1
|
Rubini D, Banu SF, Subramani P, Hari BNV, Gowrishankar S, Pandian SK, Wilson A, Nithyanand P. Extracted chitosan disrupts quorum sensing mediated virulence factors in Urinary tract infection causing pathogens. Pathog Dis 2019; 77:5364546. [PMID: 30801640 DOI: 10.1093/femspd/ftz009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing (QS) plays an important role during the aetiology of urinary tract infection (UTI), as several virulence factors are under the regulation of QS. Pseudomonas aeruginosa and Serratia marcescens, the primary causative agents of UTI, employ acyl homoserine lactone (AHL) as signal molecules to coordinate various virulence factors. In this present study, chitosan extracted from the marine crab Portunus sanguinolentus was screened for its ability to inhibit the QS-signaling molecules of P. aeruginosa (PA01) and few clinical isolates of P. aeruginosa and S. marcescens. The extracted chitosan on comparison with a commercial chitosan showed significant inhibition of several QS-dependent virulence factors in P. aeruginosa and S. marscenes. Furthermore, qPCR analysis was carried out to confirm the down-regulation of fimA, fimC and flhD genes involved in adhesion and pathogenesis of S. marcescens and lasI and rhlI genes that governs the P. aeruginosa quorum sensing system. Moreover, the chitosan when coated on a catheter was also able to disrupt the mature biofilms which was revealed by scanning electron microscopy. Collectively, the present study showcases the QS inhibitory property of extracted chitosan from crab shells which is being discarded as a recalcitrant biowaste.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| | - Prabha Subramani
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| | - B Narayanan Vedha Hari
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi - 630004, Tamil Nadu, India
| | | | - Aruni Wilson
- Division of Microbiology and Molecular Genetics, School of Medicine, 11021 Campus Street, Loma Linda, California 92350, USA
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401,Tamil Nadu, India
| |
Collapse
|
2
|
Meuskens I, Saragliadis A, Leo JC, Linke D. Type V Secretion Systems: An Overview of Passenger Domain Functions. Front Microbiol 2019; 10:1163. [PMID: 31214135 PMCID: PMC6555100 DOI: 10.3389/fmicb.2019.01163] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a β-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.
Collapse
Affiliation(s)
| | | | | | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Abstract
The paper provides a short overview of three investigated bacterial protein toxins, colicin M (Cma) of Escherichia coli, pesticin (Pst) of Yersinia pestis and hemolysin (ShlAB) of Serratia marcescens. Cma and Pst are exceptional among colicins in that they kill bacteria by degrading the murein (peptidoglycan). Both are released into the medium and bind to specific receptor proteins in the outer membrane of sensitive E. coli cells. Subsequently they are translocated into the periplasm by an energy-consuming process using the proton motive force. For transmembrane translocation the colicins unfold and refold in the periplasm. In the case of Cma the FkpA peptidyl prolyl cis-trans isomerase/chaperone is required. ShlA is secreted and activated through ShlB in the outer membrane by a type Vb secretion mechanism.
Collapse
|
4
|
Requirement for Serratia marcescens cytolysin in a murine model of hemorrhagic pneumonia. Infect Immun 2014; 83:614-24. [PMID: 25422267 DOI: 10.1128/iai.01822-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serratia marcescens, a member of the carbapenem-resistant Enterobacteriaceae, is an important emerging pathogen that causes a wide variety of nosocomial infections, spreads rapidly within hospitals, and has a systemic mortality rate of ≤41%. Despite multiple clinical descriptions of S. marcescens nosocomial pneumonia, little is known regarding the mechanisms of bacterial pathogenesis and the host immune response. To address this gap, we developed an oropharyngeal aspiration model of lethal and sublethal S. marcescens pneumonia in BALB/c mice and extensively characterized the latter. Lethal challenge (>4.0 × 10(6) CFU) was characterized by fulminate hemorrhagic pneumonia with rapid loss of lung function and death. Mice challenged with a sublethal dose (<2.0 × 10(6) CFU) rapidly lost weight, had diminished lung compliance, experienced lung hemorrhage, and responded to the infection with extensive neutrophil infiltration and histopathological changes in tissue architecture. Neutrophil extracellular trap formation and the expression of inflammatory cytokines occurred early after infection. Mice depleted of neutrophils were exquisitely susceptible to an otherwise nonlethal inoculum, thereby demonstrating the requirement for neutrophils in host protection. Mutation of the genes encoding the cytolysin ShlA and its transporter ShlB resulted in attenuated S. marcescens strains that failed to cause profound weight loss, extended illness, hemorrhage, and prolonged lung pathology in mice. This study describes a model of S. marcescens pneumonia that mimics known clinical features of human illness, identifies neutrophils and the toxin ShlA as a key factors important for defense and infection, respectively, and provides a solid foundation for future studies of novel therapeutics for this important opportunistic pathogen.
Collapse
|
5
|
A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. Cell Host Microbe 2014; 15:164-76. [PMID: 24528863 DOI: 10.1016/j.chom.2014.01.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/05/2013] [Accepted: 01/02/2014] [Indexed: 11/21/2022]
Abstract
Virulence of Pseudomonas aeruginosa is typically attributed to its type III secretion system (T3SS). A taxonomic outlier, the P. aeruginosa PA7 strain, lacks a T3SS locus, and no virulence phenotype is attributed to PA7. We characterized a PA7-related, T3SS-negative P. aeruginosa strain, CLJ1, isolated from a patient with fatal hemorrhagic pneumonia. CLJ1 is highly virulent in mice, leading to lung hemorrhage and septicemia. CLJ1-infected primary endothelial cells display characteristics of membrane damage and permeabilization. Proteomic analysis of CLJ1 culture supernatants identified a hemolysin/hemagglutinin family pore-forming toxin, Exolysin (ExlA), that is exported via ExlB, representing a putative two-partner secretion system. A recombinant P. aeruginosa PAO1ΔpscD::exlBA strain, deficient for T3SS but engineered to express ExlA, gained lytic capacity on endothelial cells and full virulence in mice, demonstrating that ExlA is necessary and sufficient for pathogenicity. This highlights clinically relevant T3SS-independent hypervirulence, isolates, and points to a broader P. aeruginosa pathogenic repertoire.
Collapse
|
6
|
van Ulsen P, Rahman SU, Jong WS, Daleke-Schermerhorn MH, Luirink J. Type V secretion: From biogenesis to biotechnology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1592-611. [DOI: 10.1016/j.bbamcr.2013.11.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
|
7
|
Leo JC, Grin I, Linke D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 2012; 367:1088-101. [PMID: 22411980 PMCID: PMC3297439 DOI: 10.1098/rstb.2011.0208] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autotransport in Gram-negative bacteria denotes the ability of surface-localized proteins to cross the outer membrane (OM) autonomously. Autotransporters perform this task with the help of a β-barrel transmembrane domain localized in the OM. Different classes of autotransporters have been investigated in detail in recent years; classical monomeric but also trimeric autotransporters comprise many important bacterial virulence factors. So do the two-partner secretion systems, which are a special case as the transported protein resides on a different polypeptide chain than the transporter. Despite the great interest in these proteins, the exact mechanism of the transport process remains elusive. Moreover, different periplasmic and OM factors have been identified that play a role in the translocation, making the term ‘autotransport’ debatable. In this review, we compile the wealth of details known on the mechanism of single autotransporters from different classes and organisms, and put them into a bigger perspective. We also discuss recently discovered or rediscovered classes of autotransporters.
Collapse
Affiliation(s)
- Jack C Leo
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | |
Collapse
|
8
|
Arnold T, Zeth K, Linke D. Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J Biol Chem 2010; 285:18003-15. [PMID: 20351097 PMCID: PMC2878562 DOI: 10.1074/jbc.m110.112516] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/26/2010] [Indexed: 12/03/2022] Open
Abstract
Omp85 proteins are essential proteins located in the bacterial outer membrane. They are involved in outer membrane biogenesis and assist outer membrane protein insertion and folding by an unknown mechanism. Homologous proteins exist in eukaryotes, where they mediate outer membrane assembly in organelles of endosymbiotic origin, the mitochondria and chloroplasts. We set out to explore the homologous relationship between cyanobacteria and chloroplasts, studying the Omp85 protein from the thermophilic cyanobacterium Thermosynechococcus elongatus. Using state-of-the art sequence analysis and clustering methods, we show how this protein is more closely related to its chloroplast homologue Toc75 than to proteobacterial Omp85, a finding supported by single channel conductance measurements. We have solved the structure of the periplasmic part of the protein to 1.97 A resolution, and we demonstrate that in contrast to Omp85 from Escherichia coli the protein has only three, not five, polypeptide transport-associated (POTRA) domains, which recognize substrates and generally interact with other proteins in bigger complexes. We model how these POTRA domains are attached to the outer membrane, based on the relationship of Omp85 to two-partner secretion system proteins, which we show and analyze. Finally, we discuss how Omp85 proteins with different numbers of POTRA domains evolved, and evolve to this day, to accomplish an increasing number of interactions with substrates and helper proteins.
Collapse
Affiliation(s)
- Thomas Arnold
- From Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Kornelius Zeth
- From Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Dirk Linke
- From Department I, Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Weaver TM, Hocking JM, Bailey LJ, Wawrzyn GT, Howard DR, Sikkink LA, Ramirez-Alvarado M, Thompson JR. Structural and functional studies of truncated hemolysin A from Proteus mirabilis. J Biol Chem 2009; 284:22297-22309. [PMID: 19494116 DOI: 10.1074/jbc.m109.014431] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study we analyzed the structure and function of a truncated form of hemolysin A (HpmA265) from Proteus mirabilis using a series of functional and structural studies. Hemolysin A belongs to the two-partner secretion pathway. The two-partner secretion pathway has been identified as the most common protein secretion pathway among Gram-negative bacteria. Currently, the mechanism of action for the two-partner hemolysin members is not fully understood. In this study, hemolysis experiments revealed a unidirectional, cooperative, biphasic activity profile after full-length, inactive hemolysin A was seeded with truncated hemolysin A. We also solved the first x-ray structure of a TpsA hemolysin. The truncated hemolysin A formed a right-handed parallel beta-helix with three adjoining segments of anti-parallel beta-sheet. A CXXC disulfide bond, four buried solvent molecules, and a carboxyamide ladder were all located at the third complete beta-helix coil. Replacement of the CXXC motif led to decreased activity and stability according to hemolysis and CD studies. Furthermore, the crystal structure revealed a sterically compatible, dry dimeric interface formed via anti-parallel beta-sheet interactions between neighboring beta-helix monomers. Laser scanning confocal microscopy further supported the unidirectional interconversion of full-length hemolysin A. From these results, a model has been proposed, where cooperative, beta-strand interactions between HpmA265 and neighboring full-length hemolysin A molecules, facilitated in part by the highly conserved CXXC pattern, account for the template-assisted hemolysis.
Collapse
Affiliation(s)
- Todd M Weaver
- Departments of Chemistry, La Crosse, Wisconsin 54601
| | | | | | | | - David R Howard
- Biology, University Wisconsin-La Crosse, La Crosse, Wisconsin 54601
| | - Laura A Sikkink
- the Departments of Biochemistry and Molecular Biology, Rochester, Minnesota 55905
| | | | - James R Thompson
- Physiology and Biomedical Imaging, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
10
|
The 'P-usher', a novel protein transporter involved in fimbrial assembly and TpsA secretion. EMBO J 2008; 27:2669-80. [PMID: 18833195 DOI: 10.1038/emboj.2008.197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 09/05/2008] [Indexed: 11/08/2022] Open
Abstract
We identified a new bacterial transporter, the Pseudomonas aeruginosa CupB3 protein, which is an outer membrane usher involved in pili assembly. In CupB3, the usher domain has fused during evolution with a POTRA (polypeptide-transport-associated)-like domain found in TpsB transporters of two-partner secretion systems. In TpsBs, the POTRA captures the TpsA passenger, which is then transported across the outer membrane through the TpsB beta-barrel. We named CupB3 a 'P-usher' for POTRA-like domain-containing usher. We showed that CupB3 assembles CupB1 fimbrial subunits into pili and secretes CupB5, a TpsA-like protein. The CupB3 usher domain has the function of a TpsB beta-barrel in CupB5 translocation. We revealed that the POTRA-like domain is neither essential for CupB1 fimbriae assembly nor for cell surface exposition of CupB5, but is crucial to coordinate bona fide transport of CupB1 and CupB5 through the usher domain. The P-usher defines a novel transport pathway involving a molecular machine made with old spare parts.
Collapse
|
11
|
Leukotoxin operon and differential expressions of the leukotoxin gene in bovine Fusobacterium necrophorum subspecies. Anaerobe 2008; 14:13-8. [DOI: 10.1016/j.anaerobe.2007.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/14/2007] [Indexed: 11/19/2022]
|
12
|
Stegmeier JF, Andersen C. Characterization of Pores Formed by YaeT (Omp85) from Escherichia coli. ACTA ACUST UNITED AC 2006; 140:275-83. [PMID: 16829683 DOI: 10.1093/jb/mvj147] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Proteins of the Omp85 family play a major role in the biogenesis of the bacterial outer membrane, since they were shown to mediate insertion of outer membrane proteins. The Escherichia coli Omp85 homologue YaeT is essential for viability, but its exact mode of action is not yet elucidated. We could show that YaeT is composed of two distinct domains, an amino-terminal periplasmic and a carboxy-terminal membrane domain. The full length YaeT and the isolated membrane domain induce pores when reconstituted in planar lipid membranes. The pores exhibit a certain variability of conductance indicating a flexible structure, which could be an essential property of a lateral opening channel releasing proteins into the bacterial outer membrane. We could further show that the periplasmic domain proves to be essential for in vivo function of YaeT.
Collapse
Affiliation(s)
- Johannes F Stegmeier
- Universität Würzburg, Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
13
|
Abstract
Omp85 is a protein found in Gram-negative bacteria where it serves to integrate proteins into the bacterial outer membrane. Members of the Omp85 family of proteins are defined by the presence of two domains: an N-terminal, periplasmic domain rich in POTRA repeats and a C-terminal beta-barrel domain embedded in the outer membrane. The widespread distribution of Omp85 family members together with their fundamental role in outer membrane assembly suggests the ancestral Omp85 arose early in the evolution of prokaryotic cells. Mitochondria, derived from an ancestral bacterial endosymbiont, also use a member of the Omp85 family to assemble proteins in their outer membranes. More distant relationships are seen between the Omp85 family and both the core proteins in two-partner secretion systems and the Toc75 family of protein translocases found in plastid outer envelopes. Aspects of the ancestry and molecular architecture of the Omp85 family of proteins is providing insight into the mechanism by which proteins might be integrated and assembled into bacterial outer membranes.
Collapse
Affiliation(s)
- Ian E Gentle
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3010, Australia
| | | | | |
Collapse
|
14
|
Méli AC, Hodak H, Clantin B, Locht C, Molle G, Jacob-Dubuisson F, Saint N. Channel Properties of TpsB Transporter FhaC Point to Two Functional Domains with a C-terminal Protein-conducting Pore. J Biol Chem 2006; 281:158-66. [PMID: 16284399 DOI: 10.1074/jbc.m508524200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integral outer membrane transporters of the Omp85/TpsB superfamily mediate the translocation of proteins across, or their integration into, the outer membranes of Gram-negative bacteria, chloroplasts, and mitochondria. The Bordetella pertussis FhaC/FHA couple serves as a model for the two-partner secretion pathway in Gram-negative bacteria, with the TpsB protein, FhaC, being the specific transporter of its TpsA partner, FHA, across the outer membrane. In this work, we have investigated the structure/function relationship of FhaC by analyzing the ion channel properties of the wild type protein and a collection of mutants with varied FHA secretion activities. We demonstrated that the channel is formed by the C-terminal two-thirds of FhaC most likely folding into a beta-barrel domain predicted to be conserved throughout the family. A C-proximal motif that represents the family signature appears essential for pore function. The N-terminal 200 residues of FhaC constitute a functionally distinct domain that modulates the pore properties and may participate in FHA recognition.
Collapse
Affiliation(s)
- Albano C Méli
- UMR 5048 CNRS, U554 INSERM, Centre de Biochimie Structurale, 29 Rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Tao K, Long Z, Liu K, Tao Y, Liu S. Purification and properties of a novel insecticidal protein from the locust pathogen Serratia marcescens HR-3. Curr Microbiol 2005; 52:45-9. [PMID: 16391997 DOI: 10.1007/s00284-005-0089-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 07/07/2005] [Indexed: 11/24/2022]
Abstract
One or more proteinaceous factors with insecticidal activities in the locust pathogen Serratia marcescens HR-3 culture filtrates were found to cause the death of grassland locusts. A novel insecticidal protein was purified to homogeneity. It was a monomer of 61 kDa. The purified protein showed a strong insecticidal effect with a median lethal dosage of 12.1 microg locust(-1) and contained a high level of protease activity (101 U ml(-1)). Insecticidal activity was significantly decreased when the protein was pretreated with ethylene diamine tetraacetic acid and 1-10-phenanthroline, and it was restored when the treated protein was incubated with Zn(2+). The N-terminal amino acid sequence of insecticidal protein showed sequence similarity with metalloprotease from S. marcescens SM6 and Serratia spp. E15. Our results suggested that the factor primarily responsible for insecticidal activity toward locusts was a zinc-dependent 61-kDa metalloprotease.
Collapse
Affiliation(s)
- Ke Tao
- National Laboratory of Grassland Biocontrol Engineering, College of Life Science, Sichuan University, Chengdu 610064, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Thanassi DG, Stathopoulos C, Karkal A, Li H. Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria (review). Mol Membr Biol 2005; 22:63-72. [PMID: 16092525 DOI: 10.1080/09687860500063290] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacteria secrete a wide variety of proteins, many of which play important roles in virulence. In gram-negative bacteria, these proteins must cross the cytoplasmic or inner membrane, periplasm, and outer membrane to reach the cell surface. Gram-negative bacteria have evolved multiple pathways to allow protein secretion across their complex envelope. ATP is not available in the periplasm and many of these secretion pathways encode components that harness energy available at the inner membrane to drive secretion across the outer membrane. In contrast, the autotransporter, two-partner secretion and chaperone/usher pathways are comparatively simple systems that allow secretion across the outer membrane without the need for input of energy from the inner membrane. This review will present overviews of these 'self-sufficient' pathways, focusing on recent advances and secretion mechanisms. Similarities among the pathways and with other protein translocation mechanisms will be highlighted.
Collapse
Affiliation(s)
- David G Thanassi
- Center for Infectious Diseases, Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, New York 11794-5120, USA.
| | | | | | | |
Collapse
|
17
|
Moslavac S, Mirus O, Bredemeier R, Soll J, von Haeseler A, Schleiff E. Conserved pore-forming regions in polypeptide-transporting proteins. FEBS J 2005; 272:1367-78. [PMID: 15752354 DOI: 10.1111/j.1742-4658.2005.04569.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transport of solutes and polypeptides across membranes is an essential process for every cell. In the past, much focus has been placed on helical transporters. Recently, the beta-barrel-shaped transporters have also attracted some attention. The members of this family are found in the outer bacterial membrane and the outer membrane of endosymbiotically derived organelles. Here we analyze the features and the evolutionary development of a specified translocator family, namely the beta-barrel-shaped polypeptide-transporters. We identified sequence motifs, which characterize all transporters of this family, as well as motifs specific for a certain subgroup of proteins of this class. The general motifs are related to the structural composition of the pores. Further analysis revealed a defined distance of two motifs to the C-terminal portion of the proteins. Furthermore, the evolutionary relationship of the proteins and the motifs are discussed.
Collapse
|
18
|
Protein secretion through autotransporter and two-partner pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:235-57. [PMID: 15546669 DOI: 10.1016/j.bbamcr.2004.03.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/18/2004] [Accepted: 03/26/2004] [Indexed: 01/19/2023]
Abstract
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.
Collapse
|
19
|
Walker G, Hertle R, Braun V. Activation of Serratia marcescens hemolysin through a conformational change. Infect Immun 2004; 72:611-4. [PMID: 14688146 PMCID: PMC343996 DOI: 10.1128/iai.72.1.611-614.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For Serratia marcescens, secreted hemolysin/cytotoxin is not only secreted but also activated by an outer membrane protein. Excluding posttranslational processing by mass spectrometry, the conformation of active and inactive ShlA derivatives strongly differed in electrophoretic mobilities, gel permeation chromatography, sensitivity to trypsin, circular dichroism, and intrinsic fluorescence. We concluded that ShlB interacts with ShlA during secretion and imposes a conformational change in ShlA to form the active hemolysin.
Collapse
Affiliation(s)
- Georg Walker
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
20
|
Sánchez-Pulido L, Devos D, Genevrois S, Vicente M, Valencia A. POTRA: a conserved domain in the FtsQ family and a class of β-barrel outer membrane proteins. Trends Biochem Sci 2003; 28:523-6. [PMID: 14559180 DOI: 10.1016/j.tibs.2003.08.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
POTRA (for polypeptide-transport-associated domain) is a novel domain identified in proteins of the ShlB, Toc75, D15 and FtsQ/DivIB families. In most cases, the POTRA domain is associated with a beta-barrel outer membrane domain and its function has been experimentally related to polypeptide transport in Toc75 (Tic-Toc protein import system in chloroplast) and ShlB families. In addition to potential key roles in protein transport across the outer membrane and in bacterial septation, the POTRA domain has attractive features for vaccine development in diseases such as cholera, meningitis, gonorrhoea and syphilis.
Collapse
Affiliation(s)
- Luis Sánchez-Pulido
- Protein Design Group, Centro Nacional de Biotecnologi;a (CNB-CSIC), Cantoblanco, E-28049, Madrid, Spain.
| | | | | | | | | |
Collapse
|
21
|
Shroyer ML, Bhunia AK. Development of a rapid 1-h fluorescence-based cytotoxicity assay for Listeria species. J Microbiol Methods 2003; 55:35-40. [PMID: 14499993 DOI: 10.1016/s0167-7012(03)00113-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Listeria monocytogenes is cytotoxic to the lymphocyte-origin hybridoma Ped-2E9 cell line. The relative cytotoxicity can be calculated by assaying the release of alkaline phosphatase (ALP) from the infected cell line. In this study, a fluorogenic substrate (4-methylumbelliferyl phosphate, MUP) was used to quantify the ALP activity. The assay is 3.5-fold more sensitive than the colorimetric-based assay and requires only 1 h to differentiate virulent from avirulent strains. In addition to various Listeria species, 27 different common foodborne or clinical microorganisms were tested with the fluorescence-based cytotoxicity assay and only six cultures (Bacillus cereus, Citrobacter freundii, Serratia marcescens, Pseudomonas putida, Corynebacterium glutamicum and Micrococcus luteus) showed cytotoxic effects similar to L. monocytogenes. To use this assay as a confirmatory test for virulent L. monocytogenes suspect strains, pure cultures must be isolated from the sample prior to testing.
Collapse
Affiliation(s)
- Melinda L Shroyer
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | | |
Collapse
|