1
|
Enzyme-linked immunosorbent assay (ELISA) using recombinant Fasciola cathepsin L1 for the diagnosis of human fasciolosis caused by Fasciola hepatica/gigantica hybrid type. Parasitol Int 2021; 82:102311. [PMID: 33621657 DOI: 10.1016/j.parint.2021.102311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022]
Abstract
Recombinant Fasciola cathepsin L-1 (rCatL1) was evaluated in enzyme-linked immunosorbent assay (ELISA) for the serodiagnosis of human fasciolosis in Japan. Quality characteristics of the test were accessed by receiver operating characteristic (ROC) analysis, with sera from fasciolosis patients (n = 10), patients with no evidence of parasitic infections (n = 29), and patients with other helminth infections (n = 119). Both the sensitivity and specificity of the test achieved 100% with the control samples. To test the performance of the assay in an authentic situation, 311 serum samples, which had been sent to our laboratory for the diagnosis of parasitic infections from January 2018 to February 2019, were re-assessed using the rCatL1 ELISA. In this case, the sensitivity of the rCatL1 ELISA was 100%, giving positive results to all fasciolosis sera (n = 7), and the specificity was 99.0%, in which three of the 304 non-fasciolosis samples were judged positive. Careful re-examination of the laboratory data and medical imaging of these three patients revealed that one of the patients, who had been diagnosed as having larva migrans syndrome, was judged to be infected with Fasciola, in addition to ascarid nematodes. Thus the true specificity of the assay in the authentic reached 99.3% (302/304). As the rCatL1 ELISA exhibited a highly significant positive likelihood ratio (152.0) and negative likelihood ratio (0.0), calculated from the 311 sample data, this rCatL1 ELISA can be used for routine screening and definitive diagnosis test for fasciolosis in reference laboratories.
Collapse
|
2
|
Teimoori S, Arimatsu Y, Laha T, Kaewkes S, Sereerak P, Sripa M, Tangkawattana S, Brindley PJ, Sripa B. Chicken IgY-based coproantigen capture ELISA for diagnosis of human opisthorchiasis. Parasitol Int 2017; 66:443-447. [PMID: 27140305 PMCID: PMC5086311 DOI: 10.1016/j.parint.2015.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022]
Abstract
Diagnosis of Opisthorchis viverrini infection by conventional stool examination is increasingly difficult due to the low intensity of the infection after several rounds of control programmes in endemic regions as well as coinfections with intestinal flukes. Therefore sensitive and specific diagnostic test is needed. In this study, a coproantigen sandwich ELISA using recombinant O. viverrini cathepsin F (rOv-CF) was developed. This sandwich ELISA employing chicken IgY raised against rOv-CF in combination with rabbit IgG antibody to the somatic O. viverrini antigens showed a lower detection limit (LLD) of 70ng native O. viverrini somatic antigens by spiking the parasite antigens into control feces. When applied to the diagnosis, the IgY-based sandwich ELISA exhibited sensitivity and specificity of 93.3% and 76.7%, respectively, in an investigation of 90 human cases positive or negative for opisthorchiasis. The positive predictive value (PPV) and negative predictive value (NPV) for this coproantigen detection were 66.7% and 95.2%, respectively. This IgY-based sandwich ELISA using parasite cathepsin F detection shows a promising immunodiagnostic alternative for human opisthorchiasis in endemic regions.
Collapse
Affiliation(s)
- Salma Teimoori
- Centre of Research Excellence for Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Bangkok 10700, Thailand; WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yuji Arimatsu
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sasithorn Kaewkes
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piya Sereerak
- Department of Pathobiology, Faculty of Veterinary, Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manop Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirikachorn Tangkawattana
- Department of Pathobiology, Faculty of Veterinary, Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Banchob Sripa
- Centre of Research Excellence for Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Bangkok 10700, Thailand.
| |
Collapse
|
3
|
The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease. Parasit Vectors 2016; 9:648. [PMID: 27993173 PMCID: PMC5170900 DOI: 10.1186/s13071-016-1928-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/04/2016] [Indexed: 12/23/2022] Open
Abstract
Background Clonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes. Methods We constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores’ surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson’s trichrome. Results The B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores. Conclusions Bacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic specific immune responses were elicited by oral administration of B.s-CotC-CsCP spores. The spores effectively promoted intestinal health by inducing secretion of acidic mucins, with no other side effects to the liver or intestine. Oral administration of spores expressing CsCP could provide effective protection against C. sinensis. This study may be a cornerstone for development of antiparasitic agents or vaccines against clonorchiasis based on B. subtilis spore expressing CsCP on the surface. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1928-0) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Ruiz A, Molina JM, Njue A, Prichard RK. Genetic variability in cysteine protease genes ofHaemonchus contortus. Parasitology 2004; 128:549-59. [PMID: 15180323 DOI: 10.1017/s0031182004004998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To increase the existent genetic variability in cysteine proteases, a polymorphism study was performed inHaemonchus contortusby comparing 2 different strains of the parasite: North American (NA) and Spanish (SP) strains. For this purpose, the polymorphism of 5 previously reported genes (AC-1,AC-3,AC-4,AC-5andGCP-7) were analysed by PCR–SSCP and sequencing procedures. Based on the SSCP results, a total of 20 different alleles were identified for the 5lociassessed. Exceptlocus AC-5, all thelociwere polymorphic.Loci AC-1,AC-3,AC-4andGCP-7showed 5, 8, 2 and 4 alleles, respectively. The allelic frequencies ranged from 0·0070 to 0·8560 and were significantly different between strains. In addition, nucleotide diversity analyses showed a significant variation within and between strains. The variations in the nucleotide sequence of the different alleles were translated in some cases into changes in the amino acid sequence. Evidence of genetic variability in cysteine proteases from two different strains ofH. contortusfor the same set of genes had not been previously reported.
Collapse
Affiliation(s)
- A Ruiz
- Parasitology Unit, Department of Animal Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain.
| | | | | | | |
Collapse
|
5
|
Hotez PJ, Zhan B, Bethony JM, Loukas A, Williamson A, Goud GN, Hawdon JM, Dobardzic A, Dobardzic R, Ghosh K, Bottazzi ME, Mendez S, Zook B, Wang Y, Liu S, Essiet-Gibson I, Chung-Debose S, Xiao S, Knox D, Meagher M, Inan M, Correa-Oliveira R, Vilk P, Shepherd HR, Brandt W, Russell PK. Progress in the development of a recombinant vaccine for human hookworm disease: the Human Hookworm Vaccine Initiative. Int J Parasitol 2004; 33:1245-58. [PMID: 13678639 DOI: 10.1016/s0020-7519(03)00158-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hookworm infection is one of the most important parasitic infections of humans, possibly outranked only by malaria as a cause of misery and suffering. An estimated 1.2 billion people are infected with hookworm in areas of rural poverty in the tropics and subtropics. Epidemiological data collected in China, Southeast Asia and Brazil indicate that, unlike other soil-transmitted helminth infections, the highest hookworm burdens typically occur in adult populations, including the elderly. Emerging data on the host cellular immune responses of chronically infected populations suggest that hookworms induce a state of host anergy and immune hyporesponsiveness. These features account for the high rates of hookworm reinfection following treatment with anthelminthic drugs and therefore, the failure of anthelminthics to control hookworm. Despite the inability of the human host to develop naturally acquired immune responses to hookworm, there is evidence for the feasibility of developing a vaccine based on the successes of immunising laboratory animals with either attenuated larval vaccines or antigens extracted from the alimentary canal of adult blood-feeding stages. The major antigens associated with each of these larval and adult hookworm vaccines have been cloned and expressed in prokaryotic and eukaryotic systems. However, only eukaryotic expression systems (e.g., yeast, baculovirus, and insect cells) produce recombinant proteins that immunologically resemble the corresponding native antigens. A challenge for vaccinologists is to formulate selected eukaryotic antigens with appropriate adjuvants in order to elicit high antibody titres. In some cases, antigen-specific IgE responses are required to mediate protection. Another challenge will be to produce anti-hookworm vaccine antigens at high yield low cost suitable for immunising large impoverished populations living in the developing nations of the tropics.
Collapse
Affiliation(s)
- Peter J Hotez
- Department of Microbiology and Tropical Medicine, The George Washington University, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
International travel and increasingly exotic diets have resulted in an increase in cases of cutaneous larva migrans in industrialized countries. A broader spectrum of clinical presentation and complications of cutaneous larva migrans is recognized by clinicians. A new syndrome, eosinophilic enteritis, has been described in Australia and may be more widespread as new diagnostic tests are used more widely. Other causes of cutaneous migration, such as gnathostomiasis and sparganosis, should be considered, and a recent outbreak of gnathostomiasis in Mexico suggests that clinicians must be alert to these unusual infections arising in patients outside their traditional distribution.
Collapse
Affiliation(s)
- Stephen H. Gillespie
- Department of Medical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
7
|
Abstract
Hookworms infect perhaps one-fifth of the entire human population, yet little is known about their interaction with our immune system. The two major species are Necator americanus, which is adapted to tropical conditions, and Ancylostoma duodenale, which predominates in more temperate zones. While having many common features, they also differ in several key aspects of their biology. Host immune responses are triggered by larval invasion of the skin, larval migration through the circulation and lungs, and worm establishment in the intestine, where adult worms feed on blood and mucosa while injecting various molecules that facilitate feeding and modulate host protective responses. Despite repeated exposure, protective immunity does not seem to develop in humans, so that infections occur in all age groups (depending on exposure patterns) and tend to be prolonged. Responses to both larval and adult worms have a characteristic T-helper type 2 profile, with activated mast cells in the gut mucosa, elevated levels of circulating immunoglobulin E, and eosinophilia in the peripheral blood and local tissues, features also characteristic of type I hypersensitivity reactions. The longevity of adult hookworms is determined probably more by parasite genetics than by host immunity. However, many of the proteins released by the parasites seem to have immunomodulatory activity, presumably for self-protection. Advances in molecular biotechnology enable the identification and characterization of increasing numbers of these parasite molecules and should enhance our detailed understanding of the protective and pathogenetic mechanisms in hookworm infections.
Collapse
Affiliation(s)
- A Loukas
- Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia.
| | | |
Collapse
|