1
|
Shi S, Qi W, Zhang J, Liang C, Liu W, Han H, Zhuang W, Chen T, Sun W, Chen Y. Proteo-Transcriptomic Analysis Reveals the Mechanisms Underlying Escherichia coli Phenotypic Shifts Under Blue Light. Biotechnol Bioeng 2025; 122:1258-1271. [PMID: 39876573 DOI: 10.1002/bit.28939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Bacteria can adapt their lifestyles, including microbial growth, metabolism, and biofilm formation, in response to light signaling. However, the molecular pathways through which blue light affects the lifestyle of Escherichia coli (E. coli) remain incomplete and poorly understood. To address this gap, transcriptomic and proteomic approaches were employed to analyze the physiological differences of E. coli under dark and blue light conditions. Our results indicate that, compared to dark conditions, blue light attenuates flagellar assembly, reduces cell motility and communication, and decreases biofilm formation in E. coli. In addition, this study elucidates the signaling pathways involved in the blue light-mediated regulation of E. coli behavior, providing a theoretical framework for understanding how E. coli responds to blue light signaling to modulate biofilm formation for the production of food chemicals.
Collapse
Affiliation(s)
- Shuqi Shi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenlu Qi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jinming Zhang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Caice Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hui Han
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhuang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Choi J, Yadav S, Vaddu S, Thippareddi H, Kim WK. In vitro and in vivo evaluation of tannic acid as an antibacterial agent in broilers infected with Salmonella Typhimurium. Poult Sci 2023; 102:102987. [PMID: 37844525 PMCID: PMC10585643 DOI: 10.1016/j.psj.2023.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/18/2023] Open
Abstract
This study was conducted to evaluate tannic acid (TA) as an antibacterial agent against Salmonella Typhimurium in in vitro and in vivo chicken models. The TA formed an inhibitory zone against Salmonella enterica serotypes including S. Typhimurium, S. Enteritidis, and S. Infantis. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of TA against Salmonella Typhimurium nalidixic acid resistant strain (STNR) were determined as 40 and 700 μg/mL, respectively. Sublethal doses of TA (5, 10, and 20 μg/mL) restricted swimming and swarming motility and biofilm formation of STNR compared to the control group (0 μg/mL) (P < 0.05). The TA-bovine serum albumin (BSA) complex formed at simulated gastric pH (pH 3.75) was hydrolyzed at pH 6.75 and 7.25 (P < 0.05), and the hydrolysis of the TA-BSA complex was stronger at pH 7.25 compared to the pH 6.75 (P < 0.05). The inhibitory zone of the TA-BSA complex against STNR at pH 6.75 was lower than TA without BSA at 30 and 60 min (P < 0.05), but not at 120 min (P > 0.1). The inhibitory zone of the TA-BSA complex against STNR at pH 7.25 was not decreased at 0, 30, and 60 min compared to TA without BSA (P > 0.1). The recovery rate of TA was 83, 54.8, 10.5, and 19.6% in the gizzard, jejunum, ileum, and ceca, respectively, in broiler chickens. The STNR-infected broilers fed 0.25 g/kg of TA had significantly lower unweighted beta diversity distance compared to the sham-challenged control (SCC) and challenged controlled (CC) group on D 21. TA supplementation linearly (P < 0.05) and quadratically (tendency; P = 0.071) reduced relative abundance of the family Peptostreptococcaceae in broilers infected with STNR on D 7. TA supplementation linearly (P < 0.05) and quadratically (tendency; P = 0.06) increased the relative abundance of the family Erysipelotrichaceae in broilers infected with STNR on D 21. Therefore, TA has potential to be used as an antibacterial agent against the S. Typhimurium infection in broilers.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Sasikala Vaddu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
3
|
Valiatti TB, Bessa-Neto FO, Santos FF, Silva RGB, Veiga R, Cassu-Corsi D, Moura TCF, Lobato ARF, Pignatari ACC, Souza CO, Brasiliense DM, Cayô R, Gales AC. Clonal dissemination of highly virulent Serratia marcescens strains producing KPC-2 in food-producing animals. One Health 2023; 17:100591. [PMID: 37388190 PMCID: PMC10302155 DOI: 10.1016/j.onehlt.2023.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Serratia marcescens is a Gram-negative bacterium presenting intrinsic resistance to polymyxins that has emerged as an important human pathogen. Although previous studies reported the occurrence of multidrug-resistance (MDR) S. marcescens isolates in the nosocomial settings, herein, we described isolates of this extensively drug-resistant (XDR) species recovered from stool samples of food-producing animals in the Brazilian Amazon region. Three carbapenem-resistant S. marcescens strains were recovered from stool samples of poultry and cattle. Genetic similarity analysis showed that these strains belonged to the same clone. Whole-genome sequencing of a representative strain (SMA412) revealed a resistome composed of genes encoding resistance to β-lactams [blaKPC-2, blaSRT-2], aminoglycosides [aac(6')-Ib3, aac(6')-Ic, aph(3')-VIa], quinolones [aac(6')-Ib-cr], sulfonamides [sul2], and tetracyclines [tet(41)]. In addition, the analysis of the virulome demonstrated the presence of important genes involved in the pathogenicity of this species (lipBCD, pigP, flhC, flhD, phlA, shlA, and shlB). Our data demonstrate that food-animal production can act as reservoirs for MDR and virulent strains of S. marcescens.
Collapse
Affiliation(s)
- Tiago Barcelos Valiatti
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Francisco Ozório Bessa-Neto
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Bacteriologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Fernanda Fernandes Santos
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Ramon Giovanni Brandão Silva
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Bacteriologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ruanita Veiga
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Dandara Cassu-Corsi
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Tuane Carolina Ferreira Moura
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde (SCTIE), Ministério da Saúde, Ananindeua, PA, Brazil
| | - Amalia Raiana Fonseca Lobato
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde (SCTIE), Ministério da Saúde, Ananindeua, PA, Brazil
| | - Antonio Carlos Campos Pignatari
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | - Cintya Oliveira Souza
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde (SCTIE), Ministério da Saúde, Ananindeua, PA, Brazil
| | - Danielle Murici Brasiliense
- Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde (SCTIE), Ministério da Saúde, Ananindeua, PA, Brazil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Imunologia e Bacteriologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema, SP, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo, SP, Brazil
| | | |
Collapse
|
4
|
Doshi A, Shaw M, Tonea R, Moon S, Minyety R, Doshi A, Laine A, Guo J, Danino T. Engineered bacterial swarm patterns as spatial records of environmental inputs. Nat Chem Biol 2023; 19:878-886. [PMID: 37142806 DOI: 10.1038/s41589-023-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated and rapid movement of bacteria powered by flagella. Engineering swarming is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye swarm patterns, to 'write' external inputs into visible spatial records. Specifically, we engineer tunable expression of swarming-related genes that modify pattern features, and we develop quantitative approaches to decoding. Next, we develop a dual-input system that modulates two swarming-related genes simultaneously, and we separately show that growing colonies can record dynamic environmental changes. We decode the resulting multicondition patterns with deep classification and segmentation models. Finally, we engineer a strain that records the presence of aqueous copper. This work creates an approach for building macroscale bacterial recorders, expanding the framework for engineering emergent microbial behaviors.
Collapse
Affiliation(s)
- Anjali Doshi
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Marian Shaw
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Ruxandra Tonea
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Soonhee Moon
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Rosalía Minyety
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Anish Doshi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Andrew Laine
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York City, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA.
- Data Science Institute, Columbia University, New York City, NY, USA.
| |
Collapse
|
5
|
Hefetz I, Israeli O, Bilinsky G, Plaschkes I, Hazkani-Covo E, Hayouka Z, Lampert A, Helman Y. A reversible mutation in a genomic hotspot saves bacterial swarms from extinction. iScience 2023; 26:106043. [PMID: 36824284 PMCID: PMC9941203 DOI: 10.1016/j.isci.2023.106043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Microbial adaptation to changing environmental conditions is frequently mediated by hypermutable sequences. Here we demonstrate that such a hypermutable hotspot within a gene encoding a flagellar unit of Paenibacillus glucanolyticus generated spontaneous non-swarming mutants with increased stress resistance. These mutants, which survived conditions that eliminated wild-type cultures, could be carried by their swarming siblings when the colony spread, consequently increasing their numbers at the spreading edge. Of interest, the hypermutable nature of the aforementioned sequence enabled the non-swarming mutants to serve as "seeds" for a new generation of wild-type cells through reversion of the mutation. Using a mathematical model, we examined the survival dynamics of P. glucanolyticus colonies under fluctuating environments. Our experimental and theoretical results suggest that the non-swarming, stress-resistant mutants can save the colony from extinction. Notably, we identified this hypermutable sequence in flagellar genes of additional Paenibacillus species, suggesting that this phenomenon could be wide-spread and ecologically important.
Collapse
Affiliation(s)
- Idan Hefetz
- Department of Biotechnology, Institute for Biological Research, Ness-Ziona, Israel,Department of Plant Pathology and Microbiology, IES, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Biology, Institute for Biological Research, Ness-Ziona, Israel
| | - Gal Bilinsky
- Department of Biochemistry and Molecular Biology, Institute for Biological Research, Ness-Ziona, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Zvi Hayouka
- Department of Biochemistry, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adam Lampert
- Institute of Environmental Sciences (IES), Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,Corresponding author
| | - Yael Helman
- Department of Plant Pathology and Microbiology, IES, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,Corresponding author
| |
Collapse
|
6
|
Tetz V, Tetz G. Novel prokaryotic system employing previously unknown nucleic acids-based receptors. Microb Cell Fact 2022; 21:202. [PMID: 36195904 PMCID: PMC9531389 DOI: 10.1186/s12934-022-01923-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 12/26/2022] Open
Abstract
The present study describes a previously unknown universal system that orchestrates the interaction of bacteria with the environment, named the Teazeled receptor system (TR-system). The identical system was recently discovered within eukaryotes. The system includes DNA- and RNA-based molecules named "TezRs", that form receptor's network located outside the membrane, as well as reverse transcriptases and integrases. TR-system takes part in the control of all major aspects of bacterial behavior, such as intra cellular communication, growth, biofilm formation and dispersal, utilization of nutrients including xenobiotics, virulence, chemo- and magnetoreception, response to external factors (e.g., temperature, UV, light and gas content), mutation events, phage-host interaction, and DNA recombination activity. Additionally, it supervises the function of other receptor-mediated signaling pathways. Importantly, the TR-system is responsible for the formation and maintenance of cell memory to preceding cellular events, as well the ability to "forget" preceding events. Transcriptome and biochemical analysis revealed that the loss of different TezRs instigates significant alterations in gene expression and proteins synthesis.
Collapse
Affiliation(s)
- Victor Tetz
- Human Microbiology Institute, New York, NY, 10013, USA
| | - George Tetz
- Human Microbiology Institute, New York, NY, 10013, USA.
| |
Collapse
|
7
|
Wu X, Fan Y, Wang R, Zhao Q, Ali Q, Wu H, Gu Q, Borriss R, Xie Y, Gao X. Bacillus halotolerans KKD1 induces physiological, metabolic and molecular reprogramming in wheat under saline condition. FRONTIERS IN PLANT SCIENCE 2022; 13:978066. [PMID: 36035675 PMCID: PMC9404337 DOI: 10.3389/fpls.2022.978066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Salt stress decreases plant growth and is a major threat to crop yields worldwide. The present study aimed to alleviate salt stress in plants by inoculation with halophilic plant growth-promoting rhizobacteria (PGPR) isolated from an extreme environment in the Qinghai-Tibetan Plateau. Wheat plants inoculated with Bacillus halotolerans KKD1 showed increased seedling morphological parameters and physiological indexes. The expression of wheat genes directly involved in plant growth was upregulated in the presence of KKD1, as shown by real-time quantitative PCR (RT-qPCR) analysis. The metabolism of phytohormones, such as 6-benzylaminopurine and gibberellic acid were also enhanced. Mining of the KKD1 genome corroborated its potential plant growth promotion (PGP) and biocontrol properties. Moreover, KKD1 was able to support plant growth under salt stress by inducing a stress response in wheat by modulating phytohormone levels, regulating lipid peroxidation, accumulating betaine, and excluding Na+. In addition, KKD1 positively affected the soil nitrogen content, soil phosphorus content and soil pH. Our findings indicated that KKD1 is a promising candidate for encouraging wheat plant growth under saline conditions.
Collapse
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Yaning Fan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Zhao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität, Berlin, Germany
- Nord Reet UG, Greifswald, Germany
| | - Yongli Xie
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Zhang Z, Liu H, Karani H, Mallen J, Chen W, De A, Mani S, Tang JX. Enterobacter sp. Strain SM1_HS2B Manifests Transient Elongation and Swimming Motility in Liquid Medium. Microbiol Spectr 2022; 10:e0207821. [PMID: 35647691 PMCID: PMC9241836 DOI: 10.1128/spectrum.02078-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Many species of bacteria change their morphology and behavior under external stresses. In this study, we report transient elongation and swimming motility of a novel Enterobacter sp. strain, SM1_HS2B, in liquid broth under a standard growth condition. When growing in the Luria-Bertani medium, HS2B cells delay their cell division and elongate. Although transient over a few hours, the average cell length reaches over 10 times that of the stationary-state cells. The increase is also cumulative following repeated growth cycles stimulated by taking cells out of the exponential phase and adding them into fresh medium every 2 hours. The majority of the cells attain swimming motility during the exponential growth phase, and then they lose swimming motility over the course of several hours. Both daughter cells due to division of a long swimming cell retain the ability to swim. We confirm that the long HS2B cells swim with rigid-body rotation along their body axis. These findings based on microscopic observation following repeated cycles of growth establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. IMPORTANCE Bacteria undergo morphological changes in order to cope with external stresses. Among the best-known examples are cell elongation and hyperflagellation in the context of swarming motility. The subject of this report, SM1_HS2B, is a hyperswarming strain of a newly identified species of enterobacteria, noted as Enterobacter sp. SM1. The key finding that SM1_HS2B transiently elongates to extreme length in fresh liquid medium offers new insights on regulation in bacterial growth and division. SM1_HS2B also manifests transient but vigorous swimming motility during the exponential phase of growth in liquid medium. These properties establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. Such a dependence may be relevant to swarming behavior with a significant environmental or physiological outcome.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Brown University, Physics Department, Providence, Rhode Island, USA
| | - Haoming Liu
- Brown University, Physics Department, Providence, Rhode Island, USA
| | - Hamid Karani
- Brown University, Physics Department, Providence, Rhode Island, USA
| | - Jon Mallen
- Brown University, Physics Department, Providence, Rhode Island, USA
| | - Weijie Chen
- Brown University, Physics Department, Providence, Rhode Island, USA
- Albert Einstein College of Medicine, New York, New York, USA
| | - Arpan De
- Albert Einstein College of Medicine, New York, New York, USA
| | - Sridhar Mani
- Albert Einstein College of Medicine, New York, New York, USA
| | - Jay X. Tang
- Brown University, Physics Department, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Jiang X, Jiang C, Yu T, Jiang X, Ren S, Kang R, Qiu S. Benzalkonium Chloride Adaptation Increases Expression of the Agr System, Biofilm Formation, and Virulence in Listeria monocytogenes. Front Microbiol 2022; 13:856274. [PMID: 35283841 PMCID: PMC8905296 DOI: 10.3389/fmicb.2022.856274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Benzalkonium chloride (BC) is widely used for disinfection in food industry. However, prolonged exposure to BC may lead to the emergence of BC adapted strains of Listeria monocytogenes, an important foodborne pathogen. Until now, two communication systems, the LuxS/AI-2 system and the Agr system, have been identified in L. monocytogenes. This study aimed to investigate the role of communication systems in BC adaptation and the effect of BC adaptation on two communication systems and the communication-controlled behaviors in L. monocytogenes. Results demonstrated that the Agr system rather than the LuxS system plays an important role in BC adaptation of L. monocytogenes. Neither luxS expression nor AI-2 production was affected by BC adaptation. On the other hand, the expression of the agr operon and the activity of the agr promoter were significantly increased after BC adaptation. BC adaptation enhanced biofilm formation of L. monocytogenes. However, swarming motility was reduced by BC adaptation. Data from qRT-PCR showed that flagella-mediated motility-related genes (flaA, motA, and motB) were downregulated in BC adapted strains. BC adaptation increased the ability of L. monocytogenes to adhere to and invade Caco-2 cells but did not affect the hemolytic activity. Compared with the wild-type strains, the expression levels of virulence genes prfA, plcA, mpl, actA, and plcB increased more than 2-fold in BC adapted strains; however, lower than 2-fold changes in the expression of hemolysis-associated gene hly were observed. Our study suggests that BC adaptation could increase the expression of the Agr system and enhance biofilm formation, invasion, and virulence of L. monocytogenes, which brings about threats to food safety and public health. Therefore, effective measures should be taken to avoid the emergence of BC adapted strains of L. monocytogenes.
Collapse
Affiliation(s)
- Xiaobing Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Congyi Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Tao Yu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, China.,Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, China
| | - Xiaojie Jiang
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, China
| | - Siyu Ren
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Rui Kang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shuxing Qiu
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, China
| |
Collapse
|
10
|
Przepiora T, Figaj D, Bogucka A, Fikowicz-Krosko J, Czajkowski R, Hugouvieux-Cotte-Pattat N, Skorko-Glonek J. The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani. Int J Mol Sci 2022; 23:ijms23020697. [PMID: 35054882 PMCID: PMC8775594 DOI: 10.3390/ijms23020697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
In bacteria, the DsbA oxidoreductase is a crucial factor responsible for the introduction of disulfide bonds to extracytoplasmic proteins, which include important virulence factors. A lack of proper disulfide bonds frequently leads to instability and/or loss of protein function; therefore, improper disulfide bonding may lead to avirulent phenotypes. The importance of the DsbA function in phytopathogens has not been extensively studied yet. Dickeya solani is a bacterium from the Soft Rot Pectobacteriaceae family which is responsible for very high economic losses mainly in potato. In this work, we constructed a D. solani dsbA mutant and demonstrated that a lack of DsbA caused a loss of virulence. The mutant bacteria showed lower activities of secreted virulence determinants and were unable to develop disease symptoms in a potato plant. The SWATH-MS-based proteomic analysis revealed that the dsbA mutation led to multifaceted effects in the D. solani cells, including not only lower levels of secreted virulence factors, but also the induction of stress responses. Finally, the outer membrane barrier seemed to be disturbed by the mutation. Our results clearly demonstrate that the function played by the DsbA oxidoreductase is crucial for D. solani virulence, and a lack of DsbA significantly disturbs cellular physiology.
Collapse
Affiliation(s)
- Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
| | - Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
| | - Aleksandra Bogucka
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland;
| | - Jakub Fikowicz-Krosko
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland; (J.F.-K.); (R.C.)
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland; (J.F.-K.); (R.C.)
| | - Nicole Hugouvieux-Cotte-Pattat
- Microbiologie Adaptation et Pathogénie, Université Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Campus LyonTech-la Doua Bâtiment André Lwoff 10 rue Raphaël Dubois 69622, F69622 Villeurbanne, France;
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
- Correspondence:
| |
Collapse
|
11
|
Lin WY, Lee YJ, Yu PH, Tsai YL, She PY, Li TS, Liaw SJ. The QseEF Two-Component System-GlmY Small RNA Regulatory Pathway Controls Swarming in Uropathogenic Proteus mirabilis. Int J Mol Sci 2022; 23:ijms23010487. [PMID: 35008912 PMCID: PMC8745638 DOI: 10.3390/ijms23010487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial sensing of environmental signals through the two-component system (TCS) plays a key role in modulating virulence. In the search for the host hormone-sensing TCS, we identified a conserved qseEGF locus following glmY, a small RNA (sRNA) gene in uropathogenic Proteus mirabilis. Genes of glmY-qseE-qseG-qseF constitute an operon, and QseF binding sites were found in the glmY promoter region. Deletion of glmY or qseF resulted in reduced swarming motility and swarming-related phenotypes relative to the wild-type and the respective complemented strains. The qseF mutant had decreased glmYqseEGF promoter activity. Both glmY and qseF mutants exhibited decreased flhDC promoter activity and mRNA level, while increased rcsB mRNA level was observed in both mutants. Prediction by TargetRNA2 revealed cheA as the target of GlmY. Then, construction of the translational fusions containing various lengths of cheA 5′UTR for reporter assay and site-directed mutagenesis were performed to investigate the cheA-GlmY interaction in cheA activation. Notably, loss of glmY reduced the cheA mRNA level, and urea could inhibit swarming in a QseF-dependent manner. Altogether, this is the first report elucidating the underlying mechanisms for modulation of swarming motility by a QseEF-regulated sRNA GlmY, involving expression of cheA, rcsB and flhDC in uropathogenic P. mirabilis.
Collapse
Affiliation(s)
- Wen-Yuan Lin
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Yuan-Ju Lee
- Department of Urology, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Ping-Hung Yu
- Department of Nursing, National Taichung University of Science and Technology, Taichung City 404348, Taiwan;
| | - Yi-Lin Tsai
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Pin-Yi She
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Tzung-Shian Li
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- Correspondence: ; Tel.: +886-02-23123456 (ext. 6911)
| |
Collapse
|
12
|
Bryant OJ, Chung BYW, Fraser GM. Chaperone-mediated coupling of subunit availability to activation of flagellar Type III secretion. Mol Microbiol 2021; 116:538-549. [PMID: 33893668 DOI: 10.1111/mmi.14731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/19/2021] [Indexed: 01/07/2023]
Abstract
Bacterial flagellar subunits are exported across the cell membrane by the flagellar Type III Secretion System (fT3SS), powered by the proton motive force (pmf) and a specialized ATPase that enables the flagellar export gate to utilize the pmf electric potential (ΔΨ). Export gate activation is mediated by the ATPase stalk, FliJ, but how this process is regulated to prevent wasteful dissipation of pmf in the absence of subunit cargo is not known. Here, we show that FliJ activation of the export gate is regulated by flagellar export chaperones. FliJ binds unladen chaperones and, by using novel chaperone variants specifically defective for FliJ binding, we show that disruption of this interaction attenuates motility and cognate subunit export. We demonstrate in vitro that chaperones and the FlhA export gate component compete for binding to FliJ, and show in vivo that unladen chaperones, which would be present in the cell when subunit levels are low, sequester FliJ to prevent activation of the export gate and attenuate subunit export. Our data indicate a mechanism whereby chaperones couple availability of subunit cargo to pmf-driven export by the fT3SS.
Collapse
Affiliation(s)
- Owain J Bryant
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Betty Y-W Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
13
|
Wang M, Geng S, Hu B, Nie Y, Wu X. Sessile bacterium unlocks ability of surface motility through mutualistic interspecies interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:112-118. [PMID: 33225572 PMCID: PMC7984234 DOI: 10.1111/1758-2229.12911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
In addition to their common planktonic lifestyle, bacteria frequently live in surface-associated habitats. Surface motility is essential for exploring these habitats for food sources. However, many bacteria are found on surfaces, even though they lack features required for migrating along surfaces. How these canonical non-motile bacteria adapt to the environmental fluctuations on surfaces remains unknown. Here, we report a previously unknown surface motility mode of the canonical non-motile bacterium, Dietzia sp. DQ12-45-1b, which is triggered by interaction with a dimorphic prosthecate bacterium, Glycocaulis alkaliphilus 6B-8T. Dietzia cells exhibits 'sliding'-like motility in an area where the strain Glycocaulis cells was pre-colonized with a sufficient density. Our analysis also demonstrates that Dietzia degrade n-alkanes and provide Glycocaulis with the resulting metabolites for survival, which in turn induced directional migration of Dietzia towards nutrient-rich environments. Such interaction-triggered migration was also found between Dietzia and Glycocaulis strains isolated from other habitats, suggesting that this mutualistic relationship ubiquitously occurs in natural environments. In conclusion, we propose a novel model for such a 'win-win' strategy, whereby non-motile bacteria pay metabolites to dimorphic prosthecate bacteria in return for migrating to seek for nutrients, which may represent a common strategy for canonically non-motile bacteria living on a surface.
Collapse
Affiliation(s)
- Miaoxiao Wang
- College of EngineeringPeking UniversityBeijing100871China
| | - Shuang Geng
- College of EngineeringPeking UniversityBeijing100871China
| | - Bing Hu
- College of EngineeringPeking UniversityBeijing100871China
| | - Yong Nie
- College of EngineeringPeking UniversityBeijing100871China
| | - Xiao‐Lei Wu
- College of EngineeringPeking UniversityBeijing100871China
- Institute of EcologyPeking UniversityBeijing100871China
- Institute of Ocean ResearchPeking UniversityBeijing100871China
| |
Collapse
|
14
|
Wang Y, Liu G, Zhang J, Gu D, Hu M, Zhang Y, Pan Z, Geng S, Jiao X. WbaP is required for swarm motility and intramacrophage multiplication of Salmonella Enteritidis spiC mutant by glucose use ability. Microbiol Res 2020; 245:126686. [PMID: 33429286 DOI: 10.1016/j.micres.2020.126686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
Abstract
Salmonella spp. can survive and replicate in macrophage cells to cause persistent infection, SpiC is a necessary T3SS effector, but its pathogenic mechanism is still not known completely. In our study, Salmonella Enteritidis spiC mutant (SEΔspiC) was found to have stronger swarming motility and intramacrophage hyperproliferation which was closely related to glucose metabolism. SEΔspiC wbaP::Tn5 mutant was screened out by transposon mutagenesis, which had weaker swarming motility and intramacrophage replication ability than SEΔspiC in the presence of glucose. Bioinformatics displayed that undecaprenyl-phosphate galactose phosphotransferase (Wbap), encoded by wbaP gene, was a key enzyme for glucose metabolism and Lipopolysaccharide(LPS) synthesis, which confirmed our outcome that Wbap was involved in intramacrophage replication ability by glucose use in addition to swarming motility based on SEΔspiC. This discovery will further promote the understanding of the interaction between wbaP gene and spiC gene and the intracellular Salmonella replication mechanism.
Collapse
Affiliation(s)
- Yaonan Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Guifeng Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jian Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dan Gu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Maozhi Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yunzheng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shizhong Geng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xin'an Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
15
|
Ferreira RL, Rezende GS, Damas MSF, Oliveira-Silva M, Pitondo-Silva A, Brito MCA, Leonardecz E, de Góes FR, Campanini EB, Malavazi I, da Cunha AF, Pranchevicius MCDS. Characterization of KPC-Producing Serratia marcescens in an Intensive Care Unit of a Brazilian Tertiary Hospital. Front Microbiol 2020; 11:956. [PMID: 32670210 PMCID: PMC7326048 DOI: 10.3389/fmicb.2020.00956] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Serratia marcescens has emerged as an important opportunistic pathogen responsible for nosocomial and severe infections. Here, we determined phenotypic and molecular characteristics of 54 S. marcescens isolates obtained from patient samples from intensive-care-unit (ICU) and neonatal intensive-care-unit (NIUC) of a Brazilian tertiary hospital. All isolates were resistant to beta-lactam group antibiotics, and 92.6% (50/54) were not susceptible to tigecycline. Furthermore, 96.3% showed intrinsic resistance to polymyxin E (colistin), a last-resort antibiotic for the treatment of infections caused by MDR (multidrug-resistant) Gram-negative bacteria. In contrast, high susceptibility to other antibiotics such as fluoroquinolones (81.5%), and to aminoglycosides (as gentamicin 81.5%, and amikacin 85.2%) was found. Of all isolates, 24.1% were classified as MDR. The presence of resistance and virulence genes were examined by PCR and sequencing. All isolates carried KPC-carbapenemase (blaKPC) and extended spectrum beta-lactamase blaTEM genes, 14.8% carried blaOXA–1, and 16.7% carried blaCTX–M–1group genes, suggesting that bacterial resistance to β-lactam antibiotics found may be associated with these genes. The genes SdeB/HasF and SdeY/HasF that are associated with efflux pump mediated drug extrusion to fluoroquinolones and tigecycline, respectively, were found in 88.9%. The aac(6′)-Ib-cr variant gene that can simultaneously induce resistance to aminoglycoside and fluoroquinolone was present in 24.1% of the isolates. Notably, the virulence genes to (i) pore-forming toxin (ShlA); (ii) phospholipase with hemolytic and cytolytic activities (PhlA); (iii) flagellar transcriptional regulator (FlhD); and (iv) positive regulator of prodigiosin and serratamolide production (PigP) were present in 98.2%. The genetic relationship among the isolates determined by ERIC-PCR demonstrated that the vast majority of isolates were grouped in a single cluster with 86.4% genetic similarity. In addition, many isolates showed 100% genetic similarity to each other, suggesting that the S. marcescens that circulate in this ICU are closely related. Our results suggest that the antimicrobial resistance to many drugs currently used to treat ICU and NIUC patients, associated with the high frequency of resistance and virulence genes is a worrisome phenomenon. Our findings emphasize the importance of active surveillance plans for infection control and to prevent dissemination of these strains.
Collapse
Affiliation(s)
- Roumayne L Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Graziela S Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Mariana Oliveira-Silva
- Programas de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - André Pitondo-Silva
- Programas de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Márcia C A Brito
- Laboratório Central de Saúde Pública do Tocantins, Palmas, Brazil
| | - Eduardo Leonardecz
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fabiana R de Góes
- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Anderson F da Cunha
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
16
|
Chen KY, Rathod J, Chiu YC, Chen JW, Tsai PJ, Huang IH. The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in Clostridium difficile. Front Cell Infect Microbiol 2019; 9:356. [PMID: 31681632 PMCID: PMC6811523 DOI: 10.3389/fcimb.2019.00356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile is a Gram-positive, spore-forming bacterium, and major cause of nosocomial diarrhea. Related studies have identified numerous factors that influence virulence traits such as the production of the two primary toxins, toxin A (TcdA) and toxin B (TcdB), as well as sporulation, motility, and biofilm formation. However, multiple putative transcriptional regulators are reportedly encoded in the genome, and additional factors are likely involved in virulence regulation. Although the leucine-responsive regulatory protein (Lrp) has been studied extensively in Gram-negative bacteria, little is known about its function in Gram-positive bacteria, although homologs have been identified in the genome. This study revealed that disruption of the lone lrp homolog in C. difficile decelerated growth under nutrient-limiting conditions, increased TcdA and TcdB production. Lrp was also found to negatively regulate sporulation while positively regulate swimming motility in strain R20291, but not in strain 630. The C. difficile Lrp appeared to function through transcriptional repression or activation. In addition, the lrp mutant was relatively virulent in a mouse model of infection. The results of this study collectively demonstrated that Lrp has broad regulatory function in C. difficile toxin expression, sporulation, motility, and pathogenesis.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Chiu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Jacek P, Ryngajłło M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol 2019; 103:5339-5353. [PMID: 31037382 PMCID: PMC6570709 DOI: 10.1007/s00253-019-09846-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
Bacterial nanocellulose (BNC) synthesized by Komagataeibacter hansenii is a polymer that recently gained an attention of tissue engineers, since its features make it a suitable material for scaffolds production. Nevertheless, it is still necessary to modify BNC to improve its properties in order to make it more suitable for biomedical use. One approach to address this issue is to genetically engineer K. hansenii cells towards synthesis of BNC with modified features. One of possible ways to achieve that is to influence the bacterial movement or cell morphology. In this paper, we described for the first time, K. hansenii ATCC 23769 motA+ and motB+ overexpression mutants, which displayed elongated cell phenotype, increased motility, and productivity. Moreover, the mutant cells produced thicker ribbons of cellulose arranged in looser network when compared to the wild-type strain. In this paper, we present a novel development in obtaining BNC membranes with improved properties using genetic engineering tools.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Małgorzata Ryngajłło
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| |
Collapse
|
18
|
Degrassi G, Mortato V, Devescovi G, Hoshino R, Chatnaparat T, Kojic M, Carpentieri-Pipolo V, Zhao Y, Venturi V. Many plant pathogenic Pseudomonas savastanoi pv glycinea isolates possess an inactive quorum sensing ahlR gene via a point mutation. FEMS Microbiol Lett 2019; 366:fnz149. [PMID: 31271427 DOI: 10.1093/femsle/fnz149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/03/2019] [Indexed: 01/14/2023] Open
Abstract
Many plant bacterial pathogens monitor their group behaviour and their population density via production of N-acyl homoserine lactone signals which regulate the expression of several genes via the LuxI/R homologs. This regulatory network, termed quorum sensing (QS), is present in the soybean bacterial pathogen Pseudomonas savastanoi pv glycinea (Psg). The sequenced genomes of two strains of Psg, race 4 and B076, contain an N-acyl homoserine lactone (AHL) based LuxI/R QS system named AhlI/R. While studying the QS system of Psg strains race 4 and B076 isolated in USA, LMG5066 in New Zealand and IBSBF355 in Brazil, we found that B076, LMG5066 and IBSBF355 possess a point mutation in the ahlR gene that causes a frameshift resulting in a truncated AhlR protein. Psg race 4 does not possess the mutation in ahlR and the QS system is functional. The same mutation in the ahlR gene was found to be also present in 9 of 19 Psg strains isolated from diseased soybean in Illinois. Phenotypic analysis of strains showed that swarming motility is repressed whereas phosphate solubilisation was activated by QS in Psg. Analysing the secretome, we also found that four proteins were under QS regulation.
Collapse
Affiliation(s)
- Giuliano Degrassi
- Industrial Biotechnology Group, IBioBA-ICGEB, Godoy Cruz 2390, Buenos Aires, Argentina
| | - Valentina Mortato
- Industrial Biotechnology Group, IBioBA-ICGEB, Godoy Cruz 2390, Buenos Aires, Argentina
| | - Giulia Devescovi
- Bacteriology Group, ICGEB, Padriciano 99, I-34149 Trieste, Italy
| | - Rodrigo Hoshino
- Agronomy Department, Londrina State University, Londrina 10.011, Parana, Brasil
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, 288 E R Madigan Laboratory, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | - Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), V. Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | | | - Youfu Zhao
- Department of Crop Sciences, 288 E R Madigan Laboratory, 1201 W. Gregory Dr., Urbana, IL 61801, USA
| | - Vittorio Venturi
- Bacteriology Group, ICGEB, Padriciano 99, I-34149 Trieste, Italy
| |
Collapse
|
19
|
Ghorbal SKB, Chourabi K, Maalej L, Ammar AB, Ouzari HI, Hassen A, Jaafoura H, Chatti A. Pseudomonas aeruginosa Swarmer Cells Adaptation Toward UVc Radiations. Front Microbiol 2019; 10:556. [PMID: 31001210 PMCID: PMC6454200 DOI: 10.3389/fmicb.2019.00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
Swarming is the most rapid surface motility allowing Pseudomonas aeruginosa bacteria to rapidly colonize new surfaces. However, swarming behavior is affected by environmental factors like ultraviolet irradiation (UVc). UVc radiation is the most disinfection technology usually applied for wastewater and proven to be effective to inactivate microorganisms. However, efficiency against motile bacteria is not yet studied. This study aims to explain the mechanisms of resistance of swarmer P. aeruginosa cells toward UVc exposure. P. aeruginosa liquid cultures were allowed to swarm across a semisolid surface for 18 h and directly exposed to UVc radiations. Emergent swarmer colonies, revealed after re-incubation, were selected to study biofilm formation, fatty acid (FA) composition, and ultrastructure. Our results showed that membrane adaptation to UVc radiations was seen in Pseudomonas cells by an increase of cyclic fatty acid (CFA) content, confirming the role of cyclopropane in radio-resistance of swarmer cells. Furthermore, electron microscopic study confirmed that over production of S-layer is believed to be a protective form adopted by P. aeruginosa swarmer cells to resist after 5 min of UVc exposure. Moreover, membrane disintegration is the lethal effect observed after 15 min of UVc exposure. In the other hand, study of biofilm production showed an enhancement of biofilm formation, of swarmer cells mainly after 15 min of UVc exposure. There results confirmed that swarming process is highly correlated with particular FA composition of P. aeruginosa membrane and that radio-resistance of swarmer cells is highly supported by CFA biosynthesis and S-layer overproduction.
Collapse
Affiliation(s)
- Salma Kloula Ben Ghorbal
- Laboratoire de Traitement des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux, Technopôle Borj Cedria, Nabeul, Tunisia
| | - Kalthoum Chourabi
- Laboratoire de Traitement des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux, Technopôle Borj Cedria, Nabeul, Tunisia
| | - Lobna Maalej
- Laboratoire de Traitement des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux, Technopôle Borj Cedria, Nabeul, Tunisia
| | - Aouatef Ben Ammar
- Service Commun de Microscopie Électronique à Transmission, Faculté de Médecine de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Physiques et Naturelles de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Abdenaceur Hassen
- Laboratoire de Traitement des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux, Technopôle Borj Cedria, Nabeul, Tunisia
| | - Habib Jaafoura
- Service Commun de Microscopie Électronique à Transmission, Faculté de Médecine de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Rejets Hydriques, Centre des Recherches et des Technologies des Eaux, Technopôle Borj Cedria, Nabeul, Tunisia
| |
Collapse
|
20
|
Kalamara M, Spacapan M, Mandic‐Mulec I, Stanley‐Wall NR. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol 2018; 110:863-878. [PMID: 30218468 PMCID: PMC6334282 DOI: 10.1111/mmi.14127] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Here, we review the multiple mechanisms that the Gram‐positive bacterium Bacillus subtilis uses to allow it to communicate between cells and establish community structures. The modes of action that are used are highly varied and include routes that sense pheromone levels during quorum sensing and control gene regulation, the intimate coupling of cells via nanotubes to share cytoplasmic contents, and long‐range electrical signalling to couple metabolic processes both within and between biofilms. We explore the ability of B. subtilis to detect ‘kin’ (and ‘cheater cells’) by looking at the mechanisms used to potentially ensure beneficial sharing (or limit exploitation) of extracellular ‘public goods’. Finally, reflecting on the array of methods that a single bacterium has at its disposal to ensure maximal benefit for its progeny, we highlight that a large future challenge will be integrating how these systems interact in mixed‐species communities.
Collapse
Affiliation(s)
- Margarita Kalamara
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| | - Mihael Spacapan
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Ines Mandic‐Mulec
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Nicola R. Stanley‐Wall
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| |
Collapse
|
21
|
The Role of the Motility of Methylobacterium in Bacterial Interactions in Drinking Water. WATER 2018. [DOI: 10.3390/w10101386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial motility is one important factor that affects biofilm formation. In drinking water there are key bacteria in aggregation, whose biology acts to enhance the formation of biofilms. However, it is unclear whether the motility of these key bacteria is an important factor for the interactions between bacteria in drinking water, and, subsequently, in the formation of aggregates, which are precursors to biofilms. Thus, the role of the motility of one of these key bacteria, the Methylobacterium strain DSM 18358, was investigated in the interactions between bacteria in drinking water. The motility of pure Methylobacterium colonies was initially explored; if it was affected by the viscosity of substrate, the temperature, the available energy and the type of substrate. Furthermore, the role of Methylobacterium in the interactions between mixed drinking water bacteria was investigated under the mostly favourable conditions for the motility of Methylobacterium identified before. Overall, the motility of Methylobacterium was found to play a key role in the communication and interactions between bacteria in drinking water. Understanding the role of the motility of key bacteria in drinking water might be useful for the water industry as a potential tool to control the formation of biofilms in drinking water pipes.
Collapse
|
22
|
Pawar S, Ashraf MI, Mujawar S, Mishra R, Lahiri C. In silico Identification of the Indispensable Quorum Sensing Proteins of Multidrug Resistant Proteus mirabilis. Front Cell Infect Microbiol 2018; 8:269. [PMID: 30131943 PMCID: PMC6090301 DOI: 10.3389/fcimb.2018.00269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Catheter-associated urinary tract infections (CAUTI) is an alarming hospital based disease with the increase of multidrug resistance (MDR) strains of Proteus mirabilis. Cases of long term hospitalized patients with multiple episodes of antibiotic treatments along with urinary tract obstruction and/or undergoing catheterization have been reported to be associated with CAUTI. The cases are complicated due to the opportunist approach of the pathogen having robust swimming and swarming capability. The latter giving rise to biofilms and probably inducible through autoinducers make the scenario quite complex. High prevalence of long-term hospital based CAUTI for patients along with moderate percentage of morbidity, cropping from ignorance about drug usage and failure to cure due to MDR, necessitates an immediate intervention strategy effective enough to combat the deadly disease. Several reports and reviews focus on revealing the important genes and proteins, essential to tackle CAUTI caused by P. mirabilis. Despite longitudinal countrywide studies and methodical strategies to circumvent the issues, effective means of unearthing the most indispensable proteins to target for therapeutic uses have been meager. Here, we report a strategic approach for identifying the most indispensable proteins from the genome of P. mirabilis strain HI4320, besides comparing the interactomes comprising the autoinducer-2 (AI-2) biosynthetic pathway along with other proteins involved in biofilm formation and responsible for virulence. Essentially, we have adopted a theoretical network model based approach to construct a set of small protein interaction networks (SPINs) along with the whole genome (GPIN) to computationally identify the crucial proteins involved in the phenomenon of quorum sensing (QS) and biofilm formation and thus, could be therapeutically targeted to fight out the MDR threats to antibiotics of P. mirabilis. Our approach utilizes the functional modularity coupled with k-core analysis and centrality scores of eigenvector as a measure to address the pressing issues.
Collapse
Affiliation(s)
- Shrikant Pawar
- Department of Computer Science, Georgia State University, Atlanta, GA, United States.,Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Md Izhar Ashraf
- Department of Computer Applications, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.,Theoretical Physics, The Institute of Mathematical Sciences, Chennai, India
| | - Shama Mujawar
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Rohit Mishra
- Department of Bioinformatics, G.N. Khalsa College, University of Mumbai, Mumbai, India
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
23
|
Fünfhaus A, Göbel J, Ebeling J, Knispel H, Garcia-Gonzalez E, Genersch E. Swarming motility and biofilm formation of Paenibacillus larvae, the etiological agent of American Foulbrood of honey bees (Apis mellifera). Sci Rep 2018; 8:8840. [PMID: 29892084 PMCID: PMC5995878 DOI: 10.1038/s41598-018-27193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
American Foulbrood is a worldwide distributed, fatal disease of the brood of the Western honey bee (Apis mellifera). The causative agent of this fatal brood disease is the Gram-positive, spore-forming bacterium Paenibacillus larvae, which can be classified into four different genotypes (ERIC I-IV), with ERIC I and II being the ones isolated from contemporary AFB outbreaks. P. larvae is a peritrichously flagellated bacterium and, hence, we hypothesized that P. larvae is capable of coordinated and cooperative multicellular behaviors like swarming motility and biofilm formation. In order to analyze these behaviors of P. larvae, we firstly established appropriate functional assays. Using these assays we demonstrated that P. larvae ERIC II, but not P. larvae ERIC I, was capable of swarming. Swarming motility was hampered in a P. larvae ERIC II-mutant lacking production of paenilarvin, an iturin-like lipopeptide exclusively expressed by this genotype. Both genotypes were able to form free floating biofilm aggregates loosely attached to the walls of the culture wells. Visualizing the biofilms by Congo red and thioflavin S staining suggested structural differences between the biofilms formed. Biofilm formation was shown to be independent from paenilarvin production because the paenilarvin deficient mutant was comparably able to form a biofilm.
Collapse
Affiliation(s)
- Anne Fünfhaus
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Josefine Göbel
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Henriette Knispel
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Eva Garcia-Gonzalez
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany.
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, Berlin, Germany.
| |
Collapse
|
24
|
The Potential Virulence Factors of Providencia stuartii: Motility, Adherence, and Invasion. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3589135. [PMID: 29682537 PMCID: PMC5841065 DOI: 10.1155/2018/3589135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/30/2017] [Accepted: 01/21/2018] [Indexed: 11/17/2022]
Abstract
Providencia stuartii is the most common Providencia species capable of causing human infections. Currently P. stuartii is involved in high incidence of urinary tract infections in catheterized patients. The ability of bacteria to swarm on semisolid (viscous) surfaces and adhere to and invade host cells determines the specificity of the disease pathogenesis and its therapy. In the present study we demonstrated morphological changes of P. stuartii NK cells during migration on the viscous medium and discussed adhesive and invasive properties utilizing the HeLa-M cell line as a host model. To visualize the interaction of P. stuartii NK bacterial cells with eukaryotic cells in vitro scanning electron and confocal microscopy were performed. We found that bacteria P. stuartii NK are able to adhere to and invade HeLa-M epithelial cells and these properties depend on the age of bacterial culture. Also, to invade the host cells the infectious dose of the bacteria is essential. The microphotographs indicate that after incubation of bacterial P. stuartii NK cells together with epithelial cells the bacterial cells both were adhered onto and invaded into the host cells.
Collapse
|
25
|
Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media. Proc Natl Acad Sci U S A 2018; 115:1707-1712. [PMID: 29434037 DOI: 10.1073/pnas.1714187115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the motility of the flagellated bacteria, Escherichia coli, has been widely studied, the effect of viscosity on swimming speed remains controversial. The swimming mode of wild-type E. coli is often idealized as a run-and-tumble sequence in which periods of swimming at a constant speed are randomly interrupted by a sudden change of direction at a very low speed. Using a tracking microscope, we follow cells for extended periods of time in Newtonian liquids of varying viscosity and find that the swimming behavior of a single cell can exhibit a variety of behaviors, including run and tumble and "slow random walk" in which the cells move at a relatively low speed. Although the characteristic swimming speed varies between individuals and in different polymer solutions, we find that the skewness of the speed distribution is solely a function of viscosity and can be used, in concert with the measured average swimming speed, to determine the effective running speed of each cell. We hypothesize that differences in the swimming behavior observed in solutions of different viscosity are due to changes in the flagellar bundling time, which increases as the viscosity rises, due to the lower rotation rate of the flagellar motor. A numerical simulation and the use of resistive force theory provide support for this hypothesis.
Collapse
|
26
|
Turan NB, Engin GÖ. Quorum Quenching. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Latino L, Pourcel C. Recovery and Characterization of Bacteria Resisting Infection by Lytic Bacteriophage. Methods Mol Biol 2018; 1693:85-98. [PMID: 29119434 DOI: 10.1007/978-1-4939-7395-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacteria and bacteriophages coexist and coevolve, bacteriophages being obligatory predators exerting an evolutionary pressure on their prey. Mechanisms in action vary depending on the bacterial genomic content and on the regulation of the bacteriophage cycle. To assess the multiplicity of bacterial genes involved in resistance as well as the changes in the bacteriophage interactions with the bacteria, it is necessary to isolate and investigate large numbers of independent resistant variants. Here we describe protocols that have been applied to the study of Pseudomonas aeruginosa and four of its virulent bacteriophages belonging to the Podoviridae and Myoviridae bacteriophage families. Mutations are identified using whole genome sequencing of resistant variants. Phenotypic analyses are performed to describe the changes conferred by the mutations.
Collapse
Affiliation(s)
- Libera Latino
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ.Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
28
|
Cross-talk between bacterial two-component systems drives stepwise regulation of flagellar biosynthesis in swarming development. Biochem Biophys Res Commun 2017; 489:70-75. [DOI: 10.1016/j.bbrc.2017.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/25/2017] [Accepted: 05/13/2017] [Indexed: 12/29/2022]
|
29
|
Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection. Sci Rep 2017; 7:2786. [PMID: 28584281 PMCID: PMC5459799 DOI: 10.1038/s41598-017-03100-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome.
Collapse
|
30
|
Weller‐Stuart T, Toth I, De Maayer P, Coutinho T. Swimming and twitching motility are essential for attachment and virulence of Pantoea ananatis in onion seedlings. MOLECULAR PLANT PATHOLOGY 2017; 18:734-745. [PMID: 27226224 PMCID: PMC6638301 DOI: 10.1111/mpp.12432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 05/05/2023]
Abstract
Pantoea ananatis is a widespread phytopathogen with a broad host range. Despite its ability to infect economically important crops, such as maize, rice and onion, relatively little is known about how this bacterium infects and colonizes host tissue or spreads within and between hosts. To study the role of motility in pathogenicity, we analysed both swimming and twitching motility in P. ananatis LMG 20103. Genetic recombineering was used to construct four mutants affected in motility. Two flagellar mutants were disrupted in the flgK and motA genes, required for flagellar assembly and flagellar rotation, respectively. Similarly, two twitching motility mutants were generated, impaired in the structure (pilA) and functioning (pilT) of the type IV pili. The role of swimming and twitching motility during the infection cycle of P. ananatis in onion seedlings was determined by comparing the mutant- and wild-type strains using several in vitro and in planta assays. From the results obtained, it was evident that flagella aid P. ananatis in locating and attaching to onion leaf surfaces, as well as in pathogenicity, whereas twitching motility is instrumental in the spread of the bacteria on the surface once attachment has occurred. Both swimming and twitching motility contribute towards the ability of P. ananatis to cause disease in onions.
Collapse
Affiliation(s)
- Tania Weller‐Stuart
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002 South Africa
| | - Ian Toth
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002 South Africa
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DA UK
| | - Pieter De Maayer
- Department of Microbiology, Centre of Microbial Ecology and Genomics (CMEG)University of PretoriaPretoria0002 South Africa
| | - Teresa Coutinho
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002 South Africa
| |
Collapse
|
31
|
Vasconcellos SP, Sierra-Garcia IN, Dellagnezze BM, Vicentini R, Midgley D, Silva CC, Santos Neto EV, Volk H, Hendry P, Oliveira VM. Functional and genetic characterization of hydrocarbon biodegrader and exopolymer-producing clones from a petroleum reservoir metagenomic library. ENVIRONMENTAL TECHNOLOGY 2017; 38:1139-1150. [PMID: 27485801 DOI: 10.1080/09593330.2016.1218940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial degradation of petroleum is a worldwide issue, which causes physico-chemical changes in its compounds, diminishing its commercial value. Biosurfactants are chemically diverse molecules that can be produced by several microorganisms and can enable microbial access to hydrocarbons. In order to investigate both microbial activities, function-driven screening assays for biosurfactant production and hydrocarbon biodegradation were carried out from a metagenomic fosmid library. It was constructed from the total DNA extracted from aerobic and anaerobic enrichments from a Brazilian biodegraded petroleum sample. A sum of 10 clones were selected in order to evaluate their ability to produce exopolymers (EPS) with emulsifying activity, as well as to characterize the gene sequences, harbored by the fosmid clones, through 454 pyrosequencing. Functional analyses confirmed the ability of some clones to produce surfactant compounds. Regarding hydrocarbon as microbial carbon sources, n-alkane (in mixture or not) and naphthalene were preferentially consumed as substrates. Analysis of sequence data set revealed the presence of genes related to xenobiotics biodegradation and carbohydrate metabolism. These data were corroborated by the results of hydrocarbon biodegradation and biosurfactant production detected in the evaluated clones.
Collapse
Affiliation(s)
| | - Isabel N Sierra-Garcia
- b Microbial Resources Division, Research Center for Chemistry , Biology and Agriculture (CPQBA), University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Bruna M Dellagnezze
- b Microbial Resources Division, Research Center for Chemistry , Biology and Agriculture (CPQBA), University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Renato Vicentini
- c Center of Molecular Biology and Genetic Engineering - CBMEG/UNICAMP , Campinas , SP , Brazil
| | | | - Cynthia C Silva
- e Department of Microbiology , Federal University of Viçosa - UFV, CEP 36570-000 , Viçosa , MG , Brazil
| | | | | | | | - Valéria M Oliveira
- b Microbial Resources Division, Research Center for Chemistry , Biology and Agriculture (CPQBA), University of Campinas - UNICAMP , Campinas , SP , Brazil
| |
Collapse
|
32
|
Skagia A, Vezyri E, Sigala M, Kokkinou A, Karpusas M, Venieraki A, Katinakis P, Dimou M. Structural and functional analysis of cyclophilin PpiB mutants supports anin vivofunction not limited to prolyl isomerization activity. Genes Cells 2016; 22:32-44. [DOI: 10.1111/gtc.12452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75, Votanikos Athens 11855 Greece
| | - Eleni Vezyri
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75, Votanikos Athens 11855 Greece
| | - Markezina Sigala
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75, Votanikos Athens 11855 Greece
| | - Areti Kokkinou
- Laboratory of Physics; Department of Biotechnology; Agricultural University of Athens; Iera Odos 75, Votanikos Athens 11855 Greece
| | - Michael Karpusas
- Laboratory of Physics; Department of Biotechnology; Agricultural University of Athens; Iera Odos 75, Votanikos Athens 11855 Greece
| | - Anastasia Venieraki
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75, Votanikos Athens 11855 Greece
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75, Votanikos Athens 11855 Greece
| | - Maria Dimou
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75, Votanikos Athens 11855 Greece
| |
Collapse
|
33
|
Song C, Kidarsa TA, van de Mortel JE, Loper JE, Raaijmakers JM. Living on the edge: emergence of spontaneous gac mutations in Pseudomonas protegens during swarming motility. Environ Microbiol 2016; 18:3453-3465. [PMID: 26945503 DOI: 10.1111/1462-2920.13288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/02/2016] [Indexed: 11/28/2022]
Abstract
Swarming motility is a flagella-driven multicellular behaviour that allows bacteria to colonize new niches and escape competition. Here, we investigated the evolution of specific mutations in the GacS/GacA two-component regulatory system in swarming colonies of Pseudomonas protegens Pf-5. Experimental evolution assays showed that repeated rounds of swarming by wildtype Pf-5 drives the accumulation of gacS/gacA spontaneous mutants on the swarming edge. These mutants cannot swarm on their own because they lack production of the biosurfactant orfamide A, but they do co-swarm with orfamide-producing wildtype Pf-5. These co-swarming assays further demonstrated that ΔgacA mutant cells indeed predominate on the edge and that initial ΔgacA:wildtype Pf-5 ratios of at least 2:1 lead to a collapse of the swarming colony. Subsequent whole-genome transcriptome analyses revealed that genes associated with motility, resource acquisition, chemotaxis and efflux were significantly upregulated in ΔgacA mutant on swarming medium. Moreover, transmission electron microscopy showed that ΔgacA mutant cells were longer and more flagellated than wildtype cells, which may explain their predominance on the swarming edge. We postulate that adaptive evolution through point mutations is a common feature of range-expanding microbial populations and that the putative fitness benefits of these mutations during dispersal of bacteria into new territories are frequency-dependent.
Collapse
Affiliation(s)
- Chunxu Song
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands.,Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Teresa A Kidarsa
- Agricultural Research Service, US Department of Agriculture, Corvallis, OR, 97330, USA
| | - Judith E van de Mortel
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, Corvallis, OR, 97330, USA
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands. .,Microbial Biotechnology Department, Institute of Biology (IBL), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
34
|
Zheng D, Yao X, Duan M, Luo Y, Liu B, Qi P, Sun M, Ruan L. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression. Sci Rep 2016; 6:22768. [PMID: 26957113 PMCID: PMC4783713 DOI: 10.1038/srep22768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/19/2016] [Indexed: 01/17/2023] Open
Abstract
Two-component signal transduction systems (TCSs) are widely used by bacteria to adapt to the environment. In the present study, StoS (stress tolerance-related oxygen sensor) and SreKRS (salt response kinase, regulator, and sensor) were found to positively regulate extracellular polysaccharide (EPS) production and swarming in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). Surprisingly, the absence of stoS or sreKRS did not attenuate virulence. To better understand the intrinsic functions of StoS and SreKRS, quantitative proteomics isobaric tags for relative and absolute quantitation (iTRAQ) was employed. Consistent with stoS and sreK mutants exhibiting a similar phenotype, the signalling circuits of StoS and SreKRS overlapped. Carbohydrate metabolism proteins and chemotaxis proteins, which could be responsible for EPS and swarming regulation, respectively, were reprogrammed in stoS and sreK mutants. Moreover, StoS and SreKRS demonstrated moderate expression of the major virulence factor, hypersensitive response and pathogenicity (Hrp) proteins through the HrpG-HrpX circuit. Most importantly, Xoo equipped with StoS and SreKRS outcompetes strains without StoS or SreKRS in co-infected rice and grows outside the host. Therefore, we propose that StoS and SreKRS adopt a novel strategy involving the moderation of Hrp protein expression and the promotion of EPS and motility to adapt to the environment.
Collapse
Affiliation(s)
- Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaoyan Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Meng Duan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yufeng Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Biao Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pengyuan Qi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
35
|
The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence. Curr Genet 2016; 62:775-789. [DOI: 10.1007/s00294-016-0579-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
36
|
Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14. Appl Environ Microbiol 2016; 81:1274-85. [PMID: 25501476 DOI: 10.1128/aem.02832-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is able to sense and adapt to numerous environmental stimuli by the use of transcriptional regulators, including two-component regulatory systems. In this study, we demonstrate that the sensor kinase PA4398 is involved in the regulation of swarming motility and biofilm formation in P. aeruginosa PA14. APA4398 mutant strain was considerably impaired in swarming motility, while biofilm formation was increased by approximately 2-fold. The PA4398 mutant showed no changes in growth rate, rhamnolipid synthesis, or the production of the Pel exopolysaccharide but exhibited levels of the intracellular second messenger cyclic dimeric GMP (c-di-GMP) 50% higher than those in wild-type cells. The role of PA4398 in gene regulation was investigated by comparing the PA4398 mutant to the wildtype strain by using microarray analysis, which demonstrated that 64 genes were up- or downregulated more than 1.5-fold (P<0.05) under swarming conditions. In addition, more-sensitive real-time PCR studies were performed on genes known to be involved in c-di-GMP metabolism. Among the dysregulated genes were several involved in the synthesis and degradation of c-di-GMP or in the biosynthesis, transport, or function of the iron-scavenging siderophores pyoverdine and pyochelin, in agreement with the swarming phenotype observed. By analyzing additional mutants of selected pyoverdine- and pyochelin-related genes,we were able to show that not only pvdQ but also pvdR, fptA, pchA, pchD, and pchH are essential for the normal swarming behavior of P. aeruginosa PA14 and may also contribute to the swarming-deficient phenotype of the PA4398 mutant in addition to elevated c-di-GMP levels.
Collapse
|
37
|
Saada EA, DeMarco SF, Shimogawa MM, Hill KL. "With a Little Help from My Friends"-Social Motility in Trypanosoma brucei. PLoS Pathog 2015; 11:e1005272. [PMID: 26679190 PMCID: PMC4683075 DOI: 10.1371/journal.ppat.1005272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Edwin A. Saada
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Stephanie F. DeMarco
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Ng IS, Ndive CI, Zhou Y, Wu X. Cultural optimization and metal effects of Shewanella xiamenensis BC01 growth and swarming motility. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0055-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Holtappels M, Vrancken K, Schoofs H, Deckers T, Remans T, Noben JP, Valcke R. A comparative proteome analysis reveals flagellin, chemotaxis regulated proteins and amylovoran to be involved in virulence differences between Erwinia amylovora strains. J Proteomics 2015; 123:54-69. [PMID: 25849252 DOI: 10.1016/j.jprot.2015.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/07/2015] [Accepted: 03/31/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED Erwinia amylovora is a Gram-negative bacterium that causes the destructive disease fire blight affecting most members of the Rosaceae family, of which apple and pear are economically the most important hosts. E. amylovora has been considered as a homogeneous species in whole, although significant differences in virulence patterns have been observed. However, the underlying causes of the differences in virulence remain to be discovered. In a first-time comparative proteomic approach using E. amylovora, 2D differential in-gel electrophoresis (DIGE) was used to identify proteins that could explain the gradual difference in virulence between four different strains. Two important proteins were identified, FliC and CheY, both involved in flagella structure, motility and chemotaxis, which were more abundant in the least virulent strain. In the highly virulent strains the protein GalF, involved in amylovoran production, was more abundant, which was consistent with the higher expression of the gene and the higher amylovoran content in this strain in vitro. Together, these results confirm the involvement of amylovoran in virulence, but also imply an indirect role of flagellin in virulence as elicitor of plant defence. BIOLOGICAL SIGNIFICANCE This research provides new insights into our current understanding of the virulence of Erwinia amylovora. This plant-pathogen is considered a homogeneous species although different strains show differences in virulence. Despite the efforts made on the genomic level which resulted in the discovery of virulence factors, the reason for the different virulence patterns between strains has not yet been identified. In our lab we used a comparative proteomic approach, which has never been published before, to identify proteins involved in these differences between strains and hereby possibly involved in virulence. Our results provide interesting insights in virulence and present us with the opportunity to glance into the proteome of E. amylovora.
Collapse
Affiliation(s)
- M Holtappels
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - K Vrancken
- Zoology Department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - H Schoofs
- Pomology Department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - T Deckers
- Pomology Department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - T Remans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - J P Noben
- Biomedical Research Institute, Hasselt University and Transnational University Limburg, School of Life Sciences, Hasselt, Belgium
| | - R Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
40
|
The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BIOMED RESEARCH INTERNATIONAL 2015; 2015:759348. [PMID: 25866808 PMCID: PMC4383298 DOI: 10.1155/2015/759348] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i) on P. aeruginosa biofilm lifestyle cycle, (ii) on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii) finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa.
Collapse
|
41
|
Kim H, Cheang UK, Kim D, Ali J, Kim MJ. Hydrodynamics of a self-actuated bacterial carpet using microscale particle image velocimetry. BIOMICROFLUIDICS 2015; 9:024121. [PMID: 26015833 PMCID: PMC4409625 DOI: 10.1063/1.4918978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/14/2015] [Indexed: 05/17/2023]
Abstract
Microorganisms can effectively generate propulsive force at the microscale where viscous forces overwhelmingly dominate inertia forces; bacteria achieve this task through flagellar motion. When swarming bacteria, cultured on agar plates, are blotted onto the surface of a microfabricated structure, a monolayer of bacteria forms what is termed a "bacterial carpet," which generates strong flows due to the combined motion of their freely rotating flagella. Furthermore, when the bacterial carpet coated microstructure is released into a low Reynolds number fluidic environment, the propulsive force of the bacterial carpet is able to give the microstructure motility. In our previous investigations, we demonstrated motion control of these bacteria powered microbiorobots (MBRs). Without any external stimuli, MBRs display natural rotational and translational movements on their own; this MBR self-actuation is due to the coordination of flagella. Here, we investigate the flow fields generated by bacterial carpets, and compare this flow to the flow fields observed in the bulk fluid at a series of locations above the bacterial carpet. Using microscale particle image velocimetry, we characterize the flow fields generated from the bacterial carpets of MBRs in an effort to understand their propulsive flow, as well as the resulting pattern of flagella driven self-actuated motion. Comparing the velocities between the bacterial carpets on fixed and untethered MBRs, it was found that flow velocities near the surface of the microstructure were strongest, and at distances far above, the surface flow velocities were much smaller.
Collapse
Affiliation(s)
- Hoyeon Kim
- Department of Mechanical Engineering and Mechanics, Drexel University , Philadelphia, Pennsylvania 19104, USA
| | - U Kei Cheang
- Department of Mechanical Engineering and Mechanics, Drexel University , Philadelphia, Pennsylvania 19104, USA
| | | | - Jamel Ali
- Department of Mechanical Engineering and Mechanics, Drexel University , Philadelphia, Pennsylvania 19104, USA
| | - Min Jun Kim
- Department of Mechanical Engineering and Mechanics, Drexel University , Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
42
|
Inhibition of Pseudomonas aeruginosa swarming motility by 1-naphthol and other bicyclic compounds bearing hydroxyl groups. Appl Environ Microbiol 2015; 81:2808-18. [PMID: 25681177 DOI: 10.1128/aem.04220-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria convert bicyclic compounds, such as indole and naphthalene, to oxidized compounds, including hydroxyindoles and naphthols. Pseudomonas aeruginosa, a ubiquitous bacterium that inhabits diverse environments, shows pathogenicity against animals, plants, and other microorganisms, and increasing evidence has shown that several bicyclic compounds alter the virulence-related phenotypes of P. aeruginosa. Here, we revealed that hydroxyindoles (4- and 5-hydroxyindoles) and naphthalene derivatives bearing hydroxyl groups specifically inhibit swarming motility but have minor effects on other motilities, including swimming and twitching, in P. aeruginosa. Further analyses using 1-naphthol showed that this effect is also associated with clinically isolated hyperswarming P. aeruginosa cells. Swarming motility is associated with the dispersion of cells from biofilms, and the addition of 1-naphthol maintained biofilm biomass without cell dispersion. We showed that this 1-naphthol-dependent swarming inhibition is independent of changes of rhamnolipid production and the intracellular level of signaling molecule cyclic-di-GMP (c-di-GMP). Transcriptome analyses revealed that 1-naphthol increases gene expression associated with multidrug efflux and represses gene expression associated with aerotaxis and with pyochelin, flagellar, and pilus synthesis. In the present study, we showed that several bicyclic compounds bearing hydroxyl groups inhibit the swarming motility of P. aeruginosa, and these results provide new insight into the chemical structures that inhibit the specific phenotypes of P. aeruginosa.
Collapse
|
43
|
Flagella-independent surface motility in Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci U S A 2015; 112:1850-5. [PMID: 25624475 DOI: 10.1073/pnas.1422938112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flagella are multiprotein complexes necessary for swimming and swarming motility. In Salmonella enterica serovar Typhimurium, flagella-mediated motility is repressed by the PhoP/PhoQ regulatory system. We now report that Salmonella can move on 0.3% agarose media in a flagella-independent manner when experiencing the PhoP/PhoQ-inducing signal low Mg(2+). This motility requires the PhoP-activated mgtA, mgtC, and pagM genes, which specify a Mg(2+) transporter, an inhibitor of Salmonella's own F1Fo ATPase, and a small protein of unknown function, respectively. The MgtA and MgtC proteins are necessary for pagM expression because pagM mRNA levels were lower in mgtA and mgtC mutants than in wild-type Salmonella, and also because pagM expression from a heterologous promoter rescued motility in mgtA and mgtC mutants. PagM promotes group motility by a surface protein(s), as a pagM-expressing strain conferred motility upon a pagM null mutant, and proteinase K treatment eliminated motility. The pagM gene is rarely found outside subspecies I of S. enterica and often present in nonfunctional allelic forms in organisms lacking the identified motility. Deletion of the pagM gene reduced bacterial replication on 0.3% agarose low Mg(2+) media but not in low Mg(2+) liquid media. Our findings define a form of motility that allows Salmonella to scavenge nutrients and to escape toxic compounds in low Mg(2+) semisolid environments.
Collapse
|
44
|
Abstract
Proteus mirabilis is a common human pathogen causing recurrent or persistent urinary tract infections (UTIs). The underlying mechanisms for P. mirabilis to establish UTIs are not fully elucidated. In this study, we showed that loss of the sigma factor E (RpoE), mediating extracytoplasmic stress responses, decreased fimbria expression, survival in macrophages, cell invasion, and colonization in mice but increased the interleukin-8 (IL-8) expression of urothelial cells and swarming motility. This is the first study to demonstrate that RpoE modulated expression of MR/P fimbriae by regulating mrpI, a gene encoding a recombinase controlling the orientation of MR/P fimbria promoter. By real-time reverse transcription-PCR, we found that the IL-8 mRNA amount of urothelial cells was induced significantly by lipopolysaccharides extracted from rpoE mutant but not from the wild type. These RpoE-associated virulence factors should be coordinately expressed to enhance the fitness of P. mirabilis in the host, including the avoidance of immune attacks. Accordingly, rpoE mutant-infected mice displayed more immune cell infiltration in bladders and kidneys during early stages of infection, and the rpoE mutant had a dramatically impaired ability of colonization. Moreover, it is noteworthy that urea (the major component in urine) and polymyxin B (a cationic antimicrobial peptide) can induce expression of rpoE by the reporter assay, suggesting that RpoE might be activated in the urinary tract. Altogether, our results indicate that RpoE is important in sensing environmental cues of the urinary tract and subsequently triggering the expression of virulence factors, which are associated with the fitness of P. mirabilis, to build up a UTI.
Collapse
|
45
|
Vicario JC, Dardanelli MS, Giordano W. Swimming and swarming motility properties of peanut-nodulating rhizobia. FEMS Microbiol Lett 2014; 362:1-6. [PMID: 25670708 DOI: 10.1093/femsle/fnu038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Motility allows populations of bacteria to rapidly reach and colonize new microniches or microhabitats. The motility of rhizobia (symbiotic nitrogen-fixing bacteria that nodulate legume roots) is an important factor determining their competitive success. We evaluated the effects of temperature, incubation time, and seed exudates on swimming and swarming motility of five strains of Bradyrhizobium sp. (peanut-nodulating rhizobia). Swimming motility was increased by exudate exposure for all strains except native Pc34. In contrast, swarming motility was increased by exudate exposure for native 15A but unchanged for the other four strains. All five strains displayed the ability to differentiate into swarm cells. Morphological examination by scanning electron microscopy showed that the length of the swarm cells was variable, but generally greater than that of vegetative cells. Our findings suggest the importance of differential motility properties of peanut-nodulating rhizobial strains during agricultural inoculation and early steps of symbiotic interaction with the host.
Collapse
Affiliation(s)
- Julio C Vicario
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Marta S Dardanelli
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Walter Giordano
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
46
|
Identification of novel factors involved in modulating motility of Salmonella enterica serotype typhimurium. PLoS One 2014. [PMID: 25369209 DOI: 10.1371/journal.pone.0111513.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the ability to move away from the site of inoculation on swimming and swarming motility agar. Mutants in genes previously described as important for motility, such as flgF, motA, cheY are do not move away from the site of inoculation on plates in our screens, validating our approach. Mutants in 130 genes, not previously known to be involved in motility, had altered movement of at least one type, 9 mutants were severely impaired for both types of motility, while 33 mutants appeared defective on swimming motility plates but not swarming motility plates, and 49 mutants had reduced ability to move on swarming agar but not swimming agar. Finally, 39 mutants were determined to be hypermotile in at least one of the types of motility tested. Both mutants that appeared non-motile and hypermotile on plates were assayed for expression levels of FliC and FljB on the bacterial surface and many of them had altered levels of these proteins. The phenotypes we report are the first phenotypes ever assigned to 74 of these open reading frames, as they are annotated as 'hypothetical genes' in the Typhimurium genome.
Collapse
|
47
|
Bogomolnaya LM, Aldrich L, Ragoza Y, Talamantes M, Andrews KD, McClelland M, Andrews-Polymenis HL. Identification of novel factors involved in modulating motility of Salmonella enterica serotype typhimurium. PLoS One 2014; 9:e111513. [PMID: 25369209 PMCID: PMC4219756 DOI: 10.1371/journal.pone.0111513] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/28/2014] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the ability to move away from the site of inoculation on swimming and swarming motility agar. Mutants in genes previously described as important for motility, such as flgF, motA, cheY are do not move away from the site of inoculation on plates in our screens, validating our approach. Mutants in 130 genes, not previously known to be involved in motility, had altered movement of at least one type, 9 mutants were severely impaired for both types of motility, while 33 mutants appeared defective on swimming motility plates but not swarming motility plates, and 49 mutants had reduced ability to move on swarming agar but not swimming agar. Finally, 39 mutants were determined to be hypermotile in at least one of the types of motility tested. Both mutants that appeared non-motile and hypermotile on plates were assayed for expression levels of FliC and FljB on the bacterial surface and many of them had altered levels of these proteins. The phenotypes we report are the first phenotypes ever assigned to 74 of these open reading frames, as they are annotated as ‘hypothetical genes’ in the Typhimurium genome.
Collapse
Affiliation(s)
- Lydia M. Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lindsay Aldrich
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Yuri Ragoza
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Marissa Talamantes
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Katharine D. Andrews
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Imhof S, Knüsel S, Gunasekera K, Vu XL, Roditi I. Social motility of African trypanosomes is a property of a distinct life-cycle stage that occurs early in tsetse fly transmission. PLoS Pathog 2014; 10:e1004493. [PMID: 25357194 PMCID: PMC4214818 DOI: 10.1371/journal.ppat.1004493] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/29/2014] [Indexed: 12/21/2022] Open
Abstract
The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen—designated as early procyclic forms—express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4–7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut. African trypanosomes, single-celled parasites that cause human sleeping sickness and Nagana in animals, are transmitted by tsetse flies. Bloodstream form trypanosomes ingested by tsetse differentiate into procyclic forms in the midgut lumen of the insect. Successful transmission to a new mammalian host requires at least two migrations within the fly: one from the midgut lumen to the ectoperitrophic space, and a subsequent migration from the ectoperitrophic space to the salivary glands. Procyclic forms can exhibit social motility, a form of coordinated movement, on semi-solid surfaces. While social motility in bacteria is linked to virulence, the biological significance for trypanosomes is unknown. We demonstrate that social motility is a property of early procyclic forms, which are equivalent to the forms present during the first week of fly infection. In contrast, late procyclic forms characteristic for established infections are deficient for social motility. Our findings link social motility to a biological process, confirm that early and late procyclic forms are distinct life-cycle stages and imply that genes essential for social motility will be of key importance in fly transmission. We suggest that using the social motility assay as a surrogate for fly experiments should enable many more laboratories to examine this aspect of parasite transmission.
Collapse
Affiliation(s)
- Simon Imhof
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Xuan Lan Vu
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
49
|
Martins ML, Pinto UM, Riedel K, Vanetti MCD, Mantovani HC, de Araújo EF. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk. Braz J Microbiol 2014; 45:1039-46. [PMID: 25477941 PMCID: PMC4204945 DOI: 10.1590/s1517-83822014000300037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022] Open
Abstract
Numerous bacteria coordinate gene expression in response to small signalling molecules in many cases known as acylhomoserine lactones (AHLs), which accumulate as a function of cell density in a process known as quorum sensing. This work aimed to determine if phenotypes that are important to define microbial activity in foods such as biofilm formation, swarming motility and proteolytic activity of two Pseudomonas fluorescens strains, isolated from refrigerated raw milk, are influenced by AHL molecules. The tested P. fluorescens strains did not produce AHL molecules in none of the evaluated media. We found that biofilm formation was dependent on the culture media, but it was not influenced by AHLs. Our results indicate that biofilm formation, swarming motility and proteolytic activity of the tested P. fluorescens strains are not regulated by acyl-homoserine lactones. It is likely that AHL-dependent quorum sensing system is absent from these strains.
Collapse
Affiliation(s)
- Maurilio L Martins
- Instituto Federal de Educação Ciência e Tecnologia do Sudeste de Minas Gerais Campus Rio Pomba Belo HorizonteMG Brazil Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Campus Rio Pomba, Belo Horizonte, MG, Brazil
| | - Uelinton M Pinto
- Departamento de Alimentos Universidade Federal de Ouro Preto Ouro PretoMG Brazil Departamento de Alimentos, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Kathrin Riedel
- Institute of Microbiology Ernst-Moritz-Arndt University of Greifswald Germany Institute of Microbiology Ernst-Moritz-Arndt University of Greifswald, Germany
| | - Maria C D Vanetti
- Departamento de Microbiologia Universidade Federal de Viçosa ViçosaMG Brazil Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hilário C Mantovani
- Departamento de Microbiologia Universidade Federal de Viçosa ViçosaMG Brazil Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elza F de Araújo
- Departamento de Microbiologia Universidade Federal de Viçosa ViçosaMG Brazil Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
50
|
Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci Rep 2014; 3:1641. [PMID: 23571408 PMCID: PMC3622076 DOI: 10.1038/srep01641] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/26/2013] [Indexed: 01/10/2023] Open
Abstract
A critical stage in malaria transmission occurs in the Anopheles mosquito midgut, when the malaria parasite, Plasmodium, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against Plasmodium, we focus on a midgut bacteria species' intra-specific variation that confers diversity to the mosquito's competency for malaria transmission. Serratia marcescens isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit Plasmodium development within the mosquito midgut. Furthermore, this anti-Plasmodium function conferred by Serratiamarcescens requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, flhDC. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito.
Collapse
|