1
|
Majhi S, Awasthi BP, Sharma RK, Mitra K. Buparvaquone Induces Ultrastructural and Physiological Alterations Leading to Mitochondrial Dysfunction and Caspase-Independent Apoptotic Cell Death in Leishmania donovani. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:521-538. [PMID: 38709559 DOI: 10.1093/mam/ozae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024]
Abstract
Leishmaniasis is a neglected tropical disease (endemic in 99 countries) caused by parasitic protozoa of the genus Leishmania. As treatment options are limited, there is an unmet need for new drugs. The hydroxynaphthoquinone class of compounds demonstrates broad-spectrum activity against protozoan parasites. Buparvaquone (BPQ), a member of this class, is the only drug licensed for the treatment of theileriosis. BPQ has shown promising antileishmanial activity but its mode of action is largely unknown. The aim of this study was to evaluate the ultrastructural and physiological effects of BPQ for elucidating the mechanisms underlying the in vitro antiproliferative activity in Leishmania donovani. Transmission and scanning electron microscopy analyses of BPQ-treated parasites revealed ultrastructural effects characteristic of apoptosis-like cell death, which include alterations in the nucleus, mitochondrion, kinetoplast, flagella, and the flagellar pocket. Using flow cytometry, laser scanning confocal microscopy, and fluorometry, we found that BPQ induced caspase-independent apoptosis-like cell death by losing plasma membrane phospholipid asymmetry and cell cycle arrest at sub-G0/G1 phase. Depolarization of the mitochondrial membrane leads to the generation of oxidative stress and impaired ATP synthesis followed by disruption of intracellular calcium homeostasis. Collectively, these findings provide valuable mechanistic insights and demonstrate BPQ's potential for development as an antileishmanial agent.
Collapse
Affiliation(s)
- Swetapadma Majhi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Bhanu Priya Awasthi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Kumar Sharma
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
2
|
Link F, Borges A, Karo O, Jungblut M, Müller T, Meyer-Natus E, Krüger T, Sachs S, Jones NG, Morphew M, Sauer M, Stigloher C, McIntosh JR, Engstler M. Continuous endosomes form functional subdomains and orchestrate rapid membrane trafficking in trypanosomes. eLife 2024; 12:RP91194. [PMID: 38619530 PMCID: PMC11018342 DOI: 10.7554/elife.91194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Endocytosis is a common process observed in most eukaryotic cells, although its complexity varies among different organisms. In Trypanosoma brucei, the endocytic machinery is under special selective pressure because rapid membrane recycling is essential for immune evasion. This unicellular parasite effectively removes host antibodies from its cell surface through hydrodynamic drag and fast endocytic internalization. The entire process of membrane recycling occurs exclusively through the flagellar pocket, an extracellular organelle situated at the posterior pole of the spindle-shaped cell. The high-speed dynamics of membrane flux in trypanosomes do not seem compatible with the conventional concept of distinct compartments for early endosomes (EE), late endosomes (LE), and recycling endosomes (RE). To investigate the underlying structural basis for the remarkably fast membrane traffic in trypanosomes, we employed advanced techniques in light and electron microscopy to examine the three-dimensional architecture of the endosomal system. Our findings reveal that the endosomal system in trypanosomes exhibits a remarkably intricate structure. Instead of being compartmentalized, it constitutes a continuous membrane system, with specific functions of the endosome segregated into membrane subdomains enriched with classical markers for EE, LE, and RE. These membrane subdomains can partly overlap or are interspersed with areas that are negative for endosomal markers. This continuous endosome allows fast membrane flux by facilitated diffusion that is not slowed by multiple fission and fusion events.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Alyssa Borges
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Oliver Karo
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Marvin Jungblut
- Department of Biotechnology & Biophysics, Biocentre, University of WürzburgWürzburgGermany
| | - Thomas Müller
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Elisabeth Meyer-Natus
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Timothy Krüger
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Stefan Sachs
- Department of Biotechnology & Biophysics, Biocentre, University of WürzburgWürzburgGermany
| | - Nicola G Jones
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Mary Morphew
- Molecular, Cellular & Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocentre, University of WürzburgWürzburgGermany
| | | | - J Richard McIntosh
- Molecular, Cellular & Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Markus Engstler
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| |
Collapse
|
3
|
Link F, Borges AR, Jones NG, Engstler M. To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:720521. [PMID: 34422837 PMCID: PMC8377397 DOI: 10.3389/fcell.2021.720521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Peng M, Chen F, Wu Z, Shen J. Endoplasmic Reticulum Stress, a Target for Drug Design and Drug Resistance in Parasitosis. Front Microbiol 2021; 12:670874. [PMID: 34135878 PMCID: PMC8200641 DOI: 10.3389/fmicb.2021.670874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
Endoplasmic reticulum stress (ER stress) can be induced when cellular protein homeostasis is damaged, and cells can activate the unfolded protein response (UPR) to restore protein homeostasis or induce cell death to facilitate the survival of the whole system. Globally, parasites are a constant threat to human health and are therefore considered a serious public health problem. Parasitic infection can cause ER stress in host cells, and parasites also possess part or all of the UPR under ER stress conditions. In this review, we aim to clarify the role of ER stress pathways and related molecules in parasites for their survival and development, the pathogenesis of parasitosis in hosts, and the artemisinin resistance of Plasmodium, which provides some potential drug design targets to inhibit survival of parasites, relieves pathological damage of parasitosis, and solves the problem of artemisinin resistance.
Collapse
Affiliation(s)
- Mei Peng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
5
|
Bajaj R, Ambaru B, Gupta CM. Deciphering the role of UBA-like domains in intraflagellar distribution and functions of myosin XXI in Leishmania. PLoS One 2020; 15:e0232116. [PMID: 32343719 PMCID: PMC7188243 DOI: 10.1371/journal.pone.0232116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Myosin XXI (Myo21) is a novel class of myosin present in all kinetoplastid parasites, such as Trypanosoma and Leishmania. This protein in Leishmania promastigotes is predominantly localized to the proximal region of the flagellum, and is involved in the flagellum assembly, cell motility and intracellular vesicle transport. As Myo21 contains two ubiquitin associated (UBA)-like domains (UBLD) in its amino acid sequence, we considered it of interest to analyze the role of these domains in the intracellular distribution and functions of this protein in Leishmania cells. In this context, we created green fluorescent protein (GFP)-conjugates of Myo21 constructs lacking one of the two UBLDs at a time or both the UBLDs as well as GFP-conjugates of only the two UBLDs and Myo21 tail lacking the two UBLDs and separately expressed them in the Leishmania cells. Our results show that unlike Myo21-GFP, Myo21-GFP constructs lacking either one or both the UBLDs failed to concentrate and co-distribute with actin in the proximal region of the flagellum. Nevertheless, the GFP conjugate of only the two UBLDs was found to predominantly localize to the flagellum base. Additionally, the cells that expressed only one or both the UBLDs-deleted Myo21-GFP constructs possessed shorter flagellum and displayed slower motility, compared to Myo21-GFP expressing cells. Further, the intracellular vesicle transport and cell growth were severely impaired in the cells that expressed both the UBLDs deleted Myo21-GFP construct, but in contrast, virtually no effect was observed on the intracellular vesicle transport and growth in the cells that expressed single UBLD deleted mutant proteins. Moreover, the observed slower growth of both the UBLDs-deleted Myo21-GFP expressing cells was primarily due to delayed G2/M phase caused by aberrant nuclear and daughter cell segregation during their cell division process. These results taken together clearly reveal that the presence of UBLDs in Myo21 are essentially required for its predominant localization to the flagellum base, and perhaps also in its involvement in the flagellum assembly and cell division. Possible role of UBLDs in involvement of Myo21 during Leishmania flagellum assembly and cell cycle is discussed.
Collapse
Affiliation(s)
- Rani Bajaj
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bindu Ambaru
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chhitar M. Gupta
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Kariuki CK, Stijlemans B, Magez S. The Trypanosomal Transferrin Receptor of Trypanosoma Brucei-A Review. Trop Med Infect Dis 2019; 4:tropicalmed4040126. [PMID: 31581506 PMCID: PMC6958415 DOI: 10.3390/tropicalmed4040126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions.
Collapse
Affiliation(s)
- Christopher K. Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), 00502 Nairobi, Kenya
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, 9052 Gent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon 219220, Korea
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| |
Collapse
|
7
|
Grybchuk D, Kostygov AY, Macedo DH, Votýpka J, Lukeš J, Yurchenko V. RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus. mBio 2018; 9:e01932-18. [PMID: 30327446 PMCID: PMC6191543 DOI: 10.1128/mbio.01932-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
In this work, we analyzed viral prevalence in trypanosomatid parasites (Blechomonas spp.) infecting Siphonaptera and discovered nine species of viruses from three different groups (leishbunyaviruses, narnaviruses, and leishmaniaviruses). Most of the flagellate isolates bore two or three viral types (mixed infections). Although no new viral groups were documented in Blechomonas spp., our findings are important for the comprehension of viral evolution. The discovery of bunyaviruses in blechomonads was anticipated, since these viruses have envelopes facilitating their interspecific transmission and have already been found in various trypanosomatids and metatranscriptomes with trypanosomatid signatures. In this work, we also provided evidence that even representatives of the family Narnaviridae are capable of host switching and evidently have accomplished switches multiple times in the course of their evolution. The most unexpected finding was the presence of leishmaniaviruses, a group previously solely confined to the human pathogens Leishmania spp. From phylogenetic inferences and analyses of the life cycles of Leishmania and Blechomonas, we concluded that a common ancestor of leishmaniaviruses most likely infected Leishmania first and was acquired by Blechomonas by horizontal transfer. Our findings demonstrate that evolution of leishmaniaviruses is more complex than previously thought and includes occasional host switching.IMPORTANCE Flagellates belonging to the genus Leishmania are important human parasites. Some strains of different Leishmania species harbor viruses (leishmaniaviruses), which facilitate metastatic spread of the parasites, thus aggravating the disease. Up until now, these viruses were known to be hosted only by Leishmania Here, we analyzed viral distribution in Blechomonas, a related group of flagellates parasitizing fleas, and revealed that they also bear leishmaniaviruses. Our findings shed light on the entangled evolution of these viruses. In addition, we documented that Blechomonas can be also infected by leishbunyaviruses and narnaviruses, viral groups known from other insects' flagellates.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budejovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
8
|
Cyrklaff M, Frischknecht F, Kudryashev M. Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiol Rev 2018; 41:828-853. [PMID: 28962014 DOI: 10.1093/femsre/fux041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, novel imaging approaches revolutionised our understanding of the cellular and molecular biology of microorganisms. These include advances in fluorescent probes, dynamic live cell imaging, superresolution light and electron microscopy. Currently, a major transition in the experimental approach shifts electron microscopy studies from a complementary technique to a method of choice for structural and functional analysis. Here we review functional insights into the molecular architecture of viruses, bacteria and parasites as well as interactions with their respective host cells gained from studies using cryogenic electron tomography and related methodologies.
Collapse
Affiliation(s)
- Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Strasse 17, 60438 Frankfurt, Germany
| |
Collapse
|
9
|
Pech-Canul ÁDLC, Monteón V, Solís-Oviedo RL. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J Parasitol Res 2017; 2017:3751403. [PMID: 28656101 PMCID: PMC5474541 DOI: 10.1155/2017/3751403] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas' disease which affects millions of people around the world mostly in Central and South America. T. cruzi expresses a wide variety of proteins on its surface membrane which has an important role in the biology of these parasites. Surface molecules of the parasites are the result of the environment to which the parasites are exposed during their life cycle. Hence, T. cruzi displays several modifications when they move from one host to another. Due to the complexity of this parasite's cell surface, this review presents some membrane proteins organized as large families, as they are the most abundant and/or relevant throughout the T. cruzi membrane.
Collapse
Affiliation(s)
- Ángel de la Cruz Pech-Canul
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
| | - Victor Monteón
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| | - Rosa-Lidia Solís-Oviedo
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| |
Collapse
|
10
|
Frolov AO, Malysheva MN, Ganyukova AI, Yurchenko V, Kostygov AY. Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Eur J Protistol 2017; 57:85-98. [DOI: 10.1016/j.ejop.2016.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
|
11
|
Höög JL, Lacomble S, Bouchet-Marquis C, Briggs L, Park K, Hoenger A, Gull K. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Negl Trop Dis 2016; 10:e0004312. [PMID: 26820516 PMCID: PMC4731218 DOI: 10.1371/journal.pntd.0004312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/29/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC) is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility. METHODOLOGY/PRINCIPAL FINDINGS We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum. CONCLUSIONS/SIGNIFICANCE The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.
Collapse
Affiliation(s)
- Johanna L. Höög
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- The Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail: ,
| | - Sylvain Lacomble
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Laura Briggs
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kristin Park
- The Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Andreas Hoenger
- The Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Wheeler RJ, Sunter JD, Gull K. Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J Cell Sci 2016; 129:854-67. [PMID: 26746239 PMCID: PMC4760377 DOI: 10.1242/jcs.183152] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/29/2015] [Indexed: 01/10/2023] Open
Abstract
Leishmania promastigote parasites have a flagellum, which protrudes from the flagellar pocket at the cell anterior, yet, surprisingly, have homologs of many flagellum attachment zone (FAZ) proteins – proteins used in the related Trypanosoma species to laterally attach the flagellum to the cell body from the flagellar pocket to the cell posterior. Here, we use seven Leishmania mexicana cell lines that expressed eYFP fusions of FAZ protein homologs to show that the Leishmania flagellar pocket includes a FAZ structure. Electron tomography revealed a precisely defined 3D organisation for both the flagellar pocket and FAZ, with striking similarities to those of Trypanosoma brucei. Expression of two T. brucei FAZ proteins in L. mexicana showed that T. brucei FAZ proteins can assemble into the Leishmania FAZ structure. Leishmania therefore have a previously unrecognised FAZ structure, which we show undergoes major structural reorganisation in the transition from the promastigote (sandfly vector) to amastigote (in mammalian macrophages). Morphogenesis of the Leishmania flagellar pocket, a structure important for pathogenicity, is therefore intimately associated with a FAZ; a finding with implications for understanding shape changes involving component modules during evolution. Summary:Leishmania parasites have a highly structured flagellar pocket, including a structure homologous to the Trypanosoma brucei flagellum attachment zone, which undergoes structural adaptations in different life cycle stages.
Collapse
Affiliation(s)
- Richard J Wheeler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Jack D Sunter
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
13
|
McAllaster MR, Ikeda KN, Lozano-Núñez A, Anrather D, Unterwurzacher V, Gossenreiter T, Perry JA, Crickley R, Mercadante CJ, Vaughan S, de Graffenried CL. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in Trypanosoma brucei. Mol Biol Cell 2015; 26:3013-29. [PMID: 26133384 PMCID: PMC4551316 DOI: 10.1091/mbc.e15-04-0219] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
Trypanosoma brucei is the causative agent of African sleeping sickness, a devastating disease endemic to sub-Saharan Africa with few effective treatment options. The parasite is highly polarized, including a single flagellum that is nucleated at the posterior of the cell and adhered along the cell surface. These features are essential and must be transmitted to the daughter cells during division. Recently we identified the T. brucei homologue of polo-like kinase (TbPLK) as an essential morphogenic regulator. In the present work, we conduct proteomic screens to identify potential TbPLK binding partners and substrates to better understand the molecular mechanisms of kinase function. These screens identify a cohort of proteins, most of which are completely uncharacterized, which localize to key cytoskeletal organelles involved in establishing cell morphology, including the flagella connector, flagellum attachment zone, and bilobe structure. Depletion of these proteins causes substantial changes in cell division, including mispositioning of the kinetoplast, loss of flagellar connection, and prevention of cytokinesis. The proteins identified in these screens provide the foundation for establishing the molecular networks through which TbPLK directs cell morphogenesis in T. brucei.
Collapse
Affiliation(s)
- Michael R McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Kyojiro N Ikeda
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | - Ana Lozano-Núñez
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | - Dorothea Anrather
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Verena Unterwurzacher
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Thomas Gossenreiter
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Jenna A Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Robbie Crickley
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Courtney J Mercadante
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | |
Collapse
|
14
|
Kharon1 null mutants of Leishmania mexicana are avirulent in mice and exhibit a cytokinesis defect within macrophages. PLoS One 2015; 10:e0134432. [PMID: 26266938 PMCID: PMC4534133 DOI: 10.1371/journal.pone.0134432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/10/2015] [Indexed: 01/21/2023] Open
Abstract
In a variety of eukaryotes, flagella play important roles both in motility and as sensory organelles that monitor the extracellular environment. In the parasitic protozoan Leishmania mexicana, one glucose transporter isoform, LmxGT1, is targeted selectively to the flagellar membrane where it appears to play a role in glucose sensing. Trafficking of LmxGT1 to the flagellar membrane is dependent upon interaction with the KHARON1 protein that is located at the base of the flagellar axoneme. Remarkably, while Δkharon1 null mutants are viable as insect stage promastigotes, they are unable to survive as amastigotes inside host macrophages. Although Δkharon1 promastigotes enter macrophages and transform into amastigotes, these intracellular parasites are unable to execute cytokinesis and form multinucleate cells before dying. Notably, extracellular axenic amastigotes of Δkharon1 mutants replicate and divide normally, indicating a defect in the mutants that is only exhibited in the intra-macrophage environment. Although the flagella of Δkharon1 amastigotes adhere to the phagolysomal membrane of host macrophages, the morphology of the mutant flagella is often distorted. Additionally, these null mutants are completely avirulent following injection into BALB/c mice, underscoring the critical role of the KHARON1 protein for viability of intracellular amastigotes and disease in the animal model of leishmaniasis.
Collapse
|
15
|
Weber B, Tranfield EM, Höög JL, Baum D, Antony C, Hyman T, Verbavatz JM, Prohaska S. Automated stitching of microtubule centerlines across serial electron tomograms. PLoS One 2014; 9:e113222. [PMID: 25438148 PMCID: PMC4249889 DOI: 10.1371/journal.pone.0113222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023] Open
Abstract
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.
Collapse
Affiliation(s)
- Britta Weber
- Zuse Institute Berlin, Berlin, Germany
- Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany
| | | | - Johanna L. Höög
- Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Claude Antony
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tony Hyman
- Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
16
|
Demmel L, Schmidt K, Lucast L, Havlicek K, Zankel A, Koestler T, Reithofer V, de Camilli P, Warren G. The endocytic activity of the flagellar pocket in Trypanosoma brucei is regulated by an adjacent phosphatidylinositol phosphate kinase. J Cell Sci 2014; 127:2351-64. [PMID: 24639465 DOI: 10.1242/jcs.146894] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phosphoinositides are spatially restricted membrane signaling molecules. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]--a phosphoinositide that is highly enriched in, and present throughout, the plasma membrane--has been implicated in endocytosis. Trypanosoma brucei has one of the highest known rates of endocytosis, a process it uses to evade the immune system. To determine whether phosphoinositides play a role in endocytosis in this organism, we have identified and characterized one of the enzymes that is responsible for generating PI(4,5)P2. Surprisingly, this phosphoinositide was found to be highly concentrated in the flagellar pocket, the only site of endocytosis and exocytosis in this organism. The enzyme (designated TbPIPKA, annotated as Tb927.10.1620) was present at the neck of the pocket, towards the anterior-end of the parasite. Depletion of TbPIPKA led to depletion of PI(4,5)P2 and enlargement of the pocket, the result of impaired endocytosis. Taken together, these data suggest that TbPIPKA and its product PI(4,5)P2 are important for endocytosis and, consequently, for homeostasis of the flagellar pocket.
Collapse
Affiliation(s)
- Lars Demmel
- Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Katy Schmidt
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Louise Lucast
- Department of Cell Biology, Howard Hughes Medical Institute, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Katharina Havlicek
- Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| | - Armin Zankel
- Institute for Electron Microscopy, Graz University of Technology and Center for Electron Microscopy Graz, 8010 Graz, Austria
| | - Tina Koestler
- Center for Integrative Bioinformatics, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Viktoria Reithofer
- University of Applied Sciences Wiener Neustadt, Department of Biomedical Analytics, 2700 Wiener Neustadt, Austria
| | - Pietro de Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Graham Warren
- Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
17
|
Wheeler RJ, Gluenz E, Gull K. The limits on trypanosomatid morphological diversity. PLoS One 2013; 8:e79581. [PMID: 24260255 PMCID: PMC3834336 DOI: 10.1371/journal.pone.0079581] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/02/2013] [Indexed: 01/13/2023] Open
Abstract
Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology.
Collapse
Affiliation(s)
- Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
19
|
Identification of protein complex associated with LYT1 of Trypanosoma cruzi. BIOMED RESEARCH INTERNATIONAL 2013; 2013:493525. [PMID: 23586042 PMCID: PMC3613072 DOI: 10.1155/2013/493525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 01/19/2023]
Abstract
To carry out the intracellular phase of its life cycle, Trypanosoma cruzi must infect a host cell. Although a few molecules have been reported to participate in this process, one known protein is LYT1, which promotes lysis under acidic conditions and is involved in parasite infection and development. Alternative transcripts from a single LYT1 gene generate two proteins with differential functions and compartmentalization. Single-gene products targeted to more than one location can interact with disparate proteins that might affect their function and targeting properties. The aim of this work was to study the LYT1 interaction map using coimmunoprecipitation assays with transgenic parasites expressing LYT1 products fused to GFP. We detected several proteins of sizes from 8 to 150 kDa that bind to LYT1 with different binding strengths. By MS-MS analysis, we identified proteins involved in parasite infectivity (trans-sialidase), development (kDSPs and histones H2A and H2B), and motility and protein traffic (dynein and α - and β -tubulin), as well as protein-protein interactions (TPR-protein and kDSPs) and several hypothetical proteins. Our approach led us to identify the LYT1 interaction profile, thereby providing insights into the molecular mechanisms that contribute to parasite stage development and pathogenesis of T. cruzi infection.
Collapse
|
20
|
Lozano-Núñez A, Ikeda KN, Sauer T, de Graffenried CL. An analogue-sensitive approach identifies basal body rotation and flagellum attachment zone elongation as key functions of PLK in Trypanosoma brucei. Mol Biol Cell 2013; 24:1321-33. [PMID: 23447704 PMCID: PMC3639044 DOI: 10.1091/mbc.e12-12-0846] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Polo-like kinase homologue in Trypanosoma brucei (TbPLK) regulates the assembly of a series of organelles necessary for positioning the parasite's flagellum. An analogue-sensitive strategy is used to acutely and specifically inhibit the kinase with a small molecule, making it possible to identify novel TbPLK functions. Polo-like kinases are important regulators of cell division, playing diverse roles in mitosis and cytoskeletal inheritance. In the parasite Trypanosoma brucei, the single PLK homologue TbPLK is necessary for the assembly of a series of essential organelles that position and adhere the flagellum to the cell surface. Previous work relied on RNA interference or inhibitors of undefined specificity to inhibit TbPLK, both of which have significant experimental limitations. Here we use an analogue-sensitive approach to selectively and acutely inhibit TbPLK. T. brucei cells expressing only analogue-sensitive TbPLK (TbPLKas) grow normally, but upon treatment with inhibitor develop defects in flagellar attachment and cytokinesis. TbPLK cannot migrate effectively when inhibited and remains trapped in the posterior of the cell throughout the cell cycle. Using synchronized cells, we show that active TbPLK is a direct requirement for the assembly and extension of the flagellum attachment zone, which adheres the flagellum to the cell surface, and for the rotation of the duplicated basal bodies, which positions the new flagellum so that it can extend without impinging on the old flagellum. This approach should be applicable to the many kinases found in the T. brucei genome that lack an ascribed function.
Collapse
Affiliation(s)
- Ana Lozano-Núñez
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
21
|
Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. EUKARYOTIC CELL 2012; 12:356-67. [PMID: 23264645 DOI: 10.1128/ec.00326-12] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trypanosomes are a family of parasitic protists of which the African trypanosome, Trypanosoma brucei, is the best characterized. The complex and highly ordered cytoskeleton of T. brucei has been shown to play vital roles in its biology but remains difficult to study, in large part owing to the intractability of its constituent proteins. Existing methods of protein identification, such as bioinformatic analysis, generation of monoclonal antibody panels, proteomics, affinity purification, and yeast two-hybrid screens, all have drawbacks. Such deficiencies-troublesome proteins and technical limitations-are common not only to T. brucei but also to many other protists, many of which are even less well studied. Proximity-dependent biotin identification (BioID) is a recently developed technique that allows forward screens for interaction partners and near neighbors in a native environment with no requirement for solubility in nonionic detergent. As such, it is extremely well suited to the exploration of the cytoskeleton. In this project, BioID was adapted for use in T. brucei. The trypanosome bilobe, a discrete cytoskeletal structure with few known protein components, represented an excellent test subject. Use of the bilobe protein TbMORN1 as a probe resulted in the identification of seven new bilobe constituents and two new flagellum attachment zone proteins. This constitutes the first usage of BioID on a largely uncharacterized structure, and demonstrates its utility in identifying new components of such a structure. This remarkable success validates BioID as a new tool for the study of unicellular eukaryotes in particular and the eukaryotic cytoskeleton in general.
Collapse
|
22
|
Esson HJ, Morriswood B, Yavuz S, Vidilaseris K, Dong G, Warren G. Morphology of the trypanosome bilobe, a novel cytoskeletal structure. EUKARYOTIC CELL 2012; 11:761-72. [PMID: 22327007 PMCID: PMC3370457 DOI: 10.1128/ec.05287-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/03/2012] [Indexed: 12/28/2022]
Abstract
The trypanosome bilobe is a cytoskeletal structure of unclear function. To date, four proteins have been shown to localize stably to it: TbMORN1, TbLRRP1, TbCentrin2, and TbCentrin4. In this study, a combination of immunofluorescence microscopy and electron microscopy was used to explore the morphology of the bilobe and its relationship to other nearby cytoskeletal structures in the African trypanosome procyclic trypomastigote. The use of detergent/salt-extracted flagellum preparations was found to be an effective way of discerning features of the cytoskeletal ultrastructure that are normally obscured. TbMORN1 and TbCentrin4 together define a hairpin structure comprising an arm of TbCentrin4 and a fishhook of TbMORN1. The two arms flank a specialized microtubule quartet and the flagellum attachment zone filament, with TbMORN1 running alongside the former and TbCentrin4 alongside the latter. The hooked part of TbMORN1 sits atop the flagellar pocket collar marked by TbBILBO1. The TbMORN1 bilobe occasionally exhibits tendrillar extensions that seem to be connected to the basal and probasal bodies. The TbMORN1 molecules present on these tendrils undergo higher rates of turnover than those for molecules on the main bilobe structure. These observations have been integrated with previous detailed descriptions of the cytoskeletal elements in trypanosome cells.
Collapse
Affiliation(s)
- Heather J Esson
- Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Höög JL, Bouchet-Marquis C, McIntosh JR, Hoenger A, Gull K. Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. J Struct Biol 2012; 178:189-98. [PMID: 22285651 PMCID: PMC3355306 DOI: 10.1016/j.jsb.2012.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/19/2022]
Abstract
Trypanosoma brucei is a uni-cellular protist that causes African sleeping sickness. These parasites have a flagellum that is attached to the cell body and is indispensible for its motility. The flagellum consists of a canonical 9+2 axoneme and a paraflagellar rod (PFR), an intricate tripartite, fibrous structure that is connected to the axoneme. In this paper we describe results from cryo-electron tomography of unperturbed flagella. This method revealed novel structures that are likely involved in attaching the flagellum to the cell. We also show the first cryo-electron tomographic images of a basal body in situ, revealing electron dense structures inside its triplet microtubules. Sub-tomogram averaging of the PFR revealed that its distal region is organized as an orthorhombic crystal.
Collapse
Affiliation(s)
- Johanna L Höög
- The Boulder Laboratory for 3-D Electron Microscopy of Cells, MCD-Biology, University of Colorado at Boulder, Boulder, CO 80309-0347, USA.
| | | | | | | | | |
Collapse
|
24
|
Flagellar motility of Trypanosoma cruzi epimastigotes. J Biomed Biotechnol 2012; 2012:520380. [PMID: 22287834 PMCID: PMC3263639 DOI: 10.1155/2012/520380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/30/2022] Open
Abstract
The hemoflagellate Trypanosoma cruzi is the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known about T. cruzi motility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.
Collapse
|
25
|
Morphological events during the cell cycle of Leishmania major. EUKARYOTIC CELL 2011; 10:1429-38. [PMID: 21926331 DOI: 10.1128/ec.05118-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The morphological events involved in the Leishmania major promastigote cell cycle have been investigated in order to provide a detailed description of the chronological processes by which the parasite replicates its set of single-copy organelles and generates a daughter cell. Immunofluorescence labeling of β-tubulin was used to follow the dynamics of the subcellular cytoskeleton and to monitor the division of the nucleus via visualization of the mitotic spindle, while RAB11 was found to be a useful marker to track flagellar pocket division and to follow mitochondrial DNA (kinetoplast) segregation. Classification and quantification of these morphological events were used to determine the durations of phases of the cell cycle. Our results demonstrate that in L. major promastigotes, the extrusion of the daughter flagellum precedes the onset of mitosis, which in turn ends after kinetoplast segregation, and that significant remodelling of cell shape accompanies mitosis and cytokinesis. These findings contribute to a more complete foundation for future studies of cell cycle control in Leishmania.
Collapse
|
26
|
Maric D, McGwire BS, Buchanan KT, Olson CL, Emmer BT, Epting CL, Engman DM. Molecular determinants of ciliary membrane localization of Trypanosoma cruzi flagellar calcium-binding protein. J Biol Chem 2011; 286:33109-17. [PMID: 21784841 DOI: 10.1074/jbc.m111.240895] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flagellar calcium-binding protein (FCaBP) of Trypanosoma cruzi is localized to the flagellar membrane in all life cycle stages of the parasite. Myristoylation and palmitoylation of the N terminus of FCaBP are necessary for flagellar membrane targeting. Not all dually acylated proteins in T. cruzi are flagellar, however. Other determinants of FCaBP therefore likely contribute to flagellar specificity. We generated T. cruzi transfectants expressing the N-terminal 24 or 12 amino acids of FCaBP fused to GFP. Analysis of these mutants revealed that although amino acids 1-12 are sufficient for dual acylation and membrane binding, amino acids 13-24 are required for flagellar specificity and lipid raft association. Mutagenesis of several conserved lysine residues in the latter peptide demonstrated that these residues are essential for flagellar targeting and lipid raft association. Finally, FCaBP was expressed in the protozoan Leishmania amazonensis, which lacks FCaBP. The flagellar localization and membrane association of FCaBP in L. amazonensis suggest that the mechanisms for flagellar targeting, including a specific palmitoyl acyltransferase, are conserved in this organism.
Collapse
Affiliation(s)
- Danijela Maric
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Hu Q, Nelson WJ. Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment. Cytoskeleton (Hoboken) 2011; 68:313-24. [PMID: 21634025 PMCID: PMC3143192 DOI: 10.1002/cm.20514] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/04/2011] [Indexed: 11/08/2022]
Abstract
The primary cilium is a cellular antenna that detects and transmits chemical and mechanical cues in the environment through receptors and downstream signal proteins enriched along the ciliary membrane. While it is known that ciliary membrane proteins enter the cilium by way of vesicular and intraflagellar transport, less is known about how ciliary membrane proteins are retained in, and how apical membrane proteins are excluded from the cilium. Here, we review evidence for a membrane diffusion barrier at the base of the primary cilium, and highlight the recent finding of a septin cytoskeleton diffusion barrier. We also discuss candidate ciliopathy genes that may be involved in formation of the barrier, and the role of a diffusion barrier as a common mechanism for compartmentalizing membranes and lipid domains.
Collapse
Affiliation(s)
- Qicong Hu
- Department of Biology, Stanford University, Stanford, CA 94305
| | - W. James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
28
|
Stijlemans B, Caljon G, Natesan SKA, Saerens D, Conrath K, Pérez-Morga D, Skepper JN, Nikolaou A, Brys L, Pays E, Magez S, Field MC, De Baetselier P, Muyldermans S. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog 2011; 7:e1002072. [PMID: 21698216 PMCID: PMC3116811 DOI: 10.1371/journal.ppat.1002072] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 04/04/2011] [Indexed: 11/19/2022] Open
Abstract
The African trypanosome Trypanosoma brucei, which persists within the bloodstream of the mammalian host, has evolved potent mechanisms for immune evasion. Specifically, antigenic variation of the variant-specific surface glycoprotein (VSG) and a highly active endocytosis and recycling of the surface coat efficiently delay killing mediated by anti-VSG antibodies. Consequently, conventional VSG-specific intact immunoglobulins are non-trypanocidal in the absence of complement. In sharp contrast, monovalent antigen-binding fragments, including 15 kDa nanobodies (Nb) derived from camelid heavy-chain antibodies (HCAbs) recognizing variant-specific VSG epitopes, efficiently lyse trypanosomes both in vitro and in vivo. This Nb-mediated lysis is preceded by very rapid immobilisation of the parasites, massive enlargement of the flagellar pocket and major blockade of endocytosis. This is accompanied by severe metabolic perturbations reflected by reduced intracellular ATP-levels and loss of mitochondrial membrane potential, culminating in cell death. Modification of anti-VSG Nbs through site-directed mutagenesis and by reconstitution into HCAbs, combined with unveiling of trypanolytic activity from intact immunoglobulins by papain proteolysis, demonstrates that the trypanolytic activity of Nbs and Fabs requires low molecular weight, monovalency and high affinity. We propose that the generation of low molecular weight VSG-specific trypanolytic nanobodies that impede endocytosis offers a new opportunity for developing novel trypanosomiasis therapeutics. In addition, these data suggest that the antigen-binding domain of an anti-microbial antibody harbours biological functionality that is latent in the intact immunoglobulin and is revealed only upon release of the antigen-binding fragment.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/pharmacology
- Antibodies, Protozoan/therapeutic use
- Antibody Affinity
- Cells, Cultured
- Down-Regulation/drug effects
- Endocytosis/drug effects
- Humans
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Nanoparticles
- Trypanocidal Agents/pharmacology
- Trypanocidal Agents/therapeutic use
- Trypanosoma brucei brucei/immunology
- Trypanosoma brucei brucei/metabolism
- Trypanosoma brucei brucei/physiology
- Trypanosoma brucei brucei/ultrastructure
- Trypanosomiasis, African/immunology
- Trypanosomiasis, African/metabolism
- Trypanosomiasis, African/therapy
- Variant Surface Glycoproteins, Trypanosoma/immunology
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Springer AL, Bruhn DF, Kinzel KW, Rosenthal NF, Zukas R, Klingbeil MM. Silencing of a putative inner arm dynein heavy chain results in flagellar immotility in Trypanosoma brucei. Mol Biochem Parasitol 2011; 175:68-75. [PMID: 20888370 PMCID: PMC2974060 DOI: 10.1016/j.molbiopara.2010.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 11/16/2022]
Abstract
The Trypanosoma brucei flagellum controls motility and is crucial for cell polarity and division. Unique features of trypanosome motility suggest that flagellar beat regulation in this organism is unusual and worthy of study. The flagellar axoneme, required for motility, has a structure that is highly conserved among eukaryotes. Of the several dyneins in the axonemal inner arm complex, dynein f is thought to control flagellar waveform shape. A T. brucei gene predicted to encode the dynein f alpha heavy chain, TbDNAH10, was silenced using RNA interference in procyclic T. brucei cells. This resulted in immotile flagella, showing no movement except for occasional slight twitches at the tips. Cell growth slowed dramatically and cells were found in large clusters. Microscopic analysis of silenced cultures showed many cells with detached flagella, sometimes entangled between multiple cells. DAPI staining showed an increased frequency of mis-positioned kinetoplasts and multinucleate cells, suggesting that these cells experience disruption at an early cell cycle stage, probably secondary to the motility defect. TEM images showed apparently normal axonemes and no discernable defects in inner arm structure. This study demonstrates the use of RNAi as an effective method to study very large genes such as dynein heavy chains (HCs), and the immotility phenotype of these dynein knockdowns suggests that an intact inner arm is necessary for flagellar beating in T. brucei. Since analogous mutants in Chlamydomonas reinhardtii retain motility, this phenotype likely reflects differences in requirements for motility and/or dynein assembly between the two organisms and these comparative studies will help elucidate the mechanisms of flagellar beat regulation.
Collapse
Affiliation(s)
- Amy L Springer
- Department of Biology, Amherst College, Amherst, MA, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
SUMMARYAnti-trypanosomiasis vaccination still remains the best theoretical option in the fight against a disease that is continuously hovering between its wildlife reservoir and its reservoir in man and livestock. While antigentic variation of the parasite surface coat has been considered the major obstacle in the development of a functional vaccine, recent research into the biology of B cells has indicated that the problems might go further than that. This paper reviews past and current attempts to design both anti-trypanosome vaccines, as well as vaccines directed towards the inhibition of infection-associated pathology.
Collapse
|
31
|
Hasne MP, Coppens I, Soysa R, Ullman B. A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol 2010; 76:78-91. [PMID: 20149109 DOI: 10.1111/j.1365-2958.2010.07081.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whereas mammalian cells and most other organisms can synthesize polyamines from basic amino acids, the protozoan parasite Trypanosoma cruzi is incapable of polyamine biosynthesis de novo and therefore obligatorily relies upon putrescine acquisition from the host to meet its nutritional requirements. The cell surface proteins that mediate polyamine transport into T. cruzi, as well as most eukaryotes, however, have by-in-large eluded discovery at the molecular level. Here we report the identification and functional characterization of two polyamine transporters, TcPOT1.1 and TcPOT1.2, encoded by alleles from two T. cruzi haplotypes. Overexpression of the TcPOT1.1 and TcPOT1.2 genes in T. cruzi epimastigotes revealed that TcPOT1.1 and TcPOT1.2 were high-affinity transporters that recognized both putrescine and cadaverine but not spermidine or spermine. Furthermore, the activities and subcellular locations of both TcPOT1.1 and TcPOT1.2 in intact parasites were profoundly influenced by extracellular putrescine availability. These results establish TcPOT1.1 and TcPOT1.2 as key components of the T. cruzi polyamine transport pathway, an indispensable nutritional function for the parasite that may be amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Marie-Pierre Hasne
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
32
|
Geiger A, Hirtz C, Bécue T, Bellard E, Centeno D, Gargani D, Rossignol M, Cuny G, Peltier JB. Exocytosis and protein secretion in Trypanosoma. BMC Microbiol 2010; 10:20. [PMID: 20102621 PMCID: PMC3224696 DOI: 10.1186/1471-2180-10-20] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 01/26/2010] [Indexed: 01/07/2023] Open
Abstract
Background Human African trypanosomiasis is a lethal disease caused by the extracellular parasite Trypanosoma brucei. The proteins secreted by T. brucei inhibit the maturation of dendritic cells and their ability to induce lymphocytic allogenic responses. To better understand the pathogenic process, we combined different approaches to characterize these secreted proteins. Results Overall, 444 proteins were identified using mass spectrometry, the largest parasite secretome described to date. Functional analysis of these proteins revealed a strong bias toward folding and degradation processes and to a lesser extent toward nucleotide metabolism. These features were shared by different strains of T. brucei, but distinguished the secretome from published T. brucei whole proteome or glycosome. In addition, several proteins had not been previously described in Trypanosoma and some constitute novel potential therapeutic targets or diagnostic markers. Interestingly, a high proportion of these secreted proteins are known to have alternative roles once secreted. Furthermore, bioinformatic analysis showed that a significant proportion of proteins in the secretome lack transit peptide and are probably not secreted through the classical sorting pathway. Membrane vesicles from secretion buffer and infested rat serum were purified on sucrose gradient and electron microscopy pictures have shown 50- to 100-nm vesicles budding from the coated plasma membrane. Mass spectrometry confirmed the presence of Trypanosoma proteins in these microvesicles, showing that an active exocytosis might occur beyond the flagellar pocket. Conclusions This study brings out several unexpected features of the secreted proteins and opens novel perspectives concerning the survival strategy of Trypanosoma as well as possible ways to control the disease. In addition, concordant lines of evidence support the original hypothesis of the involvement of microvesicle-like bodies in the survival strategy allowing Trypanosoma to exchange proteins at least between parasites and/or to manipulate the host immune system.
Collapse
Affiliation(s)
- Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Magez S, Radwanska M. African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis. Future Microbiol 2010; 4:1075-87. [PMID: 19824795 DOI: 10.2217/fmb.09.65] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
African trypanosomiasis causes devastating effects on human populations and livestock herds in large parts of sub-Saharan Africa. Control of the disease is hampered by the lack of any efficient vaccination results in a field setting, and the severe side effects of current drug therapies. In addition, with the exception of Trypanosoma brucei gambiense infections, the diagnosis of trypanosomiasis has to rely on microscopic analysis of blood samples, as other specific tools are nonexistent. However, new developments in biotechnology, which include loop-mediated isothermal amplification as an adaptation to conventional PCR, as well as the antibody engineering that has allowed the development of Nanobody technology, offer new perspectives in both the detection and treatment of trypanosomiasis. In addition, recent data on parasite-induced B-cell memory destruction offer new insights into mechanisms of vaccine failure, and should lead us towards new strategies to overcome trypanosome defenses operating against the host immune system.
Collapse
Affiliation(s)
- Stefan Magez
- Department of Molecular & Cellular Interactions, Flanders Institute for Biotechnology, Rijvisschestraat 120, B-9052 Ghent, Belgium.
| | | |
Collapse
|
34
|
Höög JL, Gluenz E, Vaughan S, Gull K. Ultrastructural investigation methods for Trypanosoma brucei. Methods Cell Biol 2010; 96:175-96. [PMID: 20869523 DOI: 10.1016/s0091-679x(10)96008-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Trypanosoma brucei is a unicellular parasite causing African sleeping sickness in cattle and humans. Due to the ease with which these cells can be cultured and genetically manipulated, it has emerged as a model organism for the kinetoplastids.In this chapter we describe the preparation of T. brucei for transmission electron microscopy. A thorough explanation of conventional sample preparation through chemical fixation of whole cells and detergent extracted cytoskeletons followed by dehydration and Epon embedding is given. We also introduce a novel high-pressure freezing protocol, which followed by rapid freeze substitution and HM20 embedding generates T. brucei samples displaying good cell morphology, which are suitable for immunocytochemistry.
Collapse
Affiliation(s)
- Johanna L Höög
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, United Kingdom
| | | | | | | |
Collapse
|
35
|
Gourguechon S, Wang CC. CRK9 contributes to regulation of mitosis and cytokinesis in the procyclic form of Trypanosoma brucei. BMC Cell Biol 2009; 10:68. [PMID: 19772588 PMCID: PMC2754446 DOI: 10.1186/1471-2121-10-68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/21/2009] [Indexed: 11/10/2022] Open
Abstract
Background The Trypanosoma brucei cell cycle is regulated by combinations of cyclin/CRKs (cdc2 related kinases). Recently, two additional cyclins (CYC10, CYC11) and six new CRK (CRK7-12) homologues were identified in the T. brucei genome database [1,2]. Results Individual RNAi knockdowns of these new proteins in the procyclic form of T. brucei showed no apparent phenotype except for the CRK9 depletion, which enriched the cells in G2/M phase. But a similar CRK9 knockdown in the bloodstream form caused no apparent phenotype. CRK9 lacks the typical PSTAIRE motif for cyclin binding and the phenylalanine "gatekeeper" but binds to cyclin B2 in vitro and localizes to the nucleus in both forms of T. brucei. CRK9-depleted procyclic-form generated no detectable anucleate cells, suggesting an inhibition of cytokinesis by CRK9 depletion as well. The knockdown enriched cells with one nucleus, one kinetoplast and two closely associated basal bodies with an average distance of 1.08 mm in between, which was shorter than the control value of 1.36 μm, and the cells became morphologically deformed and rounded with time. Conclusion CRK9 may play a role in mediating the segregation between the two kinetoplast/basal body pairs prior to cytokinetic initiation. Since such a segregation over a relatively significant distance is essential for cytokinetic initiation only in the procyclic but may not be in the bloodstream form, CRK9 could be specifically involved in regulating cytokinetic initiation in the procyclic form of T. brucei.
Collapse
Affiliation(s)
- Stephane Gourguechon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280, USA.
| | | |
Collapse
|
36
|
Rivas L, Luque-Ortega JR, Andreu D. Amphibian antimicrobial peptides and Protozoa: Lessons from parasites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1570-81. [DOI: 10.1016/j.bbamem.2008.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 10/29/2008] [Accepted: 11/03/2008] [Indexed: 02/06/2023]
|
37
|
Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, Gull K. Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J Cell Sci 2009; 122:1081-90. [PMID: 19299460 DOI: 10.1242/jcs.045740] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study uses electron tomography linked to a variety of other EM methods to provide an integrated view of the flagellar pocket and basal body area of the African trypanosome procyclic trypomastigote. We reveal the pocket as an asymmetric membranous 'balloon' with two boundary structures. One of these - the collar - defines the flagellum exit point. The other defines the entry point of the flagellum into the pocket and consists of both an internal transitional fibre array and an external membrane collarette. A novel set of nine radial fibres is described in the basal body proximal zone. The pocket asymmetry is invariably correlated with the position of the probasal body and Golgi. The neck region, just distal to the flagellum exit site, is a specialised area of membrane associated with the start of the flagellum attachment zone and signifies the point where a special set of four microtubules, nucleated close to the basal bodies, joins the subpellicular array. The neck region is also associated with the single Golgi apparatus of the cell. The flagellar exit point interrupts the subpellicular microtubule array with discrete endings of microtubules at the posterior side. Overall, our studies reveal a highly organised, yet dynamic, area of cytoplasm and will be informative in understanding its function.
Collapse
Affiliation(s)
- Sylvain Lacomble
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Host-parasite interactions in trypanosomiasis: on the way to an antidisease strategy. Infect Immun 2009; 77:1276-84. [PMID: 19168735 DOI: 10.1128/iai.01185-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
Ralston KS, Kabututu ZP, Melehani JH, Oberholzer M, Hill KL. The Trypanosoma brucei flagellum: moving parasites in new directions. Annu Rev Microbiol 2009; 63:335-62. [PMID: 19575562 PMCID: PMC3821760 DOI: 10.1146/annurev.micro.091208.073353] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
African trypanosomes are devastating human and animal pathogens. Trypanosoma brucei rhodesiense and T. b. gambiense subspecies cause the fatal human disease known as African sleeping sickness. It is estimated that several hundred thousand new infections occur annually and the disease is fatal if untreated. T. brucei is transmitted by the tsetse fly and alternates between bloodstream-form and insect-form life cycle stages that are adapted to survive in the mammalian host and the insect vector, respectively. The importance of the flagellum for parasite motility and attachment to the tsetse fly salivary gland epithelium has been appreciated for many years. Recent studies have revealed both conserved and novel features of T. brucei flagellum structure and composition, as well as surprising new functions that are outlined here. These discoveries are important from the standpoint of understanding trypanosome biology and identifying novel drug targets, as well as for advancing our understanding of fundamental aspects of eukaryotic flagellum structure and function.
Collapse
Affiliation(s)
- Katherine S. Ralston
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Zakayi P. Kabututu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Jason H. Melehani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Michael Oberholzer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Kent L. Hill
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
| |
Collapse
|
40
|
Katta SS, Sahasrabuddhe AA, Gupta CM. Flagellar localization of a novel isoform of myosin, myosin XXI, in Leishmania. Mol Biochem Parasitol 2008; 164:105-10. [PMID: 19121339 DOI: 10.1016/j.molbiopara.2008.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 12/11/2022]
Abstract
Leishmania major genome analysis revealed the presence of putative genes corresponding to two myosins, which have been designated to class IB and a novel class, class XXI, specifically present in kinetoplastids. To characterize these myosin homologs in Leishmania, we have cloned and over-expressed the full-length myosin XXI gene and variable region of myosin IB gene in bacteria, purified the corresponding proteins, and then used the affinity purified anti-sera to analyze the expression and intracellular distribution of these proteins. Whereas myosin XXI was expressed in both the promastigote and amastigote stages, no expression of myosin IB could be detected in any of the two stages of these parasites. Further, myosin XXI expression was more predominant in the promastigote stage where it was preferentially localized in the proximal region of the flagellum. The observed flagellar localization was not dependent on the myosin head region or actin but was exclusively determined by the myosin tail region, as judged by over-expressing GFP conjugates of full-length myosin XXI, its head domain and its tail domain separately in Leishmania. Furthermore, immunofluorescence and immuno-gold electron microscopy analyses revealed that this protein was partly associated with paraflagellar rod proteins but not with tubulins in the flagellar axoneme. Our results, for the first time, report the expression and detailed analysis of cellular localization of a novel class of myosin, myosin XXI in trypanosomatids.
Collapse
Affiliation(s)
- Santharam S Katta
- Division of Molecular and Structural Biology, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
41
|
Tammana TVS, Sahasrabuddhe AA, Mitra K, Bajpai VK, Gupta CM. Actin-depolymerizing factor, ADF/cofilin, is essentially required in assembly of Leishmania flagellum. Mol Microbiol 2008; 70:837-52. [PMID: 18793337 DOI: 10.1111/j.1365-2958.2008.06448.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ADF/cofilins are ubiquitous actin dynamics-regulating proteins that have been mainly implicated in actin-based cell motility. Trypanosomatids, e.g. Leishmania and Trypanosoma, which mediate their motility through flagellum, also contain a putative ADF/cofilin homologue, but its role in flagellar motility remains largely unexplored. We have investigated the role of this protein in assembly and motility of the Leishmania flagellum after knocking out the ADF/cofilin gene by targeted gene replacement. The resultant mutants were completely immotile, short and stumpy, and had reduced flagellar length and severely impaired beat. In addition, the assembly of the paraflagellar rod was lost, vesicle-like structures were seen throughout the length of the flagellum and the state and distribution of actin were altered. However, episomal complementation of the gene restored normal morphology and flagellar function. These results for the first time indicate that the actin dynamics-regulating protein ADF/cofilin plays a critical role in assembly and motility of the eukaryotic flagellum.
Collapse
Affiliation(s)
- T V Satish Tammana
- Division of Molecular and Structural Biology, Central Drug Research Institute, Lucknow 226001, India
| | | | | | | | | |
Collapse
|
42
|
Bornens M, Azimzadeh J. Origin and evolution of the centrosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 607:119-29. [PMID: 17977464 DOI: 10.1007/978-0-387-74021-8_10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this brief account we specifically address the question of how the plasma membrane-associated basal body/axoneme of the unicellular ancestor of eukaryotes has evolved into the centrosome organelle through the several attempts to multicellularity. We propose that the connection between the flagellar apparatus and the nucleus has been a critical feature for leading to the centriole-based centrosome of metazoa, the Spindle Pole Body of fungi, or to the absence of any centrosome in seed plants. We further suggest that the evolution of this connection could be reflected in the evolution of the centrin proteins. We then review evidence showing that the evolution of the centrosome-based tubulin network has been correlated with the evolution of the cortical actin-based cleavage apparatus. Finally we argue that this coevolution had a major impact on the cell individuation process and on the evolution of multicellular organisms. We conclude that only the metazoan lineage evolved multicellularity without loosing the ancestral association of three basic cellular functions of the basal body/axoneme or the derived centrosome organelle, namely sensation, motion and division.
Collapse
|
43
|
Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLoS Biol 2008; 6:e105. [PMID: 18462016 PMCID: PMC2365980 DOI: 10.1371/journal.pbio.0060105] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 03/17/2008] [Indexed: 12/31/2022] Open
Abstract
Trypanosoma brucei is a protozoan parasite that is used as a model organism to study such biological phenomena as gene expression, protein trafficking, and cytoskeletal biogenesis. In T. brucei, endocytosis and exocytosis occur exclusively through a sequestered organelle called the flagellar pocket (FP), an invagination of the pellicular membrane. The pocket is the sole site for specific receptors thus maintaining them inaccessible to components of the innate immune system of the mammalian host. The FP is also responsible for the sorting of protective parasite glycoproteins targeted to, or recycling from, the pellicular membrane, and for the removal of host antibodies from the cell surface. Here, we describe the first characterisation of a flagellar pocket cytoskeletal protein, BILBO1. BILBO1 functions to form a cytoskeleton framework upon which the FP is made and which is also required and essential for FP biogenesis and cell survival. Remarkably, RNA interference (RNAi)-mediated ablation of BILBO1 in insect procyclic-form parasites prevents FP biogenesis and induces vesicle accumulation, Golgi swelling, the aberrant repositioning of the new flagellum, and cell death. Cultured bloodstream-form parasites are also nonviable when subjected to BILBO1 RNAi. These results provide the first molecular evidence for cytoskeletally mediated FP biogenesis. Trypanosomes are ubiquitous unicellular parasites that infect humans, animals, insects, and plants. African, Asian, and some South American trypanosomes have evolved the amazing ability to change their surface coat proteins, an essential strategy for their survival. The surface coat proteins are recycled and targeted to the surface of the parasite via an endocytic and exocytotic organelle called the flagellar pocket, which is sequestered in the trypanosome cell's cytoplasm. The flagellar pocket is also used to remove host-derived antibodies that are bound to the surface of the parasite, making this organelle critical for the parasite's evasion of the host immune system. We describe a novel protein, “BILBO1,” which was identified from the insect-form parasite of the African trypanosome Trypanosoma brucei. We show that BILBO1 is part of a ring or horseshoe-like cytoskeletal structure that is located in a region of the flagellar pocket called the collar. When BILBO1 transcripts were knocked down with inducible RNA interference, trypanosome cells became arrested in a post-mitotic cell-cycle stage. Induced cells lost the normal flagellum-to-cell-body attachment, were unable to regulate endocytosis and exocytosis, and most importantly, were unable to construct a new flagellar pocket. These results provide molecular evidence for the idea that flagellar pocket biogenesis is cytoskeletally mediated. RNAi of the parasite protein BILBO1 prevents the biogenesis of the endocytic and exocytotic organelle in Trypanosoma brucei, kills the parasite, and reveals novel insights into how this pathogen organizes and uses one of its distinctive organelles.
Collapse
|
44
|
WCB is a C2 domain protein defining the plasma membrane - sub-pellicular microtubule corset of kinetoplastid parasites. Protist 2007; 159:115-25. [PMID: 17951107 DOI: 10.1016/j.protis.2007.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/18/2007] [Indexed: 11/20/2022]
Abstract
WCB is a protein that locates between the inner face of the plasma membrane and the sub-pellicular corset of microtubules in Trypanosoma brucei. We provide the molecular identity of WCB and bioinformatic analysis suggests that it possesses a C2 domain implicated in membrane/protein interactions and a highly charged region possessing characteristics of a putative tubulin-binding domain. Functional analyses via RNA interference (RNAi) depletion show that WCB is essential for cell morphogenesis. Depletion results in gross abnormalities in cell shape, mainly at the cytoskeletal/plasma membrane dynamic posterior end of the trypanosome. Failures in cytokinesis and zoid production are also evident. Furthermore, electron microscopy reveals that RNAi-induced trypanosomes lose local plasma membrane to microtubule corset integrity.
Collapse
|
45
|
Moraes MCS, Jesus TCL, Hashimoto NN, Dey M, Schwartz KJ, Alves VS, Avila CC, Bangs JD, Dever TE, Schenkman S, Castilho BA. Novel membrane-bound eIF2alpha kinase in the flagellar pocket of Trypanosoma brucei. EUKARYOTIC CELL 2007; 6:1979-91. [PMID: 17873083 PMCID: PMC2168417 DOI: 10.1128/ec.00249-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Translational control mediated by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2alpha) is central to stress-induced programs of gene expression. Trypanosomatids, important human pathogens, display differentiation processes elicited by contact with the distinct physiological milieu found in their insect vectors and mammalian hosts, likely representing stress situations. Trypanosoma brucei, the agent of African trypanosomiasis, encodes three potential eIF2alpha kinases (TbeIF2K1 to -K3). We show here that TbeIF2K2 is a transmembrane glycoprotein expressed both in procyclic and in bloodstream forms. The catalytic domain of TbeIF2K2 phosphorylates yeast and mammalian eIF2alpha at Ser51. It also phosphorylates the highly unusual form of eIF2alpha found in trypanosomatids specifically at residue Thr169 that corresponds to Ser51 in other eukaryotes. T. brucei eIF2alpha, however, is not a substrate for GCN2 or PKR in vitro. The putative regulatory domain of TbeIF2K2 does not share any sequence similarity with known eIF2alpha kinases. In both procyclic and bloodstream forms TbeIF2K2 is mainly localized in the membrane of the flagellar pocket, an organelle that is the exclusive site of exo- and endocytosis in these parasites. It can also be detected in endocytic compartments but not in lysosomes, suggesting that it is recycled between endosomes and the flagellar pocket. TbeIF2K2 location suggests a relevance in sensing protein or nutrient transport in T. brucei, an organism that relies heavily on posttranscriptional regulatory mechanisms to control gene expression in different environmental conditions. This is the first membrane-associated eIF2alpha kinase described in unicellular eukaryotes.
Collapse
Affiliation(s)
- Maria Carolina S Moraes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, SP 04023-062, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Selvapandiyan A, Kumar P, Morris JC, Salisbury JL, Wang CC, Nakhasi HL. Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. Mol Biol Cell 2007; 18:3290-301. [PMID: 17567955 PMCID: PMC1951761 DOI: 10.1091/mbc.e07-01-0022] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Centrin is a calcium-binding centrosome/basal body-associated protein involved in duplication and segregation of these organelles in eukaryotes. We had shown that disruption of one of the centrin genes (centrin1) in Leishmania amastigotes resulted in failure of both basal body duplication and cytokinesis. Here, we undertook to define the role of centrin1 (TbCen1) in the duplication and segregation of basal body and its associated organelles kinetoplast and Golgi, as well as its role in cytokinesis of the procyclic form of Trypanosoma brucei by depleting its protein using RNA inhibition methodology. TbCen1-depleted cells showed significant reduction in growth compared with control cells. Morphological analysis of these cells showed they were large and pleomorphic with multiple detached flagella. Both immunofluorescence assays using organelle-specific antibodies and electron microscopic analysis showed that TbCen1-deficient cells contained multiple basal bodies, kinetoplasts, Golgi, and nuclei. These multiple organelles were, however, closely clustered together, indicating duplication without segregation in the absence of centrin. This failure in organelle segregation may be the likely cause of inhibition of cytokinesis, suggesting for the first time a new and unique role for centrin in the segregation of organelles without affecting their multiplication in the procyclic form of T. brucei.
Collapse
Affiliation(s)
- Angamuthu Selvapandiyan
- *Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Praveen Kumar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - James C. Morris
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634; and
| | | | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Hira L. Nakhasi
- *Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| |
Collapse
|
47
|
Rodgers MJ, Albanesi JP, Phillips MA. Phosphatidylinositol 4-kinase III-beta is required for Golgi maintenance and cytokinesis in Trypanosoma brucei. EUKARYOTIC CELL 2007; 6:1108-18. [PMID: 17483288 PMCID: PMC1951100 DOI: 10.1128/ec.00107-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The parasitic protozoan Trypanosoma brucei contains two type III phosphatidylinositol 4-kinases (alpha and beta). We have cloned the gene encoding the T. brucei type III phosphatidylinositol 4-kinase beta (TbPI4KIII-beta), expressed the protein in COS-7 cells, and confirmed that the protein catalyzes the phosphorylation of phosphatidylinositol. Depletion of TbPI4KIII-beta in procyclic T. brucei by RNA interference (RNAi) resulted in inhibition of cell growth and a distorted cellular morphology. RNAi cells had a distorted Golgi apparatus, and lysosomal and flagellar pocket proteins were mislocalized. Ultrastructural analysis revealed the internal accumulation of a heterogeneous population of vesicles, abnormal positioning of organelles, and a loss of cell polarity. Scanning electron microcopy revealed a twisted phenotype, and dividing cells often exhibited a detached daughter flagellum and lacked a cleavage furrow. Cell cycle analysis confirmed that cells depleted of TbPI4KIII-beta have a postmitotic cytokinesis block that occurs after a single round of mitosis, suggestive of a specific cell cycle block. In summary, TbPI4KIII-beta is an essential protein in procyclic T. brucei, required for maintenance of Golgi structure, protein trafficking, normal cellular shape, and cytokinesis.
Collapse
Affiliation(s)
- Melissa J Rodgers
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | | | |
Collapse
|
48
|
Fridberg A, Buchanan KT, Engman DM. Flagellar membrane trafficking in kinetoplastids. Parasitol Res 2006; 100:205-12. [PMID: 17058110 DOI: 10.1007/s00436-006-0329-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Alina Fridberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Ward Building 6-140, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
49
|
Branche C, Kohl L, Toutirais G, Buisson J, Cosson J, Bastin P. Conserved and specific functions of axoneme components in trypanosome motility. J Cell Sci 2006; 119:3443-55. [PMID: 16882690 DOI: 10.1242/jcs.03078] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Trypanosoma brucei flagellum is unusual as it is attached along the cell body and contains, in addition to an apparently conventional axoneme, a structure called the paraflagellar rod, which is essential for cell motility. Here, we investigated flagellum behaviour in normal and mutant trypanosome cell lines where expression of genes encoding various axoneme proteins (PF16, PF20, DNAI1, LC2) had been silenced by RNAi. First, we show that the propulsive wave (normally used for forward motility) is abolished in the absence of outer dynein arms, whereas the reverse wave (normally used for changing direction) still occurs. Second, in contrast to Chlamydomonas--but like metazoa, the central pair adopts a fixed orientation during flagellum beating. This orientation becomes highly variable in central-pair- and outer-dynein-arm-mutants. Third, the paraflagellar rod contributes to motility by facilitating three-dimensional wave propagation and controlling cell shape. Fourth, motility is required to complete the last stage of cell division in both insect and bloodstream stages of the parasite. Finally, our study also reveals the conservation of molecular components of the trypanosome flagellum. Coupled to the ease of reverse genetics, it raises the interest of trypanosomes as model organisms to study cilia and flagella.
Collapse
Affiliation(s)
- Carole Branche
- INSERM U565 and CNRS UMR5153 and MNHN USM0503, Muséum National d'Histoire Naturelle, 43 rue Cuvier, 75231 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
50
|
Hellemond JJV, Bakker BM, Tielens AGM. Energy metabolism and its compartmentation in Trypanosoma brucei. Adv Microb Physiol 2006; 50:199-226. [PMID: 16221581 DOI: 10.1016/s0065-2911(05)50005-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
African trypanosomes are parasitic protozoa of the order of Kinetoplastida, which cause sleeping sickness and nagana. Trypanosomes are not only of scientific interest because of their clinical importance, but also because these protozoa contain several very unusual biological features, such as their special energy metabolism. The energy metabolism of Trypanosoma brucei differs significantly from that of its host, not only because it comprises distinct enzymes and metabolic pathways, but also because some of the glycolytic enzymes are localized in organelles called glycosomes. Furthermore, the energy metabolism changes drastically during the complex life cycle of this parasite. This review will focus on the recent advances made in understanding the process of ATP production in T. brucei during its life cycle and the consequences of the special subcellular compartmentation.
Collapse
Affiliation(s)
- Jaap J van Hellemond
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.176, 3508 TD Utrecht, The Netherlands
| | | | | |
Collapse
|