1
|
Zhang D, Gao T, Guo Q, Ren Y, Zhu W, Zhuang H, Pan Z, Wang F, Chen Y, Guo M, Liu T, Wang C, Ji L, Qian W, Li J, Hou S, Sun Z, Wang X, Xu J, Guo H. Rapid and sensitive Mycoplasma detection in antibody bioprocessing via RPA-CRISPR/Cas12a. J Pharm Biomed Anal 2025; 263:116904. [PMID: 40267574 DOI: 10.1016/j.jpba.2025.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Mycoplasma species are prevalent microbial contaminants in the production of biological products, such as monoclonal antibodies, posing significant threats to the safety and efficacy of these products. Current regulatory guidelines as well as pharmacopoeias mandate the demonstration of the absence of Mycoplasma in the cell culture and further downstream processing to ensure product safety. Despite recent advancements in sensitive detection techniques for Mycoplasma in eucaryotic expression systems, these methods remain complex and time-consuming. There is a pressing need for a rapid, simple, and sensitive process analytical technology (PAT) for Mycoplasma detection. Here, we report the first development and application of a recombinase polymerase amplification (RPA)-assisted CRISPR-Cas12a (RPA-CRISPR/Cas12a) system spcifically tailored for Mycoplasma detection in biopharmaceutical production. This system combines the high-sensitivity isothermal nucleic acid amplification capabilities of RPA with the trans-cleavage activity of CRISPR-Cas12a reporter probes, enabling the rapid and accurate detection of Mycoplasma, accommodating various experimental requirements and application scenarios. By designing RPA universal primers and crRNA targeting the highly conserved sequences of Mycoplasma 16S rRNA and optimizing reaction conditions, we achieved dual-specific recognition with unprecedented efficiency in bioprocessing samples. All tested Mycoplasma specimens were detectable with limits between 10 and 0.1 copies/μL, with the whole process taking less than 1 hour. We further evaluated the feasibility of this method in detecting Mycoplasma in the cell culture of antibody products and further downstream processing samples. This method reduces the risk of false-positive signals due to non-specific amplification, enhancing detection sensitivity and specificity while significantly reducing analysis, representing the first PAT-compatible method for rapid Mycoplasma monitoring in antibody manufacturing, thereby providing robust assurance for the quality and safety of biological products.
Collapse
Affiliation(s)
- Dapeng Zhang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianyu Gao
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Qingcheng Guo
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Yule Ren
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Weifan Zhu
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Huangzhen Zhuang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Zhiyuan Pan
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Fugui Wang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Yi Chen
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Menghui Guo
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Tao Liu
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China
| | - Chenguang Wang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Lusha Ji
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weizhu Qian
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Jun Li
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; State key laboratory of macromolecular drugs and large-scale preparation, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China
| | - Sheng Hou
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Ziqiao Sun
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuekun Wang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Jin Xu
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Huaizu Guo
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; State key laboratory of macromolecular drugs and large-scale preparation, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China.
| |
Collapse
|
2
|
Salgadu A, Burroughs A, Sawford K, Johnstone T, Wawegama NK, Stevenson MA, Browning GF, Firestone SM. Cut-off evaluation of ID Screen Mycoplasma bovis ELISA for use on bulk tank milk in New Zealand. Prev Vet Med 2025; 240:106528. [PMID: 40267863 DOI: 10.1016/j.prevetmed.2025.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/04/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Repeated testing of bulk tank milk (BTM) samples and testing of serum samples has played a major role in New Zealand's Mycoplasma bovis (M. bovis) eradication programme. We evaluated the performance of the ID Screen Mycoplasma bovis indirect ELISA on BTM samples and identified the maximal diagnostic sensitivity (DSe) and diagnostic specificity (DSp) for testing for antibodies against M. bovis in New Zealand dairy herds. Also, we investigated factors influencing DSe over the milking season and associated with the presence of antibodies against M. bovis in a sample. Data from 63 dairy herds were analysed using Bayesian latent class analysis for two conditionally dependent tests. A BTM ELISA sample-to-positive ratio (SP%) cut-off of 24 was the estimated optimal threshold yielding the optimal combination of DSe and DSp - a DSe of 78.6 % (95 % highest posterior density [HPD] interval, 50.8-93.5) and a DSp of 98.5 % (95 % HPD interval, 97.2-99.4). The presence of antibodies against M. bovis in a BTM sample was associated with herd size and the somatic cell count concentration. DSe varied markedly throughout the milking season, and was dependent on the total BTM sample volume at the time of sampling. The DSe of the ID Screen ELISA was highest for samples tested during the early and mid-stages of the milking season, and when milk vat volumes were low relative to the number of cows in milk.
Collapse
Affiliation(s)
- Ayesha Salgadu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Amy Burroughs
- Mycoplasma bovis Directorate, Biosecurity New Zealand, Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington 6140, New Zealand
| | - Kate Sawford
- Mycoplasma bovis Directorate, Biosecurity New Zealand, Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington 6140, New Zealand
| | - Tim Johnstone
- Fonterra Co-operative Group Limited ("Fonterra"), 19 Home Straight, Hamilton 3200, New Zealand
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark A Stevenson
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Simon M Firestone
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Chopra-Dewasthaly R, Sommer K, Barbosa MS, Spergser J. Comparative genomic analysis of Mycoplasma agalactiae strain GM139 highlights unique surface architecture and pathogenic determinants. Vet Res 2025; 56:106. [PMID: 40413539 PMCID: PMC12103780 DOI: 10.1186/s13567-025-01531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/25/2025] [Indexed: 05/27/2025] Open
Abstract
Mycoplasma agalactiae causes one of the most serious forms of mycoplasmosis in small ruminants that is notifiable to the World Organization for Animal Health (WOAH). Possessing a plastic genome, its Vpma and other surface antigenic variations play important roles in its pathogenesis and systemic spread within the goat or sheep host, as well as its ability to jump to wild animals. The Vpma phenotypic profile of strain GM139 was recently compared to that of the type strain PG2, whereby GM139 predominantly exhibited stable expression of a single VpmaV protein in comparison with the high-frequency variable expression of all six Vpma proteins in PG2. The complete genome sequence of GM139 was generated, annotated for detailed analysis of the vpma locus and compared with the finished genomes of three distinct M. agalactiae strains (PG2, 5632, and GrTh01). Interestingly, GM139 presented a longer distinct vpma locus with ten genes, one of which is a chimera between the vpmaV and vpmaZ genes of PG2, which correlates very well with previous immunoblotting results and was confirmed here by nanoLC-MS/MS analysis; five vpmas are completely unique, whereas the other four share similarities with the vpmas of 5632, one of which is also partially homologous to vpmaZPG2. Additionally, features such as a larger spma locus, an intact gsmA known to encode a phase-variable glucan affecting serum resistance, and the presence of integrative and conjugative element (ICE) and transposases might have also influenced the pathogenicity and host range of these strains, segregating them into two well-separated phylogenetic clusters on the basis of a newly developed cgMLST scheme. This study highlights the plasticity and dynamic evolution of the M. agalactiae genome, especially its surface antigenic architecture.
Collapse
Affiliation(s)
- Rohini Chopra-Dewasthaly
- Department of Biological Sciences and Pathobiology, Centre of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Katja Sommer
- Department of Biological Sciences and Pathobiology, Centre of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Maysa Santos Barbosa
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista, 40170-110, Brazil
| | - Joachim Spergser
- Department of Biological Sciences and Pathobiology, Centre of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
4
|
Liu NN, Guo BH, Wang L, Wang XX, Wang X, Meng YL, Tang GX, Wang WM. The efficacy of ophiopogonanone B in treating the cough in mice infected with Mycoplasma pneumoniae. Front Pharmacol 2025; 16:1397543. [PMID: 40206065 PMCID: PMC11979145 DOI: 10.3389/fphar.2025.1397543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Ophiopogonanone B is a potent component of Qinbai Qingfei-concentrated pills (Qinbai), a new traditional Chinese medicine developed by our hospital for the treatment of Mycoplasma pneumoniae pneumonia in children. We aim to study how ophiopogonanone B influences the expression of transient receptor potential anchor protein 1 (TRPA1), substance P (SP), and calcitonin gene-related peptide (CGRP) to treat coughing in MP-infected mice. Methods Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used to detect ophiopogonanone B. Molecular docking of ophiopogonanone B with TRPA1 was performed using Autodock Vina 1.1.2, and subsequent visualization and analysis of docking outcomes were facilitated using Pymol 2.1 and Discovery Studio. For the evaluation of the pathological structure and morphology, lung tissue sections from mice were prepared for animal experiments and subjected to hematoxylin-eosin (HE) and Masson staining. The impact of ophiopogonanone B on the protein and mRNA expression levels of TRPA1, SP, and CGRP in mouse lung tissue was assessed using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). Results The samples acquired through Biacore fishing, which were identified and analyzed by UPLC-Q-TOF-MS, confirmed the presence of ophiopogonanone B. This compound exhibited robust and specific binding affinity for TRPA1. Histological staining using HE and Masson techniques revealed that the lung tissue morphology and structure in the ophiopogonanone B-treated group closely mirrored those observed in the blank group. Subsequent immunohistochemistry and RT-PCR revealed a significant reduction (P < 0.01 or P < 0.05) in the proteins and mRNA expression levels of TRPA1, SP, and CGRP in the lung tissue of mice treated with high and medium doses of ophiopogonanone B. Conclusion By decreasing the expression of TRPA1, SP, and CGRP in the lung tissues of mice afflicted with coughing due to M. pneumoniae infection, ophiopogonanone B effectively alleviated post-infection cough symptoms.
Collapse
Affiliation(s)
- Nan-Nan Liu
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Bai-Hui Guo
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lei Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiao-Xi Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xin Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan-Li Meng
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Gui-Xin Tang
- Advanced Microscopy and Instrumentation Research Center, Harbin Institute of Technology, Harbin, China
| | - Wei-Ming Wang
- College of Traditional Chinese Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Li X, Wang X, Ye Y, Zeng Z, Chen L, Peng K, Xiao H, Gao S, Luo H, Zeng Y. Screening the receptors for Mycoplasma penetrans P35 lipoprotein and characterization of its functional binding domains. Front Cell Infect Microbiol 2025; 15:1525789. [PMID: 40166371 PMCID: PMC11955645 DOI: 10.3389/fcimb.2025.1525789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Mycoplasma penetrans, a prokaryotic microorganism initially isolated from the urine of a patient infected with human immunodeficiency virus (HIV), possesses a distinctive elongated flask-like shape and a tip-like structure. This unique morphology has been shown to facilitate its ability to invade cells both in vitro and in vivo. The adhesion of M. penetrans to host cells relies on lipid-associated membrane proteins (LAMPs), especially P35 lipoprotein, which is exposed on the mycoplasmal surface. In this study, modified Virus Overlay Protein Binding Assay (VOPBA) was employed to identify P35-interacting proteins from membrane protein extracts of SV40-immortalized human uroepithelial (SV-HUC-1) cells. Through recombinant protein binding assays, siRNA-mediated knockdown, ELISA, Far-Western blot, and inhibition experiments, the binding mechanisms and functional domains were further elucidated. Results demonstrated that the P35 lipoprotein interacts with γ-actin (ACTG1). Recombinant P35 specifically bound to both recombinant and endogenous ACTG1 on the host cell membrane. ACTG1 partially inhibited the adhesion of P35 and M. penetrans to host cells. In SV-HUC-1 cells transfected with ACTG1-siRNA, adhesion of P35 and M. penetrans was significantly reduced. Further studies identified the functional domains responsible for binding between P35 and ACTG1 at amino acid residues 35-42 and 179-186. These findings suggest that ACTG1 on the host cell membrane may act as a receptor for the P35 lipoprotein, facilitating the adhesion of M. penetrans to host cells. The identified critical binding regions of P35 represent potential targets for therapeutic interventions against M. penetrans infections.
Collapse
Affiliation(s)
- Xia Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Xiaoliu Wang
- Department of Dermatology and Venereology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Zhuo Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Li Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Kailan Peng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Hua Xiao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Siqi Gao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Haodang Luo
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Department of Dermatology and Venereology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Erre GL, Phan NDT, Diaz N, Congiargiu A, Mundula N, Mangoni AA, Phan TMP, Margarita V, Fiori PL, Rappelli P, Cacciotto C, Alberti A, Dessì D. Microbial players in autoimmunity: multicentric analysis of the association between Mycoplasma hominis serostatus and rheumatoid arthritis. Microbiol Spectr 2025; 13:e0147724. [PMID: 39902965 PMCID: PMC11878028 DOI: 10.1128/spectrum.01477-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Resident mucosal pathogens may induce immune tolerance breach, specific autoimmune response, and the development of rheumatoid arthritis (RA) in susceptible individuals. Despite a number of studies linking infections by Mollicutes bacteria to autoimmune disorders' onset and progression, the role of Mycoplasma hominis, a common urogenital mucosa colonizing bacterium, in inducing a specific humoral response in RA has been seldom addressed. This study reports M. hominis seroprevalence in RA patients compared to healthy controls (HC) by testing two separate cohorts sampled in two distinct geographical settings (Italy and Vietnam). The amount of circulating anti-lipid-associated membrane proteins (LAMPs) antibodies was significantly higher in RA patients than HC in both cohorts. Also, a significantly higher seroprevalence of anti-M. hominis antibodies in RA patients compared to HC in both cohorts was observed. Notably, neither ELISA OD values nor positivity of anti-LAMPs were significantly associated with RA-specific variables. Further studies are essential to elucidate the underlying mechanisms by which Mycoplasma species may contribute to the pathogenesis of RA, thereby advancing our understanding of the potential causal links between Mollicutes and autoimmune disorders.IMPORTANCEMycoplasmas may cause persistent asymptomatic mucosal infections and elicit chronic host immune responses. In this study, we evaluated the prevalence of serological response to the sexually transmitted bacterium Mycoplasma hominis in patients with rheumatoid arthritis. We show that sera of patients with rheumatoid arthritis are enriched with antibodies specifically recognizing microbial surface antigens compared with the general population. This suggests that M. hominis genital infection, with its peculiar host immunity subversion mechanisms, might play a role in predisposing to the development and progression of chronic arthritis in susceptible individuals. Thus, the range of microbes with a role as triggers of autoimmune disease (P. gingivalis, A. actinomycetemcomitans, Streptococcus spp., and F. nucleatum, among others) might have a new member in M. hominis. The potential role of the interactions taking place at the host-pathogen interface during persistent M. hominis infections in inducing autoimmunity should be further explored and characterized.
Collapse
Affiliation(s)
- G. L. Erre
- Dipartimento di Medicina, Chirurgia e Farmacia, Università degli Studi di Sassari, Sassari, Italy
- UO Reumatologia, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | | | - N. Diaz
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - A. Congiargiu
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - N. Mundula
- UO Reumatologia, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | - A. A. Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | | | - V. Margarita
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - P. L. Fiori
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - P. Rappelli
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - C. Cacciotto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - A. Alberti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - D. Dessì
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
7
|
Maya-Rodríguez LM, Gómez-Verduzco G, Trigo-Tavera FJ, Moreno-Fierros L, Rojas-Trejo V, Miranda-Morales RE. A comparative in silico analysis of the vlhA gene regions of Mycoplasma gallisepticum and Mycoplasma synoviae isolates from commercial hen farms in Mexico. Access Microbiol 2025; 7:000760.v4. [PMID: 39990596 PMCID: PMC11845793 DOI: 10.1099/acmi.0.000760.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/16/2024] [Indexed: 02/25/2025] Open
Abstract
Avian mycoplasmosis, caused by Mycoplasma synoviae and Mycoplasma gallisepticum, poses significant economic challenges due to respiratory issues, reduced egg production and soft eggshells. The variable lipoprotein haemagglutinin (VlhA) protein, crucial for pathogenicity, comprises conserved (MSPB) and variable (MSPA) regions. The aim of this study was to identify the conserved region of vlhA gene sequences in field strain. We examined vlhA sequences from field strains collected in central Mexico (Jalisco and Mexico City). Specifically, we analysed 124 deformed eggs and 10 laying hens from 9 farms with Hy-line and Bovans breeds. Using PCR targeting the mgc2 and 16S rRNA genes, we characterized 24 field strains, 4 of which were Myc. synoviae and 20 of which were Myc. gallisepticum. We analysed the vlhA regions, based on the AF035624.1 reference sequence, with American Type Culture Collection strains as positive controls. Additionally, we validated the PCR with 20 negative samples from Mycoplasma isolation without the need for cultivation. We identified two amplification regions: MSPB and MSPA. Bioanalysis revealed relationships between our field samples and avian Mycoplasma sequences in GenBank, alongside similarities with lipoproteins present in Acholeplasma laidlawii PG8 and Escherichia coli. Given the significance of the VlhA protein in pathogenicity and immune evasion, the identified conserved sequences hold potential as therapeutic targets and for phylogenetic studies.
Collapse
Affiliation(s)
- Linda M. Maya-Rodríguez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Francisco J. Trigo-Tavera
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Leticia Moreno-Fierros
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina (UBIMED), Los Reyes Ixtacala, Universidad Nacional Autónoma de México, Tlanepantla de Baz, 54090, Mexico
| | - Verónica Rojas-Trejo
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| | - Rosa Elena Miranda-Morales
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico
| |
Collapse
|
8
|
Ruiz A, Torrecillas S, Kashinskaya E, Andree KB, Solovyev M, Gisbert E. Comparative study of the gut microbial communities collected by scraping and swabbing in a fish model: a comprehensive guide to promote non-lethal procedures for gut microbial studies. Front Vet Sci 2024; 11:1374803. [PMID: 38585300 PMCID: PMC10997143 DOI: 10.3389/fvets.2024.1374803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
In the present study, we propose the use of swabs in non-lethal sampling procedures to collect the mucosa-adhered gut microbiota from the posterior intestine of fish, and therefore, we compare the bacterial communities collected by conventional scraping and by swabbing methods. For this purpose, samples of the posterior intestine of rainbow trout (Oncorhynchus mykiss) were collected first using the swabbing approach, and after fish euthanasia, by mucosa scraping. Finally, bacterial communities were compared by 16S rRNA gene Illumina sequencing. Results from the current study revealed that similar values of bacterial richness and diversity were found for both sampling procedures. Similarly, there were no differences between procedures when using qualitative metrics (Jaccard and unweighted UniFrac) for estimating inter-individual diversity, but the quantitative metrics (Bray-Curtis and weighted UniFrac) showed a higher dispersion when samples were obtained by swabbing compared to scraping. In terms of bacterial composition, there were differences in abundance for the phyla Firmicutes and Proteobacteria. The cause of these differential abundances may be the inability of the swab to access to certain areas, such as the basal region of the intestinal villi. Moreover, swabbing allowed a higher representation of low abundant taxa, which may also have an important role in host microbiome regardless of their low abundance. Overall, our results demonstrate that the sampling method is a factor to be considered in experimental design when studying gut bacterial communities to avoid potential biases in the interpretation or comparison of results from different studies. In addition, the advantages and disadvantages of each procedure (swabbing vs scraping) are discussed in detail, concluding that swabbing can be implemented as a reliable and non-lethal procedure for posterior gut microbiota studies, which is of particular interest for animal welfare and the 3Rs principle, and may offer a wide range of novel applications.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Centre de La Ràpita, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), La Ràpita, Spain
| | - Silvia Torrecillas
- Aquaculture Program, Centre de La Ràpita, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), La Ràpita, Spain
| | - Elena Kashinskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Karl B. Andree
- Aquaculture Program, Centre de La Ràpita, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), La Ràpita, Spain
| | - Mikhail Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Biological Institute, Tomsk State University, Tomsk, Russia
| | - Enric Gisbert
- Aquaculture Program, Centre de La Ràpita, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), La Ràpita, Spain
| |
Collapse
|
9
|
Burne AM, Richey LJ, Schoeb TR, Brown MB. Galleria mellonella Invertebrate Model Mirrors the Pathogenic Potential of Mycoplasma alligatoris within the Natural Host. Transbound Emerg Dis 2024; 2024:3009838. [PMID: 40303151 PMCID: PMC12017031 DOI: 10.1155/2024/3009838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 05/02/2025]
Abstract
Most mycoplasmal infections result in chronic, clinically silent disease. In direct contrast, Mycoplasma alligatoris elicits a fulminant, multisystem disease in the natural host, Alligator mississippiensis (American alligator). The goals of the study were to better understand the disease in the natural host and to determine if the invertebrate model G. mellonella could serve as a surrogate alternate host. The survival of alligators infected intratracheally was dose dependent (p=0.0003), ranging from no mortality (102 CFU) to 100% mortality (108 CFU), with 60% mortality at the 104 and 105 CFU infectious dose. Microbial load in blood, joints, and brain was dose dependent, regardless of whether alligators were infected intratracheally or intravenously (p < 0.002). Weight loss was similarly impacted (p < 0.001). Experimental infection of the invertebrate Galleria mellonella mirrored the result in the natural host. In a dose response infection study, both larval survival curves and successful pupation curves were significantly different (p ≤ 0.0001) and dose dependent. Infected insects did not emerge as moths (p < 0.0001). Here, we describe the first study investigating G. mellonella as a surrogate model to assess the pathogenic potential of M. alligatoris. G. mellonella survival was dose dependent and impacted life stage outcome.
Collapse
Affiliation(s)
- Alexandra M. Burne
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Lauren J. Richey
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
- Comparative Pathology Services, Tufts University, Boston, MA 02155, USA
| | - Trenton R. Schoeb
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
- Program in Immunology, Heersink School of Medicine, University of Alabama Birmingham, Birmingham, AL 35294, UK
| | - Mary B. Brown
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
10
|
Ma X, Kong Y, Xu H, Bi Q, Liang M, Mai K, Zhang Y. Short-Term Alternate Feeding between Terrestrially Sourced Oil- and Fish Oil-Based Diets Modulates the Intestinal Microecology of Juvenile Turbot. BIOLOGY 2023; 12:biology12050650. [PMID: 37237464 DOI: 10.3390/biology12050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
A nine-week feeding trial was conducted to investigate changes in the intestinal microbiota of turbot in response to alternate feeding between terrestrially sourced oil (TSO)- and fish oil (FO)-based diets. The following three feeding strategies were designed: (1) continuous feeding with the FO-based diet (FO group); (2) weekly alternate feeding between soybean oil (SO)- and FO-based diets (SO/FO group); and (3) weekly alternate feeding between beef tallow (BT)- and FO-based diets (BT/FO group). An intestinal bacterial community analysis showed that alternate feeding reshaped the intestinal microbial composition. Higher species richness and diversity of the intestinal microbiota were observed in the alternate-feeding groups. A PCoA analysis showed that the samples clustered separately according to the feeding strategy, and among the three groups, the SO/FO group clustered relatively closer to the BT/FO group. The alternate feeding significantly decreased the abundance of Mycoplasma and selectively enriched specific microorganisms, including short-chain fatty acid (SCFA)-producing bacteria, digestive bacteria (Corynebacterium and Sphingomonas), and several potential pathogens (Desulfovibrio and Mycobacterium). Alternate feeding may maintain the intestinal microbiota balance by improving the connectivity of the ecological network and increasing the competitive interactions within the ecological network. The alternate feeding significantly upregulated the KEGG pathways of fatty acid and lipid metabolism, glycan biosynthesis, and amino acid metabolism in the intestinal microbiota. Meanwhile, the upregulation of the KEGG pathway of lipopolysaccharide biosynthesis indicates a potential risk for intestinal health. In conclusion, short-term alternate feeding between dietary lipid sources reshapes the intestinal microecology of the juvenile turbot, possibly resulting in both positive and negative effects.
Collapse
Affiliation(s)
- Xiuhua Ma
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yaoyao Kong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingzhu Bi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| |
Collapse
|
11
|
Qin L, Liu L, Wu Y, Chen Y, Wu Y, Luo H, Xi Y, Xiu F, Hu J, Chen L, Wu N, He J, Zeng Y, Zhu C, You X. Mycoplasma pneumoniae downregulates RECK to promote matrix metalloproteinase-9 secretion by bronchial epithelial cells. Virulence 2022; 13:1270-1284. [PMID: 35892136 PMCID: PMC9336473 DOI: 10.1080/21505594.2022.2101746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Airway epithelial cells function as both a physical barrier against harmful substances and pathogenic microorganisms and as an important participant in the innate immune system. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in modulating inflammatory responses during respiratory infections. However, the signalling cascade that induces MMP-9 secretion from epithelial cells infected with Mycoplasma pneumoniae remains poorly understood. In this study, we investigated the mechanism of MMP-9 secretion in airway epithelial cells infected with M. pneumoniae. Our data clearly showed that M. pneumoniae induced the secretion of MMP-9 from bronchial epithelial cells and upregulated its enzymatic activity in a time- and dose-dependent manner. Using specific inhibitors and chromatin co-precipitation experiments, we confirmed that the expression of MMP-9 is reliant on the activation of the Toll-like receptor 2 (TLR2) and TLR6-dependent mitogen-activated protein kinase/nuclear factor- κB/activator protein-1 (MAPK/NF-κB/AP-1) pathways. Additionally, epigenetic modifications such as histone acetylation and the nuclear transcription factor Sp1 also regulate MMP-9 expression. M. pneumoniae infection also decreased the expression of the tumour suppressor reversion-inducing cysteine-rich protein with Kazal motifs (RECK) by inducing Sp1 phosphorylation. Overexpression of RECK significantly impaired the M. pneumoniae-triggered increase in MMP-9 enzymatic activity, although the level of MMP-9 protein remained constant. The study demonstrated that M. pneumoniae-triggered MMP-9 expression is modulated by TLR2 and 6, the MAPK/NF-κB/AP-1 signalling cascade, and histone acetylation, and M. pneumoniae downregulated the expression of RECK, thereby increasing MMP-9 activity to modulate the inflammatory response, which could play a role in airway remodelling.
Collapse
Affiliation(s)
- Lianmei Qin
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yueping Wu
- Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yixuan Xi
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jun Hu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liesong Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Ning Wu
- Department of Clinical Laboratory, Hengyang No.1 People's Hospital, Hengyang, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
12
|
Eating the Enemy: Mycoplasma Strategies to Evade Neutrophil Extracellular Traps (NETs) Promoting Bacterial Nucleotides Uptake and Inflammatory Damage. Int J Mol Sci 2022; 23:ijms232315030. [PMID: 36499356 PMCID: PMC9740415 DOI: 10.3390/ijms232315030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Neutrophils are effector cells involved in the innate immune response against infection; they kill infectious agents in the intracellular compartment (phagocytosis) or in the extracellular milieu (degranulation). Moreover, neutrophils release neutrophil extracellular traps (NETs), complex structures composed of a scaffold of decondensed DNA associated with histones and antimicrobial compounds; NETs entrap infectious agents, preventing their spread and promoting their clearance. NET formation is triggered by microbial compounds, but many microorganisms have evolved several strategies for NET evasion. In addition, the dysregulated production of NETs is associated with chronic inflammatory diseases. Mycoplasmas are reduced genome bacteria, able to induce chronic infections with recurrent inflammatory symptoms. Mycoplasmas' parasitic lifestyle relies on metabolite uptake from the host. Mycoplasmas induce NET release, but their surface or secreted nucleases digest the NETs' DNA scaffold, allowing them to escape from entrapment and providing essential nucleotide precursors, thus promoting the infection. The presence of Mycoplasma species has been associated with chronic inflammatory disorders, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Crohn's disease, and cancer. The persistence of mycoplasma infection and prolonged NET release may contribute to the onset of chronic inflammatory diseases and needs further investigation and insights.
Collapse
|
13
|
Sommer K, Kowald S, Chopra-Dewasthaly R. Serum Resistance of Mycoplasma agalactiae Strains and Mutants Bearing Different Lipoprotein Profiles. Pathogens 2022; 11:pathogens11091036. [PMID: 36145468 PMCID: PMC9501237 DOI: 10.3390/pathogens11091036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
In order to spread systemically, resistance against complement and other factors present in serum is an important trait in pathogenic bacteria. The variable proteins of Mycoplasma agalactiae (Vpmas) have been shown to affect differential adhesion, invasion and immune evasion, and undergo high-frequency phase-variation in expression. However, nothing is known about their involvement in M. agalactiae’s serum susceptibility. To evaluate this, the PG2 strain, the GM139 strain and the six Vpma phase-locked mutants (PLMs, PLMU to PLMZ) were tested for their ability to survive in the presence of non-sensitized and sensitized sheep serum, as well as guinea pig complement. Additionally, the reactivity of the sensitized sheep serum was analysed on the strains via western blotting. Overall data demonstrate PG2 strain to be more susceptible to sheep serum compared to the GM139 strain bearing a different Vpma profile. Significant differences were also observed between the different PLMs, with PLMU and PLMX showing the highest serum susceptibility in serum, while the other PLMs expressing longer Vpma proteins were more resistant. The results are in good correlation with previous studies where shorter lipoprotein variants contributed to a higher susceptibility to complement. Since none of the tested strains and PLMs were susceptible to non-sensitized sheep serum, antibodies seem to play an important role in serum killing.
Collapse
|
14
|
Rüger N, Szostak MP, Rautenschlein S. The expression of GapA and CrmA correlates with the Mycoplasma gallisepticum in vitro infection process in chicken TOCs. Vet Res 2022; 53:66. [PMID: 36056451 PMCID: PMC9440553 DOI: 10.1186/s13567-022-01085-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma (M.) gallisepticum is the most pathogenic mycoplasma species in poultry. Infections cause mild to severe clinical symptoms associated with respiratory epithelial lesion development. Adherence, biofilm formation, and cell invasion of M. gallisepticum contribute to successful infection, immune evasion, and survival within the host. The important M. gallisepticum membrane-bound proteins, GapA and CrmA, are key factors for host cell interaction and the bacterial life-cycle, including its gliding motility, although their precise role in the individual infection step is not yet fully understood. In this study, we investigated the correlation between the host-pathogen interaction and the GapA/CrmA expression in an environment that represents the natural host's multicellular compartment. We used an in vitro tracheal organ culture (TOC) model, allowing the investigation of the M. gallisepticum variants, Rlow, RCL1, RCL2, and Rhigh, under standardised conditions. In this regard, we examined the bacterial adherence, motility and colonisation pattern, host lesion development and alterations of mucociliary clearance. Compared to low virulent RCL2 and Rhigh, the high virulent Rlow and RCL1 were more efficient in adhering to TOCs and epithelium colonisation, including faster movement from the cilia tips to the apical membrane and subsequent cell invasion. RCL2 and Rhigh showed a more localised invasion pattern, accompanied by significantly fewer lesions than Rlow and RCL1. Unrelated to virulence, comparable mucus production was observed in all M. gallisepticum infected TOCs. Overall, the present study demonstrates the role of GapA/CrmA in virulence factors from adherence to colonisation, as well as the onset and severity of lesion development in the tracheal epithelium.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael P Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
15
|
Mugunthan SP, Harish MC. In silico structural homology modeling and functional characterization of Mycoplasma gallisepticum variable lipoprotein hemagglutin proteins. Front Vet Sci 2022; 9:943831. [PMID: 35990271 PMCID: PMC9386052 DOI: 10.3389/fvets.2022.943831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma gallisepticum variable lipoprotein hemagglutin (vlhA) proteins are crucial for immune evasion from the host cells, permitting the persistence and survival of the pathogen. However, the exact molecular mechanism behind the immune evasion function is still not clear. In silico physiochemical analysis, domain analysis, subcellular localization, and homology modeling studies have been carried out to predict the structural and functional properties of these proteins. The outcomes of this study provide significant preliminary data for understanding the immune evasion by vlhA proteins. In this study, we have reported the primary, secondary, and tertiary structural characteristics and subcellular localization, presence of the transmembrane helix and signal peptide, and functional characteristics of vlhA proteins from M. gallisepticum strain R low. The results show variation between the structural and functional components of the proteins, signifying the role and diverse molecular mechanisms in functioning of vlhA proteins in host immune evasion. Moreover the 3D structure predicted in this study will pave a way for understanding vlhA protein function and its interaction with other molecules to undergo immune evasion. This study forms the basis for future experimental studies improving our understanding in the molecular mechanisms used by vlhA proteins.
Collapse
|
16
|
Greene LK, Andriambeloson JB, Rasoanaivo HA, Yoder AD, Blanco MB. Variation in gut microbiome structure across the annual hibernation cycle in a wild primate. FEMS Microbiol Ecol 2022; 98:6604834. [PMID: 35679092 DOI: 10.1093/femsec/fiac070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiome can mediate host metabolism, including facilitating energy-saving strategies like hibernation. The dwarf lemurs of Madagascar (Cheirogaleus spp.) are the only obligate hibernators among primates. They also hibernate in the subtropics, and unlike temperate hibernators, fatten by converting fruit sugars to lipid deposits, torpor at relatively warm temperatures, and forage for a generalized diet after emergence. Despite these ecological differences, we might expect hibernation to shape the gut microbiome in similar ways across mammals. We, therefore, compare gut microbiome profiles, determined by amplicon sequencing of rectal swabs, in wild furry-eared dwarf lemurs (C. crossleyi) during fattening, hibernation, and after emergence. The dwarf lemurs exhibited reduced gut microbial diversity during fattening, intermediate diversity and increased community homogenization during hibernation, and greatest diversity after emergence. The Mycoplasma genus was enriched during fattening, whereas the Aerococcaceae and Actinomycetaceae families, and not Akkermansia, bloomed during hibernation. As expected, the dwarf lemurs showed seasonal reconfigurations of the gut microbiome; however, the patterns of microbial diversity diverged from temperate hibernators, and better resembled the shifts associated with dietary fruits and sugars in primates and model organisms. Our results thus highlight the potential for dwarf lemurs to probe microbiome-mediated metabolism in primates under contrasting conditions.
Collapse
Affiliation(s)
- Lydia K Greene
- The Duke Lemur Center, 3705 Erwin Road, Durham, NC 27705, United States.,Department of Biology, Duke University, Durham, NC 27708, United States
| | - Jean-Basile Andriambeloson
- Department of Zoology and Animal Biodiversity, Faculty of Science, University of Antananarivo, Antananarivo, Madagascar
| | - Hoby A Rasoanaivo
- Department of Science and Veterinary Medicine, Faculty of Medicine, University of Antananarivo, Antananarivo, Madagascar
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - Marina B Blanco
- The Duke Lemur Center, 3705 Erwin Road, Durham, NC 27705, United States.,Department of Biology, Duke University, Durham, NC 27708, United States
| |
Collapse
|
17
|
SOURCE AND SEASONALITY OF EPIZOOTIC MYCOPLASMOSIS IN FREE-RANGING PRONGHORN (ANTILOCAPRA AMERICANA). J Wildl Dis 2022; 58:524-536. [PMID: 35704476 DOI: 10.7589/jwd-d-21-00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
Mycoplasma bovis is an economically important bacterial pathogen of cattle (Bos taurus) and bison (Bison bison) that most commonly causes pneumonia, polyarthritis, and mastitis. It is prevalent in cattle and ranched bison; however, infections in other species are rare. In early 2019, we identified M. bovis in free-ranging pronghorn (Antilocapra americana) in northeastern Wyoming. Here, we report on additional pronghorn mortalities caused by M. bovis, in the same approximately 120-km2 geographic region 1 yr later. Genetic analysis by multilocus sequence typing revealed that the mortalities were caused by the same M. bovis sequence type, which is unique among all sequence types documented thus far in North America. To explore whether pronghorn maintain chronic infections and begin assessing M. bovis status in other sympatric species, we used PCR testing of nasal swabs to opportunistically survey select free-ranging ungulates. We found no evidence of subclinical infections in 13 pronghorn sampled from the outbreak area (upper 95% binomial confidence limit [bCL], ∼24.7%) or among 217 additional pronghorn (upper 95% bCL, ∼1.7%) sampled from eight additional counties in Wyoming and 10 in Montana. All mule deer (Odocoileus hemionus; n=231; upper 95% bCL, ∼1.6%) sampled from 11 counties in Wyoming also were PCR negative. To assess the potential for environmental transmission, we examined persistence of M. bovis in various substrates and conditions. Controlled experiments revealed that M. bovis can remain viable for 6 h in shaded water and 2 h in direct sunlight. Our results indicate that environmental transmission of M. bovis from livestock to pronghorn is possible and that seasonality of infection could be due to shared resources during late winter. Further investigations to better understand transmission dynamics, to assess population level impacts to pronghorn, and to determine disease risks among pronghorn and other ungulate taxa appear warranted.
Collapse
|
18
|
Salgadu A, Cheung A, Schibrowski ML, Wawegama NK, Mahony TJ, Stevenson MA, Browning GF, Barnes TS, Firestone SM. Bayesian latent class analysis to estimate the optimal cut-off for the MilA ELISA for the detection of Mycoplasma bovis antibodies in sera, accounting for repeated measures. Prev Vet Med 2022; 205:105694. [PMID: 35751981 DOI: 10.1016/j.prevetmed.2022.105694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
The MilA ELISA has been identified as a highly effective diagnostic tool for the detection of Mycoplasma bovis specific antibodies and has been validated for serological use in previous studies. This study aimed to estimate the optimal cut-off and corresponding estimates of diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of the MilA ELISA for testing bovine serum. Serum samples from 298 feedlot cattle from 14 feedlots across four Australian states were tested on entry into the feedlot and approximately 42 days later. The paired serum samples were tested with the MilA ELISA, BIO K302 (Bio-X Diagnostics, Belgium) and BIO K260 (Bio-X Diagnostics, Belgium). A cut-off of 135 AU was estimated to be optimal using Bayesian latent class analysis with three tests in multiple populations, accounting for conditional dependence between tests. At this cut-off, the DSe and DSp of the MilA ELISA were estimated to be 92.1 % (95 % highest probability density [HPD] interval: 87.4, 95.8) and 95.5 % (95 % HPD: 92.4, 97.8), respectively. The DSes of the BIO K260 and BIO K302 ELISAs were estimated to be 60.5 % (95 % HPD: 54.0, 66.9) and 44.6 % (95 % HPD: 38.7, 50.7), respectively. DSps were 95.6 % (95 % HPD: 92.9, 97.7) and 97.8 % (95 % HPD: 95.9, 99.0), respectively. Mycoplasma bovis seroprevalence was remarkably high at follow-up after 42 days on the feedlots. Overall, this study estimated a cut-off, DSe and DSp for the MilA ELISA with less dependence on prior information than previous analyses and demonstrated that the MilA ELISA has higher DSe than the BIO K260 and BIO K302 assays.
Collapse
Affiliation(s)
- Ayesha Salgadu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison Cheung
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Meghan L Schibrowski
- The University of Queensland, Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, St Lucia and Gatton, Queensland, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy J Mahony
- The University of Queensland, Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, St Lucia and Gatton, Queensland, Australia
| | - Mark A Stevenson
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Tamsin S Barnes
- The University of Queensland, Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, St Lucia and Gatton, Queensland, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Simon M Firestone
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Sheep Infection Trials with 'Phase-Locked' Vpma Expression Variants of Mycoplasma agalactiae-Towards Elucidating the Role of a Multigene Family Encoding Variable Surface Lipoproteins in Infection and Disease. Microorganisms 2022; 10:microorganisms10040815. [PMID: 35456865 PMCID: PMC9025108 DOI: 10.3390/microorganisms10040815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
The significance of large multigene families causing high-frequency surface variations in mycoplasmas is not well-understood. Previously, VpmaY and VpmaU clonal variants of the Vpma family of lipoproteins of M. agalactiae were compared via experimental sheep infections using the two corresponding ‘Phase-Locked Mutants’. However, nothing is known about the infectivity of the remaining four Vpma expression variants VpmaX, VpmaW, VpmaZ and VpmaV as they were never evaluated in vivo. Here, in vivo infection and disease progression of all six Vpma expressers constituting the Vpma family of type strain PG2 were compared using the corresponding xer1-disrupted PLMs expressing single well-characterized Vpmas. Each of the six PLMs were separately evaluated using the intramammary sheep infection model along with the control phase-variable wildtype strain PG2. Thorough bacteriological, pathological and clinical examinations were performed, including assessment of milk quality, quantity and somatic cell counts. Altogether, the results indicated that the inability to vary the Vpma expression phase does not hamper the initiation of infection leading to mastitis for all six PLMs, except for PLMU, which showed a defect in host colonization and multiplication for the first 24 h p.i. and pathological/bacteriological analysis indicated a higher potential for systemic spread for PLMV and PLMX. This is the first study in which all isogenic expression variants of a large mycoplasma multigene family are tested in the natural host.
Collapse
|
20
|
Barbosa MS, Marques LM, Timenetsky J, Rosengarten R, Spergser J, Chopra-Dewasthaly R. Host cell interactions of novel antigenic membrane proteins of Mycoplasma agalactiae. BMC Microbiol 2022; 22:93. [PMID: 35395771 PMCID: PMC8991494 DOI: 10.1186/s12866-022-02512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mycoplasma agalactiae is the main etiological agent of Contagious Agalactia syndrome of small ruminants notifiable to the World Organization for Animal Health. Despite serious economic losses, successful vaccines are unavailable, largely because its colonization and invasion factors are not well understood. This study evaluates the role of two recently identified antigenic proteins (MAG_1560, MAG_6130) and the cytadhesin P40 in pathogenicity related phenotypes. Results Adhesion to HeLa and sheep primary mammary stromal cells (MSC) was evaluated using ELISA, as well as in vitro adhesion assays on monolayer cell cultures. The results demonstrated MAG_6130 as a novel adhesin of M. agalactiae whose capacity to adhere to eukaryotic cells was significantly reduced by specific antiserum. Additionally, these proteins exhibited significant binding to plasminogen and extracellular matrix (ECM) proteins like lactoferrin, fibrinogen and fibronectin, a feature that could potentially support the pathogen in host colonization, tissue migration and immune evasion. Furthermore, these proteins played a detrimental role on the host cell proliferation and viability and were observed to activate pro-apoptotic genes indicating their involvement in cell death when eukaryotic cells were infected with M. agalactiae. Conclusions To summarize, the hypothetical protein corresponding to MAG_6130 has not only been assigned novel adhesion functions but together with P40 it is demonstrated for the first time to bind to lactoferrin and ECM proteins thereby playing important roles in host colonization and pathogenicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02512-2.
Collapse
Affiliation(s)
- Maysa Santos Barbosa
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria.,Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Miranda Marques
- Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil. .,Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista, Brazil.
| | - Jorge Timenetsky
- Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria.
| |
Collapse
|
21
|
Centeno-Martinez RE, Glidden N, Mohan S, Davidson JL, Fernández-Juricic E, Boerman JP, Schoonmaker J, Pillai D, Koziol J, Ault A, Verma MS, Johnson TA. Identification of bovine respiratory disease through the nasal microbiome. Anim Microbiome 2022; 4:15. [PMID: 35193707 PMCID: PMC8862248 DOI: 10.1186/s42523-022-00167-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/04/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Bovine respiratory disease (BRD) is an ongoing health and economic challenge in the dairy and beef cattle industries. Multiple risk factors make an animal susceptible to BRD. The presence of Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis in lung tissues have been associated with BRD mortalities, but they are also commonly present in the upper respiratory tract of healthy animals. This study aims to compare the cattle nasal microbiome (diversity, composition and community interaction) and the abundance of BRD pathogens (by qPCR) in the nasal microbiome of Holstein steers that are apparently healthy (Healthy group, n = 75) or with BRD clinical signs (BRD group, n = 58). We then used random forest models based on nasal microbial community and qPCR results to classify healthy and BRD-affected animals and determined the agreement with the visual clinical signs. Additionally, co-occurring species pairs were identified in visually BRD or healthy animal groups. RESULTS Cattle in the BRD group had lower alpha diversity than pen-mates in the healthy group. Amplicon sequence variants (ASVs) from Trueperella pyogenes, Bibersteinia and Mycoplasma spp. were increased in relative abundance in the BRD group, while ASVs from Mycoplasma bovirhinis and Clostridium sensu stricto were increased in the healthy group. Prevalence of H. somni (98%) and P. multocida (97%) was high regardless of BRD clinical signs whereas M. haemolytica (81 and 61%, respectively) and M. bovis (74 and 51%, respectively) were more prevalent in the BRD group than the healthy group. In the BRD group, the abundance of M. haemolytica and M. bovis was increased, while H. somni abundance was decreased. Visual observation of clinical signs agreed with classification by the nasal microbial community (misclassification rate of 32%) and qPCR results (misclassification rate 34%). Co-occurrence analysis demonstrated that the nasal microbiome of BRD-affected cattle presented fewer bacterial associations than healthy cattle. CONCLUSIONS This study offers insight into the prevalence and abundance of BRD pathogens and the differences in the nasal microbiome between healthy and BRD animals. This suggests that nasal bacterial communities provide a potential platform for future studies and potential pen-side diagnostic testing.
Collapse
Affiliation(s)
| | - Natalie Glidden
- Department of Animal Science, Purdue University, West Lafayette, IN, USA
| | - Suraj Mohan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | | | | | - Jon Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN, USA
| | - Deepti Pillai
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Jennifer Koziol
- Department of Veterinary Clinical Science, Purdue University, West Lafayette, IN, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Aaron Ault
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
22
|
Filioussis G, Bramis G, Petridou E, Giadinis ND, Nouvel LX, Citti C, Frey J. Mycoplasma agalactiae ST35: a new sequence type with a minimal accessory genome primarily affecting goats. BMC Vet Res 2022; 18:29. [PMID: 35016679 PMCID: PMC8751087 DOI: 10.1186/s12917-021-03128-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/20/2021] [Indexed: 09/17/2024] Open
Abstract
Background Mycoplasma agalactiae, causing agent of contagious agalactia, infects domestic small ruminants such as sheep and goats but also wild Caprinae. M. agalactiae is highly contagious and transmitted through oral, respiratory, and mammary routes spreading rapidly in an infected herd. Results In an outbreak of contagious agalactia in a mixed herd of sheep and goats, 80% of the goats were affected displaying swollen udders and loss of milk production but no other symptom such as kerato-conjunctivitis, arthritis or pulmonary distress commonly associated to contagious agalactia. Surprisingly, none of the sheep grazing on a common pasture and belonging to the same farm as the goats were affected. Whole genome sequencing and analysis of M. agalactiae strain GrTh01 isolated from the outbreak, revealed a previously unknown sequence type, ST35, and a particularly small, genome size of 841′635 bp when compared to others available in public databases. Overall, GrTh01 displayed a reduced accessory genome, with repertoires of gene families encoding variable surface proteins involved in host-adhesion and variable antigenicity being scaled down. GrTh01 was also deprived of Integrative Conjugative Element or prophage, and had a single IS element, suggesting that GrTh01 has a limited capacity to adapt and evolve. Conclusions The lack of most of the variable antigens and the Integrative Conjugative Element, both major virulence- and host specificity factors of a M. agalactiae strain isolated from an outbreak affecting particularly goats, indicates the implication of these factors in host specificity. Whole genome sequencing and full assembly of bacterial pathogens provides a most valuable tool for epidemiological and virulence studies of M. agalactiae without experimental infections.
Collapse
Affiliation(s)
- George Filioussis
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Georgios Bramis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Nektarios D Giadinis
- Clinic of Farm Animals, Faculty of Veterinary Medicine, School of Health Science, Aristotle University of Thessaloniki, St. Voutyra 11, 54627, Thessaloniki, Greece
| | | | | | - Joachim Frey
- Vetsuisse Faculty, University of Bern, Laenggasstrasse 120, 3001, Bern, Switzerland.
| |
Collapse
|
23
|
Ferreira G, Blasina F, Rodríguez Rey M, Anesetti G, Sapiro R, Chavarría L, Cardozo R, Rey G, Sobrevia L, Nicolson GL. Pathophysiological and molecular considerations of viral and bacterial infections during maternal-fetal and -neonatal interactions of SARS-CoV-2, Zika, and Mycoplasma infectious diseases. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166285. [PMID: 34624499 PMCID: PMC8492386 DOI: 10.1016/j.bbadis.2021.166285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 01/04/2023]
Abstract
During pregnancy, a series of physiological changes are determined at the molecular, cellular and macroscopic level that make the mother and fetus more susceptible to certain viral and bacterial infections, especially the infections in this and the companion review. Particular situations increase susceptibility to infection in neonates. The enhanced susceptibility to certain infections increases the risk of developing particular diseases that can progress to become morbidly severe. For example, during the current pandemic caused by the SARS-CoV-2 virus, epidemiological studies have established that pregnant women with COVID-19 disease are more likely to be hospitalized. However, the risk for intensive care unit admission and mechanical ventilation is not increased compared with nonpregnant women. Although much remains unknown with this particular infection, the elevated risk of progression during pregnancy towards more severe manifestations of COVID-19 disease is not associated with an increased risk of death. In addition, the epidemiological data available in neonates suggest that their risk of acquiring COVID-19 is low compared with infants (<12 months of age). However, they might be at higher risk for progression to severe COVID-19 disease compared with older children. The data on clinical presentation and disease severity among neonates are limited and based on case reports and small case series. It is well documented the importance of the Zika virus infection as the main cause of several congenital anomalies and birth defects such as microcephaly, and also adverse pregnancy outcomes. Mycoplasma infections also increase adverse pregnancy outcomes. This review will focus on the molecular, pathophysiological and biophysical characteristics of the mother/placental-fetal/neonatal interactions and the possible mechanisms of these pathogens (SARS-CoV-2, ZIKV, and Mycoplasmas) for promoting disease at this level.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay.
| | - Fernanda Blasina
- Dept. of Neonatology, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Marianela Rodríguez Rey
- Dept. of Neonatology, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Gabriel Anesetti
- Dept. of Histology and Development, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Rosana Sapiro
- Dept. of Histology and Development, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Grazzia Rey
- Dept. of Clinical Ginecology and Obstetrics B, Facultad de Medicina, Universidad de la Republica, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School, Faculty of Medicine, Sao Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
24
|
Rüger N, Sid H, Meens J, Szostak MP, Baumgärtner W, Bexter F, Rautenschlein S. New Insights into the Host-Pathogen Interaction of Mycoplasma gallisepticum and Avian Metapneumovirus in Tracheal Organ Cultures of Chicken. Microorganisms 2021; 9:microorganisms9112407. [PMID: 34835532 PMCID: PMC8618481 DOI: 10.3390/microorganisms9112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Respiratory pathogens are a health threat for poultry. Co-infections lead to the exacerbation of clinical symptoms and lesions. Mycoplasma gallisepticum (M. gallispeticum) and Avian Metapneumovirus (AMPV) are two avian respiratory pathogens that co-circulate worldwide. The knowledge about the host-pathogen interaction of M. gallispeticum and AMPV in the chicken respiratory tract is limited. We aimed to investigate how co-infections affect the pathogenesis of the respiratory disease and whether the order of invading pathogens leads to changes in host-pathogen interaction. We used chicken tracheal organ cultures (TOC) to investigate pathogen invasion and replication, lesion development, and selected innate immune responses, such as interferon (IFN) α, inducible nitric oxide synthase (iNOS) and IFNλ mRNA expression levels. We performed mono-inoculations (AMPV or M. gallispeticum) or dual-inoculations in two orders with a 24-h interval between the first and second pathogen. Dual-inoculations compared to mono-inoculations resulted in more severe host reactions. Pre-infection with AMPV followed by M. gallispeticum resulted in prolonged viral replication, more significant innate immune responses, and lesions (p < 0.05). AMPV as the secondary pathogen impaired the bacterial attachment process. Consequently, the M. gallispeticum replication was delayed, the innate immune response was less pronounced, and lesions appeared later. Our results suggest a competing process in co-infections and offer new insights in disease processes.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Munich, Germany;
| | - Jochen Meens
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Michael P. Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (N.R.); (F.B.)
- Correspondence: ; Tel.: +49-511-953-8779
| |
Collapse
|
25
|
Cheaib B, Yang P, Kazlauskaite R, Lindsay E, Heys C, Dwyer T, De Noa M, Schaal P, Sloan W, Ijaz U, Llewellyn M. Genome erosion and evidence for an intracellular niche - exploring the biology of mycoplasmas in Atlantic salmon. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 541:736772. [PMID: 34471330 PMCID: PMC8192413 DOI: 10.1016/j.aquaculture.2021.736772] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 05/09/2023]
Abstract
Mycoplasmas are the smallest autonomously self-replicating life form on the planet. Members of this bacterial genus are known to parasitise a wide array of metazoans including vertebrates. Whilst much research has been significant targeted at parasitic mammalian mycoplasmas, very little is known about their role in other vertebrates. In the current study, we aim to explore the biology of mycoplasmas in Atlantic Salmon, a species of major significance for aquaculture, including cellular niche, genome size structure and gene content. Using fluorescent in-situ hybridisation (FISH), mycoplasmas were targeted in epithelial tissues across the digestive tract (stomach, pyloric caecum and midgut) from different development stages (eggs, parr, subadult) of farmed Atlantic salmon (Salmo salar), and we present evidence for an intracellular niche for some of the microbes visualised. Via shotgun metagenomic sequencing, a nearly complete, albeit small, genome (~0.57 MB) as assembled from a farmed Atlantic salmon subadult. Phylogenetic analysis of the recovered genome revealed taxonomic proximity to other salmon derived mycoplasmas, as well as to the human pathogen Mycoplasma penetrans (~1.36 Mb). We annotated coding sequences and identified riboflavin pathway encoding genes and sugar transporters, the former potentially consistent with micronutrient provisioning in salmonid development. Our study provides insights into mucosal adherence, the cellular niche and gene catalog of Mycoplasma in the gut ecosystem of the Atlantic salmon, suggesting a high dependency of this minimalist bacterium on its host. Further study is required to explore and functional role of Mycoplasma in the nutrition and development of its salmonid host.
Collapse
Affiliation(s)
- B. Cheaib
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Corresponding author at: Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - P. Yang
- Laboratory of Aquaculture, nutrition and feed, Fisheries College, Ocean University of China, Hongdao Rd, Shinan District, Qingdao, Shandong, China
| | - R. Kazlauskaite
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - E. Lindsay
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - C. Heys
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - T. Dwyer
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - M. De Noa
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Patrick Schaal
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - W. Sloan
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - U.Z. Ijaz
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - M.S. Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
26
|
Cacciotto C, Dessì D, Cubeddu T, Cocco AR, Pisano A, Tore G, Fiori PL, Rappelli P, Pittau M, Alberti A. MHO_0730 as a Surface-Exposed Calcium-Dependent Nuclease of Mycoplasma hominis Promoting Neutrophil Extracellular Trap Formation and Escape. J Infect Dis 2020; 220:1999-2008. [PMID: 31420650 DOI: 10.1093/infdis/jiz406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma lipoproteins play a relevant role in pathogenicity and directly interact with the host immune system. Among human mycoplasmas, Mycoplasma hominis is described as a commensal bacterium that can be associated with a number of genital and extragenital conditions. Mechanisms of M. hominis pathogenicity are still largely obscure, and only a limited number of proteins have been associated with virulence. The current study focused on investigating the role of MHO_0730 as a virulence factor and demonstrated that MHO_0730 is a surface lipoprotein, potentially expressed in vivo during natural infection, acting both as a nuclease with its amino acidic portion and as a potent inducer of Neutrophil extracellular trapsosis with its N-terminal lipid moiety. Evidence for M. hominis neutrophil extracellular trap escape is also presented. Results highlight the relevance of MHO_0730 in promoting infection and modulation and evasion of innate immunity and provide additional knowledge on M. hominis virulence and survival in the host.
Collapse
Affiliation(s)
- Carla Cacciotto
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| | - Tiziana Cubeddu
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Anna Rita Cocco
- Department of Biomedical Sciences, University of Sassari, Italy
| | - Andrea Pisano
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Gessica Tore
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| | - Marco Pittau
- Department of Veterinary Medicine, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, Italy.,Mediterranean Center for Disease Control, University of Sassari, Italy
| |
Collapse
|
27
|
Di Teodoro G, Marruchella G, Di Provvido A, D'Angelo AR, Orsini G, Di Giuseppe P, Sacchini F, Scacchia M. Contagious Bovine Pleuropneumonia: A Comprehensive Overview. Vet Pathol 2020; 57:476-489. [PMID: 32390522 DOI: 10.1177/0300985820921818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contagious bovine pleuropneumonia (CBPP) is a respiratory disease of cattle that is listed as notifiable by the World Organization for Animal Health. It is endemic in sub-Saharan Africa and causes important productivity losses due to the high mortality and morbidity rates. CBPP is caused by Mycoplasma mycoides subsp. mycoides (Mmm) and is characterized by severe fibrinous bronchopneumonia and pleural effusion during the acute to subacute stages and by pulmonary sequestra in chronic cases. Additional lesions can be detected in the kidneys and in the carpal and tarsal joints of calves. Mmm infection occurs through the inhalation of infected aerosol droplets. After the colonization of bronchioles and alveoli, Mmm invades blood and lymphatic vessels and causes vasculitis. Moreover, Mmm can be occasionally demonstrated in blood and in a variety of other tissues. In the lung, Mmm antigen is commonly detected on bronchiolar and alveolar epithelial cells, in lung phagocytic cells, within the wall of blood and lymphatic vessels, inside necrotic areas, and within tertiary lymphoid follicles. Mmm antigen can also be present in the cytoplasm of macrophages within lymph node sinuses, in the germinal center of lymphoid follicles, in glomerular endothelial cells, and in renal tubules. A complete pathological examination is of great value for a rapid presumptive diagnosis, but laboratory investigations are mandatory for definitive diagnosis. The purpose of this review is to describe the main features of CBPP including the causative agent, history, geographic distribution, epidemiology, clinical course, diagnosis, and control. A special focus is placed on gross and microscopic lesions in order to familiarize veterinarians with the pathology and pathogenesis of CBPP.
Collapse
Affiliation(s)
- Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Giuseppe Marruchella
- University of Teramo, Faculty of Veterinary Medicine, Loc. Piano d'Accio, Teramo, Italy
| | - Andrea Di Provvido
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Anna Rita D'Angelo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Gianluca Orsini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Paola Di Giuseppe
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Massimo Scacchia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| |
Collapse
|
28
|
Dowling AJ, Hill GE, Bonneaud C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci Rep 2020; 10:6779. [PMID: 32322086 PMCID: PMC7176683 DOI: 10.1038/s41598-020-63714-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Novel disease emergence is often associated with changes in pathogen traits that enable pathogen colonisation, persistence and transmission in the novel host environment. While understanding the mechanisms underlying disease emergence is likely to have critical implications for preventing infectious outbreaks, such knowledge is often based on studies of viral pathogens, despite the fact that bacterial pathogens may exhibit very different life histories. Here, we investigate the ability of epizootic outbreak strains of the bacterial pathogen, Mycoplasma gallisepticum, which jumped from poultry into North American house finches (Haemorhous mexicanus), to interact with model avian cells. We found that house finch epizootic outbreak strains of M. gallisepticum displayed a greater ability to adhere to, invade, persist within and exit from cultured chicken embryonic fibroblasts, than the reference virulent (R_low) and attenuated (R_high) poultry strains. Furthermore, unlike the poultry strains, the house finch epizootic outbreak strain HF_1994 displayed a striking lack of cytotoxicity, even exerting a cytoprotective effect on avian cells. Our results suggest that, at epizootic outbreak in house finches, M. gallisepticum was particularly adept at using the intra-cellular environment, which may have facilitated colonisation, dissemination and immune evasion within the novel finch host. Whether this high-invasion phenotype is similarly displayed in interactions with house finch cells, and whether it contributed to the success of the host shift, remains to be determined.
Collapse
Affiliation(s)
- Andrea J Dowling
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL36849-5414, USA
| | - Camille Bonneaud
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| |
Collapse
|
29
|
Timonen AAE, Autio T, Pohjanvirta T, Häkkinen L, Katholm J, Petersen A, Mõtus K, Kalmus P. Dynamics of the within-herd prevalence of Mycoplasma bovis intramammary infection in endemically infected dairy herds. Vet Microbiol 2020; 242:108608. [PMID: 32122612 DOI: 10.1016/j.vetmic.2020.108608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
Abstract
We aimed to identify the dynamics of the within-herd prevalence of Mycoplasma (M.) bovis intramammary infection (IMI) in four dairy herds, estimate prevalence of M. bovis in colostrum and clinical mastitis cases and compare M. bovis strains from calves' respiratory and cow clinical mastitis samples. Within a six-month study period, cow composite milk samples (CMS) were collected three times during routine milk recording, first milking colostrum samples from all calving cows and udder quarter milk samples from clinical mastitis cases. Calf respiratory samples were collected from calves with respiratory disease. Pooled milk samples were analysed for M. bovis with the Mastitis 4B polymerase chain reaction (PCR) test kit (DNA Diagnostic A/S). Prevalence estimates were calculated with Bayesian framework in R statistical programme. cg-MLST was used for M. bovis genotyping. In Herd I and II first testing M. bovis IMI within-herd prevalence (95 % credibility interval (CI)) was 4.7 % (2.9; 6.8) and 3.4 % (2.3; 4.6), changing to 1.0 % (0.1; 1.7) and 0.8 % (0.1; 1.4) in Herd I and 0.4 % (0.0; 0.7) in Herd II at the next samplings. In Herd III and IV first testing M. bovis IMI within-herd prevalence was 12.3 % (9.7; 15.2) and 7.8 % (6.2; 9.5), changing to 4.6 % (3.0; 6.4) and 3.2 % (1.9; 4.8) in Herd III and to 2.8 % (1.9; 3.8) and 4.9 % (3.6; 6.4) in Herd IV at the next samplings. The estimated prevalence of M. bovis in colostrum ranged between 1.7 % (0.2; 2.8) and 4.7 % (2.7; 7.1) and in clinical mastitis cases between 3.7 % (1.7; 6.4) and 11.0 % (7.5; 15.2) in the study herds. M. bovis strains isolated from cows and calves clustered within herds indicating possible transmission of M. bovis between dairy cows and calves. Prevalence of M. bovis in colostrum and clinical mastitis cases as well as the within-herd prevalence of M. bovis IMI was low in endemically infected dairy herds.
Collapse
Affiliation(s)
- Anri A E Timonen
- Chair of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia.
| | - Tiina Autio
- Finnish Food Authority, Laboratory and Research Division, Veterinary Bacteriology and Pathology Unit, Neulaniementie 4, Kuopio, 70210, Finland
| | - Tarja Pohjanvirta
- Finnish Food Authority, Laboratory and Research Division, Veterinary Bacteriology and Pathology Unit, Neulaniementie 4, Kuopio, 70210, Finland
| | - Liidia Häkkinen
- Estonian Veterinary and Food Laboratory, Kreutzwaldi 30, 51006 Tartu, Estonia
| | - Jørgen Katholm
- DNA Diagnostic A/S, Voldbjergvej 14, 8240 Risskov, Denmark
| | | | - Kerli Mõtus
- Chair of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Piret Kalmus
- Chair of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| |
Collapse
|
30
|
Ou W, Hu H, Yang P, Dai J, Ai Q, Zhang W, Zhang Y, Mai K. Dietary daidzein improved intestinal health of juvenile turbot in terms of intestinal mucosal barrier function and intestinal microbiota. FISH & SHELLFISH IMMUNOLOGY 2019; 94:132-141. [PMID: 31461659 DOI: 10.1016/j.fsi.2019.08.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
A 12-week feeding trial was conducted to investigate the effect of dietary daidzein on the intestinal mucosal barrier function and the intestinal microbiota profile of juvenile turbot (Scophthalmus maximus L.). Three isonitrogenous and isolipidic experimental diets were formulated to contain 0 (FM), 40 (D.40) and 400 (D.400) mg kg-1 daidzein, respectively. Fish fed D.400 had significantly lower growth performance than fish fed D.40. Dietary daidzein significantly increased the feed efficiency, while significantly decreased the feed intake. Daidzein supplementation increased the activity of total anti-oxidative capacity and the gene expression of anti-inflammatory cytokine transforming growth factor-β1, Mucin-2 and tight junction proteins (Tricellulin, Zonula occludens-1 transcript variant 1, Zonula occludens-1 transcript variant 2 and Claudin-like and Occludin), and down-regulated the gene expression of pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α in the intestine of turbot. Dietary daidzein increased intestinal microbial diversities, the abundance of several short chain fatty acids producers, and decreased the abundance of some potential pathogenic bacteria. However, D.400 had dual effects on lactic acid bacteria and increased the abundance of potential harmful bacterium Prevotella copri. Collectively, dietary daidzein at the levels of 40 and 400 mg kg-1 could enhance the intestinal mucosal barrier function and alter the intestinal microbiota of turbot. However, high dose of daidzein must be treated with caution for its unclear effects on intestinal microbiota of turbot in the present study.
Collapse
Affiliation(s)
- Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Haibin Hu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Pei Yang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jihong Dai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| |
Collapse
|
31
|
Lim S, Yun HK, Kang KM, Lee BL, Won R, Lee IH. Interactions between Mycoplasma pulmonis and immune systems in the mealworm beetle, Tenebrio molitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103231. [PMID: 31479697 DOI: 10.1016/j.ibmb.2019.103231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Mycoplasmas, the smallest self-replicating organisms, are unique in that they lack cell walls but possess distinctive plasma membranes containing sterol acquired from their growth environment. Although mycoplasmas are known to be successful pathogens in a wide range of animal hosts, including humans, the molecular basis for their virulence and interaction with the host immune systems remains largely unknown. This study was conducted to elucidate the biochemical relationship between mycoplasma and the insect immune system. We investigated defense reactions of Tenebrio molitor that were activated in response to infection with Mycoplasma pulmonis. The results revealed that T. molitor larvae were more resistant to mycoplasma infection than normal bacteria equipped with cell walls. Intruding M. pulmonis cells were effectively killed by toxins generated from activation of the proPO cascade in hemolymph, but not by cellular reactions or antimicrobial peptides. It was determined that these different anti-mycoplasma effects of T. molitor immune components were primarily attributable to surface molecules of M. pulmonis such as phospholipids occurring in the outer leaflet of the membrane lipid bilayer. While phosphatidylcholine, a phospholipid derived from the growth environment, contributed to the resistance of M. pulmonis against antimicrobial peptides produced by T. molitor, phosphatidylglycerol was responsible for triggering activation of the proPO cascade.
Collapse
Affiliation(s)
- Sooa Lim
- Department of Food & Pharmaceutical Engineering, Hoseo University, Asan, Chungnam, 336-795, South Korea
| | - Hwa-Kyung Yun
- Department of Biofood & Medical Sciences, Hanseo University, 360 Daegok-ri, Haemi-myen, Seosan, Chungnam, 356-706, South Korea
| | - Ki Mo Kang
- Department of Biotechnology, Hoseo University, Asan, Chungnam, 336-795, South Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Ran Won
- Department of Biomedical Laboratory Science, Division of Health Sciences, Dongseo University, Busan, 47011, South Korea
| | - In Hee Lee
- Department of Biotechnology, Hoseo University, Asan, Chungnam, 336-795, South Korea.
| |
Collapse
|
32
|
Jarocki VM, Raymond BBA, Tacchi JL, Padula MP, Djordjevic SP. Mycoplasma hyopneumoniae surface-associated proteases cleave bradykinin, substance P, neurokinin A and neuropeptide Y. Sci Rep 2019; 9:14585. [PMID: 31601981 PMCID: PMC6787215 DOI: 10.1038/s41598-019-51116-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/25/2019] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma hyopneumoniae is an economically-devastating and geographically-widespread pathogen that colonises ciliated epithelium, and destroys mucociliary function. M. hyopneumoniae devotes ~5% of its reduced genome to encode members of the P97 and P102 adhesin families that are critical for colonising epithelial cilia, but mechanisms to impair mucociliary clearance and manipulate host immune response to induce a chronic infectious state have remained elusive. Here we identified two surface exposed M. hyopneumoniae proteases, a putative Xaa-Pro aminopeptidase (MHJ_0659; PepP) and a putative oligoendopeptidase F (MHJ_0522; PepF), using immunofluorescence microscopy and two orthogonal proteomic methodologies. MHJ_0659 and MHJ_0522 were purified as polyhistidine fusion proteins and shown, using a novel MALDI-TOF MS assay, to degrade four pro-inflammatory peptides that regulate lung homeostasis; bradykinin (BK), substance P (SP), neurokinin A (NKA) and neuropeptide Y (NPY). These findings provide insight into the mechanisms used by M. hyopneumoniae to influence ciliary beat frequency, impair mucociliary clearance, and initiate a chronic infectious disease state in swine, features that are a hallmark of disease caused by this pathogen.
Collapse
Affiliation(s)
- Veronica Maria Jarocki
- ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| | | | - Jessica Leigh Tacchi
- ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Matthew Paul Padula
- Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, 2007, NSW, Australia
| | - Steven Philip Djordjevic
- ithree institute, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
- Proteomics Core Facility, University of Technology Sydney, PO Box 123, Broadway, 2007, NSW, Australia.
| |
Collapse
|
33
|
Chernov VM, Chernova OA, Mouzykantov AA, Medvedeva ES, Baranova NB, Malygina TY, Aminov RI, Trushin MV. Antimicrobial resistance in mollicutes: known and newly emerging mechanisms. FEMS Microbiol Lett 2019; 365:5057471. [PMID: 30052940 DOI: 10.1093/femsle/fny185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
This review is devoted to the mechanisms of antibiotic resistance in mollicutes (class Bacilli, subclass Mollicutes), the smallest self-replicating bacteria, that can cause diseases in plants, animals and humans, and also contaminate cell cultures and vaccine preparations. Research in this area has been mainly based on the ubiquitous mollicute and the main contaminant of cell cultures, Acholeplasma laidlawii. The omics technologies applied to this and other bacteria have yielded a complex picture of responses to antimicrobials, including their removal from the cell, the acquisition of antibiotic resistance genes and mutations that potentially allow global reprogramming of many cellular processes. This review provides a brief summary of well-known resistance mechanisms that have been demonstrated in several mollicutes species and, in more detail, novel mechanisms revealed in A. laidlawii, including the least explored vesicle-mediated transfer of short RNAs with a regulatory potency. We hope that this review highlights new avenues for further studies on antimicrobial resistance in these bacteria for both a basic science and an application perspective of infection control and management in clinical and research/production settings.
Collapse
Affiliation(s)
- Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Elena S Medvedeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Natalia B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Tatiana Y Malygina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation
| | - Rustam I Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Maxim V Trushin
- Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| |
Collapse
|
34
|
Qin L, Chen Y, You X. Subversion of the Immune Response by Human Pathogenic Mycoplasmas. Front Microbiol 2019; 10:1934. [PMID: 31497004 PMCID: PMC6712165 DOI: 10.3389/fmicb.2019.01934] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Mycoplasmas are a large group of prokaryotes which is believed to be originated from Gram-positive bacteria via degenerative evolution, and mainly capable of causing a wide range of human and animal infections. Although innate immunity and adaptive immunity play crucial roles in preventing mycoplasma infection, immune response that develops after infection fails to completely eliminate this bacterium under certain circumstances. Thus, it is reasonable to speculate that mycoplasmas employ some mechanisms to deal with coercion of host defense system. In this review, we will highlight and provide a comprehensive overview of immune evasion strategies that have emerged in mycoplasma infection, which can be divided into four aspects: (i) Molecular mimicry and antigenic variation on the surface of the bacteria to evade the immune surveillance; (ii) Overcoming the immune effector molecules assaults: Induction of detoxified enzymes to degradation of reactive oxygen species; Expression of nucleases to degrade the neutrophil extracellular traps to avoid killing by Neutrophil; Capture and cleavage of immunoglobulins to evade humoral immune response; (iii) Persistent survival: Invading into the host cell to escape the immune damage; Formation of a biofilm to establish a persistent infection; (iv) Modulation of the immune system to down-regulate the intensity of immune response. All of these features increase the probability of mycoplasma survival in the host and lead to a persistent, chronic infections. A profound understanding on the mycoplasma to subvert the immune system will help us to better understand why mycoplasma is so difficult to eradicate and ultimately provide new insights on the development of therapeutic regimens against this bacterium in future.
Collapse
Affiliation(s)
- Lianmei Qin
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
35
|
Betlach AM, Maes D, Garza-Moreno L, Tamiozzo P, Sibila M, Haesebrouck F, Segalés J, Pieters M. Mycoplasma hyopneumoniae variability: Current trends and proposed terminology for genomic classification. Transbound Emerg Dis 2019; 66:1840-1854. [PMID: 31099490 DOI: 10.1111/tbed.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the aetiologic agent of enzootic pneumonia in swine, a prevalent chronic respiratory disease worldwide. Mycoplasma hyopneumoniae is a small, self-replicating microorganism that possesses several characteristics allowing for limited biosynthetic abilities, resulting in the fastidious, host-specific growth and unique pathogenic properties of this microorganism. Variation across several isolates of M. hyopneumoniae has been described at antigenic, proteomic, transcriptomic, pathogenic and genomic levels. The microorganism possesses a minimal number of genes that regulate the transcription process. Post-translational modifications (PTM) occur frequently in a wide range of functional proteins. The PTM by which M. hyopneumoniae regulates its surface topography could play key roles in cell adhesion, evasion and/or modulation of the host immune system. The clinical outcome of M. hyopneumoniae infections is determined by different factors, such as housing conditions, management practices, co-infections and also by virulence differences among M. hyopneumoniae isolates. Factors contributing to adherence and colonization as well as the capacity to modulate inflammatory and immune responses might be crucial. Different components of the cell membrane (i.e. proteins, glycoproteins and lipoproteins) may serve as adhesins and/or be toxic for the respiratory tract cells. Mechanisms leading to virulence are complex and more research is needed to identify markers for virulence. The utilization of typing methods and complete or partial-gene sequencing for M. hyopneumoniae characterization has increased in diagnostic laboratories as control and elimination strategies for this microorganism are attempted worldwide. A commonly employed molecular typing method for M. hyopneumoniae is Multiple-Locus Variable number tandem repeat Analysis (MLVA). The agreement of a shared terminology and classification for the various techniques, specifically MLVA, has not been described, which makes inferences across the literature unsuitable. Therefore, molecular trends for M. hyopneumoniae have been outlined and a common terminology and classification based on Variable Number Tandem Repeats (VNTR) types has been proposed.
Collapse
Affiliation(s)
- Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Swine Vet Center, St. Peter, Minnesota
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Merelbeke, Belgium
| | - Laura Garza-Moreno
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Pablo Tamiozzo
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joaquim Segalés
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
36
|
Emerging Antibiotic Resistance in Mycoplasma Microorganisms, Designing Effective and Novel Drugs / Therapeutic Targets: Current Knowledge and Futuristic Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Gao X, Bao S, Xing X, Fu X, Zhang Y, Xue H, Wen F, Wei Y. Fructose-1,6-bisphosphate aldolase of Mycoplasma bovis is a plasminogen-binding adhesin. Microb Pathog 2018; 124:230-237. [PMID: 30142464 DOI: 10.1016/j.micpath.2018.08.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 01/24/2023]
Abstract
Mycoplasma bovis is an extremely small cell wall-deficient pathogenic bacterium in the genus Mycoplasma that causes serious economic losses to the cattle industry worldwide. Fructose-1,6-bisphosphate aldolase (FBA), a key enzyme in the glycolytic pathway, is a multifunctional protein in several pathogenic bacterial species, but its role in M. bovis remains unknown. Herein, the FBA gene of the M. bovis was amplified by PCR, and subcloned into the prokaryotic expression vector pET28a (+) to generate the pET28a-FBA plasmid for recombinant expression in Escherichia coli Transetta. Expression of the 34 kDa recombinant rMbFBA protein was confirmed by electrophoresis, and enzymatic activity assays based on conversion of NADH to NAD+ revealed Km and Vmax values of 48 μM and 43.8 μmoL/L/min, respectively. Rabbit anti-rMbFBA and anti-M. bovis serum were generated by inoculation with rMbFBA and M. bovis, and antigenicity and immunofluorescence assay demonstrated that FBA is an immunogenic protein expressed on the cell membrane in M. bovis cells. Enzyme-linked immunosorbent assays revealed equal distribution of FBA in the cell membrane and cytoplasm. Complement-dependent mycoplasmacidal assays showed that rabbit anti-rMbFBA serum killed 44.1% of M. bovis cells in the presence of complement. Binding and ELISA assays demonstrated that rMbFBA binds native bovine plasminogen and in a dose-dependent manner. Fluorescent microscopy revealed that pre-treatment with antibodies against rMbFBA decreased the adhesion of M. bovis to embryonic bovine lung (EBL) cells. Furthermore, adherence inhibition assays revealed 34.4% inhibition of M. bovis infection of EBL cells following treatment with rabbit anti-rMbFBA serum, suggesting rMbFBA participates in bacterial adhesion to EBL cells.
Collapse
Affiliation(s)
- Xiang Gao
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China.
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Xiaoping Fu
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Yi Zhang
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Huiwen Xue
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Fengqin Wen
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, 1 Yingmencun, Lanzhou 730070, China
| |
Collapse
|
38
|
Di Teodoro G, Marruchella G, Mosca F, Di Provvido A, Sacchini F, Tiscar PG, Scacchia M. Polymorphonuclear cells and reactive oxygen species in contagious bovine pleuropneumonia: New insight from in vitro investigations. Vet Immunol Immunopathol 2018; 201:16-19. [DOI: 10.1016/j.vetimm.2018.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/19/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022]
|
39
|
Di Teodoro G, Marruchella G, Di Provvido A, Orsini G, Ronchi GF, D'Angelo AR, D'Alterio N, Sacchini F, Scacchia M. Respiratory explants as a model to investigate early events of contagious bovine pleuropneumonia infection. Vet Res 2018; 49:5. [PMID: 29329577 PMCID: PMC5766988 DOI: 10.1186/s13567-017-0500-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
Contagious bovine pleuropneumonia (CBPP) is a severe disease caused by Mycoplasma mycoides subsp. mycoides (Mmm). Knowledge on CBPP pathogenesis is fragmented and hampered by the limited availability of laboratory animal and in vitro models of investigation. The purpose of the present study is to assess respiratory explants as useful tools to study the early stages of CBPP. Explants were obtained from trachea, bronchi and lungs of slaughtered cattle, tested negative for Mycoplasma spp. and for the major bacterial and viral respiratory pathogens. The interaction of Mmm with explant cells was studied by immunohistochemistry (IHC), double-labelling indirect immunofluorescence (DLIIF) and laser scanning confocal microscopy (LSCM). Mmm capability to survive and proliferate within the explants was evaluated by standard microbiological procedures. Finally, the putative cellular internalization of Mmm was further investigated by the gentamicin invasion assay. IHC and DLIIF indicated that Mmm can colonize explants, showing a marked tropism for lower airways. Specifically, Mmm was detected on/inside the bronchiolar and alveolar epithelial cells, the alveolar macrophages and the endothelial cells. The interaction between Mmm and explant cells was abolished by the pre-incubation of the pathogen with bovine anti-Mmm immune sera. Mmm was able to survive and proliferate in all tracheal, bronchial and lung explants, during the entire time course of the experiments. LSCM and gentamicin invasion assay both confirmed that Mmm can enter non-phagocytic host cells. Taken together, our data supports bovine respiratory explants as a promising tool to investigate CBPP, alternative to cattle experimental infection.
Collapse
Affiliation(s)
- Giovanni Di Teodoro
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy.,Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Giuseppe Marruchella
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy.
| | - Andrea Di Provvido
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Gianluca Orsini
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Gaetano Federico Ronchi
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Anna Rita D'Angelo
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Nicola D'Alterio
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Flavio Sacchini
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Massimo Scacchia
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| |
Collapse
|
40
|
Xer1-independent mechanisms of Vpma phase variation in Mycoplasma agalactiae are triggered by Vpma-specific antibodies. Int J Med Microbiol 2017; 307:443-451. [DOI: 10.1016/j.ijmm.2017.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/24/2017] [Accepted: 10/23/2017] [Indexed: 11/23/2022] Open
|
41
|
Hegde S, Zimmermann M, Rosengarten R, Chopra-Dewasthaly R. Novel role of Vpmas as major adhesins of Mycoplasma agalactiae mediating differential cell adhesion and invasion of Vpma expression variants. Int J Med Microbiol 2017; 308:263-270. [PMID: 29229193 DOI: 10.1016/j.ijmm.2017.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 11/28/2022] Open
Abstract
Mycoplasma agalactiae exhibits antigenic variation by switching the expression of multiple surface lipoproteins called Vpmas. Although implicated to have a significant influence on the pathogenicity, their exact role in pathogen-host interactions has not been investigated so far. Initial attachment to host cells is regarded as one of the most important steps for colonization but this pathogen lacks the typical mycoplasma attachment organelle. The aim of this study was to determine the role of Vpmas in adhesion of M. agalactiae to host cells. 'Phase-Locked' Mutants (PLMs) steadily expressing single well-characterized Vpma lipoproteins served as ideal tools to evaluate the role of each of the six Vpmas in cytadhesion, which was otherwise not possible due to the high-frequency switching of Vpmas in the wildtype strain PG2. Using in vitro adhesion assays with HeLa and sheep mammary epithelial (MECs) and stromal (MSCs) cells, we could demonstrate differences in the adhesion capabilities of each of the six PLMs compared to the wildtype strain. The PLMV mutant expressing VpmaV exhibited the highest adhesion rate, whereas PLMU, which expresses VpmaU showed the lowest adhesion values explaining the reduced in vivo fitness of PLMU in sheep during experimental intramammary and conjunctival infections. Furthermore, adhesion inhibition assays using Vpma-specific polyclonal antisera were performed to confirm the role of Vpmas in M. agalactiae cytadhesion. This led to a significant decrease (p<0.05) in the adhesion percentage of each PLM. Immunofluorescence staining of TX-114 phase proteins extracted from each PLM showed binding of the respective Vpma to HeLa cells and MECs proving the direct role of Vpmas in cytadhesion. Furthermore, as adhesion is a prerequisite for cell invasion, the ability of the six PLMs to invade HeLa cells was also evaluated using the gentamicin protection assay. The results showed a strong correlation between the adhesion rates and invasion frequencies of the individual PLMs. This is the first report that describes a novel function of Vpma proteins in cell adhesion and invasion. Besides the variability of these proteins causing surface antigenic variation, the newly identified phenotypes are likely to play critical roles in the pathogenicity potential of this ruminant pathogen.
Collapse
Affiliation(s)
- Shrilakshmi Hegde
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Martina Zimmermann
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Renate Rosengarten
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Rohini Chopra-Dewasthaly
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210, Vienna, Austria.
| |
Collapse
|
42
|
Sato T, Higuchi H, Yokota SI, Tamura Y. Mycoplasma bovis isolates from dairy calves in Japan have less susceptibility than a reference strain to all approved macrolides associated with a point mutation (G748A) combined with multiple species-specific nucleotide alterations in 23S rRNA. Microbiol Immunol 2017; 61:215-224. [PMID: 28504455 DOI: 10.1111/1348-0421.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/04/2017] [Accepted: 05/09/2017] [Indexed: 11/29/2022]
Abstract
Erythromycin, tylosin and tilmicosin are approved for use in cattle in Japan, the latter two being used to treat Mycoplasma bovis infection. In this study, 58 M. bovis isolates obtained from Japanese dairy calves all exhibited reduced susceptibility to these macrolides, this widespread reduced susceptibility being attributable to a few dominant lineages. All 58 isolates contained the G748A variant in both the rrl3 and rrl4 alleles of 23S rRNA, whereas a reference strain (PG45) did not. G748 localizes in the central loop of domain II (from C744 to A753) of 23S rRNA, which participates in binding to mycinose, a sugar residue present in both tylosin and tilmicosin. A number of in vitro-selected mutants derived from M. bovis PG45 showed reduced susceptibility to tylosin and tilmicosin and contained a nucleotide insertion within the central loop of domain II of rrl3 (U747-G748Ins_CU/GU or A743-U744Ins_UA), suggesting that mutations around G748 confer this reduced susceptibility phenotype. However, other Mycoplasma species containing G748A were susceptible to tylosin and tilmicosin. Sequence comparison with Escherichia coli revealed that M. bovis PG45 and isolates harbored five nucleotide alterations (U744C, G745A, U746C, A752C and A753G) in the central loop of domain II of 23S rRNA, whereas other Mycoplasma species lacked at least two of these five nucleotide alterations. It was therefore concluded that G748 mutations in combination with species-specific nucleotide alterations in the central loop of domain II of 23S rRNA are likely sufficient to reduce susceptibility of M. bovis to tylosin and tilmicosin.
Collapse
Affiliation(s)
- Toyotaka Sato
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudai-Midorimachi, Ebetsu, 069-8501, Japan.,Department of Microbiology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hidetoshi Higuchi
- Laboratory of Animal Health, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, S1 W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudai-Midorimachi, Ebetsu, 069-8501, Japan
| |
Collapse
|
43
|
Chopra-Dewasthaly R, Spergser J, Zimmermann M, Citti C, Jechlinger W, Rosengarten R. Vpma phase variation is important for survival and persistence of Mycoplasma agalactiae in the immunocompetent host. PLoS Pathog 2017; 13:e1006656. [PMID: 28957426 PMCID: PMC5634654 DOI: 10.1371/journal.ppat.1006656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Despite very small genomes, mycoplasmas retain large multigene families encoding variable antigens whose exact role in pathogenesis needs to be proven. To understand their in vivo significance, we used Mycoplasma agalactiae as a model exhibiting high-frequency variations of a family of immunodominant Vpma lipoproteins via Xer1-mediated site-specific recombinations. Phase-Locked Mutants (PLMs) expressing single stable Vpma products served as first breakthrough tools in mycoplasmology to study the role of such sophisticated antigenic variation systems. Comparing the general clinical features of sheep infected with a mixture of phase-invariable PLMs (PLMU and PLMY) and the wild type strain, it was earlier concluded that Vpma phase variation is not necessary for infection. Conversely, the current study demonstrates the in vivo indispensability of Vpma switching as inferred from the Vpma phenotypic and genotypic analyses of reisolates obtained during sheep infection and necropsy. PLMY and PLMU stably expressing VpmaY and VpmaU, respectively, for numerous in vitro generations, switched to new Vpma phenotypes inside the sheep. Molecular genetic analysis of selected 'switchover' clones confirmed xer1 disruption and revealed complex new rearrangements like chimeras, deletions and duplications in the vpma loci that were previously unknown in type strain PG2. Another novel finding is the differential infection potential of Vpma variants, as local infection sites demonstrated an almost complete dominance of PLMY over PLMU especially during early stages of both conjunctival and intramammary co-challenge infections, indicating a comparatively better in vivo fitness of VpmaY expressors. The data suggest that Vpma antigenic variation is imperative for survival and persistence inside the immunocompetent host, and although Xer1 is necessary for causing Vpma variation in vitro, it is not a virulence factor because alternative Xer1-independent mechanisms operate in vivo, likely under the selection pressure of the host-induced immune response. This singular study highlights exciting new aspects of mycoplasma antigenic variation systems, including the regulation of expression by host factors.
Collapse
Affiliation(s)
- Rohini Chopra-Dewasthaly
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| | - Joachim Spergser
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| | - Martina Zimmermann
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| | - Christine Citti
- UMR1225, INRA, ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, Toulouse, France
| | - Wolfgang Jechlinger
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| | - Renate Rosengarten
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| |
Collapse
|
44
|
Fernández-Aguilar X, Cabezón O, Granados JE, Frey J, Serrano E, Velarde R, Cano-Manuel FJ, Mentaberre G, Ráez-Bravo A, Fandos P, López-Olvera JR. Postepizootic Persistence of Asymptomatic Mycoplasma conjunctivae Infection in Iberian Ibex. Appl Environ Microbiol 2017; 83:e00690-17. [PMID: 28526790 PMCID: PMC5514678 DOI: 10.1128/aem.00690-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/08/2017] [Indexed: 01/02/2023] Open
Abstract
The susceptibility of the Iberian ibex (Capra pyrenaica) to Mycoplasma conjunctivae ocular infection and the changes in their interaction over time were studied in terms of clinical outcome, molecular detection, and IgG immune response in a captive population that underwent a severe infectious keratoconjunctivitis (IKC) outbreak. Mycoplasma conjunctivae was detected in the Iberian ibex, coinciding with the IKC outbreak. Its prevalence had a decreasing trend in 2013 that was consistent with the clinical resolution (August, 35.4%; September, 8.7%; November, 4.3%). Infections without clinical outcome were, however, still detected in the last handling in November. Sequencing and cluster analyses of the M. conjunctivae strains found 1 year later in the ibex population confirmed the persistence of the same strain lineage that caused the IKC outbreak but with a high prevalence (75.3%) of mostly asymptomatic infections and with lower DNA load of M. conjunctivae in the eyes (mean quantitative PCR [qPCR] cycle threshold [CT ], 36.1 versus 20.3 in severe IKC). Significant age-related differences of M. conjunctivae prevalence were observed only under IKC epizootic conditions. No substantial effect of systemic IgG on M. conjunctivae DNA in the eye was evidenced with a linear mixed-models selection, which indicated that systemic IgG does not necessarily drive the resolution of M. conjunctivae infection and does not explain the epidemiological changes observed. The results show how both epidemiological scenarios, i.e., severe IKC outbreak and mostly asymptomatic infections, can consecutively occur by entailing mycoplasma persistence.IMPORTANCEMycoplasma infections are reported in a wide range of epidemiological scenarios that involve severe disease to asymptomatic infections. This study allows a better understanding of the transition between two different Mycoplasma conjunctivae epidemiological scenarios described in wild host populations and highlights the ability of M. conjunctivae to adapt, persist, and establish diverse interactions with its hosts. The proportion of asymptomatic and clinical M. conjunctivae infections in a host population may not be regarded only in response to intrinsic host species traits (i.e., susceptibility) but also to a specific host-pathogen interaction, which in turn influences the infection dynamics. Both epidemic infectious keratoconjunctivitis and a high prevalence of asymptomatic M. conjunctivae infections may occur in the same host population, depending on the circulation of M. conjunctivae, its maintenance, and the progression of the host-pathogen interactions.
Collapse
Affiliation(s)
- Xavier Fernández-Aguilar
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Oscar Cabezón
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Joachim Frey
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Emmanuel Serrano
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departamento de Biología & Cesam, Universidad de Aveiro (UA), Aveiro, Portugal
| | - Roser Velarde
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Gregorio Mentaberre
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arián Ráez-Bravo
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Jorge Ramón López-Olvera
- Servei d'Ecopatologia de Fauna Salvatge, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Weitzman CL, Sandmeier FC, Tracy CR. Prevalence and Diversity of the Upper Respiratory Pathogen Mycoplasma agassizii in Mojave Desert Tortoises (Gopherus agassizii). HERPETOLOGICA 2017. [DOI: 10.1655/herpetologica-d-16-00079.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chava L. Weitzman
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| | | | - C. Richard Tracy
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
46
|
Dubrana MP, Guéguéniat J, Bertin C, Duret S, Arricau-Bouvery N, Claverol S, Lartigue C, Blanchard A, Renaudin J, Béven L. Proteolytic Post-Translational Processing of Adhesins in a Pathogenic Bacterium. J Mol Biol 2017; 429:1889-1902. [PMID: 28501585 DOI: 10.1016/j.jmb.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 11/29/2022]
Abstract
Mollicutes, including mycoplasmas and spiroplasmas, have been considered as good representatives of the « minimal cell » concept: these wall-less bacteria are small in size and possess a minimal genome and restricted metabolic capacities. However, the recent discovery of the presence of post-translational modifications unknown so far, such as the targeted processing of membrane proteins of mycoplasma pathogens for human and swine, revealed a part of the hidden complexity of these microorganisms. In this study, we show that in the phytopathogen, insect-vectored Spiroplasma citri GII-3 adhesion-related protein (ScARP) adhesins are post-translationally processed through an ATP-dependent targeted cleavage. The cleavage efficiency could be enhanced in vitro when decreasing the extracellular pH or upon the addition of polyclonal antibodies directed against ScARP repeated units, suggesting that modification of the surface charge and/or ScARP conformational changes could initiate the cleavage. The two major sites for primary cleavage are localized within predicted disordered regions and do not fit any previously reported cleavage motif; in addition, the inhibition profile and the metal ion requirements indicate that this post-translational modification involves at least one non-conventional protease. Such a proteolytic process may play a role in S. citri colonization of cells of the host insect. Furthermore, our work indicates that post-translational cleavage of adhesins represents a common feature to mollicutes colonizing distinct hosts and that processing of surface antigens could represent a way to make the most out of a minimal genome.
Collapse
Affiliation(s)
| | - Julia Guéguéniat
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Clothilde Bertin
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Sybille Duret
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | | | | | - Carole Lartigue
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Alain Blanchard
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Joël Renaudin
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France
| | - Laure Béven
- UMR BFP 1332, Univ. Bordeaux, INRA, Villenave d'Ornon, 33882 France.
| |
Collapse
|
47
|
Gelormini G, Gauthier D, Vilei EM, Crampe JP, Frey J, Ryser-Degiorgis MP. Infectious keratoconjunctivitis in wild Caprinae: merging field observations and molecular analyses sheds light on factors shaping outbreak dynamics. BMC Vet Res 2017; 13:67. [PMID: 28259139 PMCID: PMC5336646 DOI: 10.1186/s12917-017-0972-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/10/2017] [Indexed: 02/04/2023] Open
Abstract
Background Infectious keratoconjunctivitis (IKC) is an ocular infectious disease caused by Mycoplasma conjunctivae which affects small domestic and wild mountain ruminants. Domestic sheep maintain the pathogen but the detection of healthy carriers in wildlife has raised the question as to whether M. conjunctivae may also persist in the wild. Furthermore, the factors shaping the dynamics of IKC outbreaks in wildlife have remained largely unknown. The aims of this study were (1) to verify the etiological role of M. conjunctivae in IKC outbreaks recorded between 2002 and 2010 at four study sites in different regions of France (Pyrenees and Alps, samples from 159 Alpine ibex Capra ibex, Alpine chamois Rupicapra rupicapra and Pyrenean chamois Rupicapra pyrenaica); (2) to establish whether there existed any epidemiological links between the different regions through a cluster analysis of the detected strains (from 80 out of the 159 animals tested); (3) to explore selected pathogen, host and environmental factors potentially influencing the dynamics of IKC in wildlife, by joining results obtained by molecular analyses and by field observations (16,609 animal observations). All of the samples were tested for M. conjunctivae by qPCR, and cluster analysis was based on a highly variable part of the lppS gene. Results We documented infections with M. conjunctivae in epidemic and endemic situations, both in symptomatic and asymptomatic animals. The identified M. conjunctivae strains were site-specific and persisted in the local wild population for at least 6 years. In epidemic situations, peaks of cases and disease resurgence were associated with the emergence of new similar strains in a given area. Social interactions, seasonal movements and the landscape structure such as natural and anthropogenic barriers influenced the spatio-temporal spread of IKC. Adults were more affected than young animals and host susceptibility differed depending on the involved strain. Conclusion Our study indicates that IKC is a multifactorial disease and that M. conjunctivae can persist in wildlife populations. The disease course in individual animals and populations is influenced by both host and mycoplasma characteristics, and the disease spread within and among populations is shaped by host behavior and landscape structure. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-0972-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppina Gelormini
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Edy M Vilei
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Joachim Frey
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | |
Collapse
|
48
|
Kamminga T, Koehorst JJ, Vermeij P, Slagman SJ, Martins Dos Santos VAP, Bijlsma JJE, Schaap PJ. Persistence of Functional Protein Domains in Mycoplasma Species and their Role in Host Specificity and Synthetic Minimal Life. Front Cell Infect Microbiol 2017; 7:31. [PMID: 28224116 PMCID: PMC5293770 DOI: 10.3389/fcimb.2017.00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/23/2017] [Indexed: 11/26/2022] Open
Abstract
Mycoplasmas are the smallest self-replicating organisms and obligate parasites of a specific vertebrate host. An in-depth analysis of the functional capabilities of mycoplasma species is fundamental to understand how some of simplest forms of life on Earth succeeded in subverting complex hosts with highly sophisticated immune systems. In this study we present a genome-scale comparison, focused on identification of functional protein domains, of 80 publically available mycoplasma genomes which were consistently re-annotated using a standardized annotation pipeline embedded in a semantic framework to keep track of the data provenance. We examined the pan- and core-domainome and studied predicted functional capability in relation to host specificity and phylogenetic distance. We show that the pan- and core-domainome of mycoplasma species is closed. A comparison with the proteome of the “minimal” synthetic bacterium JCVI-Syn3.0 allowed us to classify domains and proteins essential for minimal life. Many of those essential protein domains, essential Domains of Unknown Function (DUFs) and essential hypothetical proteins are not persistent across mycoplasma genomes suggesting that mycoplasma species support alternative domain configurations that bypass their essentiality. Based on the protein domain composition, we could separate mycoplasma species infecting blood and tissue. For selected genomes of tissue infecting mycoplasmas, we could also predict whether the host is ruminant, pig or human. Functionally closely related mycoplasma species, which have a highly similar protein domain repertoire, but different hosts could not be separated. This study provides a concise overview of the functional capabilities of mycoplasma species, which can be used as a basis to further understand host-pathogen interaction or to design synthetic minimal life.
Collapse
Affiliation(s)
- Tjerko Kamminga
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and ResearchWageningen, Netherlands; Bioprocess Technology and Support, MSD Animal HealthBoxmeer, Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Wageningen, Netherlands
| | - Paul Vermeij
- Discovery and Technology, MSD Animal Health Boxmeer, Netherlands
| | - Simen-Jan Slagman
- Bioprocess Technology and Support, MSD Animal Health Boxmeer, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Wageningen, Netherlands
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Wageningen, Netherlands
| |
Collapse
|
49
|
Fisunov GY, Garanina IA, Evsyutina DV, Semashko TA, Nikitina AS, Govorun VM. Reconstruction of Transcription Control Networks in Mollicutes by High-Throughput Identification of Promoters. Front Microbiol 2016; 7:1977. [PMID: 27999573 PMCID: PMC5138195 DOI: 10.3389/fmicb.2016.01977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 01/05/2023] Open
Abstract
Bacteria of the class Mollicutes have significantly reduced genomes and gene expression control systems. They are also efficient pathogens that can colonize a broad range of hosts including plants and animals. Despite their simplicity, Mollicutes demonstrate complex transcriptional responses to various conditions, which contradicts their reduction in gene expression regulation mechanisms. We analyzed the conservation and distribution of transcription regulators across the 50 Mollicutes species. The majority of the transcription factors regulate transport and metabolism, and there are four transcription factors that demonstrate significant conservation across the analyzed bacteria. These factors include repressors of chaperone HrcA, cell cycle regulator MraZ and two regulators with unclear function from the WhiA and YebC/PmpR families. We then used three representative species of the major clades of Mollicutes (Acholeplasma laidlawii, Spiroplasma melliferum, and Mycoplasma gallisepticum) to perform promoter mapping and activity quantitation. We revealed that Mollicutes evolved towards a promoter architecture simplification that correlates with a diminishing role of transcription regulation and an increase in transcriptional noise. Using the identified operons structure and a comparative genomics approach, we reconstructed the transcription control networks for these three species. The organization of the networks reflects the adaptation of bacteria to specific conditions and hosts.
Collapse
Affiliation(s)
- Gleb Y Fisunov
- Federal Research and Clinical Centre of Physical-Chemical Medicine Moscow, Russia
| | - Irina A Garanina
- Federal Research and Clinical Centre of Physical-Chemical MedicineMoscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of SciencesMoscow, Russia
| | - Daria V Evsyutina
- Federal Research and Clinical Centre of Physical-Chemical Medicine Moscow, Russia
| | - Tatiana A Semashko
- Federal Research and Clinical Centre of Physical-Chemical Medicine Moscow, Russia
| | - Anastasia S Nikitina
- Federal Research and Clinical Centre of Physical-Chemical MedicineMoscow, Russia; Moscow Institute of Physics and TechnologyMoscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical MedicineMoscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of SciencesMoscow, Russia; Moscow Institute of Physics and TechnologyMoscow, Russia
| |
Collapse
|
50
|
Matyushkina D, Pobeguts O, Butenko I, Vanyushkina A, Anikanov N, Bukato O, Evsyutina D, Bogomazova A, Lagarkova M, Semashko T, Garanina I, Babenko V, Vakhitova M, Ladygina V, Fisunov G, Govorun V. Phase Transition of the Bacterium upon Invasion of a Host Cell as a Mechanism of Adaptation: a Mycoplasma gallisepticum Model. Sci Rep 2016; 6:35959. [PMID: 27775027 PMCID: PMC5075909 DOI: 10.1038/srep35959] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022] Open
Abstract
What strategies do bacteria employ for adaptation to their hosts and are these strategies different for varied hosts? To date, many studies on the interaction of the bacterium and its host have been published. However, global changes in the bacterial cell in the process of invasion and persistence, remain poorly understood. In this study, we demonstrated phase transition of the avian pathogen Mycoplasma gallisepticum upon invasion of the various types of eukaryotic cells (human, chicken, and mouse) which was stable during several passages after isolation of intracellular clones and recultivation in a culture medium. It was shown that this phase transition is manifested in changes at the proteomic, genomic and metabolomic levels. Eukaryotic cells induced similar proteome reorganization of M. gallisepticum during infection, despite different origins of the host cell lines. Proteomic changes affected a broad range of processes including metabolism, translation and oxidative stress response. We determined that the activation of glycerol utilization, overproduction of hydrogen peroxide and the upregulation of the SpxA regulatory protein occurred during intracellular infection. We propose SpxA as an important regulator for the adaptation of M. gallisepticum to an intracellular environment.
Collapse
Affiliation(s)
- Daria Matyushkina
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Olga Pobeguts
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Ivan Butenko
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Anna Vanyushkina
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Nicolay Anikanov
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Olga Bukato
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Daria Evsyutina
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia.,Department of Bioinformatics and Bioengineering, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexandra Bogomazova
- Laboratory of Cell Biology, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia.,Stem Cell Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia
| | - Maria Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Tatiana Semashko
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Irina Garanina
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia.,Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Vladislav Babenko
- Laboratory of Post-Genomic Research in Biology, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Maria Vakhitova
- Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700, Russia
| | - Valentina Ladygina
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Gleb Fisunov
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vadim Govorun
- Laboratory of Proteomic Analysis, Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia.,Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700, Russia
| |
Collapse
|