1
|
G994T polymorphism in exon 9 of plasma platelet-activating factor acetylhydrolase gene and lung ultrasound score as prognostic markers in evaluating the outcome of acute respiratory distress syndrome. Exp Ther Med 2019; 17:3174-3180. [PMID: 30906481 DOI: 10.3892/etm.2019.7281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to discover potential biomarkers for predicting the prognosis of acute respiratory distress syndrome (ARDS) in conjunction with lung ultrasound (LUS). Blood samples from 112 ARDS patients were collected to compare their partial oxygen pressure (PaO2)/fraction of inspired oxygen (FiO2), positive end-expiratory pressure (PEEP), lactic acid, sequential organ failure assessment (SOFA) score, clinical pulmonary infection score (CPIS) and APACHE II score. Kaplan-Meier plots and the log-rank test were performed to analyse the association between the platelet-activating factor acetylhydrolase (PAFAH) G994T polymorphism and the outcome of ARDS regarding mortality. A negative correlation between the LUS score and PaO2/FiO2, PEEP and lactic acid, as well as with the SOFA, CPIS and APACHE II score was confirmed with correlation coefficients of -0.493, -0.548, -0.642, -0.598, -0.566 and -0.567, respectively (all P<0.05). The activity of PAFAH and high-density lipoprotein-PAFAH in the serum collected from subjects of the GG genotype was similar to that in subjects of the GT genotype, but the low-density lipoprotein-PAFAH activity in the serum collected from GG subjects was significantly higher than that in GT subjects. An evident reduction in the PEEP, level of lactic acid, as well as the SOFA, CPIS and APACHE II score was observed in GG subjects, accompanied by a significantly increased PaO2/FiO2. Kaplan-Meier analysis indicated that subjects with a high LUS score had a significantly higher survival rate than those with a low LUS score, and the mortality risk for GG subjects was significantly lower than that for GT subjects. Finally, among all groups (genotype and LUS groups), GG subjects with a high LUS score had the lowest mortality risk, whereas GT subjects with a low LUS score had the highest mortality risk. In addition, the survival rate of GT subjects with a high LUS score was higher than that of GG subjects with a low LUS score. In conclusion, the combination of the LUS score and the G994T polymorphism in exon 9 of the PAFAH gene may be used as a potential prognostic marker for ARDS.
Collapse
|
2
|
Ganjali S, Momtazi-Borojeni AA, Banach M, Kovanen PT, Gotto AM, Sahebkar A. HDL functionality in familial hypercholesterolemia: effects of treatment modalities and pharmacological interventions. Drug Discov Today 2018; 23:171-180. [DOI: 10.1016/j.drudis.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/02/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023]
|
3
|
Fais A, Cacace E, Atzori L, Era B, Ruggiero V. Plasma phospholipase, γ-CEHC and antioxidant capacity in fibromyalgia. Int J Rheum Dis 2015; 20:550-554. [PMID: 26585319 DOI: 10.1111/1756-185x.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Recent studies have suggested a possible role of high levels of plasma lysophosphocholines (lysoPCs) in fibromyalgia syndrome (FMS). The aim of this study was to evaluate the content of plasma phospholipases (e.g., Platelet Activating Factor Acetyl Hydrolase [PAF-AH], secretory Phospholipase A2 [sPLA2 ], Total Antioxidant Capacity [TAOC] and 2,7,8-trimethyl-2-(2-carboxyethyl)-6-hydroxy chroman [γ-CEHC]) in FMS patients and their association with clinical status and quality of life. METHODS Thirty-six females meeting the 2011 American College of Rheumatology criteria for the classification of FMS and thirty-four healthy females were enrolled for the study. Plasma enzyme levels were quantified using commercial enzyme-linked-immunosorbent-assay (ELISA). In order to assess the disease severity and the functional status of patients, the Fibromyalgia Impact Questionnarie (FIQ) was used. RESULTS Higher levels of sPLA2 and lower PAF-AH and γ-CEHC were observed in the plasma of FMS patients compared to the controls. A decrease in PAF-AH and TAOC levels were found in severe FMS (S-FMS) compared to mild/slight (MS-FMS) forms. CONCLUSION The results of the study indicate a possible involvement of phospholipases and γ-CEHC in fibromyalgia syndrome.
Collapse
Affiliation(s)
- Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Enrico Cacace
- Department of Medical Sciences "Mario Aresu", University of Cagliari, Monserrato, Cagliari, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Valeria Ruggiero
- Department of Medical Sciences "Mario Aresu", University of Cagliari, Monserrato, Cagliari, Italy
| |
Collapse
|
4
|
Feng L, Zhao Y, Feng G, Chen Y. Clinical application of elevated platelet-activating factor acetylhydrolase in patients with hepatitis B. Lipids Health Dis 2014; 13:105. [PMID: 24973921 PMCID: PMC4096520 DOI: 10.1186/1476-511x-13-105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/26/2014] [Indexed: 01/30/2023] Open
Abstract
Background The aim of this study was to investigate the variation of platelet-activating factor acetylhydrolase (PAF-AH) in patients with various stages of hepatitis B infection and evaluate the association between PAF-AH activity and chronic severe hepatitis B (CSHB) and mortality in patients with hepatitis B. Methods Serum PAF-AH activity was measured in 216 patients with hepatitis B and in 152 healthy controls using an automatic biochemical analysis system. Spearman correlation was used to investigate the correlation between PAF-AH activity and other biochemical indicators. The receiver operating characteristic (ROC) curve and multivariable logistic regression analysis were used to evaluate the ability of PAF-AH activity to predict CSHB and mortality in patients with hepatitis B. Results The PAF-AH activities in patients with CSHB (1320 ± 481 U/L) were significantly higher than those in healthy controls and in other hepatitis B groups (all P < 0.01). In patients with hepatitis B, PAF-AH activity correlated with total bilirubin (r = 0.633), total bile acid (r = 0.559), aspartate aminotransferase (r = 0.332), apolipoprotein B (r = 0.348), high-density lipoprotein cholesterol (r = −0.493), and apolipoprotein AI (r = −0.530). The areas under the ROC curves for the ability of PAF-AH activity to predict CSHB and mortality in patients with hepatitis B were 0.881 (95% confidence interval (CI): 0.824–0.937, P < 0.001) and 0.757 (95% CI: 0.677–0.837, P < 0.001), respectively. Multivariate logistic regression analysis showed PAF-AH activity to be an independent factor predicting CSHB with an odds ratio of 1.003 (95% CI: 1.002–1.005, P < 0.001). Conclusion Elevated PAF-AH in patients with hepatitis B was significantly associated with liver damage. Thus, serum PAF-AH could be used as a novel indicator for predicting CSHB and mortality in patients with hepatitis B. Further, PAF-AH activity was an independent factor predicting CSHB.
Collapse
Affiliation(s)
| | | | | | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
5
|
Francis F, Saguez J, Cherqui A, Vandermoten S, Vincent C, Versali MF, Dommès J, De Pauw E, Giordanengo P, Haubruge E. Purification and characterisation of a 31-kDa chitinase from the Myzus Persicae aphid: a target for hemiptera biocontrol. Appl Biochem Biotechnol 2012; 166:1291-300. [PMID: 22222431 DOI: 10.1007/s12010-011-9517-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 12/20/2011] [Indexed: 11/27/2022]
Abstract
Hydrolytic enzymes involved in chitin degradation are important to allow moulting during insect development. Chitinases are interesting targets to disturb growth and develop alternative strategies to control insect pests. In this work, a chitinase from the aphid Myzus persicae was purified with a 36-fold purification rate in a three step procedure by ammonium sulphate fractionation, anion-exchange chromatography on a DEAE column and on an affinity Concanavalin A column. The purified chitinase purity assessed by 1D and 2D SDS-PAGE revealed a single band and three spots at 31 kDa, respectively. Chitinases were found to have high homologies with Concanavalins A and B, two chitinase-related proteins, a fungal endochitinase and an aphid acetylhydrolase by peptide identification by Maldi-Tof-Tof. The efficiency of two potent chitinase inhibitors, namely allosamidin and psammaplin A, was tested and showed significant rate of enzymatic inhibition.
Collapse
Affiliation(s)
- Frédéric Francis
- Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech, Université de Liège,Gembloux, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission. J Parasitol Res 2011; 2012:625838. [PMID: 22132309 PMCID: PMC3206328 DOI: 10.1155/2012/625838] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/29/2011] [Accepted: 09/12/2011] [Indexed: 01/18/2023] Open
Abstract
Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease.
Collapse
|
7
|
Silva IT, Mello APQ, Damasceno NRT. Antioxidant and inflammatory aspects of lipoprotein-associated phospholipase A₂ (Lp-PLA₂): a review. Lipids Health Dis 2011; 10:170. [PMID: 21955667 PMCID: PMC3204246 DOI: 10.1186/1476-511x-10-170] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/28/2011] [Indexed: 12/11/2022] Open
Abstract
The association of cardiovascular events with Lp-PLA2 has been studied continuously today. The enzyme has been strongly associated with several cardiovascular risk markers and events. Its discovery was directly related to the hydrolysis of the platelet-activating factor and oxidized phospholipids, which are considered protective functions. However, the hydrolysis of bioactive lipids generates lysophospholipids, compounds that have a pro-inflammatory function. Therefore, the evaluation of the distribution of Lp-PLA2 in the lipid fractions emphasized the dual role of the enzyme in the inflammatory process, since the HDL-Lp-PLA2 enzyme contributes to the reduction of atherosclerosis, while LDL-Lp-PLA2 stimulates this process. Recently, it has been verified that diet components and drugs can influence the enzyme activity and concentration. Thus, the effects of these treatments on Lp-PLA2 may represent a new kind of prevention of cardiovascular disease. Therefore, the association of the enzyme with the traditional assessment of cardiovascular risk may help to predict more accurately these diseases.
Collapse
Affiliation(s)
- Isis T Silva
- Departamento de Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
8
|
Thévenin AF, Monillas ES, Winget JM, Czymmek K, Bahnson BJ. Trafficking of platelet-activating factor acetylhydrolase type II in response to oxidative stress. Biochemistry 2011; 50:8417-26. [PMID: 21882811 DOI: 10.1021/bi200802w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platelet-activating factor acetylhydrolase type II (PAFAH-II) is an intracellular phospholipase A(2) enzyme that hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. This N-terminally myristoylated protein becomes associated with cytoplasm-facing cell membranes under oxidative stress. The structural requirements for binding of PAFAH-II to membranes in response to oxidative stress are unknown. To begin elucidating the mechanism of trafficking and stress response, we constructed a homology model of PAFAH-II. From the predicted membrane orientation of PAFAH-II, the N-terminal myristoyl group and a hydrophobic patch are hypothesized to be involved in membrane binding. Localization studies of human PAFAH-II in HEK293 cells indicated that an unmyristoylated mutant remained cytoplasmic under stressed and unstressed conditions. The myristoylated wild-type enzyme was partially localized to the cytoplasmic membranes prior to stress and became more localized to these membranes upon stress. A triple mutation of three hydrophobic patch residues of the membrane binding region likewise did not localize to membranes following stress. These results indicate that both the myristoyl group and the hydrophobic patch are essential for proper trafficking of the enzyme to the membranes following oxidative stress. Additionally, colocalization studies using organelle-specific proteins demonstrate that PAFAH-II is transported to the membranes of both the endoplasmic reticulum and Golgi apparatus.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | | | | | | | | |
Collapse
|
9
|
Bacha AB, Karray A, Bouchaala E, Gargouri Y, Ali YB. Purification and biochemical characterization of pancreatic phospholipase A2 from the common stingray Dasyatis pastinaca. Lipids Health Dis 2011; 10:32. [PMID: 21329523 PMCID: PMC3050761 DOI: 10.1186/1476-511x-10-32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammalian sPLA2-IB are well characterized. In contrast, much less is known about aquatic ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes. RESULTS A marine stingray phospholipase A2 (SPLA2) was purified from delipidated pancreas. Purified SPLA2, which is not glycosylated protein, was found to be monomeric protein with a molecular mass of 14 kDa. A specific activity of 750 U/mg for purified SPLA2 was measured at optimal conditions (pH 8.5 and 40 °C) in the presence of 4 mM NaTDC and 8 mM CaCl2 using PC as substrate. The sequence of the first twenty first amino-acid residues at the N-terminal extremity of SPLA2 was determined and shows a close similarity with known mammal and bird pancreatic secreted phospholipases A2. SPLA2 stability in the presence of organic solvents, as well as in acidic and alkaline pH and at high temperature makes it a good candidate for its application in food industry. CONCLUSIONS SPLA2 has several advantageous features for industrial applications. Stability of SPLA2 in the presence of organic solvents, and its tolerance to high temperatures, basic and acidic pH, makes it a good candidate for application in food industry to treat phospholipid-rich industrial effluents, or to synthesize useful chemical compounds.
Collapse
Affiliation(s)
- Abir Ben Bacha
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS route de Soukra, BP1173, University of Sfax, 3038 Sfax, Tunisia
| | | | | | | | | |
Collapse
|
10
|
The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:327-38. [PMID: 19272461 DOI: 10.1016/j.bbalip.2009.02.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/06/2009] [Accepted: 02/19/2009] [Indexed: 01/28/2023]
Abstract
Platelet-activating factor (PAF) acetylhydrolase exhibits a Ca(2+)-independent phospholipase A2 activity and degrades PAFas well as oxidized phospholipids (oxPL). Such phospholipids are accumulated in the artery wall and may play key roles in vascular inflammation and atherosclerosis. PAF-acetylhydrolase in plasma is complexed to lipoproteins; thus it is also referred to as lipoprotein-associated phospholipase A2 (Lp-PLA2). Lp-PLA2 is primarily associated with low-density lipoprotein (LDL), whereas a small proportion of circulating enzyme activity is also associated with high-density lipoprotein (HDL). The majority of the LDL-associated Lp-PLA2 (LDL-Lp-PLA2) activity is bound to atherogenic small-dense LDL particles and it is a potential marker of these particles in plasma. The distribution of Lp-PLA2 between LDL and HDL is altered in various types of dyslipidemias. It can be also influenced by the presence of lipoprotein (a) [Lp(a)] when plasma levels of this lipoprotein exceed 30 mg/dl. Several lines of evidence suggest that the role of plasma Lp-PLA2 in atherosclerosis may depend on the type of lipoprotein particle with which this enzyme is associated. In this regard, data from large Caucasian population studies have shown an independent association between the plasma Lp-PLA2 levels (which are mainly influenced by the levels of LDL-Lp-PLA2) and the risk of future cardiovascular events. On the contrary, several lines of evidence suggest that HDL-associated Lp-PLA2 may substantially contribute to the HDL antiatherogenic activities. Recent studies have provided evidence that oxPL are preferentially sequestered on Lp(a) thus subjected to degradation by the Lp(a)-associated Lp-PLA2. These data suggest that Lp(a) may be a potential scavenger of oxPL and provide new insights into the functional role of Lp(a) and the Lp(a)-associated Lp-PLA2 in normal physiology as well as in inflammation and atherosclerosis. The present review is focused on recent advances concerning the Lp-PLA2 structural characteristics, the molecular basis of the enzyme association with distinct lipoprotein subspecies, as well as the potential role of Lp-PLA2 associated with different lipoprotein classes in atherosclerosis and cardiovascular disease.
Collapse
|
11
|
Kitsiouli E, Nakos G, Lekka ME. Phospholipase A2 subclasses in acute respiratory distress syndrome. Biochim Biophys Acta Mol Basis Dis 2009; 1792:941-53. [PMID: 19577642 DOI: 10.1016/j.bbadis.2009.06.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/25/2009] [Accepted: 06/25/2009] [Indexed: 01/12/2023]
Abstract
Phospholipases A2 (PLA2) catalyse the cleavage of fatty acids esterified at the sn-2 position of glycerophospholipids. In acute lung injury-acute respiratory distress syndrome (ALI-ARDS) several distinct isoenzymes appear in lung cells and fluid. Some are capable to trigger molecular events leading to enhanced inflammation and lung damage and others have a role in lung surfactant recycling preserving lung function: Secreted forms (groups sPLA2-IIA, -V, -X) can directly hydrolyze surfactant phospholipids. Cytosolic PLA2 (cPLA2-IVA) requiring Ca2+ has a preference for arachidonate, the precursor of eicosanoids which participate in the inflammatory response in the lung. Ca(2+)-independent intracellular PLA2s (iPLA2) take part in surfactant phospholipids turnover within alveolar cells. Acidic Ca(2+)-independent PLA2 (aiPLA2), of lysosomal origin, has additionally antioxidant properties, (peroxiredoxin VI activity), and participates in the formation of dipalmitoyl-phosphatidylcholine in lung surfactant. PAF-AH degrades PAF, a potent mediator of inflammation, and oxidatively fragmented phospholipids but also leads to toxic metabolites. Therefore, the regulation of PLA2 isoforms could be a valuable approach for ARDS treatment.
Collapse
Affiliation(s)
- Eirini Kitsiouli
- Department of Biological Applications and Technologies, School of Sciences and Technologies, University of Ioannina, Greece
| | | | | |
Collapse
|
12
|
Serum platelet-activating factor acetylhydrolase activity: A novel potential inflammatory marker in type 1 diabetes. Prostaglandins Other Lipid Mediat 2008; 87:42-6. [DOI: 10.1016/j.prostaglandins.2008.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/04/2008] [Accepted: 07/21/2008] [Indexed: 11/20/2022]
|
13
|
Stafforini DM. Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2). Cardiovasc Drugs Ther 2008; 23:73-83. [PMID: 18949548 DOI: 10.1007/s10557-008-6133-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/06/2008] [Indexed: 12/26/2022]
Abstract
INTRODUCTION This article is focused on platelet-activating factor acetylhydrolase (PAF-AH), a lipoprotein bound, calcium-independent phospholipase A(2) activity also referred to as lipoprotein-associated phospholipase A(2) or PLA(2)G7. PAF-AH catalyzes the removal of the acyl group at the sn-2 position of PAF and truncated phospholipids generated in settings of inflammation and oxidant stress. DISCUSSION Here, I discuss current knowledge related to the structural features of this enzyme, including the molecular basis for association with lipoproteins and susceptibility to oxidative inactivation. The circulating form of PAF-AH is constitutively active and its expression is upregulated by mediators of inflammation at the transcriptional level. This mechanism is likely responsible for the observed up-regulation of PAF-AH during atherosclerosis and suggests that increased expression of this enzyme is a physiological response to inflammatory stimuli. Administration of recombinant forms of PAF-AH attenuate inflammation in a variety of experimental models. Conversely, genetic deficiency of PAF-AH in defined human populations increases the severity of atherosclerosis and other syndromes. Recent advances pointing to an interplay among oxidized phospholipid substrates, Lp(a), and PAF-AH could hold the key to a number of unanswered questions.
Collapse
Affiliation(s)
- Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, 2000 Circle of Hope, Suite 3364, Salt Lake City, UT 84112-5550, USA.
| |
Collapse
|
14
|
Wootton PTE, Flavell DM, Montgomery HE, World M, Humphries SE, Talmud PJ. Lipoprotein-associated phospholipase A2 A379V variant is associated with body composition changes in response to exercise training. Nutr Metab Cardiovasc Dis 2007; 17:24-31. [PMID: 17174223 DOI: 10.1016/j.numecd.2005.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 12/26/2022]
Abstract
Lipoprotein-associated PLA2 (Lp-PLA2) hydrolyses the sn-2 position of glycerophospholipids, in particular platelet activating factor (PAF), generating significant amounts of Lyso-PAF which in turn, via a remodelling pathway, can generate arachidonic acid (AA) from alkyl-acyl-glycerophosphorylcholine. AA is a precursor for prostaglandin synthesis, which regulates adipogenesis through the peroxisome proliferator-activated receptor subfamily. AA may also modulate skeletal muscle growth. We investigated the association of the PLA2G7 A379V variant with changes in body composition in a longitudinal study of 123 male Caucasian army recruits over 10 weeks of intensive physical training. There was no effect of genotype on baseline measures. However, after exercise training, homozygosity for the 379V allele was associated with a decrease in percentage adipose tissue mass (-3.61+/-1.14%), compared to AV (-1.67+/-0.38%) and AA (-1.09+/-0.24%) genotypes (p=0.01), and a significant mean increase (3.51+/-1.17%) in percentage lean mass, compared to AV (1.64+/-0.38%) and AA (1.10+/-0.24%) recruits (p=0.02). The association of this genotype with changes in body composition after training suggests a novel role for Lp-PLA2.
Collapse
Affiliation(s)
- Peter T E Wootton
- Centre for Cardiovascular Genetics, Department of Medicine, British Heart Foundation Laboratories, Rayne Building, Royal Free and University College London Medical School, 5 University Street, London WC1E 6JF, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Simonsen AC, Jensen UB, Hansen PL. Hydrolysis of fluid supported membrane islands by phospholipase A(2): Time-lapse imaging and kinetic analysis. J Colloid Interface Sci 2006; 301:107-15. [PMID: 16765972 DOI: 10.1016/j.jcis.2006.04.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/20/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
The activity of phospholipase A(2) (PLA(2)) which catalyzes the hydrolysis of phospholipids into free fatty acids and lysolipids, depends on the structure and thermodynamic state of the membrane. To further understand how the substrate conformation correlates with enzyme activity, model systems that are based on time-resolved membrane microscopy are needed. We demonstrate a methodology for preparing and investigating the dynamics of fluid supported phospholipid membranes hydrolyzed by snake venom PLA(2). The method uses quantitative analysis of time-lapse fluorescence images recording the evolution of fluid bilayer islands during hydrolysis. In order to minimize interactions with the support surface, we use double bilayer islands situated on top of a complete primary supported membrane prepared by hydration of spincoated lipid films. Our minimal kinetic analysis describes adsorption of enzyme to the membrane in terms of the Langmuir isotherm as well as enzyme kinetics. We use two related models assuming hydrolysis to occur either at the perimeter or at the surface of the membrane island. We find that the adsorption constant is similar for the two cases, while the estimated turnover rate is markedly different. The PLA(2) concentration series is measured in the absence and presence of beta-cyclodextrin which forms water soluble complexes with the reaction products. The results demonstrate the versatility of double bilayer islands as a membrane model system and introduces a new method for quantifying the kinetics of lipase activity on membranes by directly monitoring the evolution in substrate morphology.
Collapse
Affiliation(s)
- Adam Cohen Simonsen
- MEMPHYS, Center for Biomembrane Physics, Physics Department, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
16
|
Caro AA, Cederbaum AI. Role of cytochrome P450 in phospholipase A2- and arachidonic acid-mediated cytotoxicity. Free Radic Biol Med 2006; 40:364-75. [PMID: 16443151 DOI: 10.1016/j.freeradbiomed.2005.10.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/26/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Phospholipases A2 (PLA2) comprise a set of extracellular and intracellular enzymes that catalyze the hydrolysis of the sn-2 fatty acyl bond of phospholipids to yield fatty acids and lysophospholipids. The PLA2 reaction is the primary pathway through which arachidonic acid (AA) is released from phospholipids. PLA2s have an important role in cellular death that occurs via necrosis or apoptosis. Several reports support the hypothesis that unesterified arachidonic acid in cells is a signal for the induction of apoptosis. However, most of the biological effects of arachidonic acid are attributable to its metabolism by mainly three different groups of enzymes: cytochromes P450, cyclooxygenases, and lipoxygenases. In this review we will focus on the role of cytochrome P450 in AA metabolism and toxicity. The major pathways of arachidonic acid metabolism catalyzed by cytochrome P450 generate metabolites that are subdivided into two groups: the epoxyeicosatrienoic acids, formed by CYP epoxygenases, and the arachidonic acid derivatives that are hydroxylated at or near the omega-terminus by CYP omega-oxidases. In addition, autoxidation of AA by cytochrome P450-derived reactive oxygen species produces lipid hydroperoxides as primary oxidation products. In some cellular models of toxicity, cytochrome P450 activity exacerbates PLA2- and AA-dependent injury, mainly through the production of oxygen radicals that promote lipid peroxidation or production of metabolites that alter Ca2+ homeostasis. In contrast, in other situations, cytochrome P450 metabolism of AA is protective, mainly by lowering levels of unesterified AA and by production of metabolites that activate antiapoptotic pathways. Several lines of evidence point to the combined action of phospholipase A2 and cytochrome P450 as central in the mechanism of cellular injury in several human diseases, such as alcoholic liver disease and myocardial reperfusion injury. Inhibition of specific PLA2 and cytochrome P450 isoforms may represent novel therapeutic strategies against these diseases.
Collapse
Affiliation(s)
- Andres A Caro
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, Box 1603, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
17
|
Guo Z, Vikbjerg AF, Xu X. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv 2005; 23:203-59. [PMID: 15763405 DOI: 10.1016/j.biotechadv.2005.02.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 02/05/2005] [Indexed: 11/26/2022]
Abstract
Rapid progress in biochemistry of phospholipids and evolution of modern bioengineering has brought forth a number of novel concepts and technical advancements in the modification of phospholipids for industrial applications and human nutrition. Highlights cover preparation of novel phospholipid analogs based on the latest understanding of pivotal role of phospholipids in manifold biological processes, exploration of remarkable application potentials of phospholipids in meliorating human health, as well as development of new chemical and biotechnological approaches applied to the modification of phospholipids. This work reviews the natural occurrence and structural characteristics of phospholipids, their updated knowledge on manifold biological and nutritional functions, traditional and novel physical and chemical approaches to modify phospholipids as well as their applications to obtain novel phospholipids, and brief introduction of the efforts focusing on de novo syntheses of phospholipids. Special attention is given to the summary of molecular structural characteristics and catalytic properties of multiple phospholipases, which helps to interpret experimental phenomena and to improve reaction design. This will of course provide fundamental bases also for the development of enzymatic technology to produce structured or modified phospholipids.
Collapse
Affiliation(s)
- Zheng Guo
- Food Biotechnology and Engineering Group, BioCentrum-DTU, Building 221, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
18
|
Wright CS, Mi LZ, Rastinejad F. Evidence for Lipid Packaging in the Crystal Structure of the GM2-Activator Complex with Platelet Activating Factor. J Mol Biol 2004; 342:585-92. [PMID: 15327957 DOI: 10.1016/j.jmb.2004.07.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/27/2004] [Accepted: 07/11/2004] [Indexed: 10/26/2022]
Abstract
GM2-activator protein (GM2-AP) is a lipid transfer protein that has the ability to stimulate the enzymatic processing of gangliosides as well as T-cell activation through lipid presentation. Our previous X-ray crystallographic studies of GM2-AP have revealed a large lipid binding pocket as the central overall feature of the structure with non-protein electron density within this pocket suggesting bound lipid. To extend these studies, we present here the 2A crystal structure of GM2-AP complexed with platelet activating factor (PAF). PAF is a potent phosphoacylglycerol whose toxic patho-physiological effects can be inhibited by GM2-AP. The structure shows an ordered arrangement of two bound lipids and a fatty acid molecule. One PAF molecule binds in an extended conformation within the hydrophobic channel that has an open and closed conformation, and was seen to contain bound phospholipid in the low pH apo structure. The second molecule is submerged inside the pocket in a U-shaped conformation with its head group near the single polar residue S141. It was refined as lyso-PAF as it lacks electron density for the sn-2 acetate group. The alkyl chains of PAF interact through van der Waals' contacts, while the head groups bind in different environments with their phosphocholine moieties in contact with aromatic rings (Y137, F80). The structure has revealed further insights into the lipid binding properties of GM2-AP, suggesting an unexpected unique mode of lipid packaging that may explain the efficiency of GM2-AP in inhibiting the detrimental biological effects of PAF.
Collapse
Affiliation(s)
- Christine S Wright
- Department of Pharmacology, X-ray Crystallography Laboratory, University of Virginia, Charlottesville, VA 22908-0735, USA.
| | | | | |
Collapse
|
19
|
Tselepis AD, John Chapman M. Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase. ATHEROSCLEROSIS SUPP 2002; 3:57-68. [PMID: 12573364 DOI: 10.1016/s1567-5688(02)00045-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well established that inflammation is an integral feature of atherosclerosis and of the cardiovascular diseases which it underlies. Oxidative stress is also recognized as a key actor in atherogenesis, in which it is closely associated with the inflammatory response and bioactive lipid formation. Several bioactive lipids have been identified in the atherosclerotic plaque, including the potent inflammatory mediator platelet activating factor (PAF), PAF-like lipids, oxidised phospholipids (oxPL) and lysophosphatidylcholine (lyso-PC). Recent evidence has established a central role of two phospholipases (PL) in atherogenesis, the non-pancreatic Type II secretory phospholipase A(2) (sPLA(2)) and the lipoprotein-associated PLA(2)-alternatively termed as PAF-acetylhydrolase (PAF-AH). sPLA(2) is calcium-dependent and hydrolyses the sn-2 acyl group of glycerophospholipids of lipoproteins and cell membranes to produce lyso-PC and free fatty acids. It is also implicated in isoprostane production from oxPL. sPLA(2) is an acute phase reactant, which is upregulated by inflammatory cytokines and may represent a new independent risk factor for coronary heart disease. In contrast to sPLA(2), PAF-AH is calcium-independent and is specific for short acyl groups at the sn-2 position of the phospholipid substrate and with the exception of PAF, can equally hydrolyze oxPL to generate lyso-PC and oxidized fatty acids. Thus PAF-AH plays a key role in the degradation of proinflammatory oxPL and in the generation of lyso-PC and oxidized fatty acids. PAF-AH equally can also hydrolyze short-chain diacylglycerols, triacylglycerols, and acetylated alkanols, and displays a PLA(1) activity. Whereas sPLA(2) may represent a new independent risk factor for coronary artery disease, the potential relevance of PAF-AH to atherosclerosis remains the subject of debate, and recent results suggest that the potential role of the LDL-associated PAF-AH in atherogenesis may be distinct to that of the HDL-associated enzyme. This review is focused on the main structural and catalytic features of plasma PAF-AH, on the association of the enzyme with distinct lipoprotein particle subspecies, on its cellular sources, and finally on the potential significance of this lipoprotein-associated PLA(2) in cardiovascular disease.
Collapse
|
20
|
|
21
|
Teather LA, Lee RKK, Wurtman RJ. Platelet-activating factor increases prostaglandin E(2) release from astrocyte-enriched cortical cell cultures. Brain Res 2002; 946:87-95. [PMID: 12133598 DOI: 10.1016/s0006-8993(02)02866-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The phospholipid mediator platelet-activating factor (PAF) increased the release of prostaglandin E(2) (PGE(2)) from astrocyte-enriched cortical cell cultures in a concentration- and time-dependent manner. The nonhydrolyzable PAF analog methylcarbamyl-PAF (mc-PAF), the PAF intermediate lyso-PAF, and arachidonic acid (AA) also produced this effect. In contrast, phosphatidlycholine (PC) and lyso-PC, lipids that are structurally similar to PAF and lyso-PAF, had no effect on PGE(2) production, suggesting that PAF-induced PGE(2) release is not the consequence of nonspecific phospholipid-induced membrane perturbation. Antagonism of intracellular PAF binding sites completely abolished the ability of mc-PAF and lyso-PAF to mobilize PGE(2,) and attenuated the AA effect. Antagonism of the G-protein-coupled PAF receptor in plasma membranes had no significant effect on mc-PAF, lyso-PAF or AA-induced PGE(2) release. Based on the present findings, we hypothesize that intracellular PAF is a physiologic stimulus of PGE(2) production in astrocytes.
Collapse
Affiliation(s)
- Lisa A Teather
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 45 Carleton Street, E25-604 Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
22
|
McMaster CR. Lipid metabolism and vesicle trafficking: more than just greasing the transport machinery. Biochem Cell Biol 2002; 79:681-92. [PMID: 11800009 DOI: 10.1139/o01-139] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The movement of lipids from their sites of synthesis to ultimate intracellular destinations must be coordinated with lipid metabolic pathways to ensure overall lipid homeostasis is maintained. Thus, lipids would be predicted to play regulatory roles in the movement of vesicles within cells. Recent work has highlighted how specific lipid metabolic events can affect distinct vesicle trafficking steps and has resulted in our first glimpses of how alterations in lipid metabolism participate in the regulation of intracellular vesicles. Specifically, (i) alterations in sphingolipid metabolism affect the ability of SNAREs to fuse membranes, (ii) sterols are required for efficient endocytosis, (iii) glycerophospholipids and phosphorylated phosphatidylinositols regulate Golgi-mediated vesicle transport, (iv) lipid acylation is required for efficient vesicle transport mediated membrane fission, and (v) the addition of glycosylphosphatidylinositol lipid anchors to proteins orders them into distinct domains that result in their preferential sorting from other vesicle destined protein components in the endoplasmic reticulum. This review describes the experimental evidence that demonstrates a role for lipid metabolism in the regulation of specific vesicle transport events.
Collapse
Affiliation(s)
- C R McMaster
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
23
|
Ribeiro JM, Francischetti IM. Platelet-activating-factor-hydrolyzing phospholipase C in the salivary glands and saliva of the mosquitoCulex quinquefasciatus. J Exp Biol 2001; 204:3887-94. [PMID: 11807106 DOI: 10.1242/jeb.204.22.3887] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYA phospholipase C activity specific for platelet-activating factor (PAF), named PAF phosphorylcholine hydrolase, was found in the salivary glands and saliva of the human-feeding mosquito Culex quinquefasciatus. The enzymatic activity was demonstrated by inhibition of PAF-induced platelet aggregation, and by identification of substrate consumption and production of diacyl glyceride by electrospray-ionisation mass spectrometry. The activity has a neutral optimal pH and an apparent molecular mass of 40–50 kDa. Two anthropophilic mosquito species, Aedes aegypti and Anopheles gambiae, do not have this salivary activity. The results are interpreted within the evolutionary context of the genera Culex, Aedes and Anopheles.
Collapse
Affiliation(s)
- J M Ribeiro
- Section of Medical Entomology, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Building 4, Room 126, 4 Center Drive, MSC 0425, Bethesda, MD 20892-0425, USA.
| | | |
Collapse
|
24
|
Berg OG, Gelb MH, Tsai MD, Jain MK. Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem Rev 2001; 101:2613-54. [PMID: 11749391 DOI: 10.1021/cr990139w] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- O G Berg
- Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
25
|
Abstract
The human multidrug-resistance (MDR1) P-glycoprotein (Pgp) is an ATP-binding-cassette transporter (ABCB1) that is ubiquitously expressed. Often its concentration is high in the plasma membrane of cancer cells, where it causes multidrug resistance by pumping lipophilic drugs out of the cell. In addition, MDR1 Pgp can transport analogues of membrane lipids with shortened acyl chains across the plasma membrane. We studied a role for MDR1 Pgp in transport to the cell surface of the signal-transduction molecule platelet-activating factor (PAF). PAF is the natural short-chain phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine. [(14)C]PAF synthesized intracellularly from exogenous alkylacetylglycerol and [(14)C]choline became accessible to albumin in the extracellular medium of pig kidney epithelial LLC-PK1 cells in the absence of vesicular transport. Its translocation across the apical membrane was greatly stimulated by the expression of MDR1 Pgp, and inhibited by the MDR1 inhibitors PSC833 and cyclosporin A. Basolateral translocation was not stimulated by expression of the basolateral drug transporter MRP1 (ABCC1). It was insensitive to the MRP1 inhibitor indomethacin and to depletion of GSH which is required for MRP1 activity. While efficient transport of PAF across the apical plasma membrane may be physiologically relevant in MDR1-expressing epithelia, PAF secretion in multidrug-resistant tumours may stimulate angiogenesis and thereby tumour growth.
Collapse
|
26
|
Raggers RJ, Vogels I, van Meer G. Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor. Biochem J 2001; 357:859-65. [PMID: 11463358 PMCID: PMC1222017 DOI: 10.1042/0264-6021:3570859] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human multidrug-resistance (MDR1) P-glycoprotein (Pgp) is an ATP-binding-cassette transporter (ABCB1) that is ubiquitously expressed. Often its concentration is high in the plasma membrane of cancer cells, where it causes multidrug resistance by pumping lipophilic drugs out of the cell. In addition, MDR1 Pgp can transport analogues of membrane lipids with shortened acyl chains across the plasma membrane. We studied a role for MDR1 Pgp in transport to the cell surface of the signal-transduction molecule platelet-activating factor (PAF). PAF is the natural short-chain phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine. [(14)C]PAF synthesized intracellularly from exogenous alkylacetylglycerol and [(14)C]choline became accessible to albumin in the extracellular medium of pig kidney epithelial LLC-PK1 cells in the absence of vesicular transport. Its translocation across the apical membrane was greatly stimulated by the expression of MDR1 Pgp, and inhibited by the MDR1 inhibitors PSC833 and cyclosporin A. Basolateral translocation was not stimulated by expression of the basolateral drug transporter MRP1 (ABCC1). It was insensitive to the MRP1 inhibitor indomethacin and to depletion of GSH which is required for MRP1 activity. While efficient transport of PAF across the apical plasma membrane may be physiologically relevant in MDR1-expressing epithelia, PAF secretion in multidrug-resistant tumours may stimulate angiogenesis and thereby tumour growth.
Collapse
Affiliation(s)
- R J Raggers
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | |
Collapse
|
27
|
Cheeseman MT, Bates PA, Crampton JM. Preliminary characterisation of esterase and platelet-activating factor (PAF)-acetylhydrolase activities from cat flea (Ctenocephalides felis) salivary glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:157-164. [PMID: 11164337 DOI: 10.1016/s0965-1748(00)00113-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Naphthyl esterase and platelet-activating factor (PAF)-acetylhydrolase activities were detected in the salivary glands of the cat flea, Ctenocephalides felis. Salivary naphthyl esterase activity is disgorged during exploratory probing. Whole extracts of salivary glands contain esterase activity against the short-chain naphthyl esters alpha-naphthyl acetate (approximately 210pmol/min/gland pair; 10.0micromol/min/mg specific activity; K(m) approximately 59microM) and beta-naphthyl acetate (approximately 110pmol/min/gland pair; 5.2micromol/min/mg specific activity; K(m) approximately 132microM). Salivary gland extracts have PAF-acetylhydrolase activity (approximately 5pmol/min/gland pair; 0.24micromol/min/mg specific activity) but do not have detectable acetylcholinesterase activity. Native-PAGE and IEF resolve three and six salivary gland naphthyl esterase bands, respectively, and both patterns are different from carcass esterases. Salivary gland naphthyl esterase activity binds reversibly to Concanavalin A, and enzymatic deglycosylation with glycopeptidase F produced a new, fast-migrating salivary gland naphthyl esterase band on Native-PAGE. Renaturation of esterase activity after SDS-PAGE gave approximately 56kDa, approximately 57kDa and approximately 58kDa naphthyl-esterase-positive bands. On gel filtration naphthyl esterase and PAF-acetylhydrolase activities co-elute as a single peak with an apparent molecular weight of approximately 59kDa. This partially purified pool of enzyme had esterase activity against a series of short-chain alpha- and beta-naphthyl esters. The heterogeneity of salivary gland esterases, their relationship to PAF-acetylhydrolase, and the possible physiological functions of salivary gland PAF-acetylhydrolase activity are discussed.
Collapse
Affiliation(s)
- M T Cheeseman
- Department of Veterinary Pathology, University of Liverpool, Liverpool, UK.
| | | | | |
Collapse
|
28
|
McMullen TW, Li J, Sheffield PJ, Aoki J, Martin TW, Arai H, Inoue K, Derewenda ZS. The functional implications of the dimerization of the catalytic subunits of the mammalian brain platelet-activating factor acetylhydrolase (Ib). PROTEIN ENGINEERING 2000; 13:865-71. [PMID: 11239086 DOI: 10.1093/protein/13.12.865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mammalian brain contains significant amounts of the cytosolic isoform Ib of the platelet-activating factor acetylhydrolase (PAF-AH), a unique type of PLA2. This oligomeric protein complex contains three types of subunits: two homologous (63% identity) 26 kDa catalytic subunits (alpha(1) and alpha(2)) which harbor all the PAF-AH activity, and the 45 kDa beta-subunit (LIS1), a product of the causal gene for Miller-Dieker lissencephaly. During fetal development, the preferentially expressed alpha(1)-subunit forms a homodimer, which binds to a homodimer of LIS1, whereas in adult organisms alpha(1)/alpha(2) and alpha(2)/alpha(2) dimers, also bound to dimeric LIS1, are the prevailing species. The consequences of this "switching" are not understood, but appear to be of physiological significance. The alpha(1)- and alpha(2)-subunits readily associate with very high affinity to form homodimers. The nature of the interface has been elucidated by the 1.7 A resolution crystal structure of the alpha(1)/alpha(1) homodimer (Ho et al., 1997). Here, we examined the functional consequences of the dimerization in both types of alpha-subunits. We obtained monomeric protein in the presence of high concentrations (>50 mM) of Ca2+ ions, and we show that it is catalytically inactive and less stable than the wild type. We further show that Arg29 and Arg22 in one monomer contribute to the catalytic competence of the active site across the dimer interface, and complement the catalytic triad of Ser47, Asp192 and His195, in the second monomer. These results indicate that the brain PAF-acetylhydrolase is a unique PLA2 in which dimerization is essential for both stability and catalytic activity.
Collapse
Affiliation(s)
- T W McMullen
- Department of Molecular Physiology and Biological Physics, University of Virginia, Health Sciences Center, Charlottesville, VA 22906-0011, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hirashima Y, Ueno H, Karasawa K, Yokoyama K, Setaka M, Takaku A. Transfection of the plasma-type platelet-activating factor acetylhydrolase gene attenuates glutamate-induced apoptosis in cultured rat cortical neurons. Brain Res 2000; 885:128-32. [PMID: 11121539 DOI: 10.1016/s0006-8993(00)02852-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using an adenoviral vector, we induced overexpression of the plasma type of platelet-activating factor acetylhydrolase in cultured rat neurons. Neurons overexpressing this enzyme showed a decrease in glutamate-induced injury, mainly, apparent as decreased apoptosis. Reduction of lipid peroxidation by this enzyme and protection of mitochondrial function were demonstrated, and these may be the basis of the resistance to glutamate-induced neuronal injury that we observed.
Collapse
Affiliation(s)
- Y Hirashima
- Department of Neurosurgery, Toyama Medical and Pharmaceutical University, Toyama-shi, 930-0194, Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:1-19. [PMID: 11080672 DOI: 10.1016/s1388-1981(00)00105-0] [Citation(s) in RCA: 995] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phospholipase A(2) (PLA(2)) superfamily consists of a broad range of enzymes defined by their ability to catalyze the hydrolysis of the middle (sn-2) ester bond of substrate phospholipids. The hydrolysis products of this reaction, free fatty acid and lysophospholipid, have many important downstream roles, and are derived from the activity of a diverse and growing superfamily of PLA(2) enzymes. This review updates the classification of the various PLA(2)'s now described in the literature. Four criteria have been employed to classify these proteins into one of the 11 Groups (I-XI) of PLA(2)'s. First, the enzyme must catalyze the hydrolysis of the sn-2 ester bond of a natural phospholipid substrate, such as long fatty acid chain phospholipids, platelet activating factor, or short fatty acid chain oxidized phospholipids. Second, the complete amino acid sequence of the mature protein must be known. Third, each PLA(2) Group should include all of those enzymes that have readily identifiable sequence homology. If more than one homologous PLA(2) gene exists within a species, then each paralog should be assigned a Subgroup letter, as in the case of Groups IVA, IVB, and IVC PLA(2). Homologs from different species should be classified within the same Subgroup wherever such assignments are possible as is the case with zebra fish and human Group IVA PLA(2) orthologs. The current classification scheme does allow for historical exceptions of the highly homologous Groups I, II, V, and X PLA(2)'s. Fourth, catalytically active splice variants of the same gene are classified as the same Group and Subgroup, but distinguished using Arabic numbers, such as for Group VIA-1 PLA(2) and VIA-2 PLA(2)'s. These four criteria have led to the expansion or realignment of Groups VI, VII and VIII, as well as the addition of Group XI PLA(2) from plants.
Collapse
Affiliation(s)
- D A Six
- Department of Chemistry and Biochemistry, MC 0601, Revelle College and School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|