1
|
Huang X, Li J, Araki Y, Wada T, Xu Y, Takai M. Enzyme stability in polymer hydrogel-enzyme hybrid nanocarrier containing phosphorylcholine group. RSC Adv 2024; 14:18807-18814. [PMID: 38863819 PMCID: PMC11166189 DOI: 10.1039/d4ra02436b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Enzymes are biological catalysts with good biocompatibility and high efficiency and have been widely used in many fields, such as wastewater treatment, biosensors, and the medical industry. However, their inherently low stability under conditions of practical use limits further applications. Zwitterionic polymers possessing a pair of oppositely charged groups in their repeating units can increase protein stability because of their good biocompatibility and high water content. In this study, zwitterionic copolymer nanogels comprising poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-methacrylic acid-N-hydroxy succinimide ester (MNHS)) (PMS) were synthesized via reversible addition-fragmentation chain-transfer polymerization (RAFT). β-Galactosidase (β-gal) was post-modified within zwitterionic polymer nanogels with a covalently-bound spacer and the activity was compared with that of directly immobilized β-gal and free β-gal. Compared with direct immobilization, covalent immobilization with a spacer could reduce the structural change of β-gal, as confirmed by the circular dichroism spectra. Although the activity of β-gal decreased after immobilization, the hybrids of the β-gal immobilized nanogels, termed hybrid nanogel-enzymes, demonstrated superior stability compared to the free enzymes. The hybrid nanogel-enzymes maintained their function against inactivation by organic solvents and proteinases owing to their high water content, anti-biofouling properties, and limited mass transfer. They can also withstand protein aggregation at high temperatures and maintain their activity. Compared to direct immobilization, immobilization with a spacer resulted in a dramatic increase in the enzyme activity and a slight decrease in the stability. These results indicate that polymer nanogels containing phosphorylcholine units are promising materials for enzyme immobilization, expanding the scope of enzyme applications.
Collapse
Affiliation(s)
- Xuejin Huang
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| | - Jincai Li
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Sendai Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Sendai Japan
| | - Yan Xu
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University Sakai Osaka Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656 Tokyo Japan
| |
Collapse
|
2
|
Wang D, Hartz WF, Moloney MG. Surface modified materials for active capture of enzymes. J Mater Chem B 2023; 11:2377-2388. [PMID: 36794991 DOI: 10.1039/d2tb02550g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The insertion of bis(diarylcarbene)s onto a glass fiber (GF) membrane surface provided an active coating for the direct capture of protein - exemplified by the enzyme, cellulase - through a mild diazonium coupling process which does not require additional coupling agents. Successful cellulase attachment on the surface was demonstrated by the disappearance of diazonium and formation of azo functions in the N 1s high resolution spectra, the appearance of carboxyl group in C 1s spectra, both observed by XPS; the -CO vibrational bond observed by ATR-IR; as well as the observation of fluorescence. Further, five support materials (polystyrene XAD4 bead, polyacrylate MAC3 bead, glass wool, glass fiber membrane, polytetrafluoroethylene membrane) with different morphology and surface chemistry, were examined in detail as supports for cellulase immobilization using this common surface modification protocol. Of interest is that such covalently bound cellulase on modified GF membrane gave both the highest enzyme loading (∼23 mg cellulase per g support), and retained more than 90% of activity after 6 cycles of re-use, compared with substantial loss of enzyme activity for physiosorbed cellulase after 3 cycles. Optimization of the degree of surface grafting and the effectiveness of a spacer between surface and enzyme for enzyme loading and activity were conducted. This work shows that carbene surface modification is a viable strategy for introducing enzymes onto a surface under very mild conditions and retaining a meaningful level of activity, and particularly, using GF membrane as a novel support provides a potential platform for enzyme and protein immobilization.
Collapse
Affiliation(s)
- Dandan Wang
- Oxford Suzhou Centre for Advanced Research, Building A, 388 Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P. R. China.
| | - William F Hartz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Mark G Moloney
- Oxford Suzhou Centre for Advanced Research, Building A, 388 Ruo Shui Road, Suzhou Industrial Park, Jiangsu, 215123, P. R. China. .,Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| |
Collapse
|
3
|
Wang Z, Liu Y, Wang Z, Huang X, Huang W. Hydrogel‐based composites: Unlimited platforms for biosensors and diagnostics. VIEW 2021. [DOI: 10.1002/viw.20200165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zeyi Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Yanlei Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Zhiwei Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an China
| |
Collapse
|
4
|
Büscher N, Sayoga GV, Rübsam K, Jakob F, Schwaneberg U, Kara S, Liese A. Biocatalyst Immobilization by Anchor Peptides on an Additively Manufacturable Material. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Niclas Büscher
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - Giovanni V. Sayoga
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - Kristin Rübsam
- DWI−Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
- RWTH Aachen University, Lehrstuhl für Biotechnologie, Worringerweg 3, D-52074 Aachen, Germany
| | - Felix Jakob
- DWI−Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
- RWTH Aachen University, Lehrstuhl für Biotechnologie, Worringerweg 3, D-52074 Aachen, Germany
| | - Ulrich Schwaneberg
- DWI−Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
- RWTH Aachen University, Lehrstuhl für Biotechnologie, Worringerweg 3, D-52074 Aachen, Germany
| | - Selin Kara
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
- Department of Engineering, Biocatalysis and Bioprocessing, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus, Denmark
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| |
Collapse
|
5
|
Zhang J, Feng C, Tan X, Hagedoorn PL, Gu C, Xu H, Zhou X. Effect of aliphatic diamine spacer length on enzymatic performance of myrosinase immobilized on chitosan microsphere and its application for sulforaphene production. J Biotechnol 2019; 299:79-85. [DOI: 10.1016/j.jbiotec.2019.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/21/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022]
|
6
|
Shinde P, Musameh M, Gao Y, Robinson AJ, Kyratzis I(L. Immobilization and stabilization of alcohol dehydrogenase on polyvinyl alcohol fibre. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 19:e00260. [PMID: 30003052 PMCID: PMC6041358 DOI: 10.1016/j.btre.2018.e00260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/12/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
A polyvinyl alcohol (PVA) fibrous carrier has been chemically modified for the immobilization of yeast alcohol dehydrogenase (ADH) with an aim to increase its stability over a wide pH range, prolong its activity upon storage, and enhance its reusability. The strategy for immobilization involved functionalization of the fibrous carrier with chloropropinoyl chloride followed by amination with ethylenediamine. Tethering of the ADH enzyme to the PVA scaffold was achieved with glutaraldehyde. The activity profile of the immobilized enzyme was compared to soluble enzyme as a function of pH, temperature and reusability. The immobilization of ADH on PVA fibrous carrier shifted the optimal reaction pH from 7 to 9, and improved the thermostability at 60 °C. Furthermore, the immobilized enzyme retained 60% of its original activity after eight cycles of reuse. These results demonstrate that PVA based textiles can serve as a flexible, reusable carrier for enzyme immobilization.
Collapse
Affiliation(s)
- Priydarshani Shinde
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | | | - Yuan Gao
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | | | | |
Collapse
|
7
|
Kienle DF, Falatach RM, Kaar JL, Schwartz DK. Correlating Structural and Functional Heterogeneity of Immobilized Enzymes. ACS NANO 2018; 12:8091-8103. [PMID: 30067333 DOI: 10.1021/acsnano.8b02956] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many nanobiotechnology applications rely on stable and efficient integration of functional biomacromolecules with synthetic nanomaterials. Unfortunately, the reasons for the ubiquitous loss of activity of immobilized enzymes remain poorly understood due to the difficulty in distinguishing between distinct molecular-level mechanisms. Here, we employ complementary single-molecule fluorescence methods that independently measure the impact of immobilization on the structure and function ( i. e., substrate binding kinetics) of nitroreductase (NfsB). Stochastic statistical modeling methods were used to unambiguously quantify the effects of immobilized NfsB structural dynamics on function, allowing us to explicitly separate effects due to conformation and accessibility. Interestingly, we found that nonspecifically tethered NfsB exhibited enhanced stability compared to site-specifically tethered NfsB; however, the folded state of site-specifically tethered NfsB had faster substrate binding rates, suggesting improved active site accessibility. This demonstrated an unexpected intrinsic trade-off associated with competing bioconjugation methods, suggesting that it may be necessary to balance conformational stability versus active site accessibility. This nuanced view of the impact of immobilization will facilitate a rational approach to the integration of enzymes with synthetic nanomaterials.
Collapse
Affiliation(s)
- Daniel F Kienle
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Rebecca M Falatach
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
8
|
Abstract
Measuring the catalytic activity of immobilized enzymes underpins development of biosensing, bioprocessing, and analytical chemistry tools. To expand the range of approaches available for measuring enzymatic activity, we report on a technique to probe activity of enzymes immobilized in porous materials in the absence of confounding mass transport artifacts. We measured reaction kinetics of calf intestinal alkaline phosphatase (CIAP) immobilized in benzophenone-modified polyacrylamide (BPMA-PAAm) gel films housed in an array of fluidically isolated chambers. To ensure kinetics measurements are not confounded by mass transport limitations, we employed Weisz's modulus (Φ), which compares observed enzyme-catalyzed reaction rates to characteristic substrate diffusion times. We characterized activity of CIAP immobilized in BPMA-PAAm gels in a reaction-limited regime (Φ ≪ 0.15 for all measurements), allowing us to isolate the effect of immobilization on enzymatic activity. Immobilization of CIAP in BPMA-PAAm gels produced a ∼2× loss in apparent enzyme-substrate affinity (Km) and ∼200× decrease in intrinsic catalytic activity (kcat) relative to in-solution measurements. As estimating Km and kcat requires multiple steps of data manipulation, we developed a computational approach (bootstrapping) to propagate uncertainty in calibration data through all data manipulation steps. Numerical simulation revealed that calibration error is only negligible when the normalized root-mean-squared error (NRMSE) in the calibration falls below 0.05%. Importantly, bootstrapping is independent of the mathematical model, and thus generalizable beyond enzyme kinetics studies. Furthermore, the measurement tool presented can be readily adapted to study other porous immobilization supports, facilitating rational design (immobilization method, geometry, enzyme loading) of immobilized-enzyme devices.
Collapse
Affiliation(s)
- Hector D. Neira
- UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Amy E. Herr
- UC Berkeley/UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Wang J, Liu Z, Zhou Z. Regulation of the catalytic behavior of pullulanases chelated onto nickel (II)-modified magnetic nanoparticles. Enzyme Microb Technol 2017; 101:9-16. [PMID: 28433193 DOI: 10.1016/j.enzmictec.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 11/25/2022]
Abstract
Chelating of pullulanases onto nickel (II)-modified magnetic nanoparticles results in one-step purification and immobilization of pullulanase, and facilitates the commercial application of pullulanase in industrial scale. To improve the catalytic behavior, especially the operational stability, of the nanocatalyst in consecutive batch reactions, we prepared various iminodiacetic acid-modified magnetic nanoparticles differed in surface polarity and spacer length, on which the His6-tagged pullulanases were chelated via nickel ions, and then studied the correlation between the MNPs surface property and the corresponding catalyst behavior. When pullulanases were chelated onto the surface-modified MNPs, the thermostability of all pullulanase derivatives were lower than that of free counterpart, being not relevant to the protein orientation guided by the locality of the His6-tag, but related to the MNPs basal surface polarity and the grafted spacer length. After chelating of pullulanases onto MNPs, there were changes observed in the pH-activity profile and the apparent Michaelis constant toward pullulan. The changing tendencies were mainly dependent on the His6-tagged pullulanase orientation, and the changing extents were tuned by the spacer length. The reusability of pullulanase immobilized by N-terminal His6-tag was higher than that of pullulanase immobilized by C-terminal His6-tag. Moreover, the reusability of the immobilized pullulanase tested increased till grafting polyether amine-400 as spacer-arm, therefore the N-terminal His6-tagged pullulanase chelating MNPs grafted polyether amine-400 gave the best reusability, which retained 60% of initial activity after 18 consecutive cycles with a total reaction time of 9h. Additionally, the correlation analysis of the catalyst behaviors indicated that the reusability was independent from other catalytic properties such as thermostability and substrate affinity. All the results revealed that the catalyst behavior can be mainly controlled by the His6-tagged pullulanase orientation than by the MNPs surface property which can tune the catalyst function.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Faculty of Biology, East China University of Technology, Nanchang 330013, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Fan Y, Yi J, Hua X, Zhang Y, Yang R. Preparation and characterization of gellan gum microspheres containing a cold-adapted β-galactosidase from Rahnella sp. R3. Carbohydr Polym 2017; 162:10-15. [PMID: 28224885 DOI: 10.1016/j.carbpol.2017.01.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 11/24/2022]
Abstract
R-β-Gal is a cold-adapted β-galactosidase that is able to hydrolyze lactose and has the potential to produce low-lactose or lactose-free dairy products at low temperatures (4°C). Cold-adapted enzymes unfold at moderate temperatures due to the lower intramolecular stabilizing interactions necessary for flexibility at low temperatures. To increase stability and usage-performance, R-β-Gal was encapsulated in gellan gum by injecting an aqueous solution into two different hardening solutions (10mM CaCl2 or 10mM MgCl2). Enzyme characteristics of both free and encapsulated R-β-Gal were carried out, and the different effects of two cations were investigated. R-β-Gal showed better thermal and pH stability after encapsulation. Ca2+ gels had higher encapsulation efficiency (71.4%) than Mg2+ (66.7%) gels, and Ca2+ formed larger inner and surface pores. R-β-Gal was released from the Ca2+ hydrogel beads more rapidly than the Mg2+ hydrogels during storage in aqueous solution due to the larger inner/surface pores of the matrix.
Collapse
Affiliation(s)
- Yuting Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; US Department of Agriculture, Agriculture Research Service, Pacific West Area, Western Regional Research Center, Albany, CA 94710, USA.
| | - Jiang Yi
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Yuzhu Zhang
- US Department of Agriculture, Agriculture Research Service, Pacific West Area, Western Regional Research Center, Albany, CA 94710, USA
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China.
| |
Collapse
|
11
|
Liu C, Saeki D, Matsuyama H. A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Adv 2017. [DOI: 10.1039/c7ra10012d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A simple and efficient enzyme immobilization strategy on microporous membrane surfaces using dicarboxylic acid halides as a spacer offers a tool to design membranes used in enzymatic membrane reactors.
Collapse
Affiliation(s)
- Cuijing Liu
- Center for Membrane and Film Technology
- Department of Chemical Science and Engineering
- Kobe University
- Kobe
- Japan
| | - Daisuke Saeki
- Center for Membrane and Film Technology
- Department of Chemical Science and Engineering
- Kobe University
- Kobe
- Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology
- Department of Chemical Science and Engineering
- Kobe University
- Kobe
- Japan
| |
Collapse
|
12
|
Yuan Y, Luan X, Rana X, Hassan ME, Dou D. Covalent immobilization of cellulase in application of biotransformation of ginsenoside Rb1. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Militano F, Poerio T, Mazzei R, Piacentini E, Gugliuzza A, Giorno L. Influence of protein bulk properties on membrane surface coverage during immobilization. Colloids Surf B Biointerfaces 2016; 143:309-317. [DOI: 10.1016/j.colsurfb.2016.03.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
14
|
Andre J, Saleh D, Syldatk C, Hausmann R. Effect of spacer modification on enzymatic synthetic and hydrolytic activities of immobilized trypsin. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Cabaj J, Jędrychowska A, Świst A, Sołoducho J. Tyrosinase Biosensor for Antioxidants Based on Semiconducting Polymer Support. ELECTROANAL 2016. [DOI: 10.1002/elan.201500523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Laccase biosensor based on low temperature co-fired ceramics for the permanent monitoring of water solutions. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Sahin S, Ozmen I, Kir E. Purification, immobilization, and characterization of protease from localBacillus subtilisM-11. ASIA-PAC J CHEM ENG 2015. [DOI: 10.1002/apj.1868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Selmihan Sahin
- Department of Chemistry, Art and Science Faculty; Suleyman Demirel University; Cunur Isparta 32260 Turkey
| | - Ismail Ozmen
- Department of Chemistry, Art and Science Faculty; Suleyman Demirel University; Cunur Isparta 32260 Turkey
| | - Esengul Kir
- Department of Chemistry, Art and Science Faculty; Suleyman Demirel University; Cunur Isparta 32260 Turkey
| |
Collapse
|
18
|
Gasser CA, Ammann EM, Shahgaldian P, Corvini PFX. Laccases to take on the challenge of emerging organic contaminants in wastewater. Appl Microbiol Biotechnol 2014; 98:9931-52. [PMID: 25359481 DOI: 10.1007/s00253-014-6177-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
The removal of emerging organic contaminants from municipal wastewater poses a major challenge unsatisfactorily addressed by present wastewater treatment processes. Enzyme-catalyzed transformation of emerging organic contaminants (EOC) has been proposed as a possible solution to this major environmental issue more than a decade ago. Especially, laccases gained interest in this context in recent years due to their broad substrate range and since they only need molecular oxygen as a cosubstrate. In order to ensure the stability of the enzymes and allow their retention and reuse, either immobilization or insolubilization of the biocatalysts seems to be the prerequisite for continuous wastewater treatment applications. The present review summarizes the research conducted on EOC transformation with laccases and presents an overview of the possible immobilization techniques. The goal is to assess the state of the art and identify the next necessary steps that have to be undertaken in order to implement laccases as a tertiary wastewater treatment process in sewage treatment plants.
Collapse
Affiliation(s)
- Christoph A Gasser
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz, CH-4132, Switzerland
| | | | | | | |
Collapse
|
19
|
Jędrychowska A, Cabaj J, Świst A, Sołoducho J. Electrochemical laccase sensor based on 3-methylthiophene/3-thiopheneacetic acid/bis(3,4-ethylenedioxythiophene)-N-nonylacridone as a new polymer support. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Klein MP, Fallavena LP, Schöffer JDN, Ayub MA, Rodrigues RC, Ninow JL, Hertz PF. High stability of immobilized β-d-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydr Polym 2013; 95:465-70. [DOI: 10.1016/j.carbpol.2013.02.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/30/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|
21
|
Talbert JN, Hotchkiss JH. Chemical modification of lactase for immobilization on carboxylic acid-functionalized microspheres. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.740020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Kroll S, Brandes C, Wehling J, Treccani L, Grathwohl G, Rezwan K. Highly efficient enzyme-functionalized porous zirconia microtubes for bacteria filtration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8739-47. [PMID: 22827536 DOI: 10.1021/es3006496] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In contrast to polymer membranes, ceramic membranes offer considerable advantages for safe drinking water provision due to their excellent chemical, thermal, and mechanical endurance. In this study, porous ceramic microtubes made of yttria stabilized zirconia (YSZ) are presented, which are conditioned for bacteria filtration by immobilizing lysozyme as an antibacterial enzyme. In accordance with determined membrane pore sizes of the nonfunctionalized microtube of ≤200 nm, log reduction values (LRV) of nearly 3 (i.e., bacterial retention of 99.9%) were obtained for bacterial retention studies using gram-positive model bacterium Micrococcus luteus. Immobilization studies of lysozyme on the membrane surface reveal an up to six times higher lysozyme loading for the covalent immobilization route as compared to unspecific immobilization. Antibacterial activity of lysozyme-functionalized microtubes was assessed by qualitative agar plate test using Micrococcus luteus as substrate showing that both the unspecific and the covalent lysozyme immobilization enhance the microtubes' antibacterial properties. Quantification of the enzyme activity at flow conditions by photometric assays reveals that the enzyme activities of lysozyme-functionalized microtubes depend strongly on applied flow rates. Intracapillary feeding of bacteria solution and higher flow rates lead to reduced enzyme activities. In consideration of different applied flow rates in the range of 0.2-0.5 mL/min, the total lysozyme activity increases by a factor of 2 for the covalent immobilization route as compared to the unspecific binding. Lysozyme leaching experiments at flow conditions for 1 h show a significant higher amount of washed-out lysozyme (factor 1.7-3.4) for the unspecific immobilization route when compared to the covalent route where the initial level of antibacterial effectiveness could be achieved by reimmobilization with lysozyme. The presented platform is highly promising for sustainable bacteria filtration.
Collapse
Affiliation(s)
- Stephen Kroll
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Mahoney KW, Talbert JN, Goddard JM. Effect of polyethylene glycol tether size and chemistry on the attachment of lactase to polyethylene films. J Appl Polym Sci 2012. [DOI: 10.1002/app.37622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Talbert JN, Goddard JM. Enzymes on material surfaces. Colloids Surf B Biointerfaces 2012; 93:8-19. [DOI: 10.1016/j.colsurfb.2012.01.003] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/23/2011] [Accepted: 01/03/2012] [Indexed: 12/11/2022]
|
25
|
Jochems P, Satyawali Y, Van Roy S, Doyen W, Diels L, Dejonghe W. Characterization and optimization of β-galactosidase immobilization process on a mixed-matrix membrane. Enzyme Microb Technol 2011; 49:580-8. [DOI: 10.1016/j.enzmictec.2011.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
26
|
Functionalized electrospun mats from styrene–maleic anhydride copolymers for immobilization of acetylcholinesterase. Eur Polym J 2010. [DOI: 10.1016/j.eurpolymj.2010.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Chun HS, Choi EH, Chang HJ, Choi SW, Eremin SA. A fluorescence polarization immunoassay for the detection of zearalenone in corn. Anal Chim Acta 2009; 639:83-9. [DOI: 10.1016/j.aca.2009.02.048] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 11/26/2022]
|
28
|
Diano N, Grano V, Rossi S, Bencivenga U, Portaccio M, Amato U, Carfora F, Lepore M, Gaeta FS, Mita DG. Hollow-Fiber Enzyme Reactor Operating under Nonisothermal Conditions. Biotechnol Prog 2008; 20:457-66. [PMID: 15058990 DOI: 10.1021/bp034197l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A hollow-fiber enzyme reactor, operating under isothermal and nonisothermal conditions, was built employing a polypropylene hollow fiber onto which beta-galactosidase was immobilized. Hexamethylenediamine and glutaraldehyde were used as spacer and coupling agent, respectively. Glucose production was studied as a function of temperature, substrate concentration, and size of the transmembrane temperature gradient. The actual average temperature differences across the polypropylene fiber, to which reference was done to evaluate the effect of the nonisothermal conditions, were calculated by means of a mathematical approach, which made it possible to know, using computer simulation, the radial and axial temperature profiles inside the bioreactor and across the membrane. Percent activity increases, proportional to the size of the temperature gradients, were found when the enzyme activities under nonisothermal conditions were compared to those measured under comparable isothermal conditions. Percent reductions of the production times, proportional to the applied temperature gradients, were also calculated. The advantage of employing nonisothermal bioreactors in biotechnological industrial process was discussed.
Collapse
Affiliation(s)
- Nadia Diano
- Institute of Genetics and Biophysics A. Buzzati Traverso" of CNR, Via G. Marconi 12, 80125 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Santos JC, Mijone PD, Nunes GFM, Perez VH, de Castro HF. Covalent attachment of Candida rugosa lipase on chemically modified hybrid matrix of polysiloxane–polyvinyl alcohol with different activating compounds. Colloids Surf B Biointerfaces 2008; 61:229-36. [PMID: 17889514 DOI: 10.1016/j.colsurfb.2007.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/01/2007] [Accepted: 08/15/2007] [Indexed: 11/19/2022]
Abstract
Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L(-1)h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR).
Collapse
Affiliation(s)
- Julio C Santos
- Engineering School of Lorena-University of São Paulo, PO Box 116, Lorena 12-602.810, SP, Brazil
| | | | | | | | | |
Collapse
|
30
|
Rasmussen CD, Andersen JET, Zachau‐Christiansen B. Improved Performance of the Potentiometric Biosensor for the Determination of Creatinine. ANAL LETT 2007. [DOI: 10.1080/00032710600952341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Immobilization of lipase by filtration into a specially designed microstructure in the CA/PTFE composite membrane. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Portaccio M, Di Martino S, Maiuri P, Durante D, De Luca P, Lepore M, Bencivenga U, Rossi S, De Maio A, Mita D. Biosensors for phenolic compounds: The catechol as a substrate model. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Ye P, Xu ZK, Wu J, Innocent C, Seta P. Entrusting poly(acrylonitrile-co-maleic acid) ultrafiltration hollow fiber membranes with biomimetic surfaces for lipase immobilization. JOURNAL OF MOLECULAR CATALYSIS B: ENZYMATIC 2006; 40:30-37. [DOI: 10.1016/j.molcatb.2006.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Vasileva N, Godjevargova T, Konsulov V, Simeonova A, Turmanova S. Behavior of immobilized glucose oxidase on membranes from polyacrylonitrile and copolymer of methylmethacrylate-dichlorophenylmaleimide. J Appl Polym Sci 2006. [DOI: 10.1002/app.24221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Attanasio A, Diano N, Grano V, Sicuranza S, Rossi S, Bencivenga U, Fraconte L, Di Martino S, Canciglia P, Mita DG. Nonisothermal bioreactors in the treatment of vegetation waters from olive oil: laccase versus syringic acid as bioremediation model. Biotechnol Prog 2005; 21:806-15. [PMID: 15932260 DOI: 10.1021/bp0495724] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laccase from Trametes versicolor was immobilized by diazotization on a nylon membrane grafted with glycidil methacrylate, using phenylenediamine as spacer and coupling agent. The behavior of these enzyme derivatives was studied under isothermal and nonisothermal conditions by using syringic acid as substrate, in view of the employment of these membranes in processes of detoxification of vegetation waters from olive oil mills. The pH and temperature dependence of catalytic activity under isothermal conditions has shown that these membranes can be usefully employed under extreme pH and temperatures. When employed under nonisothermal conditions, the membranes exhibited an increase of catalytic activity linearly proportional to the applied transmembrane temperature difference. Percentage activity increases ranging from 62% to 18% were found in the range of syringic acid concentration from 0.02 to 0.8 mM, when a difference of 1 degrees C was applied across the catalytic membrane. Because the percentage activity increase is strictly related to the reduction of the production times, the technology of nonisothermal bioreactors has been demonstrated to be an useful tool also in the treatment of vegetation waters from olive oil mills.
Collapse
Affiliation(s)
- Angelina Attanasio
- Department of Experimental Medicine, Faculty of Medicine and Surgery, Second University of Naples, Via S.M. di Costantinopoli 16, 80136 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Samoshina NM, Samoshin VV. The Michaelis constants ratio for two substrates with a series of fungal (mould and yeast) β-galactosidases. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Portaccio M, De Luca P, Durante D, Grano V, Rossi S, Bencivenga U, Lepore M, Mita DG. Modulation of the catalytic activity of free and immobilized peroxidase by extremely low frequency electromagnetic fields: dependence on frequency. Bioelectromagnetics 2005; 26:145-52. [PMID: 15672368 DOI: 10.1002/bem.20059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A study of the influence of electromagnetic fields (EMF) of various frequencies, from 50 up to 400 Hz, on the catalytic activity of soluble and insoluble horseradish peroxidase (POD) was carried out. To simulate the conditions in which the enzyme operates in vivo, the POD was immobilized by entrapment on a gelatin membrane or by covalent attachment on a nylon graft membrane. The rate of inactivation of the soluble POD was found to exhibit positive and negative interactions with the 1 mT applied magnetic field, with an optimum positive effect at 130 Hz. The immobilized PODs, on the contrary, do not exhibit negative interactions, but show a maximum positive interaction at 150 Hz when entrapped and at 170 Hz when covalently attached. At 50 Hz and at frequencies higher than 250 Hz no effects were observed with insoluble POD. The optimum frequency of positive interaction between the EMF and the catalytic activity of the insoluble enzymes is shifted with respect to that of the soluble enzymes towards higher frequencies, the size of the shifts being dependent on the intensity of the physical forces involved in the immobilization process.
Collapse
Affiliation(s)
- M Portaccio
- Department of Experimental Medicine, Faculty of Medicine and Surgery, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lepore M, Portaccio M, Tommasi ED, Luca PD, Bencivenga U, Maiuri P, Mita D. Glucose concentration determination by means of fluorescence emission spectra of soluble and insoluble glucose oxidase: some useful indications for optical fibre-based sensors. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcatb.2004.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
De Maio A, El-Masry M, De Luca P, Grano V, Rossi S, Pagliuca N, Gaeta F, Portaccio M, Mita D. Influence of the spacer length on the activity of enzymes immobilised on nylon/polyGMA membranes. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(02)00230-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|