1
|
Yu B, Zhang W, Shao Z, Chen X, Cen Y, Liu Y, Chen Y, Li X, Liang Z, Li S, Chen X. Self-promoted tumor-targeting nanomedicine activates STING-driven antitumor immunity via photodynamic DNA damage and PARP inhibition. Chem Sci 2025:d5sc01953b. [PMID: 40321187 PMCID: PMC12044612 DOI: 10.1039/d5sc01953b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
The activation of antitumor immunity through strategically designed nanomedicine presents a promising approach to overcome the limitations of conventional cancer therapies. In this work, bioinformatic analysis found an abnormal poly(ADP-ribose) polymerase-1 (PARP-1) expression in breast cancer, linked to the cyclic GMP-AMP synthase (cGAS)-stimulator of the interferon gene (STING) pathway and immune suppression. PARP-1 inhibitor screening revealed olaparib (Ola) as a promising candidate, enhancing DNA damage and potentiating the immunotherapeutic response. Consequently, a self-promoted tumor-targeting nanomedicine (designated as PN-Ola) was proposed to activate STING-driven antitumor immunity through photodynamic DNA damage and PARP inhibition. PN-Ola was composed of a programmed death-ligand 1 (PD-L1) targeting amphiphilic peptide-photosensitizer conjugate (C16-K(PpIX)-WHRSYYTWNLNT), which effectively encapsulates Ola. Notably, PN-Ola demonstrated selective accumulation in tumor cells that overexpress PD-L1, while concurrently enhancing PD-L1 expression, thereby establishing a self-promoting mechanism for improved drug accumulation within tumor cells. Meanwhile, the photodynamic therapy (PDT) effects of PN-Ola would result in oxidative DNA damage and subsequent accumulation of DNA fragments. Additionally, the PARP inhibition provided by PN-Ola disrupted the DNA repair pathways in tumor cells, leading to a boosted release of DNA fragments that further stimulated STING-driven antitumor immunity. The synergistic mechanism of PN-Ola effectively activates the immunotherapeutic response by enhancing T cell activation and infiltration, leading to the eradication of metastatic tumors without inducing side effects. This study presents a promising strategy to overcome targeting ligand heterogeneity while activating systemic antitumor immunity for the effective eradication of metastatic tumors.
Collapse
Affiliation(s)
- Baixue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Wei Zhang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Zhouchuan Shao
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xiayun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Yibin Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xinxuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Ziqi Liang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University Guangzhou 511436 P. R. China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore 119074 Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore 119074 Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore 117575 Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore 117575 Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore 117544 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore 117599 Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore 117597 Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore 138667 Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR) 138673 Singapore
| |
Collapse
|
2
|
Burčík D, Macko J, Podrojková N, Demeterová J, Stano M, Oriňak A. Role of Cell Adhesion in Cancer Metastasis Formation: A Review. ACS OMEGA 2025; 10:5193-5213. [PMID: 39989825 PMCID: PMC11840620 DOI: 10.1021/acsomega.4c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/25/2025]
Abstract
Intercellular adhesion is accompanied by several physical quantities and actions. In this review, we tried to collect information about the influence of surface energy and its impact on cell-cell adhesion. It still undergoes development for cancer treatment. Data on receptor-ligand interactions that occur on circulating tumor cells (CTCs) are described, and adhesion receptors as therapeutic targets are collected. Additionally, the impact of surface roughness on the interactions between CTC cells and the surface was monitored. The effects of different cell adhesion molecules (CAMs) on cell adhesion, growth, and proliferation were investigated. This review offers general principles of cell adhesion, through the blockade of adhesion with blocking drugs and inhibitors like computational models that describe the process of adhesion. Some theoretical models based on the minimum of the total free energy of interaction between CAMs and selected organic molecules have been presented. The final aim was to find information on how modulation of the surface of CTCs (by medicals or physically) inhibits cancer metastases formation.
Collapse
Affiliation(s)
- Denis Burčík
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Ján Macko
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Natália Podrojková
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Jana Demeterová
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Michal Stano
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| | - Andrej Oriňak
- University of P. J. Safarik
in Kosice, Faculty of Sciences,
Institute of Chemistry, Department of Physical Chemistry, Moyzesova 11, 041 01 Kosice, Slovakia
| |
Collapse
|
3
|
Zhou KXT, Bujold KE. The Emergence of Oligonucleotide Building Blocks in the Multispecific Proximity-Inducing Drug Toolbox of Destruction. ACS Chem Biol 2025; 20:3-18. [PMID: 39704048 DOI: 10.1021/acschembio.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Oligonucleotides are a rapidly emerging class of therapeutics. Their most well-known examples are informational drugs that modify gene expression by binding mRNA. Despite inducing proximity between biological machinery and mRNA when applied to modulating gene expression, oligonucleotides are not typically labeled as "proximity-inducing" in literature. Yet, they have recently been explored as building blocks for multispecific proximity-inducing drugs (MPIDs). MPIDs are unique because they can direct endogenous biological machinery to destroy targeted molecules and cells, in contrast to traditional drugs that inhibit only their functions. The unique mechanism of action of MPIDs has enabled the targeting of previously "undruggable" molecular entities that cannot be effectively inhibited. However, the development of MPIDs must ensure that these molecules will selectively direct a potent, destruction-based mechanism of action toward intended targets over healthy tissues to avoid causing life-threatening toxicities. Oligonucleotides have emerged as promising building blocks for the design of MPIDs because they are sequence-controlled molecules that can be rationally designed to program multispecific binding interactions. In this Review, we examine the emergence of oligonucleotide-containing MPIDs in the proximity induction space, which has been dominated by antibody and small molecule MPID modalities. Moreover, examples of oligonucleotides developed as MPID candidates in immunotherapy and protein degradation are discussed to demonstrate the utility of oligonucleotides in expanding the scope and selectivity of the MPID toolbox. Finally, we discuss the utility of programming "AND" gates into oligonucleotide scaffolds to encode conditional responses that have the potential to be incorporated into MPIDs, which can further enhance their selectivity, thus increasing the scope of this drug category.
Collapse
Affiliation(s)
- Kevin Xiao Tong Zhou
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| | - Katherine E Bujold
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ONL8S 4M1, Canada
| |
Collapse
|
4
|
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM, Au L. Bispecific antibodies: advancing precision oncology. Trends Cancer 2024; 10:893-919. [PMID: 39214782 DOI: 10.1016/j.trecan.2024.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered molecules designed to target two different epitopes or antigens. The mechanism of action is determined by the bsAb molecular targets and structure (or format), which can be manipulated to create variable and novel functionalities, including linking immune cells with tumor cells, or dual signaling pathway blockade. Several bsAbs have already changed the treatment landscape of hematological malignancies and select solid cancers. However, the mechanisms of resistance to these agents are understudied and the management of toxicities remains challenging. Herein, we review the principles in bsAb engineering, current understanding of mechanisms of action and resistance, data for clinical application, and provide a perspective on ongoing challenges and future developments in this field.
Collapse
Affiliation(s)
- Mercedes Herrera
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Giulia Pretelli
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Thiago M Steiner
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lewis Au
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
6
|
Valerio TI, Furrer CL, Sadeghipour N, Patrock SJX, Tillery SA, Hoover AR, Liu K, Chen WR. Immune modulations of the tumor microenvironment in response to phototherapy. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2023; 16:2330007. [PMID: 38550850 PMCID: PMC10976517 DOI: 10.1142/s1793545823300070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The tumor microenvironment (TME) promotes pro-tumor and anti-inflammatory metabolisms and suppresses the host immune system. It prevents immune cells from fighting against cancer effectively, resulting in limited efficacy of many current cancer treatment modalities. Different therapies aim to overcome the immunosuppressive TME by combining various approaches to synergize their effects for enhanced anti-tumor activity and augmented stimulation of the immune system. Immunotherapy has become a major therapeutic strategy because it unleashes the power of the immune system by activating, enhancing, and directing immune responses to prevent, control, and eliminate cancer. Phototherapy uses light irradiation to induce tumor cell death through photothermal, photochemical, and photo-immunological interactions. Phototherapy induces tumor immunogenic cell death, which is a precursor and enhancer for anti-tumor immunity. However, phototherapy alone has limited effects on long-term and systemic anti-tumor immune responses. Phototherapy can be combined with immunotherapy to improve the tumoricidal effect by killing target tumor cells, enhancing immune cell infiltration in tumors, and rewiring pathways in the TME from anti-inflammatory to pro-inflammatory. Phototherapy-enhanced immunotherapy triggers effective cooperation between innate and adaptive immunities, specifically targeting the tumor cells, whether they are localized or distant. Herein, the successes and limitations of phototherapy combined with other cancer treatment modalities will be discussed. Specifically, we will review the synergistic effects of phototherapy combined with different cancer therapies on tumor elimination and remodeling of the immunosuppressive TME. Overall, phototherapy, in combination with other therapeutic modalities, can establish anti-tumor pro-inflammatory phenotypes in activated tumor-infiltrating T cells and B cells and activate systemic anti-tumor immune responses.
Collapse
Affiliation(s)
- Trisha I. Valerio
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Coline L. Furrer
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Negar Sadeghipour
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
- School of Electrical and Computer Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Sophia-Joy X. Patrock
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Sayre A. Tillery
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ashley R. Hoover
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Kaili Liu
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Wei R. Chen
- Stephenson School of Biomedical Engineering University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
7
|
CAR T-Cell Immunotherapy Treating T-ALL: Challenges and Opportunities. Vaccines (Basel) 2023; 11:vaccines11010165. [PMID: 36680011 PMCID: PMC9861718 DOI: 10.3390/vaccines11010165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a form of T-cell malignancy, is a typically aggressive hematological malignancy with high rates of disease relapse and a poor prognosis. Current guidelines do not recommend any specific treatments for these patients, and only allogeneic stem cell transplant, which is associated with potential risks and toxicities, is a curative therapy. Recent clinical trials showed that immunotherapies, including monoclonal antibodies, checkpoint inhibitors, and CAR T therapies, are successful in treating hematologic malignancies. CAR T cells, which specifically target the B-cell surface antigen CD19, have demonstrated remarkable efficacy in the treatment of B-cell acute leukemia, and some progress has been made in the treatment of other hematologic malignancies. However, the development of CAR T-cell immunotherapy targeting T-cell malignancies appears more challenging due to the potential risks of fratricide, T-cell aplasia, immunosuppression, and product contamination. In this review, we discuss the current status of and challenges related to CAR T-cell immunotherapy for T-ALL and review potential strategies to overcome these limitations.
Collapse
|
8
|
Sun Y, Xu J. Emerging Antibodies in Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yaping Sun
- Section of Infectious Diseases Department of Internal Medicine Yale University School of Medicine New Haven CT 06510 USA
| | - Jian Xu
- School of Medicine University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
9
|
Hosseinzadeh A, Merikhian P, Naseri N, Eisavand MR, Farahmand L. MUC1 is a potential target to overcome trastuzumab resistance in breast cancer therapy. Cancer Cell Int 2022; 22:110. [PMID: 35248049 PMCID: PMC8897942 DOI: 10.1186/s12935-022-02523-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/12/2022] [Indexed: 02/07/2023] Open
Abstract
Although resistance is its major obstacle in cancer therapy, trastuzumab is the most successful agent in treating epidermal growth factor receptor 2 positive (HER2 +) breast cancer (BC). Some patients show resistance to trastuzumab, and scientists want to circumvent this problem. This review elaborately discusses possible resistance mechanisms to trastuzumab and introduces mucin 1 (MUC1) as a potential target efficient for overcoming such resistance. MUC1 belongs to the mucin family, playing the oncogenic/mitogenic roles in cancer cells and interacting with several other oncogenic receptors and pathways, such as HER2, β-catenin, NF-κB, and estrogen receptor (ERα). Besides, it has been established that MUC1- Cytoplasmic Domain (MUC1-CD) accelerates the development of resistance to trastuzumab and that silencing MUC1-C proto-oncogene is associated with increased sensitivity of HER2+ cells to trastuzumab-induced growth inhibitors. We mention why targeting MUC1 can be useful in overcoming trastuzumab resistance in cancer therapy.
Collapse
|
10
|
Martin-Sancho L, Tripathi S, Rodriguez-Frandsen A, Pache L, Sanchez-Aparicio M, McGregor MJ, Haas KM, Swaney DL, Nguyen TT, Mamede JI, Churas C, Pratt D, Rosenthal SB, Riva L, Nguyen C, Beltran-Raygoza N, Soonthornvacharin S, Wang G, Jimenez-Morales D, De Jesus PD, Moulton HM, Stein DA, Chang MW, Benner C, Ideker T, Albrecht RA, Hultquist JF, Krogan NJ, García-Sastre A, Chanda SK. Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nat Microbiol 2021; 6:1319-1333. [PMID: 34556855 PMCID: PMC9683089 DOI: 10.1038/s41564-021-00964-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
The fate of influenza A virus (IAV) infection in the host cell depends on the balance between cellular defence mechanisms and viral evasion strategies. To illuminate the landscape of IAV cellular restriction, we generated and integrated global genetic loss-of-function screens with transcriptomics and proteomics data. Our multi-omics analysis revealed a subset of both IFN-dependent and independent cellular defence mechanisms that inhibit IAV replication. Amongst these, the autophagy regulator TBC1 domain family member 5 (TBC1D5), which binds Rab7 to enable fusion of autophagosomes and lysosomes, was found to control IAV replication in vitro and in vivo and to promote lysosomal targeting of IAV M2 protein. Notably, IAV M2 was observed to abrogate TBC1D5-Rab7 binding through a physical interaction with TBC1D5 via its cytoplasmic tail. Our results provide evidence for the molecular mechanism utilised by IAV M2 protein to escape lysosomal degradation and traffic to the cell membrane, where it supports IAV budding and growth.
Collapse
Affiliation(s)
- Laura Martin-Sancho
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Infectious Disease Research, Microbiology & Cell Biology Department, Indian Institute of Science, Bangalore, India
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maite Sanchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael J McGregor
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Kelsey M Haas
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Thong T Nguyen
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - João I Mamede
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Christopher Churas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dexter Pratt
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara B Rosenthal
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Laura Riva
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Courtney Nguyen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nish Beltran-Raygoza
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Paul D De Jesus
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hong M Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David A Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chris Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Argenziano M, Arpicco S, Brusa P, Cavalli R, Chirio D, Dosio F, Gallarate M, Peira E, Stella B, Ugazio E. Developing Actively Targeted Nanoparticles to Fight Cancer: Focus on Italian Research. Pharmaceutics 2021; 13:pharmaceutics13101538. [PMID: 34683830 PMCID: PMC8540327 DOI: 10.3390/pharmaceutics13101538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
Active targeting is a valuable and promising approach with which to enhance the therapeutic efficacy of nanodelivery systems, and the development of tumor-targeted nanoparticles has therefore attracted much research attention. In this field, the research carried out in Italian Pharmaceutical Technology academic groups has been focused on the development of actively targeted nanosystems using a multidisciplinary approach. To highlight these efforts, this review reports a thorough description of the last 10 years of Italian research results on the development of actively targeted nanoparticles to direct drugs towards different receptors that are overexpressed on cancer cells or in the tumor microenvironment. In particular, the review discusses polymeric nanocarriers, liposomes, lipoplexes, niosomes, solid lipid nanoparticles, squalene nanoassemblies and nanobubbles. For each nanocarrier, the main ligands, conjugation strategies and target receptors are described. The literature indicates that polymeric nanoparticles and liposomes stand out as key tools for improving specific drug delivery to the site of action. In addition, solid lipid nanoparticles, squalene nanoparticles and nanobubbles have also been successfully proposed. Taken together, these strategies all offer many platforms for the design of nanocarriers that are suitable for future clinical translation.
Collapse
Affiliation(s)
| | - Silvia Arpicco
- Correspondence: (S.A.); (M.G.); Tel.: +39-011-670-6668 (S.A.); +39-011-670-7194 (M.G.)
| | | | | | | | | | - Marina Gallarate
- Correspondence: (S.A.); (M.G.); Tel.: +39-011-670-6668 (S.A.); +39-011-670-7194 (M.G.)
| | | | | | | |
Collapse
|
12
|
Wu X, Han R, Zhong Y, Weng N, Zhang A. Post treatment NLR is a predictor of response to immune checkpoint inhibitor therapy in patients with esophageal squamous cell carcinoma. Cancer Cell Int 2021; 21:356. [PMID: 34233686 PMCID: PMC8262036 DOI: 10.1186/s12935-021-02072-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In view of the fact that peripheral blood parameters have been reported as predictors of immunotherapy to various cancers, this study aimed to determine the predictors of response to anti-programmed death-1 (anti-PD-1) therapy in patients with esophageal squamous cell carcinoma (ESCC) from peripheral blood parameters. METHODS A retrospective analysis was conducted to investigate the predictive value of peripheral blood parameters including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR) and systemic immune-inflammation index (SII) in the response to anti-PD-1 antibody treatment. 119 ESCC patients receiving combined treatment including anti-PD-1 antibody were enrolled in this study. RESULTS The median progression-free survival (PFS) of all ESCC patients was 3.73 months. PFS rate in ESCC patients with low NLR at 6 weeks post treatment was higher than patients with high NLR (HR = 2.097, 95% CI 0.996-4.417, P = 0.027). However, PFS rate in ESCC patients with low NLR at baseline (HR = 1.060, 95% CI 0.524-2.146, P = 0.869) or 3 weeks post treatment (HR = 1.293, 95% CI 0.628-2.663, P = 0.459) was comparable with high NLR. And no statistically different was found in PFS rate between low PLR and high PLR at baseline (HR = 0.786, 95% CI 0.389-1.589, P = 0.469), 3 weeks post treatment (HR = 0.767, 95% CI 0.379-1.552, P = 0.452) or 6 weeks post treatment (HR = 1.272, 95% CI 0.624-2.594, P = 0.488) in ESCC patients. PFS rate was also comparable between low MLR and high MLR at baseline (HR = 0.826, 95% CI 0.408-1.670, P = 0.587), 3 weeks post treatment (HR = 1.209, 95% CI 0.590-2.475, P = 0.580) or 6 weeks post treatment (HR = 1.199, 95% CI 0.586-2.454, P = 0.596). PFS rate was similar between patients with low SII and high SII at baseline (HR = 1.120, 95% CI 0.554-2.264, P = 0.749), 3 weeks post treatment (HR = 1.022, 95% CI 0.500-2.089, P = 0.951) and 6 weeks post treatment (HR = 1.759, 95% CI 0.851-3.635, P = 0.097). CONCLUSIONS NLR at 6 weeks post treatment is a predictor of the response to anti-PD-1 treatment in patients with ESCC.
Collapse
Affiliation(s)
- Xianbin Wu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Runkun Han
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yanping Zhong
- Department of Health Management, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Nuoqing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| | - Ao Zhang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Wolfson B, Franks SE, Hodge JW. Stay on Target: Reengaging Cancer Vaccines in Combination Immunotherapy. Vaccines (Basel) 2021; 9:vaccines9050509. [PMID: 34063388 PMCID: PMC8156017 DOI: 10.3390/vaccines9050509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Effective treatment of established tumors requires rational multicombination immunotherapy strategies designed to target all functions of the patient immune system and tumor immune microenvironment. While these combinations build on the foundation of successful immune checkpoint blockade antibodies, it is increasingly apparent that successful immunotherapy will also require a cancer vaccine backbone to engage the immune system, thereby ensuring that additional immuno-oncology agents will engage a tumor-specific immune response. This review summarizes ongoing clinical trials built upon the backbone of cancer vaccines and focusing on those clinical trials that utilize multicombination (3+) immuno-oncology agents. We examine combining cancer vaccines with multiple checkpoint blockade antibodies, novel multifunctional molecules, adoptive cell therapy and immune system agonists. These combinations and those yet to enter the clinic represent the future of cancer immunotherapy. With a cancer vaccine backbone, we are confident that current and coming generations of rationally designed multicombination immunotherapy can result in effective therapy of established tumors.
Collapse
|
14
|
Abstract
Neuregulins, members of the largest subclass of growth factors of the epidermal growth factor family, mediate a myriad of cellular functions including survival, proliferation, and differentiation in normal tissues through binding to receptor tyrosine kinases of the ErbB family. However, aberrant neuregulin signaling in the tumor microenvironment is increasingly recognized as a key player in initiation and malignant progression of human cancers. In this chapter, we focus on the role of neuregulin signaling in the hallmarks of cancer, including cancer initiation and development, metastasis, as well as therapeutic resistance. Moreover, role of neuregulin signaling in the regulation of tumor microenvironment and targeting of neuregulin signaling in cancer from the therapeutic perspective are also briefly discussed.
Collapse
|
15
|
Tiburcius S, Krishnan K, Yang JH, Hashemi F, Singh G, Radhakrishnan D, Trinh HT, Verrills NM, Karakoti A, Vinu A. Silica-Based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment. CHEM REC 2020; 21:1535-1568. [PMID: 33320438 DOI: 10.1002/tcr.202000104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers and is the fifth common cause of cancer-related mortality in men. Current methods for PCa treatment are insufficient owing to the challenges related to the non-specificity, instability and side effects caused by the drugs and therapy agents. These drawbacks can be mitigated by the design of a suitable drug delivery system that can ensure targeted delivery and minimise side effects. Silica based nanoparticles (SBNPs) have emerged as one of the most versatile materials for drug delivery due to their tunable porosities, high surface area and tremendous capacity to load various sizes and chemistry of drugs. This review gives a brief overview of the diagnosis and current treatment strategies for PCa outlining their existing challenges. It critically analyzes the design, development and application of pure, modified and hybrid SBNPs based drug delivery systems in the treatment of PCa, their advantages and limitations.
Collapse
Affiliation(s)
- Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Kannan Krishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Jae-Hun Yang
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Fatemeh Hashemi
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| |
Collapse
|
16
|
Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 2020; 17:451-461. [PMID: 32313210 DOI: 10.1038/s41423-020-0417-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bispecific antibodies (bsAbs) refer to a large family of molecules that recognize two different epitopes or antigens. Although a series of challenges, especially immunogenicity and chain mispairing issues, once hindered the development of bsAbs, they have been gradually overcome with the help of rapidly developing technologies in the past 5 decades. In the meantime, an increasing number of bsAb platforms have been designed to satisfy different clinical demands. Currently, numerous preclinical and clinical trials are underway, portraying a promising future for bsAb-based cancer treatment. Nevertheless, bsAb drugs still face enormous challenges in their application as cancer therapeutics, including tumor heterogeneity and mutational burden, intractable tumor microenvironment (TME), insufficient costimulatory signals to activate T cells, the necessity for continuous injection, fatal systemic side effects, and off-target toxicities to adjacent normal cells. Therefore, we provide several strategies as solutions to these issues, which comprise generating multispecific bsAbs, discovering neoantigens, combining bsAbs with other anticancer therapies, exploiting natural killer (NK)-cell-based bsAbs and producing bsAbs in situ. In this review, we mainly discuss previous and current challenges in bsAb development and underscore corresponding strategies, with a brief introduction of several typical bsAb formats.
Collapse
|
17
|
Weng NQ, Chi J, Wen J, Mai SJ, Zhang MY, Huang L, Liu J, Yang XZ, Xu GL, Fu JH, Wang HY. The prognostic value of a seven-lncRNA signature in patients with esophageal squamous cell carcinoma: a lncRNA expression analysis. J Transl Med 2020; 18:47. [PMID: 32005248 PMCID: PMC6995134 DOI: 10.1186/s12967-020-02224-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported to be prognostic biomarkers in many types of cancer. We aimed to identify a lncRNA signature that can predict the prognosis in patients with esophageal squamous cell carcinoma (ESCC). Methods Using a custom microarray, we retrospectively analyzed lncRNA expression profiles in 141 samples of ESCC and 81 paired non-cancer specimens from Sun Yat-Sen University Cancer Center (Guangzhou, China), which were used as a training cohort to identify a signature associated with clinical outcomes. Then we conducted quantitative RT-PCR in another 103 samples of ESCC from the same cancer center as an independent cohort to verify the signature. Results Microarray analysis showed that there were 338 lncRNAs significantly differentially expressed between ESCC and non-cancer esophagus tissues in the training cohort. From these differentially expressed lncRNAs, we found 16 lncRNAs associated with overall survival (OS) of ESCC patients using Cox regression analysis. Then a 7-lncRNA signature for predicting survival was identified from the 16 lncRNAs, which classified ESCC patients into high-risk and low-risk groups. Patients with high-risk have shorter OS (HR: 3.555, 95% CI 2.195–5.757, p < 0.001) and disease-free survival (DFS) (HR: 2.537, 95% CI 1.646–3.909, p < 0.001) when compared with patients with low-risk in the training cohort. In the independent cohort, the 7 lncRNAs were detected by qRT-PCR and used to compute risk score for the patients. The result indicates that patients with high risk also have significantly worse OS (HR = 2.662, 95% CI 1.588–4.464, p < 0.001) and DFS (HR 2.389, 95% CI 1.447–3.946, p < 0.001). The univariate and multivariate Cox regression analyses indicate that the signature is an independent factor for predicting survival of patients with ESCC. Combination of the signature and TNM staging was more powerful in predicting OS than TNM staging alone in both the training (AUC: 0.772 vs 0.681, p = 0.002) and independent cohorts (AUC: 0.772 vs 0.660, p = 0.003). Conclusions The 7-lncRNA signature is a potential prognostic biomarker in patients with ESCC and may help in treatment decision when combined with the TNM staging system.
Collapse
Affiliation(s)
- Nuo-Qing Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Jun Chi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China.,Department of Endoscopy and Laser, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Long Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Xian-Zi Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Guo-Liang Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China. .,Department of Endoscopy and Laser, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Jian-Hua Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China. .,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China.
| |
Collapse
|
18
|
Kavari SL, Shah K. Engineered stem cells targeting multiple cell surface receptors in tumors. Stem Cells 2020; 38:34-44. [PMID: 31381835 PMCID: PMC6981034 DOI: 10.1002/stem.3069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
Multiple stem cell types exhibit inherent tropism for cancer, and engineered stem cells have been used as therapeutic agents to specifically target cancer cells. Recently, stem cells have been engineered to target multiple surface receptors on tumor cells, as well as endothelial and immune cells in the tumor microenvironment. In this review, we discuss the rationales and strategies for developing multiple receptor-targeted stem cells, their mechanisms of action, and the promises and challenges they hold as cancer therapeutics.
Collapse
Affiliation(s)
- Sanam L Kavari
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
19
|
Rzepka Z, Knapik M, Wrześniok D. Strategies of current cancer immunotherapy. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.7539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancers are a significant health problem in the world. The most common therapeutic methods applied in oncology are chemotherapy, radiotherapy and surgical methods. Finding new therapies in this branch of medicine, as well as developing solutions with the highest possible effectiveness, taking into account the multifactorial nature of cancer, is important from both the scientific and medical point of view and, for obvious reasons, it is in the interest of many people. Immunotherapy, despite many years of initial failures, has become one of the most important
clinically approved new treatments in oncology and is now successfully used in the treatment
of certain types of cancer. Current immunotherapeutic strategies are based on monoclonal
antibodies (including inhibitors of immune control points), cytokines, anti-cancer vaccines, oncolytic
viruses, as well as adoptive cell transfer. For many cancer immunotherapies, an increase
in their effectiveness is observed when they are used with other types of immunotherapy
as well as in combination with molecular targeted therapy, chemotherapy or radiotherapy.
The dynamic development of cancer immunotherapy since the beginning of the 21st century results
from the advances in genetic engineering, as well as from the increase in knowledge about the
anticancer immune response and the nature of cancer cells including abnormalities in their metabolism,
the ability to create a tumor microenvironment and the induction of immunosuppression.
The aim of the study is to present current knowledge in the field of cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
| | - Marta Knapik
- Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
| | - Dorota Wrześniok
- Katedra i Zakład Chemii i Analizy Leków, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
| |
Collapse
|
20
|
Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations. Curr Med Chem 2019; 26:396-426. [DOI: 10.2174/0929867324666170817152554] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects. The antigen-binding fragments of antibodies have a considerable potential to overcome the disadvantages of conventional mAbs, such as poor penetration into solid tumors and Fc-mediated bystander activation of the immune system. Fragments of antibodies retain antigen specificity and part of functional properties of conventional mAbs and at the same time have much better penetration into the tumors and a greatly reduced level of adverse effects. Recent advantages in antibody engineering allowed to produce different types of antibody fragments with improved structure and properties for efficient elimination of tumor cells. These molecules opened up new perspectives for anticancer therapy. Here, we will overview the structural features of the various types of antibody fragments and their applications for anticancer therapy as separate molecules and as part of complex conjugates or structures. Mechanisms of antitumor action of antibody fragments as well as their advantages and disadvantages for clinical application will be discussed in this review.
Collapse
Affiliation(s)
- Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Eugene D. Ponomarev
- School of Biomedical Sciences, Faculty of Medicine and Brain, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Irina V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
21
|
Yarian F, Alibakhshi A, Eyvazi S, Arezumand R, Ahangarzadeh S. Antibody-drug therapeutic conjugates: Potential of antibody-siRNAs in cancer therapy. J Cell Physiol 2019; 234:16724-16738. [PMID: 30908646 DOI: 10.1002/jcp.28490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Codelivery is a promising strategy of targeted delivery of cytotoxic drugs for eradicating tumor cells. This rapidly growing method of drug delivery uses a conjugate containing drug linked to a smart carrier. Both two parts usually have therapeutic properties on the tumor cells. Monoclonal antibodies and their derivatives, such as Fab, scFv, and bsAb due to targeting high potent have now been attractive candidates as drug targeting carrier systems. The success of some therapeutic agents like small interfering RNA (siRNA), a small noncoding RNAs, with having problems such as enzymatic degradation and rapid renal filtration need to an appropriate carrier. Therefore, the aim of this study is to review the recent enhancements in development of antibody drug conjugates (ADCs), especially antibody-siRNA conjugates (SRCs), its characterizations and mechanisms in innovative cancer therapy approaches.
Collapse
Affiliation(s)
- Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Alibakhshi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Eyvazi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat Commun 2019; 10:259. [PMID: 30651547 PMCID: PMC6335418 DOI: 10.1038/s41467-018-08074-0] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
A novel EGFR-tyrosine kinase inhibitor (TKI), osimertinib, has marked efficacy in patients with EGFR-mutated lung cancer. However, some patients show intrinsic resistance and an insufficient response to osimertinib. This study showed that osimertinib stimulated AXL by inhibiting a negative feedback loop. Activated AXL was associated with EGFR and HER3 in maintaining cell survival and inducing the emergence of cells tolerant to osimertinib. AXL inhibition reduced the viability of EGFR-mutated lung cancer cells overexpressing AXL that were exposed to osimertinib. The addition of an AXL inhibitor during either the initial or tolerant phases reduced tumor size and delayed tumor re-growth compared to osimertinib alone. AXL was highly expressed in clinical specimens of EGFR-mutated lung cancers and its high expression was associated with a low response rate to EGFR-TKI. These results indicated pivotal roles for AXL and its inhibition in the intrinsic resistance to osimertinib and the emergence of osimertinib-tolerant cells. Resistance to the new generation EGFR-TKI, Osimertinib, can emerge in patients with EGFR-mutated lung cancer. Here, the authors show that AXL, which is activated by osimertinib, can promote the emergence of tolerant lung cancer cell thus conferring resistance to osimertinib and propose the combination of Osimertinib with AXL inhibitor as a potential therapeutic approach in such resistant cancers.
Collapse
|
23
|
Schechter M, Balanescu DV, Donisan T, Dayah TJ, Kar B, Gregoric I, Giza DE, Song J, Lopez‐Mattei J, Kim P, Balanescu SM, Cilingiroglu M, Toutouzas K, Smalling RW, Marmagkiolis K, Iliescu C. An update on the management and outcomes of cancer patients with severe aortic stenosis. Catheter Cardiovasc Interv 2018; 94:438-445. [DOI: 10.1002/ccd.28052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/25/2018] [Accepted: 12/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Schechter
- Department of Internal MedicineMcGovern Medical School at The University of Texas Health Science Center at Houston Houston Texas
| | | | - Teodora Donisan
- Department of CardiologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Tariq J. Dayah
- Department of Internal MedicineMcGovern Medical School at The University of Texas Health Science Center at Houston Houston Texas
| | - Biswajit Kar
- Department of Internal MedicineMcGovern Medical School at The University of Texas Health Science Center at Houston Houston Texas
| | - Igor Gregoric
- Department of Internal MedicineMcGovern Medical School at The University of Texas Health Science Center at Houston Houston Texas
| | - Dana E. Giza
- Department of Family and Community MedicineMcGovern Medical School at The University of Texas Health Science Center at Houston Houston Texas
| | - Juhee Song
- Department of BiostatisticsThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Juan Lopez‐Mattei
- Department of CardiologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Peter Kim
- Department of CardiologyThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Serban Mihai Balanescu
- Department of CardiologyElias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Mehmet Cilingiroglu
- Department of CardiologyArkansas Heart Hospital Little Rock Arkansas
- Florida Hospital Pepin Heart Institute Tampa Florida
| | - Konstantinos Toutouzas
- First Department of CardiologyHippokration Hospital, National and Kapodistrian University Medical School Athens Greece
| | - Richard W. Smalling
- Department of Internal MedicineMcGovern Medical School at The University of Texas Health Science Center at Houston Houston Texas
| | | | - Cezar Iliescu
- Department of CardiologyThe University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
24
|
Wang J, Wang AZ, Lv P, Tao W, Liu G. Advancing the Pharmaceutical Potential of Bioinorganic Hybrid Lipid-Based Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800564. [PMID: 30250799 PMCID: PMC6145262 DOI: 10.1002/advs.201800564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Bioinspired lipid assemblies that mimic the elaborate architecture of natural membranes have fascinated researchers for a long time. These lipid assemblies have gone from being just an imperative platform for biophysical research to a pharmaceutical delivery system for biomedical applications. Despite success, these organized nanosystems are often subject to the mechanical instability and limited theranostic capability without adding any inconvenient modifications. To reach their advanced pharmaceutical potential, various bioinorganic hybrid lipid-based assembles, which provide new opportunities to synergistically complement and improve therapeutic/diagnostic potential of existing lipid-based nanomedicine with distinct mechanisms containing inorganic embedded surfactants, have recently been developed.
Collapse
Affiliation(s)
- Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Angela Zhe Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong S.A.R.China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
- The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
25
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
26
|
Moradi-Kalbolandi S, Hosseinzade A, Salehi M, Merikhian P, Farahmand L. Monoclonal antibody-based therapeutics, targeting the epidermal growth factor receptor family: from herceptin to Pan HER. J Pharm Pharmacol 2018; 70:841-854. [DOI: 10.1111/jphp.12911] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Monoclonal antibody-based of cancer therapy has been considered as one of the most successful therapeutic strategies for both haematologic malignancies and solid tumours in the last two decades. Epidermal growth factor receptor (EGFR) family signalling pathways play a key role in the regulation of cell proliferation, survival and differentiation. Hence, anti-EGFR family mAbs is one of the most promising approaches in cancer therapy.
Key findings
Here, recent advances in anti-EGFR mAb including approved or successfully tested in preclinical and clinical studies have been reviewed. Although we focus on monoclonal antibodies against the EGF receptor, but the mechanisms underlying the effects of EGFR-specific mAb in cancer therapy, to some extend the resistance to existing anti-EGFR therapies and some therapeutic strategies to overcome resistance such as combination of mAbs on different pathways are briefly discussed as well.
Summary
The EGFR family receptors, is considered as an attractive target for mAb development to inhibit their consecutive activities in tumour growth and resistance. However, due to resistance mechanisms, the combination therapies may become a good candidate for targeting EGFR family receptors.
Collapse
Affiliation(s)
- Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzade
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
27
|
Shimomura O, Oda T, Tateno H, Ozawa Y, Kimura S, Sakashita S, Noguchi M, Hirabayashi J, Asashima M, Ohkohchi N. A Novel Therapeutic Strategy for Pancreatic Cancer: Targeting Cell Surface Glycan Using rBC2LC-N Lectin-Drug Conjugate (LDC). Mol Cancer Ther 2018; 17:183-195. [PMID: 28939555 DOI: 10.1158/1535-7163.mct-17-0232] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 11/16/2022]
Abstract
Various cancers, including pancreatic ductal adenocarcinoma (PDAC), remain intractable even with costly tumor-targeting antibody drugs. Because the outermost coatings of cancer cells are composed of cell-specific glycan layers (glycocalyx), lectins, proteins with glycan-binding potential, were evaluated for possible use as drug carriers in PDAC treatment. A human PDAC cell line with well-to-moderately differentiated properties (Capan-1) was subjected to lectin microarray analysis to identify specific lectin-glycan pairs. The selected lectin was fused with a bacterial exotoxin for the construction of a lectin-drug conjugate (LDC), and its safety and antitumor effects were evaluated. A specific affinity between a recombinant bacterial C-type lectin (rBC2LC-N) and Capan-1 was identified, and its positivity was confirmed in 69 human samples. In contrast to the belief that all lectins mediate harmful hemagglutination, rBC2LC-N did not cause hemagglutination with human erythrocytes and was safely administered to mice. The 50% inhibitory concentration of LDC to Capan-1 (1.04 pg/mL = 0.0195 pmol/L) was 1/1,000 lower than that reported for conventional immunotoxins. The intraperitoneal administration of LDC reduced the tumor weight from 390 to 130.8 mg (P < 0.01) in an orthotopic model and reduced the number of nodules from 48 to 3 (P < 0.001) and improved survival from 62 to 105 days in a peritoneal dissemination model (P < 0.0001). In addition, the effect of LDC was reproduced in nodules from patient-derived PDAC xenografts through intravenous injection. Herein, we show the concept of utilizing lectins as drug carriers to target glycans on the cancer cell surface, highlighting new insights into cancer treatments. Mol Cancer Ther; 17(1); 183-95. ©2017 AACR.
Collapse
Affiliation(s)
- Osamu Shimomura
- Department of Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tatsuya Oda
- Department of Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yusuke Ozawa
- Department of Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sota Kimura
- Department of Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shingo Sakashita
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jun Hirabayashi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Makoto Asashima
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
28
|
Zhou H, Gao J, Chen Z, Duan S, Li C, Qiao R. Double-strand cleavage of DNA by a polyamide-phenazine-di-N-oxide conjugate. Bioorg Med Chem Lett 2017; 28:284-288. [PMID: 29292228 DOI: 10.1016/j.bmcl.2017.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/23/2017] [Indexed: 11/15/2022]
Abstract
Phenazine and its derivatives have been widely applied as nucleic acid cleavage agents due to active oxygen activating the C-H bond of the substrate. However, diffusion of oxygen radicals limits their potential applications in the DNA-targeted metal-free drug. Introduction of groove binder moiety such as polyamide enhanced the regional stability of radical molecules and reduced cytotoxicity of the drugs. In this work, we described the design and synthesis of a polyamide-modified phenazine-di-N-oxide as a DNA double-strand cleavage agent. The gel assays showed the hybrid conjugates can effectively break DNA double strands in a non-random manner under physiological conditions. The probable binding mode to DNA was investigated by sufficient spectral experiments, revealing weak interaction between hybrid ligand and nucleic acid molecules. The results of our study have implications on the design of groove-binding hybrid molecules as new artificial nucleases and may provide a strategy for developing efficient and safe DNA cleavage reagents.
Collapse
Affiliation(s)
- Hang Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Juanhong Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhaohang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shan Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences, Peking University Health Sciences Center, Beijing 100083, PR China.
| |
Collapse
|
29
|
Skalickova S, Loffelmann M, Gargulak M, Kepinska M, Docekalova M, Uhlirova D, Stankova M, Fernandez C, Milnerowicz H, Ruttkay-Nedecky B, Kizek R. Zinc-Modified Nanotransporter of Doxorubicin for Targeted Prostate Cancer Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E435. [PMID: 29292780 PMCID: PMC5746925 DOI: 10.3390/nano7120435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Abstract
This work investigated the preparation of chitosan nanoparticles used as carriers for doxorubicin for targeted cancer delivery. Prepared nanocarriers were stabilized and functionalized via zinc ions incorporated into the chitosan nanoparticle backbone. We took the advantage of high expression of sarcosine in the prostate cancer cells. The prostate cancer targeting was mediated by the AntiSar antibodies decorated surface of the nanocage. Formation of the chitosan nanoparticles was determined using a ninhydrin assay and differential pulse voltammetry. Obtained results showed the strong effect of tripolyphosphine on the nanoparticle formation. The zinc ions affected strong chitosan backbone coiling both in inner and outer chitosan nanoparticle structure. Zinc electrochemical signal depended on the level of the complex formation and the potential shift from -960 to -950 mV. Formed complex is suitable for doxorubicin delivery. It was observed the 20% entrapment efficiency of doxorubicin and strong dependence of drug release after 120 min in the blood environment. The functionality of the designed nanotransporter was proven. The purposed determination showed linear dependence in the concentration range of Anti-sarcosine IgG labeled gold nanoparticles from 0 to 1000 µg/mL and the regression equation was found to be y = 3.8x - 66.7 and R² = 0.99. Performed ELISA confirmed the ability of Anti-sarcosine IgG labeled chitosan nanoparticles with loaded doxorubicin to bind to the sarcosine molecule. Observed hemolytic activity of the nanotransporter was 40%. Inhibition activity of our proposed nanotransporter was evaluated to be 0% on the experimental model of S. cerevisiae. Anti-sarcosine IgG labeled chitosan nanoparticles, with loaded doxorubicin stabilized by Zn ions, are a perspective type of nanocarrier for targeted drug therapy managed by specific interaction with sarcosine and metallothionein for prostate cancer.
Collapse
Affiliation(s)
- Sylvie Skalickova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Martin Loffelmann
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Michael Gargulak
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Marta Kepinska
- Faculty of Pharmacy, Department of Biomedical and Environmental Analyses, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Michaela Docekalova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Prevention Medicals s.r.o, Tovární 342, Butovice, 742-13 Studentka, Czech Republic.
| | - Dagmar Uhlirova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Prevention Medicals s.r.o, Tovární 342, Butovice, 742-13 Studentka, Czech Republic.
| | - Martina Stankova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Prevention Medicals s.r.o, Tovární 342, Butovice, 742-13 Studentka, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK.
| | - Halina Milnerowicz
- Faculty of Pharmacy, Department of Biomedical and Environmental Analyses, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Faculty of Pharmacy, Department of Biomedical and Environmental Analyses, Wroclaw Medical University, 50-556 Wrocław, Poland.
| |
Collapse
|
30
|
Felthun J, Reddy R, McDonald KL. How immunotherapies are targeting the glioblastoma immune environment. J Clin Neurosci 2017; 47:20-27. [PMID: 29042147 DOI: 10.1016/j.jocn.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
The diagnosis of glioblastoma remains one of the most dismal in medical practice, with current standard care only providing a median survival of 14.6 months. The need for new therapies is desperately clear. Components of the tumour microenvironment are demonstrating growing importance in the field, given they allow the tumour to utilise pathways involved in autoimmune prevention, something that enables the tumour's establishment and growth. As with many different cancers, the search for a new standard has progressed to the design of immunotherapies, which aim to counteract the immune changes within this microenvironment. Serotherapy, adoptive lymphocyte transfer, peptide and dendritic cell vaccines and a range of other methods are currently under investigation, while intracranial infection has also been researched for its capacity to reverse glioblastoma mediated immunosuppression. Some of these new therapies have shown promise, but it is a long road ahead before their incorporation into glioblastoma standard therapy.
Collapse
Affiliation(s)
- Jonathan Felthun
- Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Rajesh Reddy
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neurosurgery, Prince of Wales Hospital, Sydney, Australia
| | - Kerrie Leanne McDonald
- Cure Brain Cancer Foundation Biomarkers & Translational Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Pützer BM, Solanki M, Herchenröder O. Advances in cancer stem cell targeting: How to strike the evil at its root. Adv Drug Deliv Rev 2017; 120:89-107. [PMID: 28736304 DOI: 10.1016/j.addr.2017.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 12/18/2022]
Abstract
Cancer progression to metastatic stages is still unmanageable and the promise of effective anti-metastatic therapy remains largely unmet, emphasizing the need to develop novel therapeutics. The special focus here is on cancer stem cells (CSC) as the seed of tumor initiation, epithelial-mesenchymal transition, chemoresistance and, as a consequence, drivers of metastatic dissemination. We report on targeted therapies gearing towards the CSC's internal and membrane-anchored markers using agents such as antibody derivatives, nucleic therapeutics, small molecules and genetic payloads. Another emphasis lies on novel proceedings envisaged to deliver current and prospective therapies to the target sites using newest viral and non-viral vector technologies. In this review, we summarize recent progress and remaining challenges in therapeutic strategies to combat CSC.
Collapse
Affiliation(s)
- Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany.
| | - Manish Solanki
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Biomedical Research Center (BMFZ), Rostock University Medical School, Germany
| |
Collapse
|
32
|
Zhou Y, Sun W, Chen N, Xu C, Wang X, Dong K, Zhang B, Zhang J, Hao N, Sun A, Wei H, He F, Jiang Y. Discovery of NKCC1 as a potential therapeutic target to inhibit hepatocellular carcinoma cell growth and metastasis. Oncotarget 2017; 8:66328-66342. [PMID: 29029515 PMCID: PMC5630415 DOI: 10.18632/oncotarget.20240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2017] [Indexed: 01/20/2023] Open
Abstract
Metastasis is the essential cause for the high mortality of hepatocellular carcinoma (HCC). In order to investigate the mechanism of metastasis, and to discover therapeutic targets for HCC, the quantitative proteomic technique was applied to characterize the plasma membrane proteins of two HCC cell lines with low (MHCC97L) or high (MHCC97H) metastatic potentials. One of the plasma membrane proteins, sodium-potassium-chloride cotransporter 1 (NKCC1), was upregulated in MHCC97H cell line. Immunohistochemistry result in HCC patients showed that NKCC1 expression was associated with poor differentiation and microvascular invasion. Knockdown of NKCC1 via RNA interference reduced HCC cell proliferation and invasion abilities in vitro and in vivo, whereas over-expression of NKCC1 significantly increased HCC cell proliferation and invasion abilities in vitro and in vivo. Additionally, blocking NKCC1 activity with bumetanide attenuated the proliferation and invasion abilities of HCC cells in vitro and limited the HCC growth in vivo. Further results suggested that NKCC1 promotes the invasion ability via MMP-2 activity, and that the WNK1/OSR1/NKCC1 signal pathway might play roles in HCC metastasis. For the first time, our study demonstrated that NKCC1 plays a role in HCC metastasis, and could be served as a potential target to inhibit HCC cell growth and metastasis.
Collapse
Affiliation(s)
- Yaya Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| | - Wei Sun
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| | - Ning Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| | - Chen Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| | - Xinxin Wang
- Department of Pathology, Beijing Youan Hospital of Capital Medical University, Beijing 100069, P. R. China
| | - Kun Dong
- Department of Pathology, Beijing Youan Hospital of Capital Medical University, Beijing 100069, P. R. China
| | - Binxue Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| | - Jian Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| | - Ning Hao
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| | - Aihua Sun
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| | - Handong Wei
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China.,Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Ying Jiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P. R. China
| |
Collapse
|
33
|
Kintzing JR, Filsinger Interrante MV, Cochran JR. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment. Trends Pharmacol Sci 2016; 37:993-1008. [PMID: 27836202 PMCID: PMC6238641 DOI: 10.1016/j.tips.2016.10.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Protein-based therapeutics have been revolutionizing the oncology space since they first appeared in the clinic two decades ago. Unlike traditional small-molecule chemotherapeutics, protein biologics promote active targeting of cancer cells by binding to cell-surface receptors and other markers specifically associated with or overexpressed on tumors versus healthy tissue. While the first approved cancer biologics were monoclonal antibodies, the burgeoning field of protein engineering is spawning research on an expanded range of protein formats and modifications that allow tuning of properties such as target-binding affinity, serum half-life, stability, and immunogenicity. In this review we highlight some of these strategies and provide examples of modified and engineered proteins under development as preclinical and clinical-stage drug candidates for the treatment of cancer.
Collapse
Affiliation(s)
- James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Maria V Filsinger Interrante
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Vit O, Man P, Kadek A, Hausner J, Sklenar J, Harant K, Novak P, Scigelova M, Woffendin G, Petrak J. Large-scale identification of membrane proteins based on analysis of trypsin-protected transmembrane segments. J Proteomics 2016; 149:15-22. [DOI: 10.1016/j.jprot.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/03/2016] [Accepted: 03/04/2016] [Indexed: 01/06/2023]
|
35
|
Watanabe Y, Kozuma K, Hioki H, Kawashima H, Nara Y, Kataoka A, Shirai S, Tada N, Araki M, Takagi K, Yamanaka F, Yamamoto M, Hayashida K. Comparison of Results of Transcatheter Aortic Valve Implantation in Patients With Versus Without Active Cancer. Am J Cardiol 2016; 118:572-7. [PMID: 27324159 DOI: 10.1016/j.amjcard.2016.05.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
The aim of this study was to evaluate postprocedural and midterm outcomes of transcatheter aortic valve implantation (TAVI) in patients with aortic stenosis and active cancer. From October 2013 to August 2015, a total of 749 patients undergoing TAVI using the Edwards Sapien XT prosthesis (Edwards Lifesciences, Irvine, California) were prospectively included in the OCEAN-TAVI registry from 8 Japanese centers. A total of 47 patients (44.7% men; median age 83 years) had active cancer. The transfemoral approach was implemented in 85.1% of patients in the cancer group and 78.1% in the noncancer group (p = 0.22). The occurrence of major vascular complication (4.3% vs 7.5%, p = 0.24), life-threatening bleeding (2.1% vs 7.1%, p = 0.15), and major bleeding (8.5% vs 13%, p = 0.38) was similar between the cancer and noncancer groups. No significant differences were observed regarding device success (100% vs 96.2%, p = 0.17) or 30-day survival (95.7% vs 97.3%, p = 0.38). No difference in midterm survival was found between the patients with cancer and without cancer (log-rank, p = 0.42), regardless of advanced or limited cancer (log-rank, p = 0.68). In a multivariable Cox proportional hazard regression analysis, cancer metastasis was one of the most significant predictors of late mortality (hazard ratio 4.73, 95% CI 1.12 to 20.0; p = 0.035). In conclusion, patients with cancer with severe aortic stenosis who underwent TAVI had similar acute outcomes and midterm survival rates compared with patients without cancer. Cancer metastasis was associated with increased mortality after TAVI.
Collapse
|
36
|
Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol 2016; 37:10021-39. [PMID: 27155851 DOI: 10.1007/s13277-016-5059-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/01/2016] [Indexed: 12/25/2022] Open
|
37
|
Noujaim J, Payne LS, Judson I, Jones RL, Huang PH. Phosphoproteomics in translational research: a sarcoma perspective. Ann Oncol 2016; 27:787-94. [PMID: 26802162 DOI: 10.1093/annonc/mdw030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/11/2016] [Indexed: 02/11/2024] Open
Abstract
Phosphoproteomics has been extensively used as a preclinical research tool to characterize the phosphorylated components of the cancer proteome. Advances in the field have yielded insights into new drug targets, mechanisms of disease progression and drug resistance, and biomarker discovery. However, application of this technology to clinical research has been challenging because of practical issues relating to specimen integrity and tumour heterogeneity. Beyond these limitations, phosphoproteomics has the potential to play a pivotal role in translational studies and contribute to advances in different tumour groups, including rare disease sites like sarcoma. In this review, we propose that deploying phosphoproteomic technologies in translational research may facilitate the identification of better defined predictive biomarkers for patient stratification, inform drug selection in umbrella trials and identify new combinations to overcome drug resistance. We provide an overview of current phosphoproteomic technologies, such as affinity-based assays and mass spectrometry-based approaches, and discuss their advantages and limitations. We use sarcoma as an example to illustrate the current challenges in evaluating targeted kinase therapies in clinical trials. We then highlight useful lessons from preclinical studies in sarcoma biology to demonstrate how phosphoproteomics may address some of these challenges. Finally, we conclude by offering a perspective and list the key measures required to translate and benchmark a largely preclinical technology into a useful tool for translational research.
Collapse
Affiliation(s)
- J Noujaim
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - L S Payne
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - I Judson
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK Division of Clinical Studies
| | - R L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK Division of Clinical Studies
| | - P H Huang
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| |
Collapse
|