1
|
Liu CJ, Wang LK, Tsai FM. The Application and Molecular Mechanisms of Mitochondria-Targeted Antioxidants in Chemotherapy-Induced Cardiac Injury. Curr Issues Mol Biol 2025; 47:176. [PMID: 40136430 PMCID: PMC11941228 DOI: 10.3390/cimb47030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Chemotherapeutic agents play a crucial role in cancer treatment. However, their use is often associated with significant adverse effects, particularly cardiotoxicity. Drugs such as anthracyclines (e.g., doxorubicin) and platinum-based agents (e.g., cisplatin) cause mitochondrial damage, which is one of the main mechanisms underlying cardiotoxicity. These drugs induce oxidative stress, leading to an increase in reactive oxygen species (ROS), which in turn damage the mitochondria in cardiomyocytes, resulting in impaired cardiac function and heart failure. Mitochondria-targeted antioxidants (MTAs) have emerged as a promising cardioprotective strategy, offering a potential solution. These agents efficiently scavenge ROS within the mitochondria, protecting cardiomyocytes from oxidative damage. Recent studies have shown that MTAs, such as elamipretide, SkQ1, CoQ10, and melatonin, significantly mitigate chemotherapy-induced cardiotoxicity. These antioxidants not only reduce oxidative damage but also help maintain mitochondrial structure and function, stabilize mitochondrial membrane potential, and prevent excessive opening of the mitochondrial permeability transition pore, thus preventing apoptosis and cardiac dysfunction. In this review, we integrate recent findings to elucidate the mechanisms of chemotherapy-induced cardiotoxicity and highlight the substantial therapeutic potential of MTAs in reducing chemotherapy-induced heart damage. These agents are expected to offer safer and more effective treatment options for cancer patients in clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Liu
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Lu-Kai Wang
- Veterinary Diagnostic Division, National Laboratory Animal Center, National Institutes of Applied Research, Taipei City 115, Taiwan;
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
2
|
Fan T, Shen L, Huang Y, Wang X, Zhao L, Zhong R, Wang P, Sun G. Lonidamine Increases the Cytotoxic Effect of 1-[(4-Amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea via Energy Inhibition, Disrupting Redox Homeostasis, and Downregulating MGMT Expression in Human Lung Cancer Cell Line. ACS OMEGA 2024; 9:36134-36147. [PMID: 39220482 PMCID: PMC11360010 DOI: 10.1021/acsomega.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer ranks as the second most diagnosed cancer and the leading cause of cancer-related deaths worldwide. Novel chemotherapeutic strategies are crucial to efficiently target tumor cells while minimizing toxicity to normal cells. In this study, we proposed a combination strategy using energy blocker lonidamine (LND) and cytotoxic drug nimustine (ACNU, 1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea) to enhance the killing of a human lung cancer cell line and investigated the potential chemo-sensitizing mechanism of LND. LND was found to remarkably increase the cytotoxicity of ACNU to A549 and H1299 cells without significantly affecting normal lung BEAS2B cells. The combination of LND and ACNU also produced significant effects on cell apoptosis, colony formation, cell migration, and invasion assays compared to single drug treatment. Mechanistically, LND decreased intracellular ATP levels by inhibiting glycolysis and inducing mitochondrial dysfunction. Furthermore, the combination of LND and ACNU could intensify cellular oxidative stress, decrease cellular GSH contents, and increase reactive oxygen species (ROS) production. Notably, LND alone dramatically downregulated the expression of DNA repair protein MGMT (O6-methylguanine-DNA methyltransferase), enhancing DNA interstrand cross-link formation induced by ACNU. Overall, LND represents a potential chemo-sensitizer to enhance ACNU therapy through energy inhibition, disrupting redox homeostasis and downregulating MGMT expression in human lung cancer cell line under preclinical and clinical background.
Collapse
Affiliation(s)
- Tengjiao Fan
- Department
of Medical Technology, Beijing Pharmaceutical
University of Staff and Workers, Beijing 100079, P. R. China
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Lin Shen
- Department
of Dermatology, the First Medical Center of PLA General Hospital, Beijing 100853, P. R. China
| | - Yaxin Huang
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Xin Wang
- Department
of Clinical Trials Center, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P. R. China
| | - Lijiao Zhao
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Rugang Zhong
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Peng Wang
- Department
of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Guohui Sun
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| |
Collapse
|
3
|
Hu Y, Mostert D, Orgler C, Andler O, Zischka H, Kazmaier U, Vollmar AM, Braig S, Sieber SA, Zahler S. Thermal Proteome Profiling Reveals Insight to Antiproliferative and Pro-Apoptotic Effects of Lagunamide A in the Modulation of DNA Damage Repair. Chembiochem 2024; 25:e202400024. [PMID: 38716781 DOI: 10.1002/cbic.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Lagunamide A is a biologically active natural product with a yet unidentified molecular mode of action. Cellular studies revealed that lagunamide A is a potent inhibitor of cancer cell proliferation, promotes apoptosis and causes mitochondrial dysfunction. To decipher the cellular mechanism responsible for these effects, we utilized thermal protein profiling (TPP) and identified EYA3 as a stabilized protein in cells upon lagunamide A treatment. EYA3, involved in the DNA damage repair process, was functionally investigated via siRNA based knockdown studies and corresponding effects of lagunamide A on DNA repair were confirmed. Furthermore, we showed that lagunamide A sensitized tumor cells to treatment with the drug doxorubicin highlighting a putative therapeutic strategy.
Collapse
Affiliation(s)
- Yudong Hu
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377, Munich, Germany
| | - Dietrich Mostert
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, 85748, Garching, Germany
| | - Christina Orgler
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377, Munich, Germany
| | - Oliver Andler
- Organic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University of Munich, Munich, Germany
| | - Uli Kazmaier
- Organic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377, Munich, Germany
| | - Simone Braig
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377, Munich, Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, 85748, Garching, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377, Munich, Germany
| |
Collapse
|
4
|
Yun HS, Kramp TR, Palanichamy K, Tofilon PJ, Camphausen K. MGMT inhibition regulates radioresponse in GBM, GSC, and melanoma. Sci Rep 2024; 14:12363. [PMID: 38811596 PMCID: PMC11136993 DOI: 10.1038/s41598-024-61240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Radiotherapy is the standard treatment for glioblastoma (GBM), but the overall survival rate for radiotherapy treated GBM patients is poor. The use of adjuvant and concomitant temozolomide (TMZ) improves the outcome; however, the effectiveness of this treatment varies according to MGMT levels. Herein, we evaluated whether MGMT expression affected the radioresponse of human GBM, GBM stem-like cells (GSCs), and melanoma. Our results indicated a correlation between MGMT promoter methylation status and MGMT expression. MGMT-producing cell lines ACPK1, GBMJ1, A375, and MM415 displayed enhanced radiosensitivity when MGMT was silenced using siRNA or when inhibited by lomeguatrib, whereas the OSU61, NSC11, WM852, and WM266-4 cell lines, which do not normally produce MGMT, displayed reduced radiosensitivity when MGMT was overexpressed. Mechanistically lomeguatrib prolonged radiation-induced γH2AX retention in MGMT-producing cells without specific cell cycle changes, suggesting that lomeguatrib-induced radiosensitization in these cells is due to radiation-induced DNA double-stranded break (DSB) repair inhibition. The DNA-DSB repair inhibition resulted in cell death via mitotic catastrophe in MGMT-producing cells. Overall, our results demonstrate that MGMT expression regulates radioresponse in GBM, GSC, and melanoma, implying a role for MGMT as a target for radiosensitization.
Collapse
Affiliation(s)
- Hong Shik Yun
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA
| | - Tamalee R Kramp
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA
| | - Kamalakannan Palanichamy
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, 10 Center Drive, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Wang J, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Mechanism of AGT-Mediated Repair of dG-dC Cross-Links in the Drug Resistance to Chloroethylnitrosoureas: Molecular Docking, MD Simulation, and ONIOM (QM/MM) Investigation. J Chem Inf Model 2024; 64:3411-3429. [PMID: 38511939 DOI: 10.1021/acs.jcim.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Chloroethylnitrosoureas (CENUs) are important chemotherapies applied in the treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) via the formation of two O6-alkylguanine intermediates, O6-chloroethylguanine (O6-ClEtG) and N1,O6-ethanoguanine (N1,O6-EtG). However, O6-alkylguanine-DNA alkyltransferase (AGT), a DNA-repair enzyme, can restore the O6-alkylguanine damages and thereby obstruct the formation of ICLs (dG-dC cross-link). In this study, the inhibitory mechanism of ICL formation was investigated to elucidate the drug resistance of CENUs mediated by AGT in detail. Based on the structures of the substrate-enzyme complexes obtained from docking and MD simulations, two ONIOM (QM/MM) models with different sizes of the QM region were constructed. The model with a larger QM region, which included the substrate (O6-ClEtG or N1,O6-EtG), a water molecule, and five residues (Tyr114, Cys145, His146, Lys165, and Glu172) in the active pocket of AGT, accurately described the repairing reaction and generated the results coinciding with the experimental outcomes. The repair process consists of two sequential steps: hydrogen transfer to form a thiolate anion on Cys145 and alkyl transfer from the O6 site of guanine (the rate-limiting step). The repair of N1,O6-EtG was more favorable than that of O6-ClEtG from both kinetics and thermodynamics aspects. Moreover, the comparison of the repairing process with the formation of dG-dC cross-link and the inhibition of AGT by O6-benzylguanine (O6-BG) showed that the presence of AGT could effectively interrupt the formation of ICLs leading to drug resistance, and the inhibition of AGT by O6-BG that was energetically more favorable than the repair of O6-ClEtG could not prevent the repair of N1,O6-EtG. Therefore, it is necessary to completely eliminate AGT activity before CENUs medication to enhance the chemotherapeutic effectiveness. This work provides reasonable explanations for the supposed mechanism of AGT-mediated drug resistance of CENUs and will assist in the development of novel CENU chemotherapies and their medication strategies.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Bai P, Fan T, Sun G, Wang X, Zhao L, Zhong R. The dual role of DNA repair protein MGMT in cancer prevention and treatment. DNA Repair (Amst) 2023; 123:103449. [PMID: 36680944 DOI: 10.1016/j.dnarep.2023.103449] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Alkylating agents are genotoxic chemicals that can induce and treat various types of cancer. This occurs through covalent bonding with cellular macromolecules, in particular DNA, leading to the loss of functional integrity under the persistence of modifications upon replication. O6-alkylguanine (O6-AlkylG) adducts are proposed to be the most potent DNA lesions induced by alkylating agents. If not repaired correctly, these adducts can result, at the molecular level, in DNA point mutations, chromosome aberrations, recombination, crosslinking, and single- and double-strand breaks (SSB/DSBs). At the cellular level, these lesions can result in malignant transformation, senescence, or cell death. O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein capable of removing the alkyl groups from O6-AlkylG adducts in a damage reversal process that can prevent the adverse biological effects of DNA damage caused by guanine O6-alkylation. MGMT can thereby defend normal cells against tumor initiation, however it can also protect tumor cells against the beneficial effects of chemotherapy. Hence, MGMT can play an important role in both the prevention and treatment of cancer; thus, it can be considered as a double-edged sword. From a clinical perspective, MGMT is a therapeutic target, and it is important to explore the rational development of its clinical exploitation.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Shaji UP, Tuti N, Das S, Anindya R, Mohan M. Interactions between HIV protease inhibitor ritonavir and human DNA repair enzyme ALKBH2: a molecular dynamics simulation study. Mol Divers 2022; 27:931-938. [PMID: 35543797 DOI: 10.1007/s11030-022-10444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
The human DNA repair enzyme AlkB homologue-2 (ALKBH2) repairs methyl adducts from genomic DNA. Overexpression of ALKBH2 has been implicated in both tumorigenesis and chemotherapy resistance in some cancers, including glioblastoma and renal cancer rendering it a potential therapeutic target and a diagnostic marker. However, no inhibitor is available against these important DNA repair proteins. Intending to repurpose a drug as an inhibitor of ALKBH2, we performed in silico evaluation of HIV protease inhibitors and identified Ritonavir as an ALKBH2-interacting molecule. Using molecular dynamics simulation, we elucidated the molecular details of Ritonavir-ALKBH2 interaction. The present work highlights that Ritonavir might be used to target the ALKBH2-mediated DNA alkylation repair.
Collapse
Affiliation(s)
| | - Nikhil Tuti
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi Sanga Reddy, Telangana, 502284, India
| | - Susmita Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi Sanga Reddy, Telangana, 502284, India
| | - Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi Sanga Reddy, Telangana, 502284, India.
| | - Monisha Mohan
- Department of Science and Humanities, Indian Institute of Information Technology Design and Manufacturing Kancheepuram, Chennai, Tamilnadu, 600127, India.
| |
Collapse
|
9
|
Delello Di Filippo L, Hofstätter Azambuja J, Paes Dutra JA, Tavares Luiz M, Lobato Duarte J, Nicoleti LR, Olalla Saad ST, Chorilli M. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur J Pharm Biopharm 2021; 168:76-89. [PMID: 34461214 DOI: 10.1016/j.ejpb.2021.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/24/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBM has aggressive development, and the pharmacological treatment remains a challenge due to GBM anatomical characteristics' (the blood-brain barrier and tumor microenvironment) and the increasing resistance to marketed drugs, such as temozolomide (TMZ), the first-line drug for GBM treatment. Due to physical-chemical properties such as short half-life time and the increasing resistance shown by GBM cells, high doses and repeated administrations are necessary, leading to significant adverse events. This review will discuss the main molecular mechanisms of TMZ resistance and the use of functionalized nanocarriers as an efficient and safe strategy for TMZ delivery. GBM-targeting nanocarriers are an important tool for the treatment of GBM, demonstrating to improve the biopharmaceutical properties of TMZ and repurpose its use in anti-GBM therapy. Technical aspects of nanocarriers will be discussed, and biological models highlighting the advantages and effects of functionalization strategies in TMZ anti-GBM activity. Finally, conclusions regarding the main findings will be made in the context of new perspectives for the treatment of GBM using TMZ as a chemotherapy agent, improving the sensibility and biological anti-tumor effect of TMZ through functionalization strategies.
Collapse
Affiliation(s)
| | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Luiza Ribeiro Nicoleti
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
10
|
Li LY, Guan YD, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol 2021; 11:629266. [PMID: 33628188 PMCID: PMC7898236 DOI: 10.3389/fphar.2020.629266] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for cancer treatment. A better understanding of the biology and the regulatory mechanisms of DNA repair pathways has the potential to facilitate the development of inhibitors of nuclear and mitochondria DNA repair pathways for enhancing anticancer effect of DNA damage-based therapy.
Collapse
Affiliation(s)
- Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yi-di Guan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi-Sha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Yu W, Zhang L, Wei Q, Shao A. O 6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front Oncol 2020; 9:1547. [PMID: 32010632 PMCID: PMC6979006 DOI: 10.3389/fonc.2019.01547] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022] Open
Abstract
Chemoresistance has been a significant problem affecting the efficacy of drugs targeting tumors for decades. MGMT, known as O6-methylguanine-DNA methyltransferase, is a DNA repair enzyme that plays an important role in chemoresistance to alkylating agents. Hence, MGMT is considered a promising target for tumor treatment. Several methods are employed to detect MGMT, each with its own advantages and disadvantages. Some of the detection methods are; immunohistochemistry, methylation-specific PCR (MSP), pyrophosphate sequencing, MGMT activity test, and real-time quantitative PCR. Methylation of MGMT promoter is a key predictor of whether alkylating agents can effectively control glioma cells. The prognostic value of MGMT in glioma is currently being explored. The expression of MGMT gene mainly depends on epigenetic modification–methylation of CpG island of MGMT promoter. CpG island covers a length of 762 bp, with 98 CpG sites located at the 5' end of the gene, ranging from 480 to 1,480 nucleotides. The methylation sites and frequencies of CpG islands vary in MGMT-deficient tumor cell lines, xenografts of glioblastoma and in situ glioblastoma. Methylation in some regions of promoter CpG islands is particularly associated with gene expression. The change in the methylation status of the MGMT promoter after chemotherapy, radiotherapy or both is not completely understood, and results from previous studies have been controversial. Several studies have revealed that chemotherapy may enhance MGMT expression in gliomas. This could be through gene induction or selection of high MGMT-expressing cells during chemotherapy. Selective survival of glioma cells with high MGMT expression during alkylating agent therapy may change MGMT status in case of recurrence. Several strategies have been pursued to improve the anti-tumor effects of temozolomide. These include the synthesis of analogs of O6-meG such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl) guanine (O6-BTG), RNAi, and viral proteins. This review describes the regulation of MGMT expression and its role in chemotherapy, especially in glioma. Targeting MGMT seems to be a promising approach to overcome chemoresistance. Further studies exploring new agents targeting MGMT with better curative effect and less toxicity are advocated. We anticipate that these developments will improve the current poor prognosis of glioma patients.
Collapse
Affiliation(s)
- Wei Yu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, China
| | - Lili Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University Cancer Institute, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Yamada Y, Watanabe S, Okamoto K, Arimoto S, Takahashi E, Negishi K, Negishi T. Chloroethylating anticancer drug-induced mutagenesis and its repair in Escherichia coli. Genes Environ 2019; 41:11. [PMID: 30988834 PMCID: PMC6449902 DOI: 10.1186/s41021-019-0123-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/04/2019] [Indexed: 11/17/2022] Open
Abstract
Background Chloroethylnitrosourea (CENU) derivatives, such as nimustine (ACNU) and carmustine (BCNU), are employed in brain tumor chemotherapy due to their ability to cross the blood-brain barrier. They are thought to suppress tumor development through DNA chloroethylation, followed by the formation of interstrand cross-links (ICLs) that efficiently block replication and transcription. However, the alkylation of DNA and ICLs may trigger genotoxicity, leading to tumor formation as a side effect of the chemotherapeutic treatment. Although the involvement of O6-alkylguanine-DNA alkyltransferase (AGT) in repairing chloroethylated guanine (O6-chloroethylguanine) has been reported, the exact lesion responsible for the genotoxicity and the pathway responsible for repairing it remains unclear. Results We examined the mutations induced by ACNU and BCNU using a series of Escherichia coli strains, CC101 to CC111, in which reverse mutations due to each episome from F’101 to F’106 and frameshift mutations due to each episome from F’107 to F’111 could be detected. The mutant frequency increased in E. coli CC102, which can detect a GC to AT mutation. To determine the pathway responsible for repairing the CENU-induced lesions, we compared the frequency of mutations induced by CENU in the wild-type strain to those in the ada, ogt (AGT-deficient) strain, uvrA (nucleotide excision repair (NER)-deficient) strain, mismatch repair (MMR)-deficient strains, and recA (recombination deficient) strain of E. coli CC102. The frequencies of mutations induced by ACNU and BCNU increased in the ada, ogt strain, demonstrating that O6-chloroethylguanines were formed, and that a portion was repaired by AGT. Mutation induced by ACNU in NER-deficient strain showed a similar profile to that in AGT-deficient strain, suggesting that an NER and AGT play at the similar efficacy to protect E. coli from mutation induced by ACNU. O6-Chloroethylguanine is reported to form ICLs if it is not repaired. We examined the survival rates and the frequencies of mutations induced by ACNU and BCNU in the uvrA strain, the recA strain, as well as a double-deficient strain of CC102. The mutation profile of the double-deficient strain was similar to that of the NER-deficient strain, suggesting that an NER protects E. coli from mutations but not recombination. In addition, cell death was more pronounced in the uvrA, recA double-deficient strain than in the single-deficient strains. Conclusion These results suggest that the toxic lesions induced by CENU were repaired additively or synergistically by NER and recombination. In other words, lesions, such as ICLs, appear to be repaired by NER and recombination independently.
Collapse
Affiliation(s)
- Yoko Yamada
- 1Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Shinji Watanabe
- 2Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Keinosuke Okamoto
- 1Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan.,2Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan.,Present address: Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera and Enteric Diseases JICA Building ID Hospital Campus, Beliaghata Kolkata, 700010 India
| | - Sakae Arimoto
- 1Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan.,2Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Eizo Takahashi
- 1Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan.,3Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama, 362-0806 Japan.,Present address: Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera and Enteric Diseases JICA Building ID Hospital Campus, Beliaghata Kolkata, 700010 India
| | - Kazuo Negishi
- 3Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama, 362-0806 Japan
| | - Tomoe Negishi
- 1Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan.,3Nihon Pharmaceutical University, Ina, Kita-Adachi-Gun, Saitama, 362-0806 Japan
| |
Collapse
|
13
|
Nguyen QN, Vuong LD, Truong VL, Ta TV, Nguyen NT, Nguyen HP, Chu HH. Genetic and epigenetic alterations of the EGFR and mutually independent association with BRCA1, MGMT, and RASSF1A methylations in Vietnamese lung adenocarcinomas. Pathol Res Pract 2019; 215:885-892. [PMID: 30723053 DOI: 10.1016/j.prp.2019.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 11/25/2022]
Abstract
Genetic and epigenetic alterations importantly contribute to the pathogenesis of lung cancer. In the study, we measured the frequency and distribution of molecular abnormalities of EGFR as well as the aberrant promoter methylations of BRCA1, MGMT, MLH1, and RASSF1A in Vietnamese lung adenocarcinomas. We investigated the association between genetic and epigenetic alteration, and between each abnormality with clinicopathologic parameters. Somatic EGFR mutation that was found in 49/139 (35.3%) lung adenocarcinomas showed a significant association with young age, female gender, and non-smokers. EGFR overexpression was identified in 82 tumors (59.0%) and statistical relationships with EGFR or BRCA1 methylation but not EGFR mutation. In addition, EGFR, BRCA1, MGMT, MLH1, and RASSF1A methylations were found in 33 (23.7%), 41 (29.5%), 46 (33.1%), 28 (20.1%), and 41 (29.5%) cases of a total of 139 lung adenocarcinomas, respectively. The RASSF1A methylation was found to be linked to the smoking habit. Methylations in MGMT and RASSF1A were also found to correlate with metastasis status. Furthermore, the distribution of EGFR mutation and that of BRCA1, MGMT or RASSF1A methylation were significantly exclusive in lung adenocarcinomas. The main finding of our study demonstrate that epigenetic abnormalities might play a critical role for the lung tumorigenesis in patients with smoking history and metastasis, and partly affect the predictive value of EGFR mutations through blocking expression due to promoter EGFR hypermethylation. Mutually exclusive distribution of genetic and epigenetic alterations reflects differently biological characteristics in the etiology of lung adenocarcinomas.
Collapse
Affiliation(s)
- Quang Ngoc Nguyen
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam; Biotechnology Department, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam.
| | - Linh Dieu Vuong
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Van-Long Truong
- Department of Smart Food and Drug, College of BNIT, Inje University, Gimhae, 50834, South Korea
| | - To Van Ta
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam
| | - Nam Trung Nguyen
- National Key Laboratory of Gene Technology, Institute Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam; Biotechnology Department, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam
| | - Hung Phi Nguyen
- Pathology and Molecular Biology Center, National Cancer Hospital K, 30 Cau Buou Street, Thanh Tri, Hanoi, Viet Nam.
| | - Ha Hoang Chu
- National Key Laboratory of Gene Technology, Institute Vietnam, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam; Biotechnology Department, Graduate University of Science and Technology, Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi, Viet Nam.
| |
Collapse
|
14
|
Sun G, Fan T, Sun X, Hao Y, Cui X, Zhao L, Ren T, Zhou Y, Zhong R, Peng Y. In Silico Prediction of O⁶-Methylguanine-DNA Methyltransferase Inhibitory Potency of Base Analogs with QSAR and Machine Learning Methods. Molecules 2018; 23:2892. [PMID: 30404161 PMCID: PMC6278368 DOI: 10.3390/molecules23112892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
O⁶-methylguanine-DNA methyltransferase (MGMT), a unique DNA repair enzyme, can confer resistance to DNA anticancer alkylating agents that modify the O⁶-position of guanine. Thus, inhibition of MGMT activity in tumors has a great interest for cancer researchers because it can significantly improve the anticancer efficacy of such alkylating agents. In this study, we performed a quantitative structure activity relationship (QSAR) and classification study based on a total of 134 base analogs related to their ED50 values (50% inhibitory concentration) against MGMT. Molecular information of all compounds were described by quantum chemical descriptors and Dragon descriptors. Genetic algorithm (GA) and multiple linear regression (MLR) analysis were combined to develop QSAR models. Classification models were generated by seven machine-learning methods based on six types of molecular fingerprints. Performances of all developed models were assessed by internal and external validation techniques. The best QSAR model was obtained with Q²Loo = 0.83, R² = 0.87, Q²ext = 0.67, and R²ext = 0.69 based on 84 compounds. The results from QSAR studies indicated topological charge indices, polarizability, ionization potential (IP), and number of primary aromatic amines are main contributors for MGMT inhibition of base analogs. For classification studies, the accuracies of 10-fold cross-validation ranged from 0.750 to 0.885 for top ten models. The range of accuracy for the external test set ranged from 0.800 to 0.880 except for PubChem-Tree model, suggesting a satisfactory predictive ability. Three models (Ext-SVM, Ext-Tree and Graph-RF) showed high and reliable predictive accuracy for both training and external test sets. In addition, several representative substructures for characterizing MGMT inhibitors were identified by information gain and substructure frequency analysis method. Our studies might be useful for further study to design and rapidly identify potential MGMT inhibitors.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaodong Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yuxing Hao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xin Cui
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yue Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Road, Beijing 100050, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment & Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
15
|
Sun G, Zhao L, Zhong R, Peng Y. The specific role of O 6-methylguanine-DNA methyltransferase inhibitors in cancer chemotherapy. Future Med Chem 2018; 10:1971-1996. [PMID: 30001630 DOI: 10.4155/fmc-2018-0069] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), can confer resistance to guanine O6-alkylating agents. Therefore, inhibition of resistant MGMT protein is a practical approach to increase the anticancer effects of such alkylating agents. Numerous small molecule inhibitors were synthesized and exhibited potential MGMT inhibitory activities. Although they were nontoxic alone, they also inhibited MGMT in normal tissues, thereby enhancing the side effects of chemotherapy. Therefore, strategies for tumor-specific MGMT inhibition have been proposed, including local drug delivery and tumor-activated prodrugs. Over-expression of MGMT in hematopoietic stem cells to protect bone marrow from the toxic effects of chemotherapy is also a feasible selection. The future prospects and challenges of MGMT inhibitors in cancer chemotherapy were also discussed.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Rugang Zhong
- Beijing Key Laboratory of Environment & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment & Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
16
|
Gutierrez R, Thompson Y, R. O’Connor T. DNA direct repair pathways in cancer. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.3.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
15N-, 13C- and ¹H-NMR Spectroscopy Characterization and Growth Inhibitory Potency of a Combi-Molecule Synthesized by Acetylation of an Unstable Monoalkyltriazene. Molecules 2017; 22:molecules22071183. [PMID: 28753938 PMCID: PMC6152079 DOI: 10.3390/molecules22071183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022] Open
Abstract
6-(3-Methyltriaz-1-en-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione referred to as EG22 (8a), is an open-chain 3-alkyl-1,2,3-triazene termed “combi-molecule” designed to inhibit poly(adenosine diphosphate ribose) polymerase (PARP) and damage DNA. To delay its hydrolysis, acetylation of N3 was required. Being a monoalkyl-1,2,3-triazene, EG22 could assume two tautomers in solution or lose nitrogen during the reaction, thereby leading to several acetylated compounds. Instead, one compound was observed and to unequivocally assign its structure, we introduced isotopically labeled reagents in its preparation, with the purpose of incorporating 15N at N2 and 13C in the 3-methyl group. The results showed that the 1,2,3-triazene moiety remained intact, as confirmed by 15N-NMR, coupling patterns between the 15N-labeled N2 and the 13C-labeled methyl group. Furthermore, we undertook heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond correlation (HMBC) experiments that permitted the detection and assignment of all four nitrogens in 6-(3-acetyl-3-methyltriaz-1-en-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione, referred to as ZSM02 (9a), whose structure was further confirmed by X-ray crystallography. The structure showed a remarkable coplanarity between the N-acetyltriazene and the naphtalimide moiety. Thus, we unequivocally assigned 9a as the product of the reaction and compared its growth inhibitory activity with that of its precursor, EG22. ZSM02 exhibited identical growth inhibitory profile as EG22, suggesting that it may be a prodrug of EG22.
Collapse
|
18
|
Denisov AY, McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ. Structural basis of interstrand cross-link repair by O6-alkylguanine DNA alkyltransferase. Org Biomol Chem 2017; 15:8361-8370. [DOI: 10.1039/c7ob02093g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conformation of the alkylene lesion may play a role in interstrand cross-link repair by O6-alkylguanine DNA alkyltransferases.
Collapse
Affiliation(s)
- Alexey Y. Denisov
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | - Francis P. McManus
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | | | - Anne M. Noronha
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | | |
Collapse
|
19
|
|
20
|
Liberio MS, Sadowski MC, Davis RA, Rockstroh A, Vasireddy R, Lehman ML, Nelson CC. The ascidian natural product eusynstyelamide B is a novel topoisomerase II poison that induces DNA damage and growth arrest in prostate and breast cancer cells. Oncotarget 2016; 6:43944-63. [PMID: 26733491 PMCID: PMC4791278 DOI: 10.18632/oncotarget.6267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022] Open
Abstract
As part of an anti-cancer natural product drug discovery program, we recently identified eusynstyelamide B (EB), which displayed cytotoxicity against MDA-MB-231 breast cancer cells (IC50 = 5 μM) and induced apoptosis. Here, we investigated the mechanism of action of EB in cancer cell lines of the prostate (LNCaP) and breast (MDA-MB-231). EB inhibited cell growth (IC50 = 5 μM) and induced a G2 cell cycle arrest, as shown by a significant increase in the G2/M cell population in the absence of elevated levels of the mitotic marker phospho-histone H3. In contrast to MDA-MB-231 cells, EB did not induce cell death in LNCaP cells when treated for up to 10 days. Transcript profiling and Ingenuity Pathway Analysis suggested that EB activated DNA damage pathways in LNCaP cells. Consistent with this, CHK2 phosphorylation was increased, p21CIP1/WAF1 was up-regulated and CDC2 expression strongly reduced by EB. Importantly, EB caused DNA double-strand breaks, yet did not directly interact with DNA. Analysis of topoisomerase II-mediated decatenation discovered that EB is a novel topoisomerase II poison.
Collapse
Affiliation(s)
- Michelle S Liberio
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia.,Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Rohan A Davis
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Raj Vasireddy
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie L Lehman
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Wang C, Abegg D, Hoch DG, Adibekian A. Chemoproteomics-Enabled Discovery of a Potent and Selective Inhibitor of the DNA Repair Protein MGMT. Angew Chem Int Ed Engl 2016; 55:2911-5. [DOI: 10.1002/anie.201511301] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Chao Wang
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| | - Daniel Abegg
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| | - Dominic G. Hoch
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| | - Alexander Adibekian
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Switzerland
| |
Collapse
|
22
|
Wang C, Abegg D, Hoch DG, Adibekian A. Chemoproteomik-vermittelte Entdeckung eines potenten und selektiven Inhibitors des DNA-Reparaturproteins MGMT. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chao Wang
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| | - Daniel Abegg
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| | - Dominic G. Hoch
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| | - Alexander Adibekian
- School of Chemistry and Biochemistry; NCCR Chemical Biology; University of Geneva; 30 quai Ernest-Ansermet Geneva Schweiz
| |
Collapse
|
23
|
Xie C, Wang K, Chen D. Flap endonuclease 1 silencing is associated with increasing the cisplatin sensitivity of SGC‑7901 gastric cancer cells. Mol Med Rep 2015; 13:386-92. [PMID: 26718738 DOI: 10.3892/mmr.2015.4567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/24/2015] [Indexed: 11/05/2022] Open
Abstract
Flap endonuclease 1 (FEN1), which is key in DNA replication and repair, has been demonstrated to be intimately involved in the development and progression of cancer. Our previous study determined that the downregulation of FEN1 can suppress the proliferation of, and induce apoptosis in, gastric cancer SGC‑7901 cells. In addition, several FEN1 inhibitors have been identified to increase sensitisation to DNA injury agents. These results may provide a promising treatment method to enhance the traditional chemotherapeutics used for the treatment of gastric cancer. Thus, the aim of the present study was to determine the role of FEN1 in the chemosensitivity of SGC‑7901 cells. The protein expression levels of FEN1 in cisplatin (CDDP)‑treated SGC‑7901 cells were detected using western blot analysis. FEN1 was silenced via specific FEN1‑targeted small interfering RNAs (siRNA). The survival and apoptotic rates of the SGC‑7901 cells were assessed using an MTT assay and flow cytometry, respectively. Relevant apoptotic factors were detected using western blotting. The results showed that the expression of FEN1 was significantly induced by CDDP in a dose‑ and time‑dependent manner. The targeting of FEN1 in SGC‑7901 cells, in combination with CDDP treatment, significantly inhibited their proliferation and effectively increased their apoptotic rate. In addition, in the cells targeted with FEN1‑siRNA and exposed to CDDP, the levels of Bcl‑2‑associated X protein were significantly increased, whereas the expression levels of Bcl‑2 and Bcl‑extra large were effectively decreased, compared with the cells exposed to negative control‑siRNA and CDDP. These results suggest a potential chemotherapeutic target, which exhibits enhanced sensitivity to CDDP following FEN1 silencing in SGC‑7901 cells via decreased survival and increased apoptosis.
Collapse
Affiliation(s)
- Chunhong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kejia Wang
- Department of Gastroenterology, Banan People's Hospital of Chongqing, Chongqing 400016, P.R. China
| | - Daorong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
24
|
Tintoré M, Grijalvo S, Eritja R, Fàbrega C. Synthesis of oligonucleotides carrying fluorescently labelled O(6)-alkylguanine for measuring hAGT activity. Bioorg Med Chem Lett 2015; 25:5208-11. [PMID: 26459209 DOI: 10.1016/j.bmcl.2015.09.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/17/2023]
Abstract
O(6)-alkylguanine-DNA-alkyltransferase (hAGT) activity provides resistance to cancer chemotherapeutic agents and its inhibition enhances chemotherapy. We herein present the development of a novel fluorescence assay for the detection of hAGT activity. We designed a dsDNA sequence containing a fluorophore-quencher pair, where the fluorophore was attached to an O(6)-benzylguanine. This precursor was synthesized using the Mitsunobu reaction to introduce the benzyl group. The alkyl-fluorophore group is transferred to the active site during the dealkylation, producing an increase in fluorescence which is correlated to hAGT activity. This assay can be used for the evaluation of potential inhibitors of hAGT in a straightforward manner.
Collapse
Affiliation(s)
- Maria Tintoré
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Spain; Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
25
|
Progression of O⁶-methylguanine-DNA methyltransferase and temozolomide resistance in cancer research. Mol Biol Rep 2014; 41:6659-65. [PMID: 24990698 DOI: 10.1007/s11033-014-3549-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/20/2014] [Indexed: 12/12/2022]
Abstract
Temozolomide (TMZ) is an alkylating agent that is widely used in chemotherapy for cancer. A key mechanism of resistance to TMZ is the overexpression of O(6)-methylguanine-DNA methyltransferase (MGMT). MGMT specifically repairs the DNA O(6)-methylation damage induced by TMZ and irreversibly inactivates TMZ. Regulation of MGMT expression and research regarding the mechanism of TMZ resistance will help rationalize the clinical use of TMZ. In this review, we provide an overview of recent advances in the field, with particular emphasis on MGMT structure, function, expression regulation, and the association between MGMT and resistance to TMZ.
Collapse
|
26
|
Plummer R. Poly(ADP-ribose)polymerase (PARP) Inhibitors: From Bench to Bedside. Clin Oncol (R Coll Radiol) 2014; 26:250-6. [DOI: 10.1016/j.clon.2014.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/15/2014] [Accepted: 02/11/2014] [Indexed: 01/08/2023]
|
27
|
Wang BQ, Sun GB, Lou WH, Nan SS, Zhang BQ. Role of O 6-methylguanine-DNA methyltransferase in pathogenesis of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:1081-1086. [DOI: 10.11569/wcjd.v22.i8.1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the fourth most common malignancy, colorectal cancer poses a serious threat to human health. With the changes in lifestyle and diet, the incidence of colorectal cancer is increasing year by year. Inactivation of tumor suppressor genes, activation of oncogenes and abnormal overexpression of DNA repair genes have been known to be responsible for the pathogenesis of colorectal cancer. O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair enzyme that can remove the adducts on DNA and repair the DNA damage. Studies have found that methylation of the MGMT gene is closely related to the occurrence of colorectal cancer.
Collapse
|
28
|
A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma. Sci Rep 2014; 4:4186. [PMID: 24569633 PMCID: PMC3935198 DOI: 10.1038/srep04186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/13/2014] [Indexed: 12/14/2022] Open
Abstract
DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation.
Collapse
|
29
|
Yang Y, Zhang Z, Li S, Ye X, Li X, He K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014; 92:133-47. [DOI: 10.1016/j.fitote.2013.10.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
|
30
|
Conrad SJ, Essani K. Oncoselectivity in Oncolytic Viruses against Colorectal Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jct.2014.513118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Julsing JR, Peters GJ. Methylation of DNA repair genes and the efficacy of DNA targeted anticancer treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6199-2-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Zhang H, Wang X, Dai W, Gemeinhart RA, Zhang Q, Li T. Pharmacokinetics and Treatment Efficacy of Camptothecin Nanocrystals on Lung Metastasis. Mol Pharm 2013; 11:226-33. [PMID: 24294887 DOI: 10.1021/mp4004018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hua Zhang
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Richard A. Gemeinhart
- Departments
of Biopharmaceutical Sciences, Bioengineering, and Ophthalmology and
Visual Sciences, University of Illinois, Chicago, Illinois 60612, United States
| | - Qiang Zhang
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tonglei Li
- Department of Industrial & Physical Pharmacy, School of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
33
|
Forestier A, Sarrazy F, Caillat S, Vandenbrouck Y, Sauvaigo S. Functional DNA repair signature of cancer cell lines exposed to a set of cytotoxic anticancer drugs using a multiplexed enzymatic repair assay on biochip. PLoS One 2012; 7:e51754. [PMID: 23300565 PMCID: PMC3534104 DOI: 10.1371/journal.pone.0051754] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023] Open
Abstract
The development of resistances to conventional anticancer drugs compromises the efficacy of cancer treatments. In the case of DNA-targeting chemotherapeutic agents, cancer cells may display tolerance to the drug-induced DNA lesions and/or enhanced DNA repair. However, the role of DNA damage response (DDR) and DNA repair in this chemoresistance has yet to be defined. To provide insights in this challenging area, we analyzed the DNA repair signature of 7 cancer cell lines treated by 5 cytotoxic drugs using a recently developed multiplexed functional DNA repair assay. This comprehensive approach considered the complexity and redundancy of the different DNA repair pathways. Data was analyzed using clustering methods and statistical tests. This DNA repair profiling method defined relevant groups based on similarities between different drugs, thus providing information relating to their dominant mechanism of action at the DNA level. Similarly, similarities between different cell lines presumably identified identical functional DDR despite a high level of genetic heterogeneity between cell lines. Our strategy has shed new light on the contribution of specific repair sub-pathways to drug-induced cytotoxicity. Although further molecular characterisations are needed to fully unravel the mechanisms underlying our findings, our approach proved to be very promising to interrogate the complexity of the DNA repair response. Indeed, it could be used to predict the efficacy of a given drug and the chemosensitivity of individual patients, and thus to choose the right treatment for individualised cancer care.
Collapse
Affiliation(s)
- Anne Forestier
- Laboratoire Lésions des Acides Nucléiques, CEA, DSM, INAC, SCIB, UMR-E3 CEA/UJF-Grenoble 1, Grenoble, France
| | - Fanny Sarrazy
- Laboratoire Lésions des Acides Nucléiques, CEA, DSM, INAC, SCIB, UMR-E3 CEA/UJF-Grenoble 1, Grenoble, France
| | - Sylvain Caillat
- Laboratoire Lésions des Acides Nucléiques, CEA, DSM, INAC, SCIB, UMR-E3 CEA/UJF-Grenoble 1, Grenoble, France
| | - Yves Vandenbrouck
- Laboratoire Biologie à Grande Echelle, CEA, DSV, IRTSV, U1038 CEA/INSERM/UJF-Grenoble 1, Grenoble, France
| | - Sylvie Sauvaigo
- Laboratoire Lésions des Acides Nucléiques, CEA, DSM, INAC, SCIB, UMR-E3 CEA/UJF-Grenoble 1, Grenoble, France
- * E-mail:
| |
Collapse
|
34
|
Mason S, McDonald K. MGMT testing for glioma in clinical laboratories: discordance with methylation analyses prevents the implementation of routine immunohistochemistry. J Cancer Res Clin Oncol 2012; 138:1789-97. [PMID: 22986811 DOI: 10.1007/s00432-012-1312-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/05/2012] [Indexed: 12/15/2022]
Abstract
PURPOSE Glioblastoma is a universally fatal cancer of the central nervous system which responds poorly to treatment. MGMT has potential as a predictive biomarker in glioblastoma patients to determine treatment response. However, methods of measuring MGMT are currently unsatisfactory, and as such, use of this marker has not translated well into the clinic. This paper aims to review current methodology of MGMT measurement, with a focus on immunohistochemistry as a potential way forward. TOPICS AND METHODS: Studies of glioma patients where MGMT immunohistochemistry was undertaken, as well as the literature surrounding methylation analyses and the regulation of MGMT, were reviewed. RESULTS All methods of measuring MGMT were disputed in some way in the literature. A trend of discordance between methylation analyses and protein analyses was present. There is a lack of standardisation in the measurement of MGMT, and as a result, it seems that there are highly variable results. CONCLUSIONS No single method of MGMT analysis has emerged as a clear choice for routine clinical testing of MGMT in glioma patients. Although methylation analyses are favoured, their expense and inaccessibility are barriers to their use in routine clinical practice. More research into immunohistochemistry is needed to determine whether it can serve as a reliable and cost-effective alternative to methylation analyses.
Collapse
Affiliation(s)
- Sofia Mason
- Cure for Life Foundation for Neuro-Oncology, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Kensington, Australia.
| | | |
Collapse
|
35
|
Enhancement of the cytotoxic potential of the mixed EGFR and DNA-targeting ‘combi-molecule’ ZRBA1 against human solid tumour cells by a bis-quinazoline-based drug design approach. Anticancer Drugs 2012; 23:483-93. [DOI: 10.1097/cad.0b013e328351c101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Lopez S, Margison GP, Stanley McElhinney R, Cordeiro A, McMurry TBH, Rozas I. Towards more specific O6-methylguanine-DNA methyltransferase (MGMT) inactivators. Bioorg Med Chem 2011; 19:1658-65. [DOI: 10.1016/j.bmc.2011.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
37
|
Abstract
Many cytotoxic agents used in cancer treatment exert their effects through their ability to directly or indirectly damage DNA and thus resulting in cell death. Major types of DNA damage induced by anticancer treatment include strand breaks (double or single strand), crosslinks (inter-strand, intra-strand, DNA-protein crosslinks), and interference with nucleotide metabolism and DNA synthesis. On the other hand, cancer cells activate various DNA repair pathways and repair DNA damages induced by cytotoxic drugs. The purpose of the current review is to present the major types of DNA damage induced by cytotoxic agents, DNA repair pathways, and their role as predictive agents, as well as evaluate the future perspectives of the novel DNA repair pathways inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Athanasios G Pallis
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Greece
| | | |
Collapse
|
38
|
Kondo N, Takahashi A, Ono K, Ohnishi T. DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids 2010; 2010:543531. [PMID: 21113301 PMCID: PMC2989456 DOI: 10.4061/2010/543531] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/26/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022] Open
Abstract
The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine.
Collapse
Affiliation(s)
- Natsuko Kondo
- Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | | | | | | |
Collapse
|
39
|
Saad AA, Kassem HS, Povey AC, Margison GP. Expression of O-Alkylguanine-DNA Alkyltransferase in Normal and Malignant Bladder Tissue of Egyptian Patients. J Nucleic Acids 2010; 2010:840230. [PMID: 20981358 PMCID: PMC2958433 DOI: 10.4061/2010/840230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 08/17/2010] [Indexed: 12/05/2022] Open
Abstract
Bladder tumour tissues and corresponding uninvolved mucosa (normal
tissue) of Egyptian bladder cancer patients were assessed for
O6-alkylguanine-DNA-alkyltransferase
(MGMT) activity by functional
assay of tissue extracts (36 paired samples), and distribution by
immunofluorescence (IF) microscopy of fixed material (24 paired
samples). MGMT varied widely from 42–253 fmoles/mg
protein and from 3.2–40 fmoles/μg DNA in normal and 58–468 fmoles/mg
protein and 2.5–49.5 fmoles/mg protein, in
the tumour tissues; only one tumour had undetectable activity.
Pairwise comparison of MGMT activity in tumour and adjacent normal
tissue showed no significant difference based on DNA content but
was 1.75-fold higher in tumour (P < .01) based on protein. There was
no effect of gender or bilharzia infection status. IF showed that
in tumours, both the mean percentage of positive nuclei (57.3
± 20.3%) and mean integrated IF (5.47 ± 3.66) were
significantly higher than those in uninvolved tissues (42.8
± 13.5% P = .04) and (1.89 ± 1.42; P < .01), respectively. These observations
suggest that, overall, MGMT levels are increased during human
bladder carcinogenesis and that MGMT downregulation is not a
common feature of bladder cancers. Based on this, bladder cancers
would be expected to be relatively resistant to chemotherapy which
involved O6-guanine alkylating antitumour agents.
Collapse
Affiliation(s)
- Abir A Saad
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, The University of Manchester, Manchester M20 4BX, UK
| | | | | | | |
Collapse
|
40
|
Tintoré M, Aviñó A, Ruiz FM, Eritja R, Fàbrega C. Development of a Novel Fluorescence Assay Based on the Use of the Thrombin-Binding Aptamer for the Detection of O-Alkylguanine-DNA Alkyltransferase Activity. J Nucleic Acids 2010; 2010. [PMID: 20936180 PMCID: PMC2946612 DOI: 10.4061/2010/632041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/17/2010] [Indexed: 02/05/2023] Open
Abstract
Human O6-alkylguanine-DNA alkyltransferase (hAGT) is a DNA repair protein that reverses the effects of alkylating agents by removing DNA adducts from the O6 position of guanine. Here, we developed a real-time fluorescence hAGT activity assay that is based on the detection of conformational changes of the thrombin-binding aptamer (TBA). The quadruplex structure of TBA is disrupted when a central guanine is replaced by an O6-methyl-guanine. The sequence also contains a fluorophore (fluorescein) and a quencher (dabsyl) attached to the opposite ends. In the unfolded structure, the fluorophore and the quencher are separated. When hAGT removes the methyl group from the central guanine of TBA, it folds back immediately into its quadruplex structure. Consequently, the fluorophore and the quencher come into close proximity, thereby resulting in decreased fluorescence intensity. Here, we developed a new method to quantify the hAGT without using radioactivity. This new fluorescence resonance energy transfer assay has been designed to detect the conformational change of TBA that is induced by the removal of the O6-methyl group.
Collapse
Affiliation(s)
- Maria Tintoré
- Institute for Research in Biomedicine (IRB Barcelona) IQAC-CSIC, CIBER-BBN Networking Centre on Bioengineering Biomaterials and Nanomedicine, Cluster Building, Baldiri i Reixac 10, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
41
|
Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bojanic S, Soonawalla Z, King A, Miller A, Waller S, Leung H, Margison GP, Middleton MR. Tumor O(6)-methylguanine-DNA methyltransferase inactivation by oral lomeguatrib. Clin Cancer Res 2010; 16:743-9. [PMID: 20068091 DOI: 10.1158/1078-0432.ccr-09-1389] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A major mechanism of resistance to chlorethylnitrosureas and methylating agents involves the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). We sought to determine the dose of oral 6-(4-bromo-2-thienyl) methoxy purin-2-amine (lomeguatrib), a pseudosubstrate inactivator of MGMT, required to render active protein undetectable 12 hours after dosing in prostate, primary central nervous system (CNS), and colorectal cancer patients. EXPERIMENTAL DESIGN Lomeguatrib was administered orally as a single dose (20-160 mg) approximately 12 hours before tumor resection. Dose escalation was projected to continue until grade 2 toxicity or until complete inactivation of tumor MGMT was encountered. Total MGMT protein levels were quantified by ELISA, and active protein levels were quantified by biochemical assay. MGMT promoter methylation was determined in glioblastoma DNA by methylation-specific PCR. RESULTS Thirty-seven patients were dosed with lomeguatrib, and 32 informative tumor samples were obtained. Mean total MGMT level varied between tumor types: 554 +/- 404 fmol/mg protein (+/-SD) for prostate cancer, 87.4 +/- 40.3 fmol/mg protein for CNS tumors, and 244 +/- 181 fmol/mg protein for colorectal cancer. MGMT promoter hypermethylation did not correlate with total protein expression. Consistent total MGMT inactivation required 120 mg of lomeguatrib in prostate and colorectal cancers. Complete consistent inactivation in CNS tumors was observed only at the highest dose of lomeguatrib (160 mg). CONCLUSIONS Total MGMT inactivation can be achieved in prostate, primary CNS, and colorectal cancers with a single administration of 120 or 160 mg lomeguatrib. The dose needed did not correlate with mean total MGMT protein concentrations. One hundred twenty to 160 mg/d of lomeguatrib should be administered to achieve total MGMT inactivation in future studies.
Collapse
Affiliation(s)
- Amanda J Watson
- Cancer Research UK Carcinogenesis Group, University of Manchester, Paterson Institute for Cancer Research, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Panda H, Jaiswal AS, Corsino PE, Armas ML, Law BK, Narayan S. Amino acid Asp181 of 5'-flap endonuclease 1 is a useful target for chemotherapeutic development. Biochemistry 2009; 48:9952-8. [PMID: 19769410 DOI: 10.1021/bi9010754] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA alkylation-induced damage is one of the most efficacious anticancer therapeutic strategies. Enhanced DNA alkylation and weakened DNA repair capacity in cancer cells are responsible for the effectiveness of DNA-alkylating therapies. 5'-Flap endonuclease 1 (Fen1) is an important enzyme involved in base excision repair (BER), specifically in long-patch BER (LP-BER). Using the site-directed mutagenesis approach, we have identified an important role for amino acid Asp181 of Fen1 in its endonuclease activity. Asp181 is thought to be involved in Mg(2+) binding in the active site. Using structure-based molecular docking of Fen1 targeted to its metal binding pocket M2 (Mg(2+) site), we have identified a potent low-molecular weight inhibitor (LMI, NSC-281680) that efficiently blocks LP-BER. In this study, we have demonstrated that the interaction of this LMI with Fen1 blocked its endonuclease activity, thereby blocking LP-BER and enhancing the cytotoxic effect of DNA-alkylating agent Temozolomide (TMZ) in mismatch repair (MMR)-deficient and MMR-proficient colon cancer cells. The results further suggest that blockade of LP-BER by NSC-281680 may bypass other drug resistance mechanisms such as mismatch repair (MMR) defects. Therefore, our findings provide groundwork for the development of highly specific and safer structure-based small molecular inhibitors targeting the BER pathway, which can be used along with existing chemotherapeutic agents, like TMZ, as combination therapy for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Harekrushna Panda
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
43
|
Zhu Y, Hu J, Hu Y, Liu W. Targeting DNA repair pathways: a novel approach to reduce cancer therapeutic resistance. Cancer Treat Rev 2009; 35:590-6. [PMID: 19635647 DOI: 10.1016/j.ctrv.2009.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 01/04/2023]
Abstract
Increased chemo-resistance and radio-resistance of cancer cells is a major obstacle in the treatment and management of malignant cancers. An important mechanism that underlies the development of such therapeutic resistance is that cancer cells recognize DNA lesions induced by DNA-damaging agents and by ionizing radiation, and repair these lesions by activating various DNA repair pathways. Therefore, Use of pharmacological agents that can inhibit certain DNA repair pathways in cancer cells has the potential for enhancing the targeted cytotoxicity of anticancer treatments and reversing the associated therapeutic resistance associated with DNA repair; such agents, offering a promising opportunity to achieve better therapeutic efficacy. Here we review the major DNA repair pathways and discuss recent advances in the development of novel inhibitors of DNA repair pathways; many of these agents are under preclinical/clinical investigation.
Collapse
Affiliation(s)
- Yongjian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| | | | | | | |
Collapse
|
44
|
O(6)-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib. Br J Cancer 2009; 100:1250-6. [PMID: 19367283 PMCID: PMC2676560 DOI: 10.1038/sj.bjc.6605015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated the pharmacodynamic effects of the O6-methylguanine-DNA methyltransferase (MGMT) inactivator lomeguatrib (LM) on patients with melanoma in two clinical trials. Patients received temozolomide (TMZ) for 5 days either alone or with LM for 5, 10 or 14 days. Peripheral blood mononuclear cells (PBMCs) were isolated before treatment and during cycle 1. Where available, tumour biopsies were obtained after the last drug dose in cycle 1. Samples were assayed for MGMT activity, total MGMT protein, and O6-methylguanine (O6-meG) and N7-methylguanine levels in DNA. MGMT was completely inactivated in PBMC from patients receiving LM, but detectable in those on TMZ alone. Tumours biopsied on the last day of treatment showed complete inactivation of MGMT but there was recovery of activity in tumours sampled later. Significantly more O6-meG was present in the PBMC DNA of LM/TMZ patients than those on TMZ alone. LM/TMZ leads to greater MGMT inactivation, and higher levels of O6-meG than TMZ alone. Early recovery of MGMT activity in tumours suggested that more protracted dosing with LM is required. Extended dosing of LM completely inactivated PBMC MGMT, and resulted in persistent levels of O6-meG in PBMC DNA during treatment.
Collapse
|
45
|
Pauly GT, Loktionova NA, Fang Q, Vankayala SL, Guida WC, Pegg AE. Substitution of aminomethyl at the meta-position enhances the inactivation of O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. J Med Chem 2009; 51:7144-53. [PMID: 18973327 DOI: 10.1021/jm800675p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O(6)-Benzylguanine is an irreversible inactivator of O(6)-alkylguanine-DNA alkyltransferase currently in clinical trials to overcome alkyltransferase-mediated resistance to certain cancer chemotherapeutic alkylating agents. In order to produce more soluble alkyltransferase inhibitors, we have synthesized three aminomethyl-substituted O(6)-benzylguanines and the three methyl analogs and found that the substitution of aminomethyl at the meta-position greatly enhances inactivation of alkyltransferase, whereas para-substitution has little effect and ortho-substitution virtually eliminates activity. Molecular modeling of their interactions with alkyltransferase provided a molecular explanation for these results. The square of the correlation coefficient (R(2)) obtained between E-model scores (obtained from GLIDE XP/QPLD docking calculations) vs log(ED(50)) values via a linear regression analysis was 0.96. The models indicate that the ortho-substitution causes a steric clash interfering with binding, whereas the meta-aminomethyl substitution allows an interaction of the amino group to generate an additional hydrogen bond with the protein.
Collapse
Affiliation(s)
- Gary T Pauly
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, P.O. Box B, Building 538, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kefford RF, Thomas NPB, Corrie PG, Palmer C, Abdi E, Kotasek D, Beith J, Ranson M, Mortimer P, Watson AJ, Margison GP, Middleton MR. A phase I study of extended dosing with lomeguatrib with temozolomide in patients with advanced melanoma. Br J Cancer 2009; 100:1245-9. [PMID: 19367282 PMCID: PMC2676549 DOI: 10.1038/sj.bjc.6605016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lomeguatrib, an O6-methylguanine-DNA methyltransferase inactivator, was evaluated in an extended dosing regimen with temozolomide, designed according to pharmacodynamic data from previous studies. Patients with unresectable stage 3 or 4 cutaneous or unknown primary melanoma metastases were treated with lomeguatrib 40 mg, b.i.d. for 10 or 14 days and temozolomide 75–100 mg m−2 on days 1–5. Drugs were administered orally with cycles repeated every 28 days, for up to six cycles. A total of 32 patients were recruited to the study. Lomeguatrib for 10 days with temozolomide 75 mg m−2 was established as the optimal extended lomeguatrib dosing schedule, with haematological toxicity being dose limiting. There were two partial responses to treatment giving an overall response rate of 6.25%. Extending lomeguatrib administration beyond that of temozolomide requires a reduced dose of the latter agent. Only limited clinical activity was seen, suggesting no advantage for this regimen over conventional temozolomide administration in the treatment of melanoma.
Collapse
Affiliation(s)
- R F Kefford
- Department of Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Clinical importance of DNA repair inhibitors in cancer therapy. MEMO-MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2009. [DOI: 10.1007/s12254-008-0081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Kuester D, El-Rifai W, Peng D, Ruemmele P, Kroeckel I, Peters B, Moskaluk CA, Stolte M, Mönkemüller K, Meyer F, Schulz HU, Hartmann A, Roessner A, Schneider-Stock R. Silencing of MGMT expression by promoter hypermethylation in the metaplasia-dysplasia-carcinoma sequence of Barrett's esophagus. Cancer Lett 2008; 275:117-26. [PMID: 19027227 DOI: 10.1016/j.canlet.2008.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/21/2008] [Accepted: 10/09/2008] [Indexed: 11/17/2022]
Abstract
To determine the relevance of MGMT in Barrett's carcinogenesis, we analyzed promotor hypermethylation and expression of MGMT in Barrett's adenocarcinomas and its paired precursor lesions from 133 patients using a methylation-specific PCR, real-time RT-PCR and immunohistochemistry. Hypermethylation was detected in 78.9% of esophageal adenocarcinomas, in 100% of Barrett's intraepithelial neoplasia, in 88.9% of Barrett's metaplasia, but only in 21.4% of normal esophageal mucosa samples (P<0.001) and correlated significantly with downregulation of MGMT transcripts (P=0.048) and protein expression (P=0.02). Decrease of protein expression was significantly correlated with progressed stage of disease, lymph node invasion and tumor size. We conclude, that aberrant promoter methylation of MGMT is a frequent and early event during tumorigenesis of Barrett's esophagus. High prevalence of MGMT hypermethylation may represent a candidate marker for improved diagnosis and targeted therapy in Barrett's adenocarcinoma.
Collapse
Affiliation(s)
- Doerthe Kuester
- Department of Pathology, Otto-von-Guericke University Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, Wick W. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 2008; 14:2900-8. [PMID: 18483356 DOI: 10.1158/1078-0432.ccr-07-1719] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.
Collapse
Affiliation(s)
- Jann N Sarkaria
- Department of Radiation Oncology and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kelley MR, Fishel ML. DNA repair proteins as molecular targets for cancer therapeutics. Anticancer Agents Med Chem 2008; 8:417-25. [PMID: 18473726 DOI: 10.2174/187152008784220294] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer therapeutics include an ever-increasing array of tools at the disposal of clinicians in their treatment of this disease. However, cancer is a tough opponent in this battle and current treatments which typically include radiotherapy, chemotherapy and surgery are not often enough to rid the patient of his or her cancer. Cancer cells can become resistant to the treatments directed at them and overcoming this drug resistance is an important research focus. Additionally, increasing discussion and research is centering on targeted and individualized therapy. While a number of approaches have undergone intensive and close scrutiny as potential approaches to treat and kill cancer (signaling pathways, multidrug resistance, cell cycle checkpoints, anti-angiogenesis, etc.), much less work has focused on blocking the ability of a cancer cell to recognize and repair the damaged DNA which primarily results from the front line cancer treatments; chemotherapy and radiation. More recent studies on a number of DNA repair targets have produced proof-of-concept results showing that selective targeting of these DNA repair enzymes has the potential to enhance and augment the currently used chemotherapeutic agents and radiation as well as overcoming drug resistance. Some of the targets identified result in the development of effective single-agent anti-tumor molecules. While it is inherently convoluted to think that inhibiting DNA repair processes would be a likely approach to kill cancer cells, careful identification of specific DNA repair proteins is increasingly appearing to be a viable approach in the cancer therapeutic cache.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics, Section of Hematology/Oncology, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St. R4-W302C, Indianapolis, IN 46202, USA.
| | | |
Collapse
|