1
|
Sharma P, Sharma K, Chadha P. DNA Damage and Repair in different Tissues of Fresh Water Fish, <i>Channa punctata</i> after Acute and Subchronic Exposure to bisphenol A. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/28352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study was conducted to investigate the genotoxic effect of Bis-Phenol A (BPA) after acute and subchronic exposure in different tissues of Channa punctata. The recovery in DNA damage was also ascertained after 30 days of cessation of exposure. Fish were exposed to different sublethal concentrations of BPA along with two controls i.e., with positive (acetone) and negative (water) controls for 96h (acute exposure) and 60 days (subchronic exposure) and after that fish were allowed to recover for 30 days in freshwater. The blood, liver, and gill tissue samples were collected at 24, 48, 72 and 96h for acute exposure and after 20, 40, and 60 days post-exposure for subchronic exposure. Exposed groups showed significantly higher DNA damage in both acute and subchronic exposure as compared to control groups. In the case of acute exposure, the highest damage was observed at 24 h of exposure followed by a decline in the value of all the parameters, while in the later hours of exposure these values further increased. On the other hand, in the case of sub-chronic exposure, the highest damage was observed after 60 days of exposure. Recovery experiment showed a decrease in the values of all the parameters studied. The result of the study clearly showed that BPA caused DNA damage in Channa punctata after acute as well as subchronic exposure.
Collapse
|
2
|
Almeida J, Ferreira T, Santos S, Pires MJ, da Costa RMG, Medeiros R, Bastos MM, Neuparth MJ, Faustino-Rocha AI, Abreu H, Pereira R, Pacheco M, Gaivão I, Rosa E, Oliveira PA. The Red Seaweed Grateloupia turuturu Prevents Epidermal Dysplasia in HPV16-Transgenic Mice. Nutrients 2021; 13:nu13124529. [PMID: 34960081 PMCID: PMC8707361 DOI: 10.3390/nu13124529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The role of dietary profiles in promoting or reducing the risk of multiple types of cancer is increasingly clear, driving the search for balanced foods and nutraceuticals. The red seaweed Grateloupia turuturu has been used as human food showing a balanced nutritional profile. This study aims to test in vivo chemopreventive effects of G. turuturu against cutaneous pre-malignant lesions in transgenic mice for the human papillomavirus type 16 (HPV16). Forty-four female HPV+/− or HPV−/− mice received a standard diet or were supplemented with 10% G. turuturu for 22 consecutive days. Cutaneous lesions (ear and chest skin) were identified histologically. Complementarily, the weights and histology of internal organs as well as blood biochemical and DNA integrity parameters were also assessed. G. turuturu consistently reduced the incidence of epidermal dysplasia induced by HPV16 on both cutaneous sites. Moreover, biochemical, DNA integrity and histological analyses confirmed G. turuturu edibility as no signs of toxicity were found. Dietary supplementation with G. turuturu is an effective and safe chemopreventive strategy in this model.
Collapse
Affiliation(s)
- José Almeida
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Tiago Ferreira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Susana Santos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Maria J. Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
| | - Rui M. Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
- Maranhão Tumour and DNA Biobank (BTMA), Post-graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
- Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- LPCC Research Department, Portuguese League against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Margarida M.S.M. Bastos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Maria J. Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
- Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Advanced Polytechnic and University Cooperative (CESPU), 4585 Gandra, Portugal
| | - Ana I. Faustino-Rocha
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Department of Zootechnics, School of Sciences and Technology, 7000-671 Évora, Portugal
| | - Helena Abreu
- ALGAplus, Lda., PCI-Creative Science Park, 3830-352 Ílhavo, Portugal; (H.A.); (R.P.)
| | - Rui Pereira
- ALGAplus, Lda., PCI-Creative Science Park, 3830-352 Ílhavo, Portugal; (H.A.); (R.P.)
- A4F Algae for Future, Estrada do Paço do Lumiar, Campus do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - Mário Pacheco
- Portugal CESAM—Centre for Environmental and Marine Studies and Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Isabel Gaivão
- Department of Genetic and Biotechnology, CECAV, UTAD, 5001-801 Vila Real, Portugal;
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
- Department of Agronomy, UTAD, 5001-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (J.A.); (T.F.); (S.S.); (M.J.P.); (A.I.F.-R.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), 5001-801 Vila Real, Portugal; (R.M.G.d.C.); (E.R.)
- Correspondence: ; Tel.: +351-259350000; Fax: +351-259325058
| |
Collapse
|
3
|
Ng CY, Amini F, Ahmad Bustami N, Tan ESS, Tan PY, Mitra SR. Association of DNA damage with vitamin D and hair heavy metals of obese women. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Sharma P, Chadha P. Bisphenol A induced toxicity in blood cells of freshwater fish Channa punctatus after acute exposure. Saudi J Biol Sci 2021; 28:4738-4750. [PMID: 34354462 PMCID: PMC8324972 DOI: 10.1016/j.sjbs.2021.04.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/24/2023] Open
Abstract
The widespread use of bisphenol A (BPA) has led to its ubiquity in the natural environment. It is extensively incorporated into different industrial products and is associated with deleterious health effects on both public and wildlife. The current trial was conducted to determine the toxic potential of bisphenol A using various parameters viz haematological, biochemical, and cytological in freshwater fish Channa punctatus. For this purpose, fish were exposed to 1.81 mg/l (1/4 of LC50) and 3.81 mg/l (1/2 of LC50) of BPA along with positive (acetone) and negative controls (water) for 96 h. The blood samples were collected at 24, 48, 72, and 96 h post-exposure. Compared to the control group, fish after acute exposure to BPA showed a significant decrease in HB content, number of red blood cells, PCV values whereas a significant increase in WBCs count was recorded with an increase in the exposure period. Besides, oxidative stress (determined as malondialdehyde content) increased as BPA concentration increased. Further, the activity of different antioxidant enzymes like catalase, and superoxide dismutase decreased significantly after treatment. Results also showed significantly increased frequency of morphological alterations, nuclear changes, and increased DNA damage potential of BPA in red blood cells. Further structural analysis of erythrocytes in maximally damaged group using Scanning Electron Microscopy was performed. The study concludes that BPA exhibits genotoxic activity and oxidative stress could be one of the mechanisms leading to genetic toxicity.
Collapse
Affiliation(s)
- Prince Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
5
|
Mehra S, Chadha P. Naphthalene-2-sulfonate induced toxicity in blood cells of freshwater fish Channa punctatus using comet assay, micronucleus assay and ATIR-FTIR approach. CHEMOSPHERE 2021; 265:129147. [PMID: 33302202 DOI: 10.1016/j.chemosphere.2020.129147] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Present inquisition was undertaken to evaluate the genotoxicity of naphthalene-2-sulfonate (2NS), a sulfonated aromatic compound and a momentous intermediate involved in the synthesis of dyes and surfactants, in fresh water fish, Channa punctatus. After LC50 determination, two sublethal concentrations i.e. 2.38 g/15 g b.w. (1/4 of LC50) and 4.77 g/15 g b.w. (1/2 of LC50) were selected for studying acute exposure. For evaluating sub chronic exposure 1/10th (0.238 g/L) and 1/20th (0.119 g/L) of safe application rate (SAR) were reckoned. Blood samples were collected after 24, 48, 72, and 96 h exposure period to study acute effect, and after 30 and 60 days exposure period for sub-chronic effect. Symbolic elevation in time and dose dependent DNA damage was observed by comet assay as well as micronucleus test revealing maximum damage after 60 days of exposure. After cessation of exposure to 2NS, evident recovery was observed after 30 days. Along with comet assay and micronucleus test, spectroscopic evaluation of DNA damage was also noted using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR). The biomolecular range (800 cm-1 - 1800cm-1) in lyophilized red blood cell's extracted from 60 days exposed as well as control group exhibit significant alterations in their nucleic acid indicated through multivariate analysis i.e. Principal Component Analysis (PCA). Further structural analysis of erythrocytes in maximally damaged group using Scanning Electron Microscopy was performed. Thus the study proposed the genotoxic impact of 2NS which is further supported by other toxicity markers like ATR-FTIR and Scanning Electron Microscopy.
Collapse
Affiliation(s)
- Sukanya Mehra
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
6
|
Chen F, Pei S, Wang X, Zhu Q, Gou S. Emerging JWA-targeted Pt(IV) prodrugs conjugated with CX-4945 to overcome chemo-immune-resistance. Biochem Biophys Res Commun 2019; 521:753-761. [PMID: 31703842 DOI: 10.1016/j.bbrc.2019.10.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Two Pt(IV) prodrugs, Cx-platin-Cl and Cx-DN604-Cl, derived from the conjugation of cisplatin or DN604 with a CK2 inhibitor CX-4945, were constructed to suppress DNA damage repair-related elements. During in vitro biological studies, the Pt(IV) prodrugs had excellent cytotoxicity superior to cisplatin and DN604 to reverse drug resistance. Further mechanistic investigations revealed that the powerful anticancer activity of Cx-platin-Cl and Cx-DN604-Cl arisen from its suppression of JWA-XRCC1-mediated single-strand breaks repair. The emerging Pt(IV) prodrugs inhibited the growth of the xenografted tumors of C57BL6 and nude mice apart from JWA-/- mice. Between them, Cx-platin-Cl augmented the infiltration and proliferation of Teff cells, alleviated the recruitment of Treg cells. The results provided compelling preclinical support that Cx-platin-Cl and Cx-DN604-Cl could reverse chemo-immune resistance via decaying JWA-XRCC1-mediated SSBR and immunosuppression, improving the development of emerging Pt(IV) candidate as a potential immunotherapeutic agent for cancer resistant prevention.
Collapse
Affiliation(s)
- Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Sinan Pei
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Xing Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Qian Zhu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
7
|
Sharma S, Singh P, Chadha P, Saini HS. Toxicity assessment of chlorpyrifos on different organs of rat: exploitation of microbial-based enzymatic system for neutralization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29649-29659. [PMID: 31401803 DOI: 10.1007/s11356-019-06140-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
This study was aiming to treat the chlorpyrifos (CPF), an organophosphate (OP) pesticide with microbial enzyme extract, and assess the toxicity effects of CPF before/after its treatment on the integrity of DNA (deoxyribonucleic acid) and the activities of enzymes AChE (acetylcholinestrase), GST (glutathione S-transferase), SOD (superoxide dismutase), CAT (catalase), and MDA (malondialdehyde) in different organs of rat. The untreated CPF in rat significantly increased the DNA damage and decreased the activities of all these enzymes. Among all the organs studied, the liver was the most affected organ. Further, CPF was treated with an OPH (organophosphate hydrolase) enzyme obtained from CPF degrading bacterial laboratory isolate Pseudomonas sp. (ChlD) to neutralize the toxicity of CPF. The crude intracellular enzyme extract degraded > 90% of added CPF and > 80% of its toxic intermediate 3,5,6-trichloropyridinol (TCP) which resulted in > 80% reduction of CPF toxicity in different organs of rat. Thus, this study not only illustrated the adverse effect of OPs on mammalian system but also suggested a highly efficient and eco-friendly way to remove the harmful pesticide from the environment and agricultural food products which may help to reduce the exposure of humans to such lethal toxicants.
Collapse
Affiliation(s)
- Shelly Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143 005, India.
| | - Partapbir Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143 005, India
| | | |
Collapse
|
8
|
May S, Hirsch C, Rippl A, Bohmer N, Kaiser JP, Diener L, Wichser A, Bürkle A, Wick P. Transient DNA damage following exposure to gold nanoparticles. NANOSCALE 2018; 10:15723-15735. [PMID: 30094453 DOI: 10.1039/c8nr03612h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to their interesting physicochemical properties, gold nanoparticles (Au-NPs) are the focus of increasing attention in the field of biomedicine and are under consideration for use in drug delivery and bioimaging, or as radiosensitizers and nano-based vaccines. Thorough evaluation of the genotoxic potential of Au-NPs is required, since damage to the genome can remain undetected in standard hazard assessments. Available genotoxicity data is either limited or contradictory. Here, we examined the influence of three surface modified 3-4 nm Au-NPs on human A549 cells, according to the reactive oxygen species (ROS) paradigm. After 24 h of Au-NP treatment, nanoparticles were taken up by cells as agglomerates; however, no influence on cell viability or inflammation was detected. No increase in ROS production was observed by H2-DCF assay; however, intracellular glutathione levels reduced over time, indicating oxidative stress. All three types of Au-NPs induced DNA damage, as detected by alkaline comet assay. The strongest genotoxic effect was observed for positively charged Au-NP I. Further analysis of Au-NP I by neutral comet assay, fluorimetric detection of alkaline DNA unwinding assay, and γH2AX staining, revealed that the induced DNA lesions were predominantly alkali-labile sites. As highly controlled repair mechanisms have evolved to remove a wide range of DNA lesions with great efficiency, it is important to focus on both acute cyto- and genotoxicity, alongside post-treatment effects and DNA repair. We demonstrate that Au-NP-induced DNA damage is largely repaired over time, indicating that the observed damage is of transient nature.
Collapse
Affiliation(s)
- Sarah May
- Particles-Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sharma P, Chadha P, Saini HS. Tetrabromobisphenol A induced oxidative stress and genotoxicity in fish Channa punctatus. Drug Chem Toxicol 2018. [DOI: 10.1080/01480545.2018.1441864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Prince Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
10
|
Sasaki YF. The Power of the Comet Assay to Detect Low Level Genotoxicity and DNA Repair Factors Affecting its Power. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/mojt.2017.03.00049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Sharma M, Chadha P. 4-Nonylphenol induced DNA damage and repair in fish, Channa punctatus after subchronic exposure. Drug Chem Toxicol 2016; 40:320-325. [DOI: 10.1080/01480545.2016.1223096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Madhu Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
12
|
Pu X, Wang Z, Klaunig JE. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells. ACTA ACUST UNITED AC 2015; 65:3.12.1-3.12.11. [DOI: 10.1002/0471140856.tx0312s65] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinzhu Pu
- Biomolecular Research Center, Boise State University Boise Idaho
| | - Zemin Wang
- Department of Environmental Health, Indiana University Bloomington Indiana
| | - James E. Klaunig
- Department of Environmental Health, Indiana University Bloomington Indiana
| |
Collapse
|
13
|
Di Francesco AM, Cusano G, Franzese O, Orienti I, Falconi M, Vesci L, Riccardi R. Resistance to the atypical retinoid ST1926 in SK-N-AS cells selected the subline rAS-ST with enhanced sensitivity to ATRA mediated by not conventional mechanisms: DNA damage, G2 accumulation and late telomerase inhibition. Toxicol In Vitro 2015; 29:1628-38. [PMID: 26096597 DOI: 10.1016/j.tiv.2015.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE 13-cis-Retinoic acid represents a well-established clinical strategy for the management of minimal residual disease of high risk neuroblastoma (NB) patients. However, the clinical efficacy on the overall survival of these patients remains limited, addressing the issue of better understanding the molecular mechanisms and intracellular pathways mediating Retinoic Acid (RA) clinical effects. EXPERIMENTAL APPROACH This work investigates the mechanism underlying the sensitivity/resistance to RA in NB by taking advantage of the paired SK-N-AS/rAS-ST cells showing different responsivity to ATRA. The subline rAS-ST was selected by inducing resistance to the novel retinoid ST1926 in the NB SK-N-AS cell line. KEY RESULTS Resistance to ST1926 was neither dependent on cellular uptake nor on multi-drug resistance phenotype. Rather, both delayed/lower DNA damage and apoptosis appeared involved in reduced sensitivity of rAS-ST cells to ST1926. This subline showed enhanced responsivity to ATRA compared to the wt counterpart, that was associated with enhanced RARα/β expression, DNA damage, G2 accumulation, PI3K/AKT pathway inhibition, cellular differentiation and delayed telomerase inhibition, without involvement of either p27/p53 or caspase-mediated apoptosis. CONCLUSIONS AND IMPLICATIONS The present data add important information to the understanding of RA sensitivity in NB, providing further insights towards a more efficacious clinical use of this drug.
Collapse
Affiliation(s)
- A M Di Francesco
- Division of Paediatric Oncology, Catholic University of Rome, Rome, Italy.
| | - G Cusano
- Division of Paediatric Oncology, Catholic University of Rome, Rome, Italy
| | - O Franzese
- Department of Systems Medicine, Section of Pharmacology, University of Rome "Tor Vergata", Italy
| | - I Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - M Falconi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - L Vesci
- Research & Development, Sigma Tau, Pomezia, Rome, Italy
| | - R Riccardi
- Division of Paediatric Oncology, Catholic University of Rome, Rome, Italy
| |
Collapse
|
14
|
Sakaki H, Kakehi M, Sadamoto K, Nemoto S, Kurata M. In vitro comet assay in cultured human corneal epithelial cells. ACTA ACUST UNITED AC 2015. [DOI: 10.2131/fts.2.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hideyuki Sakaki
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| | - Masaki Kakehi
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| | - Kazuyo Sadamoto
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| | - Shingo Nemoto
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| | - Masaaki Kurata
- Toxicological Research Laboratory, Senju Pharmaceutical Co., Ltd
| |
Collapse
|
15
|
Hagio S, Furukawa S, Abe M, Kuroda Y, Hayashi S, Ogawa I. Repeated dose liver micronucleus assay using adult mice with multiple genotoxicity assays concurrently performed as a combination test. J Toxicol Sci 2014; 39:437-45. [DOI: 10.2131/jts.39.437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Soichiro Hagio
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Masayoshi Abe
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Yusuke Kuroda
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Seigo Hayashi
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| | - Izumi Ogawa
- Biological Research Laboratories, Nissan Chemical Industries, Ltd
| |
Collapse
|
16
|
Liu XJ, Zeng FM, An J, Yu YX, Zhang XY, Elfarra AA. Cytotoxicity, genotoxicity, and mutagenicity of 1-chloro-2-hydroxy-3-butene and 1-chloro-3-buten-2-one, two alternative metabolites of 1,3-butadiene. Toxicol Appl Pharmacol 2013; 271:13-9. [PMID: 23643860 PMCID: PMC3714330 DOI: 10.1016/j.taap.2013.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 11/29/2022]
Abstract
The cytotoxicity, genotoxicity, and mutagenicity of 1-chloro-2-hydroxy-3-butene (CHB), a known in vitro metabolite of the human carcinogen 1,3-butadiene, have not previously been investigated. Because CHB can be bioactivated by alcohol dehydrogenases to yield 1-chloro-3-buten-2-one (CBO), a bifunctional alkylating agent that caused globin-chain cross-links in erythrocytes, in the present study we investigated the cytotoxic and genotoxic potential of CHB and CBO in human normal hepatocyte L02 cells using the MTT assay, the relative cloning efficiency assay and the comet assay. We also investigated the mutagenic potential of these compounds with the Ames test using Salmonella strains TA1535 and TA1537. The results provide clear evidence for CHB and CBO being both cytotoxic and genotoxic with CBO being approximately 100-fold more potent than CHB. Interestingly, CHB generated both single-strand breaks and alkali-labile sites on DNA, whereas CBO produced only alkali-labile sites. CHB did not directly result in DNA breaks, whereas CBO was capable of directly generating breaks on DNA. Interestingly, both compounds did not induce DNA cross-links as examined by the comet assay. The Ames test results showed that CHB induced point mutation but not frameshift mutation, whereas the toxic effects of CBO made it difficult to reliably assess the mutagenic potential of CBO in the two strains. Collectively, the results suggest that CHB and CBO may play a role in the mutagenicity and carcinogenicity of 1,3-butadiene.
Collapse
Key Words
- %Tail DNA
- 1,2,3,4-diepoxybutane
- 1,3-Butadiene
- 1,3-butadiene
- 1-Chloro-2-hydroxy-3-butene
- 1-Chloro-3-buten-2-one
- 1-chloro-2-hydroxy-3-butene
- 1-chloro-3-buten-2-one
- 3,4-epoxy-1,2-butanediol
- 3,4-epoxy-1-butene
- 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
- ALS
- BD
- CBO
- CHB
- Comet assay
- DEB
- EB
- EBD
- FBS
- GSH
- Genotoxicity
- MMS
- MTT
- Mutagenicity
- RCE
- SD
- SSB
- alkali-labile sites
- fetal bovine serum
- glutathione
- methyl methanesulfonate
- percentage of DNA in the tail
- relative cloning efficiency
- single-strand breaks
- standard deviation
Collapse
Affiliation(s)
- Xin-Jie Liu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Fang-Mao Zeng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Ying-Xin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xin-Yu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Adnan A. Elfarra
- Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Duez P, Dehon G, Dubois J. Validation of raw data measurements in the comet assay. Talanta 2012; 63:879-86. [PMID: 18969513 DOI: 10.1016/j.talanta.2003.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Revised: 12/17/2003] [Accepted: 12/22/2003] [Indexed: 11/28/2022]
Abstract
General guidance recently proposed for the comet assay concluded that "the method should be adjusted scientifically at each laboratory to obtain valid and reproducible results". However, the comet widely used metrics, Tail DNA and Tail moment, are actually based on a ratio of fluorescence signals, a relative and semi-quantitative measurement, and are quite difficult to validate according to classical criteria. As the validation of analytical methods increasingly becomes an absolute requirement in many fields, this paper investigates a scheme to study the variability of raw data measurements for computer-assisted comet measurement, including the between-operators reproducibility. In the overall analysis process, we show that the image acquisition step gives the highest variability, notably for the Tail length parameter that negatively influences the Olive tail moment. However, when the operator interacts with the system to correct obviously mistaken measurements, the reproducibility is sensibly improved. For the metrics Tail DNA and Olive tail moment, the total variability in measurements for a panel of comets quantified by different operators in real conditions is about 4%. The proposed validation scheme allows to assess the measurement process and to verify if there are any major difference between trained operators, an essential requirement for long-term investigations.
Collapse
Affiliation(s)
- P Duez
- Laboratoire de Pharmacognosie et de Bromatologie, Université Libre de Bruxelles, CP 205/9, Bd du Triomphe, 1050 Bruxelles, Belgium
| | | | | |
Collapse
|
18
|
DNA damage induced by three major metabolites of 1,3-butadiene in human hepatocyte L02 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:240-5. [DOI: 10.1016/j.mrgentox.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/24/2012] [Accepted: 06/02/2012] [Indexed: 11/18/2022]
|
19
|
Markad VL, Kodam KM, Ghole VS. Effect of fly ash on biochemical responses and DNA damage in earthworm, Dichogaster curgensis. JOURNAL OF HAZARDOUS MATERIALS 2012; 215-216:191-198. [PMID: 22410726 DOI: 10.1016/j.jhazmat.2012.02.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Fly ash is receiving alarming attention due to its hazardous nature, widespread usage, and the manner of disposal; leading to environmental deterioration. We carried out bio-monitoring and risk assessment of fly ash in earthworms as a model system. Dichogaster curgensis were allowed to grow in presence or absence of fly ash (0-40%, w/w) for 1, 7, and 14 d. The biochemical markers viz. catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferase (GST), and malondialdehyde (MDA) level were measured. The comet and neutral red retention assays were performed on earthworm coelomocytes to assess genetic damages and lysosomal membrane stability. The results revealed increased activities of SOD, GPx, GST, and MDA level in a dose-response manner while GR activity was decreased with increasing concentrations of fly ash. No obvious trend was observed in the CAT activity and fly ash concentration. Lysosomal membrane destabilization was noted in the earthworms exposed to 5% and more fly ash concentration in a dose and time dependent manner. The comet assay demonstrated that the fly ash induced DNA damage and DNA-protein crosslinks in earthworm coelomocytes.
Collapse
Affiliation(s)
- Vijaykumar L Markad
- Division of Biochemistry, Department of Chemistry, University of Pune, Pune 411007, India
| | | | | |
Collapse
|
20
|
Vincent-Hubert F, Heas-Moisan K, Munschy C, Tronczynski J. Mutagenicity and genotoxicity of suspended particulate matter in the Seine river estuary. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 741:7-12. [DOI: 10.1016/j.mrgentox.2011.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/03/2011] [Accepted: 09/25/2011] [Indexed: 10/15/2022]
|
21
|
Wen Y, Zhang PP, An J, Yu YX, Wu MH, Sheng GY, Fu JM, Zhang XY. Diepoxybutane induces the formation of DNA-DNA rather than DNA-protein cross-links, and single-strand breaks and alkali-labile sites in human hepatocyte L02 cells. Mutat Res 2011; 716:84-91. [PMID: 21893073 DOI: 10.1016/j.mrfmmm.2011.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 08/10/2011] [Accepted: 08/22/2011] [Indexed: 05/18/2023]
Abstract
1,3-Butadiene (BD) is an air pollutant and a known carcinogen. 1,2,3,4-Diepoxybutane (DEB), one of the major in vivo metabolites of BD, is considered the ultimate culprit of BD mutagenicity/carcinogenicity. DEB is a bifunctional alkylating agent, being capable of inducing the formation of monoalkylated DNA adducts and DNA cross-links, including DNA-DNA and DNA-protein cross-links (DPC). In the present study, we investigated DEB-caused DNA cross-links and breaks in human hepatocyte L02 cells using comet assay. With alkaline comet assay, it was observed that DNA migration increased with the increase of DEB concentration at lower concentrations (10-200μM); however, at higher concentrations (200-1000μM), DNA migration decreased with the increase of DEB concentration. This result indicated the presence of cross-links at >200μM, which was confirmed by the co-treatment experiments using the second genotoxic agents, tert-butyl hydroperoxide and methyl methanesulfonate. At 200μM, which appeared as a threshold, the DNA migration-retarding effect of cross-links was just observable by the co-treatment experiments. At <200μM, the effect of cross-links was too weak to be detected. The DEB-induced cross-links were determined to be DNA-DNA ones rather than DPC through incubating the liberated DNA with proteinase K prior to unwinding and electrophoresis. However, at the highest DEB concentration tested (1000μM), a small proportion of DPC could be formed. In addition, the experiments using neutral and weakly alkaline comet assays showed that DEB did not cause double-strand breaks, but did induce single-strand breaks (SSB) and alkali-labile sites (ALS). Since SSB and ALS are repaired more rapidly than cross-links, the results suggested that DNA-DNA cross-links, rather than DPC, were probably responsible for mutagenicity/carcinogenicity of DEB.
Collapse
Affiliation(s)
- Ying Wen
- Institute of Environmental Pollution and Health, Shanghai University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fikrová P, Stětina R, Hronek M, Hyšpler R, Tichá A, Zadák Z. Application of the comet assay method in clinical studies. Wien Klin Wochenschr 2011; 123:693-9. [PMID: 22024999 DOI: 10.1007/s00508-011-0066-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 08/04/2011] [Indexed: 12/21/2022]
Abstract
The comet assay or single-cell gel electrophoresis (SCGE) assay is now widely accepted as a standard method for assessing DNA damage in individual cells. It finds use in a broad variety of applications including human biomonitoring, genotoxicology, ecological monitoring and as a tool for investigation of DNA damage and repair in different cell types in response to a range of DNA-damaging agents. The comet assay should be eminently suitable for use in clinical practice since it is a relatively simple and inexpensive technique which requires only a few cells, and results can be obtained within a matter of hours. This method can be used in the study of cancer as well as in lifestyle and dietary studies. In cancer it is useful for measuring DNA damage before, throughout and after therapy (either radiotherapy or chemotherapy). Another use of this method is in lifestyle study, such as investigation of the effect on DNA of common human activities (e.g. smoking, or working with a potentially genotoxic agent). The final use of comet assay in this paper is dietary study. In this type of study we observe the effects of consumption of specific foods or supplements which may be protective for DNA against damage.
Collapse
Affiliation(s)
- Petra Fikrová
- Charles University, Department of Biological Sciences, Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Toyoizumi T, Ohta R, Nakagawa Y, Tazura Y, Kuwagata M, Noguchi S, Yamakage K. Use of the in vivo skin comet assay to evaluate the DNA-damaging potential of chemicals applied to the skin. Mutat Res 2011; 726:175-80. [PMID: 21944904 DOI: 10.1016/j.mrgentox.2011.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/05/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
The aim of the present study was to evaluate both sensitivity and specificity of an in vivo skin comet assay using chemically treated, hairless mouse dorsal skin as a model. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.0125-0.2%), 4-nitroquinoline-1-oxide (4NQO, 0.01-0.25%), mitomycin C (MMC, 0.0125-0.05%), benzo[a]pyrene (B[a]P, 0.25-2%), and 7,12-dimethylbenz[a]anthracene (DMBA, 0.25-1%) were each applied once to the dorsal skin of hairless male mice; after 3h, epidermal skin cells were isolated, and the alkaline comet assay was performed. The assay was performed after 24h for only the B[a]P and DMBA. Furthermore, B[a]P and DMBA were evaluated by alkaline comet assay using liver cells after both 3 and 24h. The mean percent of DNA (%DNA) in tail in the 0.05-0.2% MNNG and 0.1-0.25% 4NQO treatment groups was markedly higher than in the control group at 3h post-application. Although the mean %DNA values in the tail in the B[a]P and DMBA groups were the same as the controls at 3h post-application, the 2% B[a]P and 1% DMBA groups showed significantly higher values versus controls 24h after application. No significant increases in the mean %DNA in the tail were observed in the MMC group. No clear increases in %DNA in the tail were observed in the B[a]P and DMBA groups at 3 or 24h after application in the liver. These results suggest that the in vivo skin comet assay is able to accurately identify DNA-damaging potential with a skin-specific response and is a useful method to detect the DNA-damaging potential of genotoxic chemicals on the skin.
Collapse
|
24
|
Giri SK, Yadav A, Kumar A, Dev K, Gupta R, Aggarwal N, Seth N, Gautam SK. Association of GSTM1 and GSTT1 polymorphisms with DNA damage in coal-tar workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:4465-4469. [PMID: 21824642 DOI: 10.1016/j.scitotenv.2011.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 05/31/2023]
Abstract
DNA damage was evaluated by alkaline comet assay in peripheral blood lymphocytes of 115 coal-tar workers occupationally exposed to polycyclic aromatic hydrocarbons (PAHs) and 105 control subjects. The effect of polymorphisms of glutathione S-transferase (GST) genotypes on the DNA damage was assessed. The mean tail moment (TM) value in the coal-tar workers was significantly higher as compared to the control subjects (12.06 ± 0.55 versus 0.44 ± 0.31; P<0.05). No significant association (P>0.05) between the GSTT1 and GSTM1 genotypes and the TM values was found, however highest mean rank TM value was reported in GSTM1 null and GSTT1 null genotypes in both control and exposed subjects. Our results suggest that there is increased DNA damage in coal-tar workers due to PAHs exposure. Polymorphisms in GSTM1 and GSTT1 genes do not show significant effect (P>0.05) on DNA damage.
Collapse
Affiliation(s)
- Shiv Kumar Giri
- Department of Biotechnology, Kurukshetra University, Kurukshetra - 136119 (Haryana), India
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Carvalho V, Castanheira P, Madureira P, Ferreira SA, Costa C, Teixeira JP, Faro C, Vilanova M, Gama M. Self-assembled dextrin nanogel as protein carrier: controlled release and biological activity of IL-10. Biotechnol Bioeng 2011; 108:1977-86. [PMID: 21391205 DOI: 10.1002/bit.23125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/22/2023]
Abstract
Interleukin-10 (IL-10) is an anti-inflammatory cytokine, which active form is a non-covalent homodimer. Given the potential of IL-10 for application in various medical conditions, it is essential to develop systems for its effective delivery. In previous work, it has been shown that a dextrin nanogel effectively incorporated and stabilized rIL-10, enabling its release over time. In this work, the delivery system based on dextrin nanogels was further analyzed. The biocompatibility of the nanogel was comprehensively analyzed, through cytotoxicity (lactate dehydrogenase (LDH) release, MTS, Live, and Dead) and genotoxicity (comet) assays. The release profile of rIL-10 and its biological activity were evaluated in vivo, using C57BL/6 mice. Although able to maintain a stable concentration of IL-10 for at least 4 h in mice serum, the amount of protein released was rather low. Despite this, the amount of rIL-10 released from the complex was biologically active inhibiting TNF-α production, in vivo, by LPS-challenged mice. In spite of the significant stabilization achieved using the nanogel, rIL-10 still denatures rather quickly. An additional effort is thus necessary to develop an effective delivery system for this cytokine, able to release active protein over longer periods of time. Nevertheless, the good biocompatibility, the protein stabilization effect and the ability to perform as a carrier with controlled release suggest that self-assembled dextrin nanogels may be useful protein delivery systems.
Collapse
Affiliation(s)
- Vera Carvalho
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Millhouse S, Su YH, Zhang X, Wang X, Song BP, Zhu L, Oppenheim E, Fraser NW, Block TM. Evidence that herpes simplex virus DNA derived from quiescently infected cells in vitro, and latently infected cells in vivo, is physically damaged. J Neurovirol 2011; 16:384-98. [PMID: 20874012 DOI: 10.3109/13550284.2010.515651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using polymerase chain reaction (PCR) and alkaline gel electrophoresis, the authors show that, compared with DNA derived from virions used to establish infection, herpes simplex virus DNA derived from quiescently infected rat pheochromocytoma (PC12) cells in culture accumulates alkaline-labile lesions. That is, compared with equivalent amounts of virion DNA, viral DNA from nerve growth factor-differentiated long-term infected cells in culture is consistently 3 to 10 times more refractory to amplification by PCR. Despite using equal mole amounts of DNA isolated from quiescently infected cells (determined by quantitative Southern blots), DNA from quiescently infected cells could not be detected by PCR under conditions in which the virion-derived DNA was easily detected. Refractoriness to PCR was confirmed by analysis with a ligation-mediated PCR technique. The refractoriness was not the result of genomic circularization. The refractoriness was, however, related to the time that the quiescently infected cells had been maintained in culture. The refractoriness to PCR was taken as an indication that the viral DNA was damaged. This hypothesis was confirmed by showing that viral DNA from quiescently infected PC12 cells accumulated alkaline-labile DNA lesions, as determined by alkaline gel electrophoresis. The phenomenon was not limited to tissue culture, because viral DNA derived from the ganglia of latently infected mice is also 3 to 10 times more refractory to amplification than are equivalent amounts of virion-derived genomes. Taken together, these results represent the first evidence that herpes simplex virus DNA is physically damaged as a function of long-term infection. Implications for viral reactivation and pathogenesis are discussed.
Collapse
Affiliation(s)
- Scott Millhouse
- Drexel Institute for Biotechnology and Virology Research and Department of Microbiology and Immunology, College of Medicine, Drexel University, Doylestown, Pennsylvania 18901-2697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kawaguchi S, Nakamura T, Yamamoto A, Honda G, Sasaki YF. Is the comet assay a sensitive procedure for detecting genotoxicity? J Nucleic Acids 2010; 2010:541050. [PMID: 21052491 PMCID: PMC2967831 DOI: 10.4061/2010/541050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/09/2010] [Accepted: 10/04/2010] [Indexed: 11/29/2022] Open
Abstract
Although the Comet assay, a procedure for quantitating DNA damage in mammalian cells, is considered sensitive, it has never been ascertained that its sensitivity is higher than the sensitivity of other genotoxicity assays in mammalian cells. To determine whether the power of the Comet assay to detect a low level of genotoxic potential is superior to those of other genotoxicity assays in mammalian cells, we compared the results of Comet assay with those of micronucleus test (MN test). WTK1 human lymphoblastoid cells were exposed to methyl nitrosourea (MNU), ethyl nitrosourea (ENU), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), bleomycin (BLM), or UVC. In Comet assay, cells were exposed to each mutagen with (Comet assay/araC) and without (Comet assay) DNA repair inhibitors (araC and hydroxyurea). Furthermore, acellular Comet assay (acellular assay) was performed to determine how single-strand breaks (SSBs) as the initial damage contributes to DNA migration and/or to micronucleus formation. The lowest genotoxic dose (LGD), which is defined as the lowest dose at which each mutagen causes a positive response on each genotoxicity assay, was used to compare the power of the Comet assay to detect a low level of genotoxic potential and that of MN test; that is, a low LGD indicates a high power. Results are summarized as follows: (1) for all mutagens studied, LGDs were MN test ≦ Comet assay; (2) except for BLM, LGDs were Comet assay/araC ≦ MN test; (3) except for UVC and MNU, LGDs were acellular assay ≦ Comet assay/araC ≦ MN test ≦ Comet assay. The following is suggested by the present findings: (1) LGD in the Comet assay is higher than that in MN test, which suggests that the power of the MN test to detect a low level of genotoxic potential is superior to that of the Comet assay; (2) for the studied mutagens, all assays were able to detect all mutagens correctly, which suggests that the sensitivity of the Comet assay and that of the MN test were exactly identical; (3) the power of the Comet assay to detect a low level of genotoxic potential can be elevated to a level higher than that of MN test by using DNA resynthesis inhibitors, such as araC and HU.
Collapse
Affiliation(s)
- Satomi Kawaguchi
- Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Uwanotai 16-1, Hachinohe, Aomori 039-1192, Japan
| | | | | | | | | |
Collapse
|
28
|
Miklásová N, Fischer-Fodor E, Lönnecke P, Schrepler MP, Virag P, Tatomir C, Cernea VI, Hey-Hawkins E, Silaghi-Dumitrescu L. Antiproliferative effect and genotoxicity of novel synthesized palladium complexes with organoarsenic ligands. J Inorg Biochem 2009; 103:1739-47. [PMID: 19857898 DOI: 10.1016/j.jinorgbio.2009.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 11/30/2022]
Abstract
Three new palladium complexes with general formula [PdCl(2)L(2)], where L=heterofunctional organoarsenic ligand: (2-isopropoxyphenyl)diphenylarsine (1), (2-methoxyphenyl)-diphenylarsine (2) and (2-hydroxyphenyl)diphenylarsine (3) have been synthesized and fully characterized, including X-ray crystallographic data. Their potential antitumor effect and genotoxicity have been studied as well. The viability test performed on human tumor (MLS) and normal (Hfl-1) cell lines indicates significant cytotoxicity of complexes, which is higher in tumor cells than in normal cells. The lethal doses are comparable with those of standard metal-based chemotherapeutical drugs (carboplatin and oxaliplatin). These palladium complexes exhibit a higher cytotoxicity against tumor cells as against normal cells in vitro. A new static cytometric method was developed and simultaneously the classic AnnexinV test was performed. Complex 2 has an important capacity to induce apoptosis in tumor cells. The apoptotic process is triggered due to the interaction of these complexes with secondary structure of DNA in treated cells. The alkaline single-cell gel assay shows that the level of DNA damages induced by compounds 2 and 3 are significantly higher in tumor cells as in normal cells. These studies shown that complexes 1, 2 and 3 have biologic activity, the effect of complex 2 being superior to its platinum analogues, attributable to its structure.
Collapse
Affiliation(s)
- Natalia Miklásová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinciakova 8, Bratislava 83232, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dhawan A, Bajpayee M, Parmar D. The Comet Assay: A Versatile Tool for Assessing DNA Damage. THE COMET ASSAY IN TOXICOLOGY 2009. [DOI: 10.1039/9781847559746-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Mahima Bajpayee
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Devendra Parmar
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| |
Collapse
|
30
|
Wang S, Gong Z, Chen R, Liu Y, Li A, Li G, Zhou J. JWA regulates XRCC1 and functions as a novel base excision repair protein in oxidative-stress-induced DNA single-strand breaks. Nucleic Acids Res 2009; 37:1936-50. [PMID: 19208635 PMCID: PMC2665235 DOI: 10.1093/nar/gkp054] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
JWA was recently demonstrated to be involved in cellular responses to environmental stress including oxidative stress. Although it was found that JWA protected cells from reactive oxygen species-induced DNA damage, upregulated base excision repair (BER) protein XRCC1 and downregulated PARP-1, the molecular mechanism of JWA in regulating the repair of DNA single-strand breaks (SSBs) is still unclear. Our present studies demonstrated that a reduction in JWA protein levels in cells resulted in a decrease of SSB repair capacity and hypersensitivity to DNA-damaging agents such as methyl methanesulfonate and hydrogen peroxide. JWA functioned as a repair protein by multi-interaction with XRCC1. On the one hand, JWA was translocated into the nucleus by the carrier protein XRCC1 and co-localized with XRCC1 foci after oxidative DNA damage. On the other hand, JWA via MAPK signaling pathway regulated nuclear factor E2F1, which further transcriptionally regulated XRCC1. In addition, JWA protected XRCC1 protein from ubiquitination and degradation by proteasome. These findings indicate that JWA may serve as a novel regulator of XRCC1 in the BER protein complex to facilitate the repair of DNA SSBs.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Cancer Centre, School of Public Health, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Wu JH, Wilson JB, Wolfreys AM, Scott A, Jones NJ. Optimization of the comet assay for the sensitive detection of PUVA-induced DNA interstrand cross-links. Mutagenesis 2009; 24:173-81. [PMID: 19147795 DOI: 10.1093/mutage/gen068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Psoralen plus ultraviolet A (PUVA), commonly used for the treatment of hyperproliferative skin disorders, has been found to be associated with an increased risk of squamous cell cancer. Interstrand cross-link (ICL) formation by PUVA treatment is considered the major factor contributing to the carcinogenesis. However, it remains unclear how PUVA causes, or promotes cancers, in humans. As an initial step in understanding the mechanisms of mutagenesis and carcinogenesis of PUVA photochemotherapy, we have optimized and subsequently utilized a modified alkaline comet assay involving a post-lysis gamma-irradiation at 9 Gy to sensitively measure the formation and repair of PUVA-induced ICLs in the immortalized human keratinocyte cell line HaCaT. A clear dose-dependent response of HaCaT cells to PUVA exposure was observed with a combination of a fixed UVA dose at 0.05 J/cm(2) and a dose of 8-methoxypsoralen ranging from 10 to 100 microM. Results also indicated that the ICL repair was concentration dependent. We have also demonstrated that PUVA-induced monoadduct formation, at an estimated ratio of 3:1 to ICLs in the present experimental conditions, does not interfere with the detection of the ICLs in the modified alkaline comet assay. Furthermore, comparison of the amount of ICL formation between the single-dose UVA treatment and a split-dose protocol was performed. The split-dose protocol was believed to generate more ICLs than the single-dose treatment, thus more effective in PUVA photochemotherapy. Our results demonstrate that comparable amounts of ICLs were formed in HaCaT cells for each dose of UVA, using either the split-dose or single-dose protocols.
Collapse
Affiliation(s)
- Jian H Wu
- Molecular Oncology Research Group, School of Biological Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
32
|
Kosmider B, Osiecka R, Zyner E, Ochocki J. Comparison Between the Genotoxicity ofcis-Pt(II) Complex of 3-Aminoflavone andcis-DDP in Lymphocytes Evaluated by the Comet Assay. Drug Chem Toxicol 2008; 28:231-44. [PMID: 15865263 DOI: 10.1081/dct-52555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
cis-bis(3-aminoflavone)dichloroplatinum(II) [cis-Pt(II) complex of 3-aminoflavone] is an analog of cis-DDP characterized by low cytotoxicity and anticancer properties in vivo. In order to evaluate genotoxic properties of this chemical compound, the comet assay in human lymphocytes was used. The analysis of DNA damage after 1-h cell incubation with cis-Pt(II) complex of 3-aminoflavone and cis-DDP was carried out, and DNA repair kinetics were evaluated after 0.5-h, 1-h, and 1.5-h postexposure incubation. It has been shown that cis-Pt(II) complex of 3-aminoflavone causes the increase in tail moments in comparison with cis-DDP. On the other hand, the decrease in these values caused by cis-DDP was connected mainly with the presence of DNA and DNA-protein crosslinks. The decrease in tail moments after cis-Pt(II) complex of 3-aminoflavone lymphocyte treatment was already observed after 0.5-h postexposure incubation, whereas in the variant with hydrogen peroxide application these values after cis-Pt(II) complex of 3-aminoflavone addition were higher in comparison with cis-DDP. Results obtained on the basis of the comet assay could confirm the occurrence of DNA breaks and cross-links induced by cis-Pt(II) complex of 3-aminoflavone.
Collapse
Affiliation(s)
- B Kosmider
- Department of Cytogenetics and Plant Molecular Biology, University of Lodz, Lodz, Poland.
| | | | | | | |
Collapse
|
33
|
Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 2008; 25:5-32. [PMID: 18427939 DOI: 10.1007/s10565-008-9072-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/17/2008] [Indexed: 11/29/2022]
Abstract
New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water, and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, e.g., pesticides and heavy metals, may be genotoxic to the sentinel species and/or to non-target species, causing deleterious effects in somatic or germ cells. Test systems which help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive, and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology. This review is an attempt to comprehensively encase the use of Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans.
Collapse
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division, Indian Institute of Toxicology Research (formerly Industrial Toxicology Research Centre), PO Box 80, M.G. Marg, Lucknow, 226 001, India.
| | | | | |
Collapse
|
34
|
Emmanouil C, Green RM, Willey FR, Chipman JK. Oxidative damage in gill of Mytilus edulis from Merseyside, UK, and reversibility after depuration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 151:663-8. [PMID: 17493719 DOI: 10.1016/j.envpol.2007.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 02/16/2007] [Accepted: 03/03/2007] [Indexed: 05/15/2023]
Abstract
Mussels were collected from the urban/industrialized site of New Brighton, Merseyside and the relatively non-industrial site of Llandudno, North Wales. All mussels were identified as Mytilus edulis by PCR amplification of Mefp1. DNA single strand breaks and 8-oxo-7,8-dihydro-2'-deoxyguanosine were measured in gill within 24h of collection, using the COMET assay, both with and without formamidopyrimidine glycosylase. Gill lipid peroxidation was also measured within 24h. No difference between sites was found for frank SSB and malonaldehyde levels, however 8-oxo-dG and 4-hydroxynonenal were significantly greater in New Brighton mussels compared to Llandudno mussels. After 1-month laboratory maintenance, lipid peroxidation and 8-oxo-dG levels were lower. In contrast, frank SSB were higher. This could reflect enhanced DNA repair excision, though we cannot exclude the possibility of other non-oxidative DNA damage. The results suggest that laboratory maintenance allows recovery from environmentally induced oxidative damage, which was more extensive at Merseyside.
Collapse
|
35
|
Kumaravel TS, Vilhar B, Faux SP, Jha AN. Comet Assay measurements: a perspective. Cell Biol Toxicol 2007; 25:53-64. [DOI: 10.1007/s10565-007-9043-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/08/2007] [Indexed: 11/28/2022]
|
36
|
Pang SK, Yu CW, Au-Yeung SCF, Ho YP. DNA damage induced by novel demethylcantharidin-integrated platinum anticancer complexes. Biochem Biophys Res Commun 2007; 363:235-40. [PMID: 17868646 DOI: 10.1016/j.bbrc.2007.08.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 11/21/2022]
Abstract
Oxaliplatin is a third generation platinum (Pt) drug with a diaminocyclohexane (DACH) entity, which has recently obtained worldwide approval for the clinical treatment of colon cancer, and apparently operates by a different mechanism of action to the classical cisplatin or carboplatin. Introducing a novel dual mechanism of action is one approach in designing a new platinum-based anticancer agent, whereby an appropriate ligand, such as demethylcantharidin (DMC), is released from the parent compound to exert a cytotoxic effect, in addition to that of the DNA-alkylating function of the platinum moiety. To investigate the likelihood of a novel dual mechanism of anticancer action, demethylcantharidin-integrated Pt complexes: Pt(R,R-DACH)(DMC) with the same Pt-DACH moiety as oxaliplatin, and Pt(NH(3))(2)(DMC) akin to carboplatin; were studied for their ability to induce DNA damage in HCT116 colorectal cancer cells by an alkaline comet assay. The results showed that the DMC ligand released from the novel complexes caused additional DNA lesions when compared with oxaliplatin and carboplatin. The comet assay also revealed that the DNA-damaging behavior of cisplatin is characteristically different; and this study is the first to demonstrate the ability of DMC to induce DNA lesions, thus providing sufficient evidence to explain the superior antiproliferative effect of the novel DMC-integrated complexes.
Collapse
Affiliation(s)
- Siu-Kwong Pang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | |
Collapse
|
37
|
McNeill DR, Wong HK, Narayana A, Wilson DM. Lead promotes abasic site accumulation and co-mutagenesis in mammalian cells by inhibiting the major abasic endonuclease Ape1. Mol Carcinog 2007; 46:91-9. [PMID: 17013835 DOI: 10.1002/mc.20196] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lead is a widespread environmental toxin, found in contaminated water sources, household paints, and certain occupational settings. Classified as a probable carcinogen by the International Agency for Research on Cancer (IARC), lead promotes mutagenesis when combined with alkylating and oxidizing DNA-damaging agents. We previously reported that lead inhibits the in vitro repair activity of Ape1, the major endonuclease for repairing mutagenic and cytotoxic abasic sites in DNA. We investigated here whether lead targets Ape1 in cultured mammalian cells. We report a concentration-dependent inhibition of apurinic/apyrimidinic (AP) site incision activity of Chinese hamster ovary (CHO) AA8 whole cell extracts by lead. In addition, lead exposure results in a concentration-dependent accumulation of AP sites in the genomic DNA of AA8 cells. An increase in the oxidative base lesion 8-oxoguanine was observed only at high lead levels (500 microM), suggesting that non-specific oxidation plays little role in the production of lead-related AP lesions at physiological metal concentrations--a conclusion corroborated by "thiobarbituric acid reactive substances" assays. Notably, Ape1 overexpression in AA8 (hApe1-3 cell line) abrogated the lead-dependent increase in AP site steady-state levels. Moreover, lead functioned cooperatively to promote a further increase in abasic sites with agents known to generate AP sites in DNA (i.e., methyl methansulfonate (MMS) and hydrogen peroxide (H2O2), but not the DNA crosslinking agent mitomycin C. Hypoxanthine guanine phosphoribosyltransferase (hprt) mutation analysis revealed that, whereas lead alone had no effect on mutation frequencies, mutagenesis increased in MMS treated, and to a greater extent lead/MMS treated, AA8 cells. With the hApe1-3 cell line, the number of mutant colonies in all treatment groups was found to be equal to that of the background level, indicating that Ape1 overexpression reverses MMS- and lead-associated hprt mutagenesis. Our studies in total indicate that Ape1 is a member of an emerging group of DNA surveillance proteins that are inhibited by environmental heavy metals, and suggest an underlying mechanism by which lead promotes co-carcinogenesis.
Collapse
Affiliation(s)
- Daniel R McNeill
- Laboratory of Molecular Gerontology, GRC, National Institute on Aging, IRP, NIH, Baltimore, Maryland 21224-6825, USA
| | | | | | | |
Collapse
|
38
|
Di Francesco AM, Meco D, Torella AR, Barone G, D'Incalci M, Pisano C, Carminati P, Riccardi R. The novel atypical retinoid ST1926 is active in ATRA resistant neuroblastoma cells acting by a different mechanism. Biochem Pharmacol 2006; 73:643-55. [PMID: 17150196 DOI: 10.1016/j.bcp.2006.10.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 10/28/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
E-3-(4'-Hydroxy-3'-adamantylbiphenyl-4-yl)acrylic acid (ST1926) is a novel orally available compound belonging to the class of synthetic atypical retinoids. These agents are attracting growing attention because of their unique mechanism of antitumor action that appears different from that of classical retinoic acid. This study aims at investigating the antitumor activity of ST1926 in neuroblastoma (NB) preclinical models. In vitro, ST1926 was more cytotoxic than both its prototype, CD437 and all-trans-retinoic acid (ATRA) and it was active in the SK-N-AS cell line, which is refractory to ATRA. We showed that unlike ATRA, ST1926 does not induce morphological differentiation in NB cells where it produces indirect DNA damage, cell cycle arrest in late S-G2 phases and p53-independent programmed cell death. DNA damage was not mediated by oxidative stress and was repaired by 24h after drug removal. The SK-N-DZ cell line appeared the most sensitive to the proapoptotic activity of ST1926, probably because both the extrinsic and intrinsic pathways appear involved in the process. Studies with Z-VAD-FMK, suggested that ST1926 might also mediate caspase-independent apoptosis in NB cells. In vivo, orally administered ST1926, appeared to inhibit tumor growth of NB xenografts with tolerable toxicity. Overall, our results support the view that ST1926 might represent a good drug candidate in this pediatric tumor.
Collapse
|
39
|
Kumaravel TS, Jha AN. Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res 2006; 605:7-16. [PMID: 16621680 DOI: 10.1016/j.mrgentox.2006.03.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 11/21/2005] [Accepted: 12/18/2005] [Indexed: 11/22/2022]
Abstract
The alkaline version of the single cell gel electrophoresis assay, popularly known as the Comet assay, is widely used to evaluate the genotoxic potential of chemicals and environmental contaminants, and for environmental monitoring purposes. In recent years, this assay has increasingly been recognized as a potentially valuable tool for regulatory studies. The assay commonly utilises commercially available software programmes to evaluate the extent of DNA damage at the single-cell level. These programmes provide a large number of measurement outcomes (i.e., tail length, %Tail DNA, various measures of tail moment, etc.) to evaluate the extent of DNA migration and DNA damage. At the moment, however, there is no general agreement with respect to the most relevant measurements or parameters to use. This study was carried out to establish which measurement(s) in the Comet assay are most significantly correlated with DNA damage, and should thus be adopted for routine use. Pooled peripheral blood samples from 3 healthy human individuals were irradiated with a range of doses of (137)Cs gamma-radiation (0, 1, 2, 4 and 8 Gy). Following irradiation, the Comet assay was performed according to a standard protocol, and different parameters were recorded by use of Komet 5.0 software (Kinetic Imaging Ltd., Liverpool, UK). Following a correlation analysis, the Olive Tail Moment (OTM), the Tail Extent Moment and the percentage of DNA in the tail (%Tail DNA) gave good correlations that were not significantly different from each other. Further retrospective analysis from other in vitro and in vivo Comet assay experiments with chemical agents also suggested that OTM and %Tail DNA gave good correlation with the dose of genotoxic agents used. Since OTM and %Tail DNA are the most commonly used parameters in many manuscripts, these two could continue to be applied for routine use. However, since OTM is measured in arbitrary units and different image-analysis systems give different values, the %Tail DNA could be considered more meaningful and easy to conceptualise. Other parameters might not be considered of significant use in genotoxicological studies.
Collapse
Affiliation(s)
- T S Kumaravel
- Covance Laboratories Limited, Otley Road, Harrogate HG3 1PY, UK.
| | | |
Collapse
|
40
|
Itoh T, Mitsumori K, Kawaguchi S, Sasaki YF. Genotoxic potential of quinolone antimicrobials in the in vitro comet assay and micronucleus test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 603:135-44. [PMID: 16384725 DOI: 10.1016/j.mrgentox.2005.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 11/07/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to examine the genotoxicity of quinolone antimicrobials. We investigated the genotoxic potential of eight quinolones, namely nalidixic acid (NA), pipemidic acid (PPA), oxolinic acid (OA), piromidic acid (PA), enoxacin (ENX), ofloxacin (OFLX), norfloxacin (NFLX) and ciprofloxacin (CPFX), by the in vitro alkaline single-cell gel electrophoresis (comet) assay at pH>13. WTK-1 cells (mutant p53) were treated with each of the eight quinolones at 62.5-1000 microg/mL for 2, 4 and 20 h. NFLX and CPFX significantly induced DNA damage concentration-dependently after 4 and 20 h treatment, but this damage was recoverable. On the other hand, DNA was not damaged in the cells treated with six other quinolones. In the cells treated with NFLX and CPFX for 20 h, DNA migration was compared by the comet assay at pH 10, 12.1 and >13. The comet assay both at pH 12.1 and >13 showed increased DNA migration, but there was no positive response in the comet assay at pH 10. In the in vitro micronucleus (MN) test, WTK-1 cells were treated with each of four quinolones (NA, PPA, NFLX and CPFX) at 15.63-125 microg/mL for 20 h. NFLX significantly increased MNs in the cells, but no changes were noted in the cells treated with three other quinolones. These results suggest that NFLX and CPFX induced DNA single strand breaks (SSBs), and that NFLX-induced SSBs resulted in chromosome aberrations.
Collapse
Affiliation(s)
- Tadashi Itoh
- Laboratory of Veterinary Pathology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | | | | | | |
Collapse
|
41
|
Nakajima M, Shimada S, Nagai M, Mizuhashi F, Sugiyama C, Masuda S, Hayashi M, Kinae N. 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone [MX] shows initiating and promoting activities in a two-stage BALB/c 3T3 cell transformation assay. Mutagenesis 2005; 20:375-9. [PMID: 16081471 DOI: 10.1093/mutage/gei050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A transformation assay using BALB/c 3T3 cells was conducted on 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) to assess initiation and promotion activities of MX carcinogenesis. Statistically significant positive responses were obtained compared with the corresponding solvent controls in both the initiation assay post-treated with 12-O-tetradecanoylphorbol 13-acetate (TPA) and the promotion assay pretreated with 3-methylcholanthrene (MCA). Both TPA and MX inhibited metabolic cooperation in an assay using co-culture of V79 6-thioguanine (6-TG) sensitive and insensitive cells. However, cells isolated from transformed foci in the initiation assay did not induce any nodules after inoculation to BALB/c mice, the strain of mouse from which the transformation assay cells were derived. Although the study was carried out for 2-3 weeks, this might have been too short to develop nodules under the conditions of this experiment. This in vitro cell transformation study with MX adds supportive information to studies showing MX carcinogenicity and tumour promoter activity, and adds mechanistic understanding of the action of MX.
Collapse
Affiliation(s)
- Madoka Nakajima
- Genetic Toxicology Group, Biosafety Research Center, Foods, Drugs and Pesticides, 582-2, Shioshinden, Iwata-gun Shizuoka 437-1213, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gröger M, Speit G, Radermacher P, Muth CM. Interaction of hyperbaric oxygen, nitric oxide, and heme oxygenase on DNA strand breaks in vivo. Mutat Res 2005; 572:167-72. [PMID: 15790500 DOI: 10.1016/j.mrfmmm.2005.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 01/25/2005] [Accepted: 01/28/2005] [Indexed: 05/02/2023]
Abstract
Hyperbaric oxygen (HBO), e.g. pure oxygen breathing at supra-atmospheric pressures, represents a well-suited model for investigating oxidative stress-induced DNA damage as well as protective mechanisms. While the induction of heme oxygenase-1 (HO-1) seems to be crucial for this protection against this DNA damage, the role of nitric oxide (NO) remains unclear. HO-1 expression is a major regulator of the inducible NO synthase (iNOS), and therefore we investigated the effect of the interaction between HBO, NO, and HO-1 on DNA damage. Prior to exposure to HBO (3 h at 3 bar ambient pressure) rats randomly received vehicle (HBO alone, 1 mL 0.9% saline, n=8), the NO donor molsidomine (SIN-10, 40 mg/kg, n=8) or the HO-1 blocker tin-mesopophyrin (Sn-MP, 50 micromol/kg, n=8). Additional groups received SIN-10 without exposure to HBO, i.e. breathing air under normobaric conditions for 3h (SIN-10 alone, 40 mg/kg, n=6), vehicle without HBO (negative controls, n=6), and ethylmethanesulfonate without HBO (EMS, 200 mg/kg) (positive controls n=4). Immediately after the 3 h HBO or air breathing period blood was analysed for DNA strand breaks (tail moment in the alkaline comet assay) and nitrite+nitrate (chemoluminescence). Whereas the tail moment was ten-fold higher after EMS than in the negative controls, there was no effect of HBO nor SIN-10 alone. Together with HBO, pretreatment with SIN-10 doubled the tail moment, and Sn-MP increased it by 50%. In contrast to Sn-MP or HBO alone, SIN-10 resulted in a five-fold increase of nitrite+nitrate concentrations. We conclude that both HO-1 blockade and excess NO release promote DNA damage during HBO exposure in vivo. The effect of HO-1 inhibition is probably independent of the regulatory function of HO-1 for iNOS.
Collapse
Affiliation(s)
- Michael Gröger
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, 89070 Ulm, Germany
| | | | | | | |
Collapse
|
43
|
Lah B, Malovrh S, Narat M, Cepeljnik T, Marinsek-Logar R. Detection and quantification of genotoxicity in wastewater-treated Tetrahymena thermophila using the comet assay. ENVIRONMENTAL TOXICOLOGY 2004; 19:545-553. [PMID: 15526265 DOI: 10.1002/tox.20062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the present study, the comet, or single-cell, gel electrophoresis assay was adapted for use with the ubiquitous unicellular protozoan Tetrahymena thermophila, and the method was evaluated for its ability to detect DNA damage induced by known genotoxins and wastewater samples. The original comet assay protocol was substantially modified (e.g., lower concentrations of detergents were used in the lysis buffer; electrophoresis time was reduced). Using the modified method, T. thermophila were subjected to short exposures of phenol, hydrogen peroxide, and formaldehyde, leading to concentration-dependent increases in DNA damage. The genotoxic potential of influent and effluent water samples from a local municipal wastewater treatment plant was evaluated. The results indicated that the influent wastewater was genotoxic and that the genotoxicity in the effluent water was substantially reduced. We assume employing T. thermophila in the use of the comet assay may become a cost-effective and reliable tool for genotoxicity screening and monitoring of wastewater and similar systems.
Collapse
Affiliation(s)
- B Lah
- Zootechnical Department, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI-1230 Domzale, Slovenia
| | | | | | | | | |
Collapse
|
44
|
Frenzilli G, Scarcelli V, Del Barga I, Nigro M, Förlin L, Bolognesi C, Sturve J. DNA damage in eelpout (Zoarces viviparus) from Göteborg harbour. Mutat Res 2004; 552:187-95. [PMID: 15288551 DOI: 10.1016/j.mrfmmm.2004.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Revised: 04/08/2004] [Accepted: 04/28/2004] [Indexed: 04/30/2023]
Abstract
The relationship between DNA damage and the exposure of marine organisms to environmental contaminants was examined in the Göteborg harbour area. This research is part of a wider ecotoxicological study planned to evaluate the biological impact of chemical contamination in the River Göta estuary, following a bunker oil (10-100 tonnes) spill occurred in June 2003. Here we present data on the DNA strand breaks derived using the comet assay and the presence of apoptotic cells using the diffusion assay in nucleated erythrocytes of the eelpout (Zoarces viviparus) from the study area and at a clean reference site. Polycyclic aromatic hydrocarbon metabolites were also analyzed in the bile of exposed fish. The results showed a high level of damaged DNA, paralleled by a peak in bile PAH metabolites, in fish from the most impacted site, 3 weeks after the oil spill. A significant recovery was observed in specimens from the spill site, 5 months later, but not in fish caught in the middle part of Göteborg harbour, which is chronically subjected to heavy chemical pollution. The levels of apoptic cells did not show any marked variations, but a significant recovery was observed in fish from the oil impacted site 5 months after the spill.
Collapse
Affiliation(s)
- Giada Frenzilli
- Department of Human Morphology and Applied Biology, University of Pisa, Via Volta 4, 56126 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ellahueñe MF, Pérez-Alzola LP, Farfán-Urzua M, González-Hormazabal P, Garay M, Olmedo MI, Last JA. Preliminary Evaluation of DNA Damage Related with the Smoking Habit Measured by the Comet Assay in Whole Blood Cells. Cancer Epidemiol Biomarkers Prev 2004. [DOI: 10.1158/1055-9965.1223.13.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
The alkaline single-cell gel electrophoresis (SCGE) assay, also called the comet assay, is a rapid and simple method for the detection of DNA damage in individual cells. The objective of this study was to establish if the alkaline SCGE assay in whole blood cells gives similar results as the same method in isolated lymphocytes, because whole blood cells are simpler and more economical to use, specifically in human genotoxic biomonitoring. To validate the method, we first used mouse blood cells, because mouse is one of the most commonly used animals in genetic toxicology testing. Groups of seven CF1 male mice were given i.p. injections of relatively low doses of methyl methanesulfonate (25 mg/kg body weight), a direct acting genotoxic agent, or cyclophosphamide (50 mg/kg body weight), which requires metabolic activation. Three, 6, 8, 12, 16, 20, and 65 hours after treatment, 5 μL of blood were collected from each animal and were processed for the alkaline SCGE assay. On the basis of an analysis of tail moment, the results showed that this assay can detect DNA damage induced by both kinds of alkylating mutagens. We then did a preliminary study to assess the status of DNA damage in a young (19 to 23 years old) healthy population of male smokers (n = 6) and nonsmokers (n = 6) using the comet assay in whole blood cells. A significant difference was observed between the two groups, showing that the method is able to detect DNA damage in the smoking group despite the short time that the volunteers had actually been smoking.
Collapse
Affiliation(s)
- Manuel F. Ellahueñe
- 1Laboratorio de Microbiología y Bioensayos, Centro Nacional del Medio Ambiente (CENMA), Universidad de Chile, Santiago, Chile and
| | - Luz Patricia Pérez-Alzola
- 1Laboratorio de Microbiología y Bioensayos, Centro Nacional del Medio Ambiente (CENMA), Universidad de Chile, Santiago, Chile and
| | - Mauricio Farfán-Urzua
- 1Laboratorio de Microbiología y Bioensayos, Centro Nacional del Medio Ambiente (CENMA), Universidad de Chile, Santiago, Chile and
| | - Patricio González-Hormazabal
- 1Laboratorio de Microbiología y Bioensayos, Centro Nacional del Medio Ambiente (CENMA), Universidad de Chile, Santiago, Chile and
| | - Marta Garay
- 1Laboratorio de Microbiología y Bioensayos, Centro Nacional del Medio Ambiente (CENMA), Universidad de Chile, Santiago, Chile and
| | - Maria Isabel Olmedo
- 1Laboratorio de Microbiología y Bioensayos, Centro Nacional del Medio Ambiente (CENMA), Universidad de Chile, Santiago, Chile and
| | - Jerold A. Last
- 2Toxic Substances Research and Teaching Program, University of California, Davis, California
| |
Collapse
|
46
|
Regoli F, Frenzilli G, Bocchetti R, Annarumma F, Scarcelli V, Fattorini D, Nigro M. Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis, during a field translocation experiment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 68:167-178. [PMID: 15145226 DOI: 10.1016/j.aquatox.2004.03.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 03/08/2004] [Accepted: 03/10/2004] [Indexed: 05/24/2023]
Abstract
Harbours can be considered as model environments for developing and validating field monitoring procedures and to investigate mechanistic relationships between different biological responses. In this study, several biomarkers were investigated in marine mussels caged for 4 weeks into an industrialised harbour of north-west Italy. Organisms were collected at different time intervals to better characterise the sensitivity, temporal variations and interactions of analysed responses. Besides single antioxidants (catalase, glutathione S-transferases, glutathione reductase, total glutathione), the total oxyradical scavenging capacity (TOSC) assay was used to analyse the capability of the whole antioxidant system to neutralise specific forms of radicals: these data were further integrated by measurement of DNA integrity, oxidised bases and the impairment of lysosomal membrane stability in haemocytes. Results showed a biphasic trend for single antioxidants and TOSC, with no variation or increase during the first 2 weeks of exposure to the polluted site followed by a progressive decrease up to a severe depletion in the final part of the experiment. These findings suggest an initial counteractive response of mussels toward the enhanced prooxidant challenge, while antioxidants appeared overwhelmed at longer exposure periods. The hypothesis of reactive oxygen species (ROS) mediated toxicity is supported by the appearance of cell damages (DNA integrity and lysosome membrane stability), which exhibited a progressive enhancement during the course of the experiment with a maximum impairment after 30 days of exposure.
Collapse
Affiliation(s)
- Francesco Regoli
- Istituto di Biologia e Genetica, Università Politecnica delle Marche, Via Ranieri Monte d'Ago, 60100 Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Fornai F, Lenzi P, Frenzilli G, Gesi M, Ferrucci M, Lazzeri G, Biagioni F, Nigro M, Falleni A, Giusiani M, Pellegrini A, Blandini F, Ruggieri S, Paparelli A. DNA damage and ubiquitinated neuronal inclusions in the substantia nigra and striatum of mice following MDMA (ecstasy). Psychopharmacology (Berl) 2004; 173:353-63. [PMID: 14673567 DOI: 10.1007/s00213-003-1708-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 11/04/2003] [Indexed: 11/29/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA) is an amphetamine derivative, which is neurotoxic to both serotonin (5HT) and dopamine (DA) nerve terminals. Previous reports, carried out in rodents and non-human primates, demonstrated neurotoxicity to monoamine axon terminals, although no study has analyzed nigral and striatal cell bodies at the sub-cellular level. OBJECTIVE In this study, we examined intrinsic nigral and striatal cells, and PC12 cell cultures to evaluate whether, in mice, MDMA might affect nigral and striatal cell bodies. METHODS After administering MDMA, we analyzed effects induced in vivo and in vitro using high-performance liquid chromatography (HPLC) analysis, light- and electron microscopy with immunocytochemistry, and DNA comet assay. RESULTS We found that MDMA (5 mg/kg x4, 2 h apart), besides a decrease of nigrostriatal DA innervation and 5HT loss, produces neuronal inclusions within nigral and intrinsic striatal neurons consisting of multi-layer ubiquitin-positive whorls extending to the nucleus of the cell. These fine morphological changes are associated with clustering of heat shock protein (HSP)-70 in the nucleus, very close to chromatin filaments. In the same experimental conditions, we could detect oxidation of DNA bases followed by DNA damage. The nature of inclusions was further investigated using PC12 cell cultures. CONCLUSIONS The present findings lead to re-consideration of the neurotoxic consequences of MDMA administration. In fact, occurrence of ubiquitin-positive neuronal inclusions and DNA damage both in nigral and striatal cells sheds new light into the fine alterations induced by MDMA, also suggesting the involvement of nuclear and cytoplasmic components of the ubiquitin-proteasome pathway in MDMA toxicity.
Collapse
Affiliation(s)
- F Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakamura J, Asakura S, Hester SD, de Murcia G, Caldecott KW, Swenberg JA. Quantitation of intracellular NAD(P)H can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time. Nucleic Acids Res 2003; 31:e104. [PMID: 12930978 PMCID: PMC212824 DOI: 10.1093/nar/gng105] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or during the base excision repair pathways. Here we established a new real-time assay to assess an imbalance of DNA SSB repair by indirectly measuring PARP-1 activation through the depletion of intracellular NAD(P)H. A water-soluble tetrazolium salt is used to monitor the amount of NAD(P)H in living cells through its reduction to a yellow colored water-soluble formazan dye. While this assay is not a direct method, it does not require DNA extraction or alkaline treatment, both of which could potentially cause an artifactual induction of SSBs. In addition, it takes only 4 h and requires less than a half million cells to perform this measurement. Using this assay, we demonstrated that the dose- and time-dependent depletion of NAD(P)H in XRCC1-deficient CHO cells exposed to methyl methanesulfonate. This decrease was almost completely blocked by a PARP inhibitor. Furthermore, methyl methanesulfonate reduced NAD(P)H in PARP-1+/+ cells, whereas PARP-1-/- cells were more resistant to the decrease in NAD(P)H. These results indicate that the analysis of intracellular NAD(P)H level using water-soluble tetrazolium salt can assess an imbalance of SSB repair in living cells in real time.
Collapse
Affiliation(s)
- Jun Nakamura
- Department of Environmental Sciences and Engineering, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
49
|
McKenna DJ, Gallus M, McKeown SR, Downes CS, McKelvey-Martin VJ. Modification of the alkaline Comet assay to allow simultaneous evaluation of mitomycin C-induced DNA cross-link damage and repair of specific DNA sequences in RT4 cells. DNA Repair (Amst) 2003; 2:879-90. [PMID: 12893084 DOI: 10.1016/s1568-7864(03)00086-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The alkaline Comet assay is a simple, sensitive method for measuring the extent of DNA strand breaks in individual cells. Several modifications to the original assay have been developed to increase its applications. One such modification allows the measurement of DNA cross-links by assessing the relative reduction in DNA migration induced by a strand-breaking agent. Another modification includes the application of fluorescent in situ hybridisation (FISH) to investigate the localisation of specific gene domains within a cell. Although several studies have used these approaches separately, no report to date has combined these two versions of the Comet assay. The current study describes the modification of the Comet assay, to allow both measurement of mitomycin C (MMC)-induced cross-links and the subsequent application of FISH to study repair in the TP53 gene region. RT4 human bladder cancer cells were treated with 0, 5, 50 and 200 microg/ml MMC to study dose response, whilst for cross-link repair studies, they were treated with 50 microg/ml MMC and allowed to repair for up to 24 h. A clear dose response to MMC was displayed, demonstrable by a marked reduction in DNA migration, whilst repair studies showed that MMC-induced cross-links take at least 24 h to repair fully in RT4 cells. For Comet-FISH experiments, the number and location of TP53 hybridisation spots was also recorded for each cell. In dose response experiments, the number of spots per cell, and per Comet tail, decreased as MMC dose increased. In repair experiments, the number of spots, particularly in the Comet tail, increased as repair time increased. Furthermore, our results suggest that repair of the TP53 gene region is most rapid within the first 4 h following MMC treatment. We conclude that the novel experimental protocol presented here has considerable potential in evaluating DNA damage and sequence-related repair responses to cross-linking agents.
Collapse
Affiliation(s)
- Declan J McKenna
- School of Biomedical Sciences, University of Ulster, Northern Ireland, Coleraine BT52 1SA, UK
| | | | | | | | | |
Collapse
|
50
|
Aoyama K, Iwahori K, Miyata N. Application of Euglena gracilis cells to comet assay: evaluation of DNA damage and repair. Mutat Res 2003; 538:155-62. [PMID: 12834764 DOI: 10.1016/s1383-5718(03)00113-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Alkaline single-cell gel electrophoresis (comet assay) enables sensitive detection of DNA damage in eukaryotic cells induced by genotoxic agents. We performed a comet assay of unicellular green alga Euglena gracilis that was exposed to genotoxic chemicals, 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), benzo[a]pyrene (BAP), mitomycin C (MMC) and actinomycin D (AMD). Tail length and tail moment in migrated DNA were measured as indications of DNA damage. MNNG and BAP were found to cause concentration-dependent increases in DNA damage. The responses were more sensitive than those of human lymphocytes under the same treatment conditions. MMC and AMD showed no positive response, as reported elsewhere. The comet assays performed at specified times after treatment revealed that the DNA damaged by MNNG and gamma-ray irradiation was repaired during the initial 1h. The results clearly show that the comet assay is useful for evaluating chemically-induced DNA damage and repair in E. gracilis. Given the ease of culturing and handling E. gracilis as well as its sensitivity, the comet assay of this alga would undoubtedly prove to be a useful tool for testing the genotoxicity of chemicals and monitoring of environmental pollution.
Collapse
Affiliation(s)
- Kotaro Aoyama
- Hitachi Plant Engineering and Construction Co., Ltd., Matsudo, Chiba, Japan
| | | | | |
Collapse
|