2
|
Nueangaudom A, Pianwanit S, Tamaoki H, Nishina Y, Tanaka F, Taniguchi S, Chosrowjan H. Interactions between isoalloxazine and o-aminobenzoate in o-aminobenzoate−d-amino acid oxidase complex. Molecular dynamics and molecular orbital studies. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Taniguchi S, Chosrowjan H, Ito S, Miyasaka H, Katane M, Homma H, Tanaka F, Nueangaudom A, Lugsanangarm K, Kokpol S. Comparative studies on picosecond-resolved fluorescence of d-amino acid oxidases from human with one from porcine kidney. Photoinduced electron transfer from aromatic amino acids to the excited flavin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111546. [PMID: 31351309 DOI: 10.1016/j.jphotobiol.2019.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
Fluorescence dynamics of human d-amino acid oxidase (hDAAO) and its five inhibitors have been studied in the picoseconds time domain, and compared with one in d-amino acid oxidase from porcine kidney (pkDAAO) reported. The fluorescence lifetimes were identified as 47 ps in the dimer, 235 ps in the monomer, which are compared with those of pkDAAO (45 ps-185 ps). The fluorescence lifetimes of the hDAAO did not change upon the inhibitor bindings despite of modifications in the absorption spectra. This indicates that the lifetimes of the complexes are too short to detect with the picosecond lifetime instrument. Numbers of the aromatic amino acids are similar between the both DAAOs. The fluorescence lifetimes of hDAAO were analysed with an ET theory using the crystal structure. The difference in the lifetimes of the dimer and monomer was well described in terms of difference in the electron affinity of the excited isoalloxazine (Iso*) between the two forms of the protein, though it is not known whether the structure of the monomer is different from the dimer. Three fastest ET donors were Tyr314, Trp52 and Tyr224 in the dimer, while Tyr314, Tyr224 and Tyr55 in the monomer, which are compared to those in pkDAAO, Tyr314, Tyr224 and Tyr228 in the dimer, and Tyr224, Tyr314 and Tyr228 in the monomer. The ET rate from Trp55 in hDAAO dimer was much faster compared to the rate in pkDAAO dimer. A rise component with negative pre-exponential factor was not observed in hDAAO, which are found in pkDAAO.
Collapse
Affiliation(s)
- Seiji Taniguchi
- Division of Laser Biochemistry, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan.
| | - Haik Chosrowjan
- Division of Laser Biochemistry, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan
| | - Shoji Ito
- Department of Chemistry, School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Department of Chemistry, School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Fumio Tanaka
- Division of Laser Biochemistry, Institute for Laser Technology, Utsubo-Honmachi, 1-8-4, Nishiku, Osaka 550-0004, Japan; Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10,330, Thailand.
| | - Arthit Nueangaudom
- Program of General Science, Faculty of Science and Technology, Thepsatri Rajabhat University, Lopburi 15,000, Thailand
| | - Kiattisak Lugsanangarm
- Program of Chemistry, Faculty of Science, Bansomdejchaopraya Rajabhat University, Bangkok 10,600, Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10,330, Thailand
| |
Collapse
|
4
|
PH-Dependent Enantioselectivity of D-amino Acid Oxidase in Aqueous Solution. Sci Rep 2017; 7:2994. [PMID: 28592826 PMCID: PMC5462808 DOI: 10.1038/s41598-017-03177-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
D-amino acid oxidases (DAAO) are stereospecific enzymes which are generally almost inactive towards L-enantiomer in neutral solution when L-, D-amino acids are supplied as substrates. In this paper, the D-amino acid oxidase can catalytic oxidize L-amino acids by modulating pH of aqueous solution. With L-Pro as substrate, the catalytic rate (kcat) and the affinity (Km) of DAAO were 6.71 s−1 and 33 mM at pH 8.0, respectively, suggesting that optimal pH condition enhanced the activity of DAAO towards L-Pro. Similar results were obtained when L-Ala (pH 9.8), L-Arg (pH 6.5), L-Phe (pH 9.0), L-Thr (pH 9.4), and L-Val (pH 8.5) were catalyzed by DAAO at various pH values. The racemization of the L-amino acids was not found by capillary electrophoresis analysis during oxidation, and quantification analysis of L-amino acids before and after catalytic reaction was performed, which confirmed that the modulation of enantioselectivity of DAAO resulted from the oxidation of L-amino acids rather than D-amino acids by changing pH. A mechanistic model was proposed to explain enhanced activity of DAAO towards L-amino acids under optimal pH condition.
Collapse
|
5
|
Yoshimoto M, Okamoto M, Ujihashi K, Okita T. Selective oxidation of D-amino acids catalyzed by oligolamellar liposomes intercalated with D-amino acid oxidase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6180-6186. [PMID: 24821597 DOI: 10.1021/la500786m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
D-Amino acid oxidase (DAO) is structurally unstable and exhibits broad specificity to D-amino acids. In this work, we fabricated a stable liposomal DAO system with high apparent substrate specificity. Permeability of the membrane composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) was highly selective between the d-forms of alanine (Ala) and serine (Ser). The permeability coefficient of d-Ala and d-Ser at 25 °C was 3.59 and 0.27 pm/s, respectively, as determined with the dialysis method. On the other hand, the chiral environment of POPC membrane showed no clear selectivity between the enantiomers of Ala or Ser. POPC liposomes encapsulating DAO from porcine kidney selectively catalyzed the oxidation of hydrophobic D-phenylalanine (D-Phe) over D-Ala and D-Ser because of their intrinsic membrane permeability. As a different type of liposomal DAO, the enzyme molecules were conjugated to the surface of activated lipids-bearing liposomes. The activity of liposome-conjugated DAO showed significantly higher stability at 50 °C than free DAO at low enzyme concentrations ranging from 2.5 to 10 mg/L. Then, the DAO-conjugated liposomes were coated with POPC bilayers to give the oligolamellar structure intercalated with the DAO molecules. The additional bilayers allowed to induce the permeability resistance-based substrate specificity and strengthened the stabilizing effect on the DAO activity. The oligolamellar liposomes fabricated can be a colloidal platform for integrating the functions of lipid membrane to stabilize DAO and to modulate its substrate specificity.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Applied Molecular Bioscience, Yamaguchi University , 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | | | | | | |
Collapse
|
7
|
Nueangaudom A, Lugsanangarm K, Pianwanit S, Kokpol S, Nunthaboot N, Tanaka F, Taniguchi S, Chosrowjan H. Theoretical analyses of the fluorescence lifetimes of the d-amino acid oxidase–benzoate complex dimer from porcine kidney: molecular dynamics simulation and photoinduced electron transfer. RSC Adv 2014. [DOI: 10.1039/c4ra05211k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism of photoinduced electron transfer from benzoate and aromatic amino acids to the excited isoalloxazine in the d-amino acid oxidase–benzoate complex dimer was studied using molecular dynamics simulation and an electron transfer theory.
Collapse
Affiliation(s)
- Arthit Nueangaudom
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
| | - Kiattisak Lugsanangarm
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
| | - Somsak Pianwanit
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
| | - Sirirat Kokpol
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
| | | | - Fumio Tanaka
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330, Thailand
- Division of Laser Biochemistry
| | - Seiji Taniguchi
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004, Japan
| | - Haik Chosrowjan
- Division of Laser Biochemistry
- Institute for Laser Technology
- Osaka 550-0004, Japan
| |
Collapse
|
8
|
Nueangaudom A, Lugsanangarm K, Pianwanit S, Kokpol S, Nunthaboot N, Tanaka F. Non-equivalent conformations ofd-amino acid oxidase dimer from porcine kidney between the two subunits. Molecular dynamics simulation and photoinduced electron transfer. Phys Chem Chem Phys 2014; 16:1930-44. [DOI: 10.1039/c3cp53826e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Abstract
Review - Flavins as photoreceptors of blue light and their spectroscopic propertiesThis review describes 1) the development of studies on flavin photoreceptors as blue light photoreceptors in many living organisms: their kinds and functions; 2) the studies on spectroscopic properties of flavins, both their dimers and monomers; 3) nonradiative excitation energy transport in the presence of monomers and fluorescent/nonflurescent FMN dimers (excitation traps). The existence equilibrated luminescent FMN centers, energy migration and excitation sink to FMN dimers are taken into account.
Collapse
|
10
|
Braun SD, Völksch B, Nüske J, Spiteller D. 3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea. Chembiochem 2008; 9:1913-20. [PMID: 18655083 DOI: 10.1002/cbic.200800080] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Indexed: 11/10/2022]
Abstract
The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces a toxin that strongly inhibits the growth of its relative, the plant pathogen P. syringae pv. glycinea. The inhibition can be overcome by supplementing the growth medium with the essential amino acid, L-arginine; this suggests that the toxin acts as an inhibitor of the arginine biosynthesis. The highly polar toxin was purified by bioassay-guided fractionation using ion-exchange chromatography and subsequent RP-HPLC fractionation. The structure of the natural product was identified by HR-ESI-MS, HR-ESI-MS/MS, and NMR spectroscopy experiments as 3-methylarginine. This amino acid has previously only been known in nature as a constituent of the peptide lavendomycin from Streptomyces lavendulae. Results of experiments in which labeled methionine was fed to Pss22d indicated that the key step in the biosynthesis of 3-methylarginine is the introduction of the methyl group by a S-adenosylmethionine (SAM)-dependent methyltransferase. Transposon mutagenesis of Pss22d allowed the responsible SAM-dependent methyltransferase of the 3-methylarginine biosynthesis to be identified.
Collapse
Affiliation(s)
- Sascha D Braun
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, Neugasse 25, 07743 Jena, Germany
| | | | | | | |
Collapse
|
11
|
Sarower MG, Okada S, Abe H. Catalytic and structural characteristics of carp hepatopancreas D-amino acid oxidase expressed in Escherichia coli. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:417-25. [PMID: 15694590 DOI: 10.1016/j.cbpc.2004.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/05/2004] [Accepted: 11/08/2004] [Indexed: 11/28/2022]
Abstract
D-amino acid oxidase of carp (Cyprinus carpio) hepatopancreas was overexpressed in Escherichia coli cells and purified to homogeneity for the first time in animal tissues other than pig kidney. The purified preparation had a specific activity of 293 units mg(-1) protein toward D-alanine as a substrate. It showed the highest activity toward D-alanine with a low Km of 0.23 mM and a high kcat of 190 s(-1) compared to 10 s(-1) of the pig kidney enzyme. Nonpolar and polar uncharged D-amino acids were preferable substrates to negatively or positively charged amino acids. The enzyme exhibited better thermal and pH stabilities than several yeast counterparts or the pig kidney enzyme. Secondary structure topology consisted of 11 alpha-helices and 17 beta-strands that differed slightly from pig kidney and Rhodotorula gracilis enzymes. A three-dimensional model of the carp enzyme constructed from a deduced amino acid sequence resembled that of pig kidney D-amino acid oxidase but with a shorter active site loop and a longer C-terminal loop. Judging from these characteristics, carp D-amino acid oxidase is close to the pig kidney enzyme structurally, but analogous to the R. gracilis enzyme enzymatically in turnover rate and pH and temperature stabilities.
Collapse
Affiliation(s)
- Mohammed Golam Sarower
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
12
|
Sarower MG, Okada S, Abe H. Molecular characterization of D-amino acid oxidase from common carp Cyprinus carpio and its induction with exogenous free D-alanine. Arch Biochem Biophys 2004; 420:121-9. [PMID: 14622982 DOI: 10.1016/j.abb.2003.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A full-length cDNA encoding D-amino acid oxidase (DAO, EC 1.4.3.3) was cloned and sequenced from the hepatopancreas of carp fed a diet supplemented with D-alanine. This clone contained an open reading frame encoding 347 amino acid residues. The deduced amino acid sequence exhibited about 60 and 19-29% identity to mammalian and microbial DAOs, respectively. The expression of full-length carp DAO cDNA in Escherichia coli resulted in a significant level of protein with DAO activity. In carp fed the diet with D-alanine for 14 days, DAO mRNA was strongly expressed in intestine followed by hepatopancreas and kidney, but not in muscle. During D-alanine administration, DAO gene was expressed quickly in hepatopancreas with the increase of DAO activity. The inducible nature of carp DAO indicates that it plays an important physiological role in metabolizing exogenous D-alanine that is abundant in their prey invertebrates, crustaceans, and mollusks.
Collapse
Affiliation(s)
- Mohammed Golam Sarower
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|