found to increase the biomass and productivity respectively. Meanwhile, overexpressing the arginine transport gene argT accelerated the cell growth rate and increased the biomass. Further, the presence of Fe2+ also speeded up the cells growth and compensated for the lack of reducing equivalents. CONCLUSION Our studies identified that ICDH knockout strain was more suitable for glycolate production. RNA-Seq provided a better understanding of the ICDH knockout on cellular physiology and glycolate production.
Collapse
Affiliation(s)
- Kangjia Zhu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Ren Wei
- Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103 Leipzig, Germany
| | - Yin Mao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, 223300 China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 Jiangsu China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, 223300 China
| |
Collapse
|
43
|
Phosphorothioated DNA Is Shielded from Oxidative Damage. Appl Environ Microbiol 2019; 85:AEM.00104-19. [PMID: 30737351 DOI: 10.1128/aem.00104-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/05/2019] [Indexed: 11/20/2022] Open
Abstract
DNA is the carrier of genetic information. DNA modifications play a central role in essential physiological processes. Phosphorothioation (PT) modification involves the replacement of an oxygen atom on the DNA backbone with a sulfur atom. PT modification can cause genomic instability in Salmonella enterica under hypochlorous acid stress. This modification restores hydrogen peroxide (H2O2) resistance in the catalase-deficient Escherichia coli Hpx- strain. Here, we report biochemical characterization results for a purified PT modification protein complex (DndCDE) from S. enterica We observed multiplex oligomeric states of DndCDE by using native PAGE. This protein complex bound avidly to PT-modified DNA. DndCDE with an intact iron-sulfur cluster (DndCDE-FeS) possessed H2O2 decomposition activity, with a V max of 10.58 ± 0.90 mM min-1 and a half-saturation constant, K 0.5S, of 31.03 mM. The Hill coefficient was 2.419 ± 0.59 for this activity. The protein's activity toward H2O2 was observed to be dependent on the intact DndCDE and on the formation of an iron-sulfur (Fe-S) cluster on the DndC subunit. In addition to cysteine residues that mediate the formation of this Fe-S cluster, other cysteine residues play a catalytic role. Finally, catalase activity was also detected in DndCDE from Pseudomonas fluorescens Pf0-1. The data and conclusions presented suggest that DndCDE-FeS is a short-lived catalase. Our experiments also indicate that the complex binds to PT sites, shielding PT DNA from H2O2 damage. This catalase shield might be able to extend from PT sites to the entire bacterial genome.IMPORTANCE DNA phosphorothioation has been reported in many bacteria. These PT-hosting bacteria live in very different environments, such as the human body, soil, or hot springs. The physiological function of DNA PT modification is still elusive. A remarkable property of PT modification is that purified genomic PT DNA is susceptible to oxidative cleavage. Among the oxidants, hypochlorous acid and H2O2 are of physiological relevance for human pathogens since they are generated during the human inflammation response to bacterial infection. However, expression of PT genes in the catalase-deficient E. coli Hpx- strain restores H2O2 resistance. Here, we seek to solve this obvious paradox. We demonstrate that DndCDE-FeS is a short-lived catalase that binds tightly to PT DNA. It is thus possible that by docking to PT sites the catalase activity protects the bacterial genome against H2O2 damage.
Collapse
|
44
|
Belvin BR, Musayev FN, Burgner J, Scarsdale JN, Escalante CR, Lewis JP. Nitrosative stress sensing in Porphyromonas gingivalis: structure of and heme binding by the transcriptional regulator HcpR. Acta Crystallogr D Struct Biol 2019; 75:437-450. [PMID: 30988260 PMCID: PMC6465984 DOI: 10.1107/s205979831900264x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/21/2019] [Indexed: 11/10/2022] Open
Abstract
Although the HcpR regulator plays a vital step in initiation of the nitrosative stress response in many Gram-negative anaerobic bacteria, the molecular mechanisms that it uses to mediate gas sensing are not well understood. Here, a 2.6 Å resolution crystal structure of the N-terminal sensing domain of the anaerobic periodontopathogen Porphyromonas gingivalis HcpR is presented. The protein has classical features of the regulators belonging to the FNR-CRP family and contains a hydrophobic pocket in its N-terminal sensing domain. It is shown that heme bound to HcpR exhibits heme iron as a hexacoordinate system in the absence of nitric oxide (NO) and that upon nitrosylation it transitions to a pentacoordinate system. Finally, small-angle X-ray scattering experiments on full-length HcpR reveal that the C-terminal DNA-binding domain of HcpR has a high degree of interdomain flexibility.
Collapse
Affiliation(s)
- B. Ross Belvin
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Faik N. Musayev
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- The Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - John Burgner
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J. Neel Scarsdale
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- The Institute for Structural Biology, Drug Discovery, and Development, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carlos R. Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Janina P. Lewis
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
45
|
Kaur A, Capalash N, Sharma P. Communication mechanisms in extremophiles: Exploring their existence and industrial applications. Microbiol Res 2019; 221:15-27. [DOI: 10.1016/j.micres.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
46
|
Pala ZR, Saxena V, Saggu GS, Mani SK, Pareek RP, Kochar SK, Kochar DK, Garg S. Functional analysis of iron-sulfur cluster biogenesis (SUF pathway) from Plasmodium vivax clinical isolates. Exp Parasitol 2019; 198:53-62. [PMID: 30721667 DOI: 10.1016/j.exppara.2019.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/29/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Iron-sulfur (Fe-S) clusters are critical metallo-cofactors required for cell function. Assembly of these cofactors is a carefully controlled process in cells to avoid toxicity from free iron and sulfide. In Plasmodium, two pathways for these Fe-S cluster biogenesis have been reported; ISC pathway in the mitochondria and SUF pathway functional in the apicoplast. Amongst these, SUF pathway is reported essential for the apicoplast maintenance and parasite survival. Many of its components have been studied from P. falciparum and P. berghei in recent years, still few queries remain to be addressed; one of them being the assembly and transfer of Fe-S clusters. In this study, using P. vivax clinical isolates, we have shown the in vitro interaction of SUF pathway proteins SufS and SufE responsible for sulfur mobilization in the apicoplast. The sulfur mobilized by the SufSE complex assembles on the scaffold protein PvSufA along with iron provided by the external source. Here, we demonstrate in vitro transfer of these labile Fe-S clusters from the scaffold protein on to an apo-protein, PvIspG (a protein involved in penultimate step of Isoprenoids biosynthesis pathway) in order to provide an insight into the interaction of different components for the biosynthesis and transfer of Fe-S clusters. Our analysis indicate that inspite of the presence of variations in pathway proteins, the overall pathway remains well conserved in the clinical isolates when compared to that reported in lab strains.
Collapse
Affiliation(s)
- Zarna Rajeshkumar Pala
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Vishal Saxena
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
| | - Gagandeep Singh Saggu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Satish Kailasam Mani
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rajendra Prasad Pareek
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Sanjay Kumar Kochar
- Department of Medicine, Sardar Patel Medical College, Bikaner, Rajasthan, India
| | - Dhanpat Kumar Kochar
- Department of Medicine, Rajasthan University of Health Sciences, Jaipur, Rajasthan, India
| | - Shilpi Garg
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
| |
Collapse
|
47
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
48
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out multiple functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters with small/redox-active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial reprogramming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances: Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high-resolution structural data. Although this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
49
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
50
|
Burschel S, Kreuzer Decovic D, Nuber F, Stiller M, Hofmann M, Zupok A, Siemiatkowska B, Gorka M, Leimkühler S, Friedrich T. Iron-sulfur cluster carrier proteins involved in the assembly of Escherichia coli
NADH:ubiquinone oxidoreductase (complex I). Mol Microbiol 2018; 111:31-45. [DOI: 10.1111/mmi.14137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Sabrina Burschel
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Doris Kreuzer Decovic
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Germany
| | - Franziska Nuber
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Marie Stiller
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Maud Hofmann
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Arkadiusz Zupok
- University of Potsdam; Institut für Biochemie und Biologie; Karl-Liebknecht-Str. 24-25 14476 Potsdam-Golm Germany
| | - Beata Siemiatkowska
- Max-Planck-Institute of Molecular Plant Physiology; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Michal Gorka
- Max-Planck-Institute of Molecular Plant Physiology; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Silke Leimkühler
- University of Potsdam; Institut für Biochemie und Biologie; Karl-Liebknecht-Str. 24-25 14476 Potsdam-Golm Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Germany
| |
Collapse
|