1
|
Kuhlen M, Schmutz M, Kunstreich M, Redlich A, Claus R. Targeting pediatric adrenocortical carcinoma: Molecular insights and emerging therapeutic strategies. Cancer Treat Rev 2025; 136:102942. [PMID: 40258305 DOI: 10.1016/j.ctrv.2025.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/23/2025]
Abstract
Pediatric adrenocortical carcinoma (pACC) is an exceptionally rare and aggressive malignancy, accounting for only 0.2-0.3% of childhood cancers. Characterized by significant endocrine activity and often associated with genetic syndromes such as Li-Fraumeni syndrome, pACC exhibits distinct clinical and molecular profiles compared to adult adrenocortical carcinoma (ACC). Current treatment approaches, largely adapted from adult protocols, center on surgery and chemotherapy, including mitotane. However, the lack of pediatric-specific data and major clinical trials underscores a pressing need for tailored therapeutic strategies. Advances in molecular profiling have unveiled actionable targets, such as alterations in the Wnt/β-catenin and MAP/ERK pathways, overexpression of IGF2, and epigenetic dysregulation. Emerging therapies, including immune checkpoint inhibitors, CAR T-cell therapy, and radiopharmaceuticals, hold promise but remain largely untested in pediatric populations. Targeting metabolic vulnerabilities, such as steroidogenesis and lipid metabolism, offers additional avenues for therapeutic innovation. Furthermore, improved diagnostic tools like liquid biopsy and steroid profiling may enhance disease monitoring and early detection. Despite progress in understanding pACC biology, significant challenges remain in translating these insights into effective treatments. Collaborative efforts, such as the European Cooperative Study Group for Pediatric Rare Tumors (EXPeRT), and the development of pediatric-specific clinical trials are vital for advancing the field. Multidisciplinary care and international research initiatives will be pivotal in addressing the unmet needs of pACC patients. By leveraging molecular insights and fostering global collaboration, the field can move toward personalized medicine, improving outcomes and quality of life for children with this challenging disease. Expanding clinical trials, refining diagnostic tools, and integrating novel therapies into treatment regimens will be critical in bridging the gap between pediatric and adult ACC treatment success.
Collapse
Affiliation(s)
- Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Bavarian Cancer Research Center (BZKF), Augsburg, Germany.
| | - Maximilian Schmutz
- Hematology and Oncology, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Marina Kunstreich
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Department of Pediatrics, Pediatric Hematology/Oncology, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Antje Redlich
- Department of Pediatrics, Pediatric Hematology/Oncology, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Rainer Claus
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany; Pathology, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| |
Collapse
|
2
|
Fassnacht M, Puglisi S, Kimpel O, Terzolo M. Adrenocortical carcinoma: a practical guide for clinicians. Lancet Diabetes Endocrinol 2025; 13:438-452. [PMID: 40086465 DOI: 10.1016/s2213-8587(24)00378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 03/16/2025]
Abstract
Adrenocortical carcinoma is a rare endocrine malignancy. The management of patients with adrenocortical carcinoma is challenging for several reasons, including its heterogeneous but frequently aggressive biological behaviour; tumour-related hormonal excess (eg, Cushing's syndrome or virilisation); the overall paucity of evidence regarding diagnostic investigation and treatment; the approval of only one drug (mitotane); and the scarcity of centres with sufficient experience. In this Review, we present 25 questions on the most important aspects of the clinical management of adult patients with adrenocortical carcinoma that we have frequently asked ourselves over the past 25 years. We offer our personal answers and perspectives, drawing upon published evidence as well as more than 60 years of collective clinical experience and insights from our management of more than 1700 patients across two centres in Germany and Italy.
Collapse
Affiliation(s)
- Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany; National Center for Tumor Diseases WERA, Würzburg, Germany.
| | - Soraya Puglisi
- Department of Clinical and Biological Sciences, Internal Medicine, San Luigi Hospital, University of Turin, Turin, Italy
| | - Otilia Kimpel
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Massimo Terzolo
- Department of Clinical and Biological Sciences, Internal Medicine, San Luigi Hospital, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Nocito MC, Hantel C, Lerario AM, Mastrorocco F, De Martino L, Musicco C, Perrotta ID, Scalise M, Indiveri C, Giannattasio S, Val P, Lanzino M, Pezzi V, Casaburi I, Sirianni R. A targetable antioxidant defense mechanism to EZH2 inhibitors enhances tumor cell vulnerability to ferroptosis. Cell Death Dis 2025; 16:291. [PMID: 40229247 PMCID: PMC11997205 DOI: 10.1038/s41419-025-07607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Epigenetic changes are present in all human cancers and are responsible for switching on or off genes, thus controlling tumor cell transcriptome. These changes occur through DNA methylation, histone modifiers and readers, chromatin remodelers, and microRNAs. The histone H3 methyl-transferase EZH2 gene is overexpressed in several cancer types, including adrenocortical carcinoma (ACC), a rare cancer still lacking a targeted therapy. EZH2 inhibitors (EZH2i) have been tested in several clinical trials, but their effectiveness was limited by the toxic effects of the therapeutic doses. We tested several EZH2i on ACC cells, and observed a significant reduction in cell growth only with doses much higher than those required to prevent H3 methylation. We found that all tested EZH2i doses affected lipid metabolism genes, ROS, and glutathione production. Transcript changes correlated with metabolic data, which suggested the effects of EZH2i on ferroptosis. We found that EZH2i dose-dependently increased SLC7A11/glutathione axis and glutathione peroxidase-4 (GPX4), required to counteract lipid peroxidation and ferroptosis. A GPX4 inhibitor synergized with EZH2i, making low doses - which otherwise do not affect cell viability - able to significantly reduce ACC cell growth in vitro and in vivo. Importantly, we found that the anti-ferroptosis defense mechanism induced by EZH2i is a common response for several aggressive tumor phenotypes, uncovering a general co-targetable mechanism that could limit EZH2i effectiveness. Correcting this antioxidant response by ferroptosis inducers may be a new combination therapy that will easily find clinical applications.
Collapse
Affiliation(s)
- Marta C Nocito
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091, Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Dresden, Germany
| | - Antonio M Lerario
- Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Medical School, 48104, Ann Arbor, MI, USA
| | - Fabrizio Mastrorocco
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy (CNR), 70126, Bari, Italy
| | - Luca De Martino
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy (CNR), 70126, Bari, Italy
| | - Clara Musicco
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy (CNR), 70126, Bari, Italy
| | - Ida D Perrotta
- Centre for Microscopy and Microanalysis (CM2), Department of Biology, Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Mariafrancesca Scalise
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Cesare Indiveri
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy (CNR), 70126, Bari, Italy
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy (CNR), 70126, Bari, Italy
| | - Pierre Val
- France iGReD (Institute of Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Marilena Lanzino
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
- Centro Sanitario, University of Calabria, Ponte P. Bucci, 87036, Rende, Italy.
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Ivan Casaburi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rosa Sirianni
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
4
|
Werner H. Key targets for small molecule drugs on the IGF1 signaling pathway. Future Med Chem 2025; 17:751-753. [PMID: 39980245 PMCID: PMC12026114 DOI: 10.1080/17568919.2025.2470105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Terzolo M, Fassnacht M, Berruti A, Ronchi C. Navigating Uncertainty in Adjuvant Mitotane Therapy. Endocr Pract 2025:S1530-891X(25)00097-7. [PMID: 40174725 DOI: 10.1016/j.eprac.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Affiliation(s)
- Massimo Terzolo
- Internal Medicine 1, Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy.
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Alfredo Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Cristina Ronchi
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Chen J, Du Y, Yu Q, Liu D, Zhang J, Luo T, Huang H, Cai S, Dong H. Bioinformatics-based identification of mirdametinib as a potential therapeutic target for idiopathic pulmonary fibrosis associated with endoplasmic reticulum stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04076-0. [PMID: 40153017 DOI: 10.1007/s00210-025-04076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 03/30/2025]
Abstract
The molecular link between endoplasmic reticulum stress (ERS) and idiopathic pulmonary fibrosis (IPF) remains elusive. Our study aimed to uncover core mechanisms and new therapeutic targets for IPF. By analyzing gene expression profiles from the Gene Expression Omnibus (GEO) database, we identified 1519 differentially expressed genes (DEGs) and 11 ERS-related genes (ERSRGs) diagnostic for IPF. Using weighted gene co-expression network analysis (WGCNA) and differential expression analysis, key genes linked to IPF were pinpointed. CIBERSORT was used to assess immune cell infiltration, while the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore biological mechanisms. In three GEO datasets (GSE150910, GSE92592, and GSE124685), the receiver operating characteristic (ROC) curve analysis showed area under the ROC curve (AUC) > 0.7 for all ERSRGs. The Connectivity Map (CMap) database was used to predict small molecules modulating IPF signatures. The molecular docking energies of mirdametinib with protein targets ranged from - 5.1643 to - 8.0154 kcal/mol, while those of linsitinib ranged from - 5.6031 to - 7.902 kcal/mol. Molecular docking and animal experiments were performed to validate the therapeutic potential of identified compounds, with mirdametinib showing specific effects in a murine bleomycin-induced pulmonary fibrosis model. In vitro experiments indicated that mirdametinib may alleviate pulmonary fibrosis by reducing ERS via the PI3K/Akt/mTOR pathway. Our findings highlight 11 ERSRGs as predictors of IPF and demonstrate the feasibility of bioinformatics in drug discovery for IPF treatment.
Collapse
Affiliation(s)
- Junwei Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yuhan Du
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Qi Yu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Dongyu Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Jinming Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Tingyue Luo
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Haohua Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China.
- Department of Respiratory Medicine, Nanfang Hospital, No. 1838, North Guangzhou Avenue,Baiyun District,, Guangzhou City, China.
| |
Collapse
|
7
|
Catalano R, Nozza E, Altieri B, Esposito E, Croci GA, Barbieri AM, Treppiedi D, Di Bari S, Kimpel O, Detomas M, Tamburello M, Schauer MP, Herterich S, Angelousi A, Luconi M, Canu L, Nesi G, Hantel C, Sigala S, Landwehr LS, Di Dalmazi G, Cassinotti E, Baldari L, Palmieri S, Mangone A, Ferrante E, Ronchi CL, Mantovani G, Peverelli E. Emerging role of IGF1R and IR expression and localisation in adrenocortical carcinomas. Cell Commun Signal 2025; 23:119. [PMID: 40038716 PMCID: PMC11877998 DOI: 10.1186/s12964-025-02115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The insulin-like growth factor 2 (IGF2) is overexpressed in 90% of adrenocortical carcinomas (ACC) and promotes cell proliferation via IGF1R and isoform A of insulin receptor (IRA). However, IGF2 role in ACC tumourigenesis has not been completely understood yet, and the contribution of IGF1R and IRA in mediating ACC cell growth has been poorly explored. This study aimed to investigate IGF1R and IR expression and localisation, including the expression of IR isoforms, in ACC and adrenocortical adenomas (ACA), and their role in IGF2-driven proliferation. METHODS Immunohistochemistry staining of IGF1R and IR was performed on 118 ACC and 22 ACA to evaluate their expression and cellular localisation and statistical analyses were carried out to assess correlations with clinicopathological data. The expression of IRA and IRB in ACC and ACA tissues, ACC cell lines and ACC and ACA primary cultures was determined by RT-qPCR. To appraise the specific role of IGF1R and IR in mediating IGF2 mitogenic pathway, single and double silencing of receptors and their inhibition in 2 ACC cell lines derived from primary tumours (H295R and JIL-2266) and 2 derived from metastatic tumours (MUC-1 and TVBF-7) as well as in ACC and ACA primary cultures were performed. RESULTS We found a higher IGF1R plasma membrane localisation in ACC compared to ACA. In ACC this localisation was associated with higher Ki67 and Weiss score. IR was expressed in about half of ACC and in all ACA but, in ACC, it was associated with higher Ki67 and Weiss score. RT-qPCR revealed that the prevalent isoform of IR was IRA in ACC and ACA, but not in normal adrenals. In ACC cell lines, double IGF1R + IR silencing reduced cell proliferation in JIL-2266, MUC-1 and TVBF-7 but not in H295R. In ACC, but not ACA, primary cultures, cell proliferation was reduced after IR but not IGF1R knockdown. CONCLUSIONS Overall, these data suggest that IGF1R localisation and IR expression represent new biomarkers predicting tumour aggressiveness, as well as possible molecular markers useful to patients' stratification for more individualized IGF1R-IR targeted therapies or for novel pharmacological approaches specifically targeting IRA isoform.
Collapse
Affiliation(s)
- Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Emma Nozza
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
- PhD Program in Experimental Medicine, University of Milan, 20122, Milan, Italy
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
- PhD Program in Experimental Medicine, University of Milan, 20122, Milan, Italy
| | - Giorgio A Croci
- Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Anna Maria Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Donatella Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Sonia Di Bari
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
- PhD Program in Experimental Medicine, University of Milan, 20122, Milan, Italy
| | - Otilia Kimpel
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Mario Detomas
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Mariangela Tamburello
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25121, Brescia, Italy
| | - Marc P Schauer
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Sabine Herterich
- Central Laboratory, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Anna Angelousi
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- 51st Department of Propaedeutic Internal Medicine, National Technical University of Athens, Mikras Asias 75, Athens, 11527, Greece
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliero-Universitaria Careggi, 50134, Florence, Italy
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliero-Universitaria Careggi, 50134, Florence, Italy
| | - Gabriella Nesi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliero-Universitaria Careggi, 50134, Florence, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, CH-8006, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Dresden, Germany
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25121, Brescia, Italy
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Guido Di Dalmazi
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - Elisa Cassinotti
- Department of Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Ludovica Baldari
- Department of Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Serena Palmieri
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Alessandra Mangone
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
- Department of Metabolism and System Science, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy.
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy.
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy.
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy.
| |
Collapse
|
8
|
Ajadee A, Mahmud S, Sarkar A, Noor T, Ahmmed R, Haque Mollah MN. Screening of common genomic biomarkers to explore common drugs for the treatment of pancreatic and kidney cancers with type-2 diabetes through bioinformatics analysis. Sci Rep 2025; 15:7363. [PMID: 40025145 PMCID: PMC11873208 DOI: 10.1038/s41598-025-91875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Type 2 diabetes (T2D) is a crucial risk factor for both pancreatic cancer (PC) and kidney cancer (KC). However, effective common drugs for treating PC and/or KC patients who are also suffering from T2D are currently lacking, despite the probability of their co-occurrence. Taking disease-specific multiple drugs during the co-existence of multiple diseases may lead to adverse side effects or toxicity to the patients due to drug-drug interactions. This study aimed to identify T2D-, PC and KC-causing common genomic biomarkers (cGBs) highlighting their pathogenetic mechanisms to explore effective drugs as their common treatment. We analyzed transcriptomic profile datasets, applying weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis approaches to identify T2D-, PC-, and KC-causing cGBs. We then disclosed common pathogenetic mechanisms through gene ontology (GO) terms, KEGG pathways, regulatory networks, and DNA methylation of these cGBs. Initially, we identified 78 common differentially expressed genes (cDEGs) that could distinguish T2D, PC, and KC samples from controls based on their transcriptomic profiles. From these, six top-ranked cDEGs (TOP2A, BIRC5, RRM2, ALB, MUC1, and E2F7) were selected as cGBs and considered targets for exploring common drug molecules for each of three diseases. Functional enrichment analyses, including GO terms, KEGG pathways, and regulatory network analyses involving transcription factors (TFs) and microRNAs, along with DNA methylation and immune infiltration studies, revealed critical common molecular mechanisms linked to PC, KC, and T2D. Finally, we identified six top-ranked drug molecules (NVP.BHG712, Irinotecan, Olaparib, Imatinib, RG-4733, and Linsitinib) as potential common treatments for PC, KC and T2D during their co-existence, supported by the literature reviews. Thus, this bioinformatics study provides valuable insights and resources for developing a genome-guided common treatment strategy for PC and/or KC patients who are also suffering from T2D.
Collapse
Affiliation(s)
- Alvira Ajadee
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sabkat Mahmud
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Arnob Sarkar
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tasfia Noor
- Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology (RUET), Rajshahi, 6204, Bangladesh
| | - Reaz Ahmmed
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
9
|
Assad A, Incesu RB, Morra S, Scheipner L, Baudo A, Siech C, De Angelis M, Tian Z, Ahyai S, Longo N, Chun FKH, Shariat SF, Tilki D, Briganti A, Saad F, Karakiewicz PI. The Effect of Adrenalectomy on Overall Survival in Metastatic Adrenocortical Carcinoma. J Clin Endocrinol Metab 2025; 110:748-757. [PMID: 39162017 DOI: 10.1210/clinem/dgae571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
CONTEXT Although complete surgical resection provides the only means of cure in adrenocortical carcinoma (ACC), the magnitude of the survival benefit of adrenalectomy in metastatic ACC (mACC) is unknown. OBJECTIVE This work aimed to assess the effect of adrenalectomy on survival outcomes in patients with mACC in a real-world setting. METHODS Patients with mACC aged 18 years or older with metastatic ACC at initial presentation who were treated between 2004 and 2020 were identified within the Surveillance, Epidemiology, and End Results database (SEER 2004-2020), and we tested for differences according to adrenalectomy status. Intervention included primary tumor resection status (adrenalectomy vs no adrenalectomy). Kaplan-Meier plots, multivariable Cox regression models, and landmark analyses were used. Sensitivity analyses focused on use of systemic therapy, contemporary (2012-2020) vs historical (2004-2011), single vs multiple metastatic sites, and assessable specific solitary metastatic sites (lung only and liver only). RESULTS Of 543 patients with mACC, 194 (36%) underwent adrenalectomy. In multivariable analyses, adrenalectomy was associated with lower overall mortality without (hazard ratio [HR]: 0.39; P < .001), as well as with 3 months' landmark analyses (HR: 0.57; P = .002). The same association effect with 3 months' landmark analyses was recorded in patients exposed to systemic therapy (HR: 0.49; P < .001), contemporary patients (HR: 0.57; P = .004), historical patients (HR: 0.42; P < .001), and in those with lung-only solitary metastasis (HR: 0.50; P = .02). In contrast, no statistically significant association was recorded in patients naive to systemic therapy (HR: 0.68; P = .3), those with multiple metastatic sites (HR: 0.55; P = .07), and those with liver-only solitary metastasis (HR: 0.98; P = .9). CONCLUSION The present results indicate a potential protective effect of adrenalectomy in mACC, particularly in patients exposed to systemic therapy and those with lung-only metastases.
Collapse
Affiliation(s)
- Anis Assad
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
| | - Reha-Baris Incesu
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simone Morra
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Lukas Scheipner
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
- Department of Urology, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Baudo
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
- Department of Urology, IRCCS Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
- Department of Urology, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Carolin Siech
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
- Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany
| | - Mario De Angelis
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
- Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Zhe Tian
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
| | - Sascha Ahyai
- Department of Urology, Medical University of Graz, 8036 Graz, Austria
| | - Nicola Longo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Felix K H Chun
- Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60323 Frankfurt am Main, Germany
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Urology, Weill Cornell Medical College, New York, 10065 NY, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hourani Center of Applied Scientific Research, Al-Ahliyya Amman University, 19328 Amman, Jordan
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Urology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Urology, Koc University Hospital, 34010 Istanbul, Turkey
| | - Alberto Briganti
- Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Fred Saad
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
| | - Pierre I Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec H2X 0A9, Canada
| |
Collapse
|
10
|
McDermott N, O'Shea S, Rieger L, Cox OT, O'Connor R. β 1-integrin controls IGF-1R internalization and intracellular signaling. J Biol Chem 2025; 301:108021. [PMID: 39608716 PMCID: PMC11732470 DOI: 10.1016/j.jbc.2024.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Cell adhesion-dependent phosphorylation of insulin-like growth factor 1 receptor (IGF-1R) on its C-terminal tail (CT) at Tyr1250/1251 promotes receptor internalization and Golgi accumulation. We previously proposed that this phosphorylation is associated with cell migration and cancer aggressiveness, distinguishing IGF-1R activity from that of insulin receptor, which lacks these tyrosines. Here, we further investigated how adhesion signaling influences IGF-1R location and activity in migratory cancer cells and R- fibroblasts. We observed that IGF-1R, in triple-negative breast cancer tissues, is predominantly intracellular and dispersed from the plasma membrane compared with nontumor tissue. Datasets from basal-like breast cancer patients indicated a strong, positive correlation between IGF-1R protein expression and that of β1-integrin (ITGB1). In triple-negative breast cancer cells with high ITGB1 expression, suppressing ITGB1 enhanced IGF-1R stability and its retention at the plasma membrane, and reduced IGF-1R internalization during cell adhesion. In R- fibroblasts, we observed reduced IGF-1R autophosphorylation and Golgi accumulation when ITGB1 was suppressed. The stability of a Tyr1250/1251Phe (FF) IGF-1R mutant was less affected by ITGB1 suppression, indicating that Tyr1250/1251 phosphorylation is required for ITGB1-enhanced receptor internalization. Furthermore, a Tyr1250/1251Glu (EE) IGF-1R mutant exhibited a gain of cell migration and colony formation potential compared to WT IGF-1R or FF mutant. Tyr1250/1251 resides within the CT 1248SFYYS1252 motif, which engages the IGF-1R kinase domain. In silico, we investigated how mutation of these tyrosines may alter 1248SFYYS1252 conformation, dictating trajectory of the distal CT. We conclude that Tyr1250/1251 phosphorylation confers IGF-1R with unique protumorigenic signaling in a manner that is enhanced by ITGB1.
Collapse
Affiliation(s)
- Niamh McDermott
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Stephen O'Shea
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Leonie Rieger
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Orla T Cox
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Rosemary O'Connor
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Lee JY, Lee SB, Yang SW, Paik JS. Linsitinib inhibits IGF-1-induced cell proliferation and hyaluronic acid secretion by suppressing PI3K/Akt and ERK pathway in orbital fibroblasts from patients with thyroid-associated ophthalmopathy. PLoS One 2024; 19:e0311093. [PMID: 39693285 DOI: 10.1371/journal.pone.0311093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 12/20/2024] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), an autoimmune disorder of the retrobulbar tissue, is present in up to 50 percent of Graves's hyperthyroidism patients. Insulin-like growth factor 1 receptor (IGF-1R) has received attention as a target for the development of therapeutic agent for TAO. IGF-1R and TSHR (thyroid stimulating hormone receptor) interact with each other to form a physical or functional complex, further promoting the development of TAO. Linsitinib, OSI-906, is an inhibitor of IGF-1R and has been reported to inhibit cell proliferation of several tumor cells. Linsitinib has been receiving attention not only for its anticancer effect, but also for its anti-inflammatory effects. It has been reported that linsitinib reduces infiltration of inflammatory cells in orbital tissues, resulting in the reduction of muscle edema and adipose tissues in an experimental murine model for Graves' disease. In the current study, we investigated the issue of whether linsitinib inhibits the IGF-1-induced proliferation of orbital fibroblasts (OFs) via the suppression of phosphatidylinositol 3-kinase (PI3K) / Akt and extracellular signal-regulated kinase (ERK) pathway. Our results showed that pretreatment with linsitinib inhibited IGF-1-induced cell proliferation and hyaluronic acid secretion in the OFs of TAO patients. In addition, our results showed that pretreatment with linsitinib inhibited IGF-1-induced phosphorylation of IGF-1Rβ at Tyr1135, Akt at Ser473, and ERK in the OFs of patients with TAO. These results indicate that linsitinib inhibits IGF-1-induced cell proliferation and hyaluronic acid secretion in the OFs of TAO patients by suppressing the PI3K/Akt and ERK pathways, validating the use of linsitinib as a novel therapeutic agent for TAO.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Pathology, Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seong-Beom Lee
- Department of Pathology, Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Suk-Woo Yang
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Sun Paik
- Department of Ophthalmology and Visual Science, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Luffy M, Ganz AL, Wagner S, Wolf J, Ropertz J, Zeidan R, Kent JD, Douglas RS, Kahaly GJ. Linsitinib inhibits proliferation and induces apoptosis of both IGF-1R and TSH-R expressing cells. Front Immunol 2024; 15:1488220. [PMID: 39723207 PMCID: PMC11668815 DOI: 10.3389/fimmu.2024.1488220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background The insulin-like growth factor 1 receptor (IGF-1R) and the thyrotropin receptor (TSH-R) are expressed on orbital cells and thyrocytes. These receptors are targeted in autoimmune-induced thyroid eye disease (TED). Effective therapeutic treatment of TED inhibits activation of the IGF-1R/TSH-R complex. Methods The inhibitory effect on cell proliferation of a small molecule targeting IGF-1R phosphorylation (Linsitinib) was investigated in an IGF-1R expressing cell line and a Chinese Hamster Ovary (CHO) cell line overexpressing TSH-R. An IGF-1R monoclonal antibody antagonist, Teprotumumab served as control. Both cell lines were plated in a 96-well format and treated with both compounds for 24 hours. After addition of tetrazolium, absorbance was measured. The apoptosis marker caspase-3/7 activity was measured. The half-maximal inhibitory concentration (IC50) of TSH-R-Ab induced stimulation (stimulatory monoclonal antibody, mAb, M22) of the TSH-R cell line was evaluated with a cell-based bioassay for blocking TSH-R-Ab. Cells were treated with ten rising concentrations of either Linsitinib, Linsitinib + Metformin, Teprotumumab, or a blocking TSH-R mAb (K1-70). Results Linsitinib strongly inhibited the proliferation of both cell lines at several concentrations: 31,612.5 ng/mL (IGF-1R cell line -78%, P=0.0031, TSH-R cell line -75%, P=0.0059), and at 63,225 ng/mL (IGF-1R cell line -73%, P=0.0073, TSH-R cell line -73%, P=0.0108). Linsitinib induced apoptosis of both cell lines, both morphologically confirmed and with an increased caspase-3/7 activity at concentrations of 31,612.5 ng/mL (IGF-1R cell line P=0.0158, TSH-R cell line P=0.0048) and 63,225 ng/mL (IGF-1R cell line P=0.0005, TSH-R cell line P=0.0020). Linsitinib markedly inhibited proliferation of the IGF-1R cell line at all concentrations compared to Teprotumumab (P=0.0286). Teprotumumab inhibition was significant only at 15,806.25 ng/mL with the TSH-R cell line (-15%, P=0.0396). In addition, in the TSH-R-Ab blocking bioassay, Linsitinib and the tested compounds demonstrated strong inhibition across all ten dilutions (100%). Conclusions Linsitinib effectively induces apoptosis and inhibits proliferation of both IGF-1R and TSH-R expressing target cells, therefore demonstrating its therapeutic potential to block the reported crosstalk of the two mediators in autoimmune TED.
Collapse
Affiliation(s)
- Maximilian Luffy
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg-University (JGU) Medical Center, Mainz, Germany
| | - Anna-Lena Ganz
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg-University (JGU) Medical Center, Mainz, Germany
| | - Stefanie Wagner
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg-University (JGU) Medical Center, Mainz, Germany
| | - Jan Wolf
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg-University (JGU) Medical Center, Mainz, Germany
| | - Julian Ropertz
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg-University (JGU) Medical Center, Mainz, Germany
| | - Ryan Zeidan
- Sling Therapeutics, Ann Arbor, MI, United States
| | | | | | - George J. Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg-University (JGU) Medical Center, Mainz, Germany
| |
Collapse
|
13
|
Flauto F, De Martino MC, Vitiello C, Pivonello R, Colao A, Damiano V. A Review on Mitotane: A Target Therapy in Adrenocortical Carcinoma. Cancers (Basel) 2024; 16:4061. [PMID: 39682247 DOI: 10.3390/cancers16234061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Adrenocortical carcinomas (ACCs) are rare and aggressive malignancies of adrenal cortex, associated with largely unknown mechanisms of biological development and poor prognosis. Currently, mitotane is the sole approved drug for treating advanced adrenocortical carcinomas (ACCs) and is being utilized more frequently as postoperative adjuvant therapy. Although it is understood that mitotane targets the adrenal cortex and disrupts steroid production, its precise mechanism of action requires further exploration. Additionally, mitotane affects cytochrome P450 enzymes, causes the depolarization of mitochondrial membranes, and leads to an accumulation of free cholesterol, ultimately resulting in cell death. Many patients treated with mitotane develop disease progression over time, underlying the need to understand the mechanisms of primary and acquired resistance. In this manuscript, we provide an overview on the intracellular mechanisms of action of mitotane, exploring data regarding predictive factors of response and evidence associated with the development of primary and acquired resistance mechanisms. In this discussion, mitotane is considered a real target therapy.
Collapse
Affiliation(s)
- Fabiano Flauto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Chiara Vitiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Pivonello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Vincenzo Damiano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
14
|
Feely S, Mullen N, Donlon PT, Reidy E, Challapalli RS, Hassany M, Sorushanova A, Martinez ER, Owens P, Quinn AM, Pandit A, Harhen B, Finn DP, Hantel C, O'Halloran M, Prakash P, Dennedy MC. Development and Characterization of 3-Dimensional Cell Culture Models of Adrenocortical Carcinoma. Endocrinology 2024; 166:bqae159. [PMID: 39656817 DOI: 10.1210/endocr/bqae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy of the adrenal cortex that is associated with a poor prognosis. Developing effective treatment options for ACC is challenging owing to the current lack of representative preclinical models. This study addressed this limitation by developing and characterizing 3-dimensional (3D) cell cultures incorporating the ACC cell lines, MUC-1, HAC15, and H295R in a type I collagen matrix. ACC tissue samples were analyzed by immunohistochemistry to determine the presence of type I collagen in the tumor microenvironment. Cell viability and proliferation were assessed using flow cytometry and confocal microscopy. mRNA expression of steroidogenic enzymes and steroid secretion was analyzed by comparing the 3D and monolayer cell culture models. All cells were successfully cultured in a type I collagen matrix, which is highly expressed in the ACC tumor microenvironment and showed optimal viability until day 7. All 3 models showed increased metabolic and proliferative activity over time. Three-dimensional cell cultures were steroidogenic and demonstrated increased resistance to the gold standard chemotherapy, mitotane, compared with monolayer. The use of these models may lead to an improved understanding of disease pathology and provide a better representative platform for testing and screening of potential therapies.
Collapse
Affiliation(s)
- Sarah Feely
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Nathan Mullen
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Padraig T Donlon
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Ritihaas Surya Challapalli
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Mariam Hassany
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Anna Sorushanova
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Eduardo Ribes Martinez
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
| | - Peter Owens
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, University of Galway, Galway, H91 TK33, Ireland
| | - Anne Marie Quinn
- Department of Anatomic Pathology, Galway University Hospital, Galway, H91 YR71, Ireland
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
| | - Brendan Harhen
- Biological Mass Spectrometry Core Facility, University of Galway, Galway, H91 TK33, Ireland
| | - David P Finn
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Martin O'Halloran
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
- Translational Medical Device Laboratory, University of Galway, Galway, H91 V4AY, Ireland
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Michael C Dennedy
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
15
|
Song D, Wu Y, Li J, Liu J, Yi Z, Wang X, Sun J, Li L, Wu Q, Chen Y, Fang H, Luan T, Du H, Huang J, Peng W, Wei Y, Li F, Li Q, Zhang L, Zhu Y, Wan J, Ren G, Li H. Insulin-like growth factor 2 drives fibroblast-mediated tumor immunoevasion and confers resistance to immunotherapy. J Clin Invest 2024; 134:e183366. [PMID: 39545420 PMCID: PMC11563680 DOI: 10.1172/jci183366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
T cell exclusion is crucial in enabling tumor immune evasion and immunotherapy resistance. However, the key genes driving this process remain unclear. We uncovered a notable increase of insulin-like growth factor 2 (IGF2) in immune-excluded tumors, predominantly secreted by cancer-associated fibroblasts (CAFs). Using mice with systemic or fibroblast-specific deletion of IGF2, we demonstrated that IGF2 deficiency enhanced the infiltration and cytotoxic activity of CD8+ T cells, leading to a reduction in tumor burden. Integration of spatial and single-cell transcriptomics revealed that IGF2 promoted interaction between CAFs and T cells via CXCL12 and programmed death ligand 1 (PD-L1). Mechanistically, autocrine IGF2 activated PI3K/AKT signaling by binding to the IGF1 receptor (IGF1R) on CAFs, which was required for the immunosuppressive functions of CAFs. Furthermore, genetic ablation of IGF2 or targeted inhibition of the IGF2/IGF1R axis with the inhibitor linsitinib markedly boosted the response to immune checkpoint blockade. Clinically, elevated levels of IGF2 in tumors or plasma correlated with an adverse prognosis and reduced efficacy of anti-programmed death 1 treatment. Together, these results highlight the pivotal role of IGF2 in promoting CAF-mediated immunoevasion, indicating its potential as a biomarker and therapeutic target in immunotherapy.
Collapse
Affiliation(s)
- Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology
| | - Jie Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhou Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, and
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuying Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianxue Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiying Fang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tiankuo Luan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, and
| | - Fan Li
- Department of Breast and Thyroid Surgery, and
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Department of Pathophysiology and
| | - Yong Zhu
- Research Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, and
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Nagamine H, Yashiro M, Mizutani M, Sugimoto A, Matsumoto Y, Tani Y, Sawa K, Kaneda H, Yamada K, Watanabe T, Asai K, Suzuki S, Kawaguchi T. Insulin-like growth factor 1 receptor expression correlates with programmed death ligand 1 expression and poor survival in non-small cell lung cancer. PLoS One 2024; 19:e0297397. [PMID: 39365756 PMCID: PMC11452031 DOI: 10.1371/journal.pone.0297397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/23/2024] [Indexed: 10/06/2024] Open
Abstract
The insulin-like growth factor 1 receptor (IGF1R) has been associated with growth and metastasis in various cancers. However, its role in postoperative recurrence and prognosis in lung cancer lacks clear consensus. Therefore, this study aimed to investigate the potential relationship between IGF1R and postoperative recurrence as well as long-term survival in a large cohort. Additionally, we assessed the relationship between IGF1R and programmed death ligand 1 (PD-L1) expression. Our study encompassed 782 patients with non-small cell lung cancer (NSCLC). Immunostaining of surgical specimens was performed to evaluate IGF1R and PD-L1 expression. Among the patients, 279 (35.8%) showed positive IGF1R expression, with significantly worse relapse-free survival (RFS) and overall survival (OS). Notably, no significant differences in RFS and OS were observed between IGF1R-positive and -negative groups in stages 2 and 3. However, in the early stages (0-1), the positive group displayed significantly worse RFS and OS. In addition, PD-L1 expression was detected in 100 (12.8%) patients, with a significant predominance in the IGF1R-positive. IGF1R may serve as a prognostic indicator and a guide for perioperative treatment strategies in early-stage lung cancer. In conclusion, our findings underscore an association between IGF1R expression and poor survival and PD-L1 expression in NSCLC.
Collapse
Affiliation(s)
- Hiroaki Nagamine
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Megumi Mizutani
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Akira Sugimoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshiya Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoko Tani
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Sawa
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhiro Yamada
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Satoshi Suzuki
- Department of Thoracic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
17
|
Russell JS. Systemic Management of Advanced Adrenocortical Carcinoma. Curr Treat Options Oncol 2024; 25:1063-1072. [PMID: 39066856 DOI: 10.1007/s11864-024-01249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Adrenocortical cancer (ACC) is a rare and aggressive disease. Surgery has traditionally been the primary treatment for locally advanced disease with ongoing controversy around the optimal neoadjuvant and adjuvant treatment options. Unfortunately, local recurrence and the eventual development of metastatic disease is common and five-year survival rates are poor. While many trials have evaluated novel systemic agents to treat advanced adrenocortical cancer, only a few drugs have demonstrated any response at all. To date, only one drug, mitotane, is approved in the US for ACC and no regimen has clearly shown an increase in overall survival. In advanced metastatic or unresectable disease, data supports the first line regimen of EDP chemotherapy + mitotane as the primary treatment modality. In the second line, while data is limited, we would recommend consideration of immunotherapy using a PD(L)1 agent combined with a TKI/VEGF inhibitor or combination immunotherapy with PD1/CTLA-4 drugs. In all cases, we always prefer a clinical trial as available. This article reviews data from multiple studies evaluating novel systemic agents against ACC and discusses current systemic therapy combinations and ongoing clinical trials.
Collapse
Affiliation(s)
- Jeffery S Russell
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, 84112, USA.
| |
Collapse
|
18
|
Lopez-Cerda M, Lorenzo-Sanz L, da Silva-Diz V, Llop S, Penin RM, Bermejo JO, de Goeij-de Haas R, Piersma SR, Pham TV, Jimenez CR, Martin-Liberal J, Muñoz P. IGF1R signaling induces epithelial-mesenchymal plasticity via ITGAV in cutaneous carcinoma. J Exp Clin Cancer Res 2024; 43:211. [PMID: 39075581 PMCID: PMC11285232 DOI: 10.1186/s13046-024-03119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Early cutaneous squamous cell carcinomas (cSCCs) generally show epithelial differentiation features and good prognosis, whereas advanced cSCCs present mesenchymal traits associated with tumor relapse, metastasis, and poor survival. Currently, the mechanisms involved in cSCC progression are unclear, and the established markers are suboptimal for accurately predicting the clinical course of the disease. METHODS Using a mouse model of cSCC progression, expression microarray analysis, immunofluorescence and flow cytometry assays, we have identified a prognostic biomarker of tumor relapse, which has been evaluated in a cohort of cSCC patient samples. Phosphoproteomic analysis have revealed signaling pathways induced in epithelial plastic cancer cells that promote epithelial-mesenchymal plasticity (EMP) and tumor progression. These pathways have been validated by genetic and pharmacological inhibition assays. RESULTS We show that the emergence of epithelial cancer cells expressing integrin αV (ITGAV) promotes cSCC progression to a mesenchymal state. Consistently, ITGAV expression allows the identification of patients at risk of cSCC relapse above the currently employed clinical histopathological parameters. We also demonstrate that activation of insulin-like growth factor-1 receptor (IGF1R) pathway in epithelial cancer cells is necessary to induce EMP and mesenchymal state acquisition in response to tumor microenvironment-derived factors, while promoting ITGAV expression. Likewise, ITGAV knockdown in epithelial plastic cancer cells also blocks EMP acquisition, generating epithelial tumors. CONCLUSIONS Our results demonstrate that ITGAV is a prognostic biomarker of relapse in cSCCs that would allow improved patient stratification. ITGAV also collaborates with IGF1R to induce EMP in epithelial cancer cells and promotes cSCC progression, revealing a potential therapeutic strategy to block the generation of advanced mesenchymal cSCCs.
Collapse
Affiliation(s)
- Marta Lopez-Cerda
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laura Lorenzo-Sanz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria da Silva-Diz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Rutgers Cancer Institute of New Jersey, Rutgers University, 08901, New Brunswick, NJ, USA
| | - Sandra Llop
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa M Penin
- Pathology Service, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Oriol Bermejo
- Plastic Surgery Unit, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Richard de Goeij-de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Amsterdam UMC, 1081HV, Amsterdam, the Netherlands
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO) L'Hospitalet, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Purificación Muñoz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
19
|
Pliszka M, Szablewski L. Associations between Diabetes Mellitus and Selected Cancers. Int J Mol Sci 2024; 25:7476. [PMID: 39000583 PMCID: PMC11242587 DOI: 10.3390/ijms25137476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the major causes of mortality and is the second leading cause of death. Diabetes mellitus is a serious and growing problem worldwide, and its prevalence continues to grow; it is the 12th leading cause of death. An association between diabetes mellitus and cancer has been suggested for more than 100 years. Diabetes is a common disease diagnosed among patients with cancer, and evidence indicates that approximately 8-18% of patients with cancer have diabetes, with investigations suggesting an association between diabetes and some particular cancers, increasing the risk for developing cancers such as pancreatic, liver, colon, breast, stomach, and a few others. Breast and colorectal cancers have increased from 20% to 30% and there is a 97% increased risk of intrahepatic cholangiocarcinoma or endometrial cancer. On the other hand, a number of cancers and cancer therapies increase the risk of diabetes mellitus. Complications due to diabetes in patients with cancer may influence the choice of cancer therapy. Unfortunately, the mechanisms of the associations between diabetes mellitus and cancer are still unknown. The aim of this review is to summarize the association of diabetes mellitus with selected cancers and update the evidence on the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Monika Pliszka
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
20
|
Pak C, Yoon S, Lee JL, Yun T, Park I. Current Status and Future Direction in the Treatment of Advanced Adrenocortical Carcinoma. Curr Oncol Rep 2024; 26:307-317. [PMID: 38381366 DOI: 10.1007/s11912-024-01510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the current understanding and developments in the treatment options for adrenocortical carcinoma (ACC), focusing on the strategies utilized for advanced disease. RECENT FINDINGS Research has delved into the genomic landscape of ACC, revealing potential targets for therapy. Despite the failure of inhibitors aimed at the insulin like growth factor 1(IGF-1) receptor, other approaches, including vascular endothelial growth factor receptor (VEFGR) tyrosine kinase inhibitors and immune checkpoint inhibitors, are being investigated. There are also ongoing trials of combination treatments such as lenvatinib with pembrolizumab and cabozantinib with atezolizumab. ACC remains a challenging malignancy with limited effective treatment options. Although EDP-M stands as the frontline treatment, the search for effective second-line therapies is ongoing. Targeted therapies and immunotherapies, especially in combination regimens, are demonstrating potential and are the subject of continued research. The evolving genomic landscape emphasizes the significance of targeted therapies and the need for further in-depth studies to solidify effective treatment regimens for ACC.
Collapse
Affiliation(s)
- Chulkue Pak
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Tak Yun
- Division of Hematology-Oncology, Rare Cancers Clinic, Center for Specific Organs Center, National Cancer Center, Goyang, Republic of Korea
| | - Inkeun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
21
|
Ohmoto A, Hayashi N, Takahashi S, Ueki A. Current prospects of hereditary adrenal tumors: towards better clinical management. Hered Cancer Clin Pract 2024; 22:4. [PMID: 38532453 DOI: 10.1186/s13053-024-00276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Adrenocortical carcinoma (ACC) and pheochromocytoma/paraganglioma (PPGL) are two rare types of adrenal gland malignancies. Regarding hereditary tumors, some patients with ACC are associated with with Li-Fraumeni syndrome (LFS), and those with PPGL with multiple endocrine neoplasia type 2. Recent studies have expanded this spectrum to include other types of hereditary tumors, such as Lynch syndrome or familial adenomatous polyposis. Individuals harboring germline TP53 pathogenic variants that cause LFS have heterogeneous phenotypes depending on the respective variant type. As an example, R337H variant found in Brazilian is known as low penetrant. While 50-80% of pediatric ACC patients harbored a LFS, such a strong causal relationship is not observed in adult patients, which suggests different pathophysiologies between the two populations. As for PPGL, because multiple driver genes, such as succinate dehydrogenase (SDH)-related genes, RET, NF1, and VHL have been identified, universal multi-gene germline panel testing is warranted as a comprehensive and cost-effective approach. PPGL pathogenesis is divided into three molecular pathways (pseudohypoxia, Wnt signaling, and kinase signaling), and this classification is expected to result in personalized medicine based on genomic profiles. It remains unknown whether clinical characteristics differ between cases derived from genetic predisposition syndromes and sporadic cases, or whether the surveillance strategy should be changed depending on the genetic background or whether it should be uniform. Close cooperation among medical genomics experts, endocrinologists, oncologists, and early investigators is indispensable for improving the clinical management for multifaceted ACC and PPGL.
Collapse
Affiliation(s)
- Akihiro Ohmoto
- Division of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 417 East 68th Street, New York, NY, 10065, USA.
| | - Naomi Hayashi
- Division of Genomic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
- Division of Clinical Genetic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
| | - Shunji Takahashi
- Division of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
- Division of Genomic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
| | - Arisa Ueki
- Division of Clinical Genetic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
| |
Collapse
|
22
|
Ghosh C, Hu J, Kebebew E. Advances in translational research of the rare cancer type adrenocortical carcinoma. Nat Rev Cancer 2023; 23:805-824. [PMID: 37857840 DOI: 10.1038/s41568-023-00623-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Adrenocortical carcinoma is a rare malignancy with an annual worldwide incidence of 1-2 cases per 1 million and a 5-year survival rate of <60%. Although adrenocortical carcinoma is rare, such rare cancers account for approximately one third of patients diagnosed with cancer annually. In the past decade, there have been considerable advances in understanding the molecular basis of adrenocortical carcinoma. The genetic events associated with adrenocortical carcinoma in adults are distinct from those of paediatric cases, which are often associated with germline or somatic TP53 mutations and have a better prognosis. In adult primary adrenocortical carcinoma, the main somatic genetic alterations occur in genes that encode proteins involved in the WNT-β-catenin pathway, cell cycle and p53 apoptosis pathway, chromatin remodelling and telomere maintenance pathway, cAMP-protein kinase A (PKA) pathway or DNA transcription and RNA translation pathways. Recently, integrated molecular studies of adrenocortical carcinomas, which have characterized somatic mutations and the methylome as well as gene and microRNA expression profiles, have led to a molecular classification of these tumours that can predict prognosis and have helped to identify new therapeutic targets. In this Review, we summarize these recent translational research advances in adrenocortical carcinoma, which it is hoped could lead to improved patient diagnosis, treatment and outcome.
Collapse
Affiliation(s)
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Electron Kebebew
- Department of Surgery, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Liu T, Ren Y, Wang Q, Wang Y, Li Z, Sun W, Fan D, Luan Y, Gao Y, Yan Z. Exploring the role of the disulfidptosis-related gene SLC7A11 in adrenocortical carcinoma: implications for prognosis, immune infiltration, and therapeutic strategies. Cancer Cell Int 2023; 23:259. [PMID: 37919768 PMCID: PMC10623781 DOI: 10.1186/s12935-023-03091-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Disulfidptosis and the disulfidptosis-related gene SLC7A11 have recently attracted significant attention for their role in tumorigenesis and tumour management. However, its association with adrenocortical carcinoma (ACC) is rarely discussed. METHODS Differential analysis, Cox regression analysis, and survival analysis were used to screen for the hub gene SLC7A11 in the TCGA and GTEx databases and disulfidptosis-related gene sets. Then, we performed an association analysis between SLC7A11 and clinically relevant factors in ACC patients. Univariate and multivariate Cox regression analyses were performed to evaluate the prognostic value of SLC7A11 and clinically relevant factors. Weighted gene coexpression analysis was used to find genes associated with SLC7A11. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and the LinkedOmics database were used to analyse the functions of SLC7A11-associated genes. The CIBERSORT and Xcell algorithms were used to analyse the relationship between SLC7A11 and immune cell infiltration in ACC. The TISIDB database was applied to search for the correlation between SLC7A11 expression and immune chemokines. In addition, we performed a correlation analysis for SLC7A11 expression and tumour mutational burden and immune checkpoint-related genes and assessed drug sensitivity based on SLC7A11 expression. Immunohistochemistry and RT‒qPCR were used to validate the upregulation of SLC7A11 in the ACC. RESULTS SLC7A11 is highly expressed in multiple urological tumours, including ACC. SLC7A11 expression is strongly associated with clinically relevant factors (M-stage and MYL6 expression) in ACC. SLC7A11 and the constructed nomogram can accurately predict ACC patient outcomes. The functions of SLC7A11 and its closely related genes are tightly associated with the occurrence of disulfidptosis in ACC. SLC7A11 expression was tightly associated with various immune cell infiltration disorders in the ACC tumour microenvironment (TME). It was positively correlated with the expression of immune chemokines (CXCL8, CXCL3, and CCL20) and negatively correlated with the expression of immune chemokines (CXCL17 and CCL14). SLC7A11 expression was positively associated with the expression of immune checkpoint genes (NRP1, TNFSF4, TNFRSF9, and CD276) and tumour mutation burden. The expression level of SLC7A11 in ACC patients is closely associated withcthe drug sensitivity. CONCLUSION In ACC, high expression of SLC7A11 is associated with migration, invasion, drug sensitivity, immune infiltration disorders, and poor prognosis, and its induction of disulfidptosis is a promising target for the treatment of ACC.
Collapse
Affiliation(s)
- Tonghu Liu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Yilin Ren
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Qixin Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Department of Surgery, Nanyang Central Hospital, 473005, Nanyang, Henan, China
| | - Yu Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Zhiyuan Li
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Weibo Sun
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
- Department of Radiation Oncology and Oncology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, 450003, Zhengzhou, Henan, China
| | - Dandan Fan
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Yongkun Luan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
| | - Yukui Gao
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 241001, Wuhu, Anhui, China.
| | - Zechen Yan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Tumour Molecular Diagnosis and Treatment, 450001, Zhengzhou, Henan, China.
- Institute of Molecular Cancer Surgery of Zhengzhou University, 450001, Zhengzhou, Henan, China.
| |
Collapse
|
24
|
Nagdev PK, Agnivesh PK, Roy A, Sau S, Kalia NP. Exploring and exploiting the host cell autophagy during Mycobacterium tuberculosis infection. Eur J Clin Microbiol Infect Dis 2023; 42:1297-1315. [PMID: 37740791 DOI: 10.1007/s10096-023-04663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is a fatal infectious disease that prevails to be the second leading cause of death from a single infectious agent despite the availability of multiple drugs for treatment. The current treatment regimen involves the combination of several drugs for 6 months that remain ineffective in completely eradicating the infection because of several drawbacks, such as the long duration of treatment and the side effects of drugs causing non-adherence of patients to the treatment regimen. Autophagy is an intracellular degradative process that eliminates pathogens at the early stages of infection. Mycobacterium tuberculosis's unique autophagy-blocking capability makes it challenging to eliminate compared to usual pathogens. The present review discusses recent advances in autophagy-inhibiting factors and mechanisms that could be exploited to identify autophagy-inducing chemotherapeutics that could be used as adjunctive therapy with the existing first-line anti-TB agent to shorten the duration of therapy and enhance cure rates from multidrug-resistant tuberculosis (MDR-TB) and extreme drug-resistant tuberculosis (XDR-TB).
Collapse
Affiliation(s)
- Pavan Kumar Nagdev
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Arnab Roy
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashikanta Sau
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
25
|
Soni UK, Jenny L, Hegde RS. IGF-1R targeting in cancer - does sub-cellular localization matter? J Exp Clin Cancer Res 2023; 42:273. [PMID: 37858153 PMCID: PMC10588251 DOI: 10.1186/s13046-023-02850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.
Collapse
Affiliation(s)
- Upendra K Soni
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liam Jenny
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Dedhia PH, Sivakumar H, Rodriguez MA, Nairon KG, Zent JM, Zheng X, Jones K, Popova LV, Leight JL, Skardal A. A 3D adrenocortical carcinoma tumor platform for preclinical modeling of drug response and matrix metalloproteinase activity. Sci Rep 2023; 13:15508. [PMID: 37726363 PMCID: PMC10509170 DOI: 10.1038/s41598-023-42659-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin α. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.
Collapse
Affiliation(s)
- Priya H Dedhia
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 816 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Translational Therapeutics Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, USA.
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Marco A Rodriguez
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Kylie G Nairon
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Joshua M Zent
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Xuguang Zheng
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 816 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Katie Jones
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Liudmila V Popova
- Division of Surgical Oncology, The Ohio State University and Arthur G. James Comprehensive Cancer Center, 816 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Jennifer L Leight
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Cancer Biology Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| | - Aleksander Skardal
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 886 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- Cancer Biology Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
27
|
Libé R, Huillard O. Adrenocortical carcinoma: Diagnosis, prognostic classification and treatment of localized and advanced disease. Cancer Treat Res Commun 2023; 37:100759. [PMID: 37690343 DOI: 10.1016/j.ctarc.2023.100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer with an estimated incidence of 0.7 to 2.0 cases per 1 million population per year in the United States. It is an aggressive cancer originating in the cortex of the adrenal gland with a poor prognosis. The 5-year survival rate is less than 15% among patients with metastatic disease. In this article, we review the epidemiology and pathogenesis of ACC, the diagnostic procedures, the prognostic classification of ACC, and the treatment options from localized and resectable forms to advanced disease detailing recent therapeutic developments such as immunotherapy and molecularly targeted therapy.
Collapse
Affiliation(s)
- Rossella Libé
- Service Endocrinologie, AP-HP, Hôpital Cochin, French National Network, ENDOCAN-COMETE, F-75014, Paris, France
| | - Olivier Huillard
- Institut du Cancer Paris CARPEM, AP-HP, Department of medical oncology, Hôpital Cochin, F-75014, Paris, France.
| |
Collapse
|
28
|
Dedhia P, Sivakumar H, Rodriguez MA, Nairon KG, Zent JM, Zheng X, Jones K, Popova L, Leight JL, Skardal A. A 3D adrenocortical carcinoma tumor platform for preclinical modeling of drug response and matrix metalloproteinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525287. [PMID: 36747748 PMCID: PMC9900758 DOI: 10.1101/2023.01.24.525287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin alpha. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.
Collapse
|
29
|
Guan J, Borenäs M, Xiong J, Lai WY, Palmer RH, Hallberg B. IGF1R Contributes to Cell Proliferation in ALK-Mutated Neuroblastoma with Preference for Activating the PI3K-AKT Signaling Pathway. Cancers (Basel) 2023; 15:4252. [PMID: 37686528 PMCID: PMC10563084 DOI: 10.3390/cancers15174252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) by activating point mutation or amplification drives 5-12% of neuroblastoma (NB). Previous work has identified the involvement of the insulin-like growth factor 1 receptor (IGF1R) receptor tyrosine kinase (RTK) in a wide range of cancers. We show here that many NB cell lines exhibit IGF1R activity, and that IGF1R inhibition led to decreased cell proliferation to varying degrees in ALK-driven NB cells. Furthermore, combined inhibition of ALK and IGF1R resulted in synergistic anti-proliferation effects, in particular in ALK-mutated NB cells. Mechanistically, both ALK and IGF1R contribute significantly to the activation of downstream PI3K-AKT and RAS-MAPK signaling pathways in ALK-mutated NB cells. However, these two RTKs employ a differential repertoire of adaptor proteins to mediate downstream signaling effects. We show here that ALK signaling led to activation of the RAS-MAPK pathway by preferentially phosphorylating the adaptor proteins GAB1, GAB2, and FRS2, while IGF1R signaling preferentially phosphorylated IRS2, promoting activation of the PI3K-AKT pathway. Together, these findings reveal a potentially important role of the IGF1R RTK in ALK-mutated NB and that co-targeting of ALK and IGF1R may be advantageous in clinical treatment of ALK-mutated NB patients.
Collapse
Affiliation(s)
- Jikui Guan
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Junfeng Xiong
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| |
Collapse
|
30
|
Cha YJ, Koo JS. Expression of EMP 1, 2, and 3 in Adrenal Cortical Neoplasm and Pheochromocytoma. Int J Mol Sci 2023; 24:13016. [PMID: 37629198 PMCID: PMC10455306 DOI: 10.3390/ijms241613016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The purpose of this study is to investigate the expression of the epithelial membrane proteins (EMP) 1, 2, and 3 in adrenal gland neoplasm and to explore the broader implications of this. Tissue microarrays were constructed for 132 cases of adrenal cortical neoplasms (ACN) (adrenal cortical adenoma (115 cases), and carcinoma (17 cases)) and 189 cases of pheochromocytoma. Immunohistochemical staining was performed to identify EMP 1, 2, and 3, and was compared with clinicopathological parameters. The H-score of EMP 3 (p < 0.001) was higher in pheochromocytoma when compared to that of ACN, and the H-score of EMP 1 (p < 0.001) and EMP 3 (p < 0.001) was higher in adrenal cortical carcinomas when compared to that of adrenal cortical adenomas. A higher EMP 1 H-score was observed in pheochromocytomas with a GAPP score ≥3 (p = 0.018). In univariate analysis, high levels of EMP 1 and EMP 3 expression in ACN were associated with shorter overall survival (p = 0.001). Differences were observed in the expression of EMPs between ACN and pheochromocytoma. EMPs are associated with malignant tumor biology in adrenal cortical neoplasm and pheochromocytoma, suggesting the role of a prognostic and/or predictive factor for EMPs in adrenal tumor.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea;
| |
Collapse
|
31
|
Hescot S, Debien V, Hadoux J, Drui D, Haissaguerre M, de la Fouchardiere C, Vezzosi D, Do Cao C, Libé R, Le Tourneau C, Baudin E, Massard C, du Rusquec P. Outcome of adrenocortical carcinoma patients included in early phase clinical trials: Results from the French network ENDOCAN-COMETE. Eur J Cancer 2023; 189:112917. [PMID: 37277263 DOI: 10.1016/j.ejca.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND At metastatic stage, treatment of adrenocortical carcinoma (ACC) relies in first line on mitotane therapy, combination of mitotane with locoregional therapies or cisplatin-based chemotherapy according to initial presentation. In second line, ESMO-EURACAN recommendations favour enrolment of patients in clinical trials investigating experimental therapies. However, the benefit of this approach remains unknown. METHODS The aim of our retrospective study was to analyse the inclusion and outcomes of all patients of the French cohort ENDOCAN-COMETE included in early clinical trials between 2009 and 2019. RESULTS Of the 141 patients for whom a local or national multidisciplinary tumour board recommended, as first choice, to look for clinical trial, 27 patients (19%) were enroled in 30 early clinical trials. Median progression-free survival (PFS) was 3.02 months (95% confidence interval [95% CI]; 2.3-4.6) and median overall survival (OS) was 10.2 months (95% CI; 7.13-16.3) while the best response, evaluable in 28 of 30 trial participants according to RECIST 1.1 criteria, was partial response for 3 patients (11%) stable disease for 14 patients (50%) and progressive disease for 11 patients (39%), resulting in a disease control rate of 61%. Median growth modulation index (GMI) in our cohort was 1.32, with a significantly prolonged PFS in 52% of the patients compared to the previous line. The Royal Marsden Hospital (RMH) prognostic score was not associated with OS in this cohort. CONCLUSION Our study suggests that patients with metastatic ACC benefit from inclusion in early clinical trials in second line. As recommended, if a clinical trial is available, it should be the first choice for suitable patients.
Collapse
Affiliation(s)
- Ségolène Hescot
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Véronique Debien
- DITEP, Gustave Roussy, Villejuif, France; Université Libre de Bruxelles (ULB), Hôpitaux Universitaires de Bruxelles (H.U.B), Institut Jules Bordet, Brussels, Belgium
| | - Julien Hadoux
- Service d'Oncologie Endocrinienne, Gustave Roussy, Villejuif, France
| | - Delphine Drui
- Nantes Université, CHU Nantes, Service d'Endocrinologie-Diabétologie et Nutrition, Institut du thorax, Nantes, France
| | - Magalie Haissaguerre
- Département d'Endocrinologie, Hôpital Universitaire de Bordeaux, Institut D'Oncologie de Bordeaux, INSERM, Pessac, France
| | | | - Delphine Vezzosi
- Service d'Endocrinologie, Hopital Larrey, CHU Toulouse, Toulouse, France
| | | | - Rossella Libé
- Service d'Endocrinologie, French National Network for Adrenal Cancers ENDOCAN-COMETE, Hôpital Cochin, Paris, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France; Unité de Recherche INSERM U900, Université Paris-Saclay, Saint-Cloud, France
| | - Eric Baudin
- Service d'Oncologie Endocrinienne, Gustave Roussy, Villejuif, France.
| | | | - Pauline du Rusquec
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France; Unité de Recherche INSERM U900, Université Paris-Saclay, Saint-Cloud, France
| |
Collapse
|
32
|
Gulbins A, Horstmann M, Daser A, Flögel U, Oeverhaus M, Bechrakis NE, Banga JP, Keitsch S, Wilker B, Krause G, Hammer GD, Spencer AG, Zeidan R, Eckstein A, Philipp S, Görtz GE. Linsitinib, an IGF-1R inhibitor, attenuates disease development and progression in a model of thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1211473. [PMID: 37435490 PMCID: PMC10331459 DOI: 10.3389/fendo.2023.1211473] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Graves' disease (GD) is an autoimmune disorder caused by autoantibodies against the thyroid stimulating hormone receptor (TSHR) leading to overstimulation of the thyroid gland. Thyroid eye disease (TED) is the most common extra thyroidal manifestation of GD. Therapeutic options to treat TED are very limited and novel treatments need to be developed. In the present study we investigated the effect of linsitinib, a dual small-molecule kinase inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) and the Insulin receptor (IR) on the disease outcome of GD and TED. Methods Linsitinib was administered orally for four weeks with therapy initiating in either the early ("active") or the late ("chronic") phases of the disease. In the thyroid and the orbit, autoimmune hyperthyroidism and orbitopathy were analyzed serologically (total anti-TSHR binding antibodies, stimulating anti TSHR antibodies, total T4 levels), immunohistochemically (H&E-, CD3-, TNFa- and Sirius red staining) and with immunofluorescence (F4/80 staining). An MRI was performed to quantify in vivo tissue remodeling inside the orbit. Results Linsitinib prevented autoimmune hyperthyroidism in the early state of the disease, by reducing morphological changes indicative for hyperthyroidism and blocking T-cell infiltration, visualized by CD3 staining. In the late state of the disease linsitinib had its main effect in the orbit. Linsitinib reduced immune infiltration of T-cells (CD3 staining) and macrophages (F4/80 and TNFa staining) in the orbita in experimental GD suggesting an additional, direct effect of linsitinib on the autoimmune response. In addition, treatment with linsitinib normalized the amount of brown adipose tissue in both the early and late group. An in vivo MRI of the late group was performed and revealed a marked decrease of inflammation, visualized by 19F MR imaging, significant reduction of existing muscle edema and formation of brown adipose tissue. Conclusion Here, we demonstrate that linsitinib effectively prevents development and progression of thyroid eye disease in an experimental murine model for Graves' disease. Linsitinib improved the total disease outcome, indicating the clinical significance of the findings and providing a path to therapeutic intervention of Graves' Disease. Our data support the use of linsitinib as a novel treatment for thyroid eye disease.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Michael Oeverhaus
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - J. Paul Banga
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gerd Krause
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | | | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Svenja Philipp
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
33
|
Schmid P, Cortes J, Joaquim A, Jañez NM, Morales S, Díaz-Redondo T, Blau S, Neven P, Lemieux J, García-Sáenz JÁ, Hart L, Biyukov T, Baktash N, Massey D, Burris HA, Rugo HS. XENERA-1: a randomised double-blind Phase II trial of xentuzumab in combination with everolimus and exemestane versus everolimus and exemestane in patients with hormone receptor-positive/HER2-negative metastatic breast cancer and non-visceral disease. Breast Cancer Res 2023; 25:67. [PMID: 37308971 DOI: 10.1186/s13058-023-01649-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/20/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Xentuzumab is a humanised monoclonal antibody that binds to IGF-1 and IGF-2, neutralising their proliferative activity and restoring inhibition of AKT by everolimus. This study evaluated the addition of xentuzumab to everolimus and exemestane in patients with advanced breast cancer with non-visceral disease. METHODS This double-blind, randomised, Phase II study was undertaken in female patients with hormone-receptor (HR)-positive/human epidermal growth factor 2 (HER2)-negative advanced breast cancer with non-visceral disease who had received prior endocrine therapy with or without CDK4/6 inhibitors. Patients received a weekly intravenous infusion of xentuzumab (1000 mg) or placebo in combination with everolimus (10 mg/day orally) and exemestane (25 mg/day orally). The primary endpoint was progression-free survival (PFS) per independent review. RESULTS A total of 103 patients were randomised and 101 were treated (n = 50 in the xentuzumab arm and n = 51 in the placebo arm). The trial was unblinded early due to high rates of discordance between independent and investigator assessment of PFS. Per independent assessment, median PFS was 12.7 (95% CI 6.8-29.3) months with xentuzumab and 11.0 (7.7-19.5) months with placebo (hazard ratio 1.19; 95% CI 0.55-2.59; p = 0.6534). Per investigator assessment, median PFS was 7.4 (6.8-9.7) months with xentuzumab and 9.2 (5.6-14.4) months with placebo (hazard ratio 1.23; 95% CI 0.69-2.20; p = 0.4800). Tolerability was similar between the arms, with diarrhoea (33.3-56.0%), fatigue (33.3-44.0%) and headache (21.6-40.0%) being the most common treatment-emergent adverse events. The incidence of grade ≥ 3 hyperglycaemia was similar between the xentuzumab (2.0%) and placebo (5.9%) arms. CONCLUSIONS While this study demonstrated that xentuzumab could be safely combined with everolimus and exemestane in patients with HR-positive/HER2-negative advanced breast cancer with non-visceral disease, there was no PFS benefit with the addition of xentuzumab. Trial registration ClinicalTrials.gov, NCT03659136. Prospectively registered, September 6, 2018.
Collapse
Affiliation(s)
- Peter Schmid
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Ana Joaquim
- Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | | | | | - Tamara Díaz-Redondo
- Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Unidad de Gestión Clínica Intercentros de Oncología, Málaga, Spain
| | - Sibel Blau
- Northwest Medical Specialties, Tacoma, WA, USA
| | | | - Julie Lemieux
- Centre Hospitalier Universitaire de Québec-Université Laval Research Centre, Quebec, Canada
| | | | - Lowell Hart
- Florida Cancer Specialists, Fort Myers, FL, USA
| | | | - Navid Baktash
- Boehringer Ingelheim (Canada) Ltd, Burlington, ON, Canada
| | - Dan Massey
- Elderbrook Solutions GmbH on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Hope S Rugo
- University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
34
|
Libé R, Haissaguerre M, Renaudin K, Faron M, Decaussin-Petrucci M, Deschamps F, Gimenez-Roqueplo AP, Mirallie E, Murez T, Pattou F, Rocher L, Taïeb D, Savoie PH, Tabarin A, Bertherat J, Baudin E, de la Fouchardière C. [Guidelines of the French National ENDOCAN-COMETE, Association of Endocrine Surgery, Society of Urology for the management of adrenocortical carcinoma]. Bull Cancer 2023; 110:707-730. [PMID: 37061367 DOI: 10.1016/j.bulcan.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/17/2023]
Abstract
The adrenocortical carcinoma (ACC) is a primary malignant tumor developed from the adrenal cortex, defined by a Weiss score≥3. Its prognosis is poor and depends mainly on the stage of the disease at diagnosis. Care is organized in France by the multidisciplinary expert centers of the national ENDOCAN-COMETE "Adrenal Cancers" network, certified by the National Cancer Institute. This document updates the guidelines for the management of ACC in adults based on the most robust data in the literature. It's divided into 11 chapters: (1) circumstances of discovery; (2) pre-therapeutic assessment; (3) diagnosis of ACC; (4) oncogenetics; (5) prognostic classifications; (6) treatment of hormonal hypersecretion; (7) treatment of localized forms; (8) treatment of relapses; (9) treatment of advanced forms; (10) follow-up; (11) the particular case of ACC and pregnancy. R0 resection of all localized ACC remains an unmet need and it must be performed in expert centers. Flow-charts for the therapeutic management of localized ACC, relapse or advanced ACC are provided. It was written by the experts from the national ENDOCAN-COMETE network and validated by all French Societies involved in the management of these patients (endocrinology, medical oncology, endocrine surgery, urology, pathology, genetics, nuclear medicine, radiology, interventional radiology).
Collapse
Affiliation(s)
- Rossella Libé
- CHU Paris Centre, hôpital Cochin, centre coordonnateur ENDOCAN-COMETE, service d'endocrinologie, Paris, France.
| | - Magalie Haissaguerre
- CHU de Bordeaux, hôpital Haut-Lévêque, centre coordonnateur ENDOCAN-COMETE, service d'endocrinologie, Pessac, France
| | - Karine Renaudin
- CHU de Nantes, hôpital Hôtel-Dieu, service d'anatomie pathologique, Nantes, France
| | - Matthieu Faron
- Gustave-Roussy Cancer Campus, service de chirurgie viscérale oncologique, Villejuif, France
| | | | - Fréderic Deschamps
- Gustave-Roussy Cancer Campus, département de radiologie interventionnelle, Villejuif, France
| | | | - Eric Mirallie
- CHU de Nantes, hôpital Hôtel-Dieu, institut des maladies de l'appareil digestif, chirurgie cancérologique, digestive et endocrinienne, Nantes, France
| | - Thibaut Murez
- CHU de Montpellier, département d'urologie et transplantation rénale, Montpellier, France
| | - François Pattou
- CHRU de Lille, département de chirurgie endocrinienne et métabolique, Lille, France
| | - Laurence Rocher
- Hôpitaux et université Paris Saclay, hôpital Antoine-Béclère, service de radiologie, Clamart, France
| | - David Taïeb
- La Timone University Hospital, Aix-Marseille University, CERIMED, département de médecine nucléaire, Marseille, France
| | - Pierre Henri Savoie
- Hôpital d'instruction des Armées Sainte-Anne, service d'urologie, Toulon, France
| | - Antoine Tabarin
- CHU de Bordeaux, hôpital Haut-Lévêque, centre coordonnateur ENDOCAN-COMETE, service d'endocrinologie, Pessac, France
| | - Jérôme Bertherat
- CHU Paris Centre, hôpital Cochin, centre coordonnateur ENDOCAN-COMETE, service d'endocrinologie, Paris, France
| | - Eric Baudin
- Gustave-Roussy Cancer Campus, centre coordonnateur ENDOCAN-COMETE, service de cancérologie endocrine, Villejuif, France
| | | |
Collapse
|
35
|
Ai W, Liu T, Lv C, Feng X, Wang Q. Modulation of cancer-associated fibroblasts by nanodelivery system to enhance efficacy of tumor therapy. Nanomedicine (Lond) 2023; 18:1025-1039. [PMID: 37584613 DOI: 10.2217/nnm-2023-0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most common cells in the tumor stroma and are essential for tumor development and metastasis. While decreasing the release and infiltration of nanomedicine through nonspecific internalization, CAFs specifically increase solid tumor pressure and interstitial fluid pressure by secreting tumor growth- and migration-promoting cytokines, which increases vascular and organ pressure caused by solid tumor pressure. Nanoparticles have good permeability and can penetrate tumor tissue to reach the lesion area, inhibiting tumor growth. Thus, CAFs are used as modifiable targets. Here, the authors review the biological functions, origins and biomarkers of CAFs and summarize strategies for modulating CAFs in nanodelivery systems. This study provides a prospective guide to modulating CAFs to enhance oncology treatment.
Collapse
Affiliation(s)
- Wei Ai
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| | - Tianhui Liu
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| | - Changshun Lv
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| | - Xiangru Feng
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| | - Qingshuang Wang
- College of Life Science & Technology, Changchun University of Science & Technology, Changchun, Jilin, 130022, China
| |
Collapse
|
36
|
Kenney L, Hughes M. Adrenocortical Carcinoma: Role of Adjuvant and Neoadjuvant Therapy. Surg Oncol Clin N Am 2023; 32:279-287. [PMID: 36925185 DOI: 10.1016/j.soc.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Adjuvant and neoadjuvant chemotherapy in the treatment of adrenocortical carcinoma (ACC) is limited by few existing trials, most of which are retrospective. The drug mitotane has been used for the treatment of ACC, although existing guidelines only support its use in high risk of recurrence. The first phase 3 trial involving systemic chemotherapy for ACC supports the use of etoposide, doxorubicin, cisplatin, and mitotane for combination therapy. No significant breakthrough has been discovered thus far in of targeted and immunotherapies. Neoadjuvant chemotherapy is only used to allow for complete surgical resection because complete excision is the definitive treatment of ACC.
Collapse
Affiliation(s)
- Lisa Kenney
- Department of Surgery, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 610, Norfolk, VA 23507, USA.
| | - Marybeth Hughes
- Department of Surgery, Division of Surgical Oncology, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 610, Norfolk, VA 23507, USA
| |
Collapse
|
37
|
Uhlmann EJ, Mackel CE, Deforzh E, Rabinovsky R, Brastianos PK, Varma H, Vega RA, Krichevsky AM. Inhibition of the epigenetically activated miR-483-5p/IGF-2 pathway results in rapid loss of meningioma tumor cell viability. J Neurooncol 2023; 162:109-118. [PMID: 36809604 PMCID: PMC10050031 DOI: 10.1007/s11060-023-04264-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Meningioma is the most common primary central nervous system tumor often causing serious complications, and presently no medical treatment is available. The goal of this study was to discover miRNAs dysregulated in meningioma, and explore miRNA-associated pathways amenable for therapeutic interventions. METHODS Small RNA sequencing was performed on meningioma tumor samples to study grade-dependent changes in microRNA expression. Gene expression was analyzed by chromatin marks, qRT-PCR and western blot. miRNA modulation, anti-IGF-2 neutralizing antibodies, and inhibitors against IGF1R were evaluated in a tumor-derived primary cultures of meningioma cells. RESULTS Meningioma tumor samples showed high, grade-dependent expression of miR-483-5p, associated with high mRNA and protein expression of its host gene IGF-2. Inhibition of miR-483-5p reduced the growth of cultured meningioma cells, whereas a miR-483 mimic increased cell proliferation. Similarly, inhibition of this pathway with anti-IGF-2 neutralizing antibodies reduced meningioma cell proliferation. Small molecule tyrosine kinase inhibitor blockade of the IGF-2 receptor (IGF1R) resulted in rapid loss of viability of cultured meningioma tumor-derived cells, suggesting that autocrine IGF-2 feedback is obligatory for meningioma tumor cell survival and growth. The observed IGF1R-inhibitory IC50 for GSK1838705A and ceritinib in cell-based assays along with the available pharmacokinetics data predicted that effective drug concentration could be achieved in vivo as a new medical treatment of meningioma. CONCLUSION Meningioma cell growth is critically dependent on autocrine miR-483/IGF-2 stimulation and the IGF-2 pathway provides a feasible meningioma treatment target.
Collapse
Affiliation(s)
- Erik J Uhlmann
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Charles E Mackel
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Priscilla K Brastianos
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hemant Varma
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Rafael A Vega
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
38
|
Emerging Role of IGF-1 in Prostate Cancer: A Promising Biomarker and Therapeutic Target. Cancers (Basel) 2023; 15:cancers15041287. [PMID: 36831629 PMCID: PMC9954466 DOI: 10.3390/cancers15041287] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Prostate cancer (PCa) is a highly heterogeneous disease driven by gene alterations and microenvironmental influences. Not only enhanced serum IGF-1 but also the activation of IGF-1R and its downstream signaling components has been increasingly recognized to have a vital driving role in the development of PCa. A better understanding of IGF-1/IGF-1R activity and regulation has therefore emerged as an important subject of PCa research. IGF-1/IGF-1R signaling affects diverse biological processes in cancer cells, including promoting survival and renewal, inducing migration and spread, and promoting resistance to radiation and castration. Consequently, inhibitory reagents targeting IGF-1/IGF-1R have been developed to limit cancer development. Multiple agents targeting IGF-1/IGF-1R signaling have shown effects against tumor growth in tumor xenograft models, but further verification of their effectiveness in PCa patients in clinical trials is still needed. Combining androgen deprivation therapy or cytotoxic chemotherapeutics with IGF-1R antagonists based on reliable predictive biomarkers and developing and applying novel agents may provide more desirable outcomes. This review will summarize the contribution of IGF-1 signaling to the development of PCa and highlight the relevance of this signaling axis in potential strategies for cancer therapy.
Collapse
|
39
|
Padua TCD, Marandino L, Raggi D, Hallanger-Johnson J, Kutikov A, Spiess PE, Necchi A. A Systematic Review of Published Clinical Trials in the Systemic Treatment of Adrenocortical Carcinoma: An Initiative Led on Behalf of the Global Society of Rare Genitourinary Tumors. Clin Genitourin Cancer 2023; 21:1-7. [PMID: 36376169 DOI: 10.1016/j.clgc.2022.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 02/01/2023]
Abstract
Adrenocortical carcinoma (ACC) is a very rare endocrine cancer and is associated with a poor prognosis. There is a paucity of randomized clinical trials for this rare disease. We aimed to perform a systematic review of the literature on systemic therapy options in different stages of ACC. A systematic review was performed using Pubmed and Embase databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 24 trials of systemic therapy in the treatment of ACC were identified and included in this review. Only one clinical trial in the adjuvant setting was identified, the negative phase III trial ADIUVO, which tested mitotane in low to intermediate-risk ACC patients. In the treatment of advanced ACC, cisplatin-based chemotherapy was evaluated in small and non-randomized phase II trials, and response rates ranged from 21% to 53.5%. The phase III trial FIRM-ACT compared etoposide, doxorubicin, cisplatin, and mitotane versus treatment with streptozotocin and mitotane and showed no difference in OS, but higher RR and PFS were reported with the multi-drug regimen. Six clinical trials of immunotherapy and seven studies of targeted therapy in advanced ACC were included, with modest activity and no phase 3 trials were identified. Treatment recommendations of ACC are based on retrospective and small studies with limited systemic therapy options. International and multi-center collaboration is essential to expand clinical research and improve outcomes.
Collapse
Affiliation(s)
| | - Laura Marandino
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, MI, Italy
| | - Daniele Raggi
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, MI, Italy
| | | | - Alexander Kutikov
- Division of Urology and Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Andrea Necchi
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, MI, Italy; Vita-Salute San Raffaele University, Milan, MI, Italy
| |
Collapse
|
40
|
Zhong W, Wang X, Wang Y, Sun G, Zhang J, Li Z. Obesity and endocrine-related cancer: The important role of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1093257. [PMID: 36755926 PMCID: PMC9899991 DOI: 10.3389/fendo.2023.1093257] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Obesity is increasingly becoming a global epidemic of concern and is considered a risk factor for several endocrine-related cancers. Moreover, obesity is associated with cancer development and poor prognosis. As a metabolic abnormality, obesity leads to a series of changes in insulin, IGF-1, sex hormones, IGFBPs, and adipokines. Among these factors, IGF-1 plays an important role in obesity-related endocrine cancers. This review describes the role of obesity in endocrine-related cancers, such as prostate cancer, breast cancer and pancreatic cancer, focusing on the mechanism of IGF-1 and the crosstalk with estrogen and adipokines. In addition, this review briefly introduces the current status of IGF-1R inhibitors in clinical practice and shows the prospect of IGF-1R inhibitors in combination with other anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuo Li
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
41
|
Lapadula D, Lam B, Terai M, Sugase T, Tanaka R, Farias E, Kadamb R, Lopez-Anton M, Heine CC, Modasia B, Aguirre-Ghiso JA, Aplin AE, Sato T, Benovic JL. IGF1R Inhibition Enhances the Therapeutic Effects of Gq/11 Inhibition in Metastatic Uveal Melanoma Progression. Mol Cancer Ther 2023; 22:63-74. [PMID: 36223548 PMCID: PMC9812929 DOI: 10.1158/1535-7163.mct-22-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/04/2022] [Accepted: 10/06/2022] [Indexed: 02/03/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumor in adults, and up to 50% of patients develop metastatic disease, which remains uncurable. Because patients with metastatic UM have an average survival of less than 1 year after diagnosis, there is an urgent need to develop new treatment strategies. Although activating mutations in Gαq or Gα11 proteins are major drivers of pathogenesis, the therapeutic intervention of downstream Gαq/11 targets has been unsuccessful in treating UM, possibly due to alternative signaling pathways and/or resistance mechanisms. Activation of the insulin-like growth factor 1 (IGF1) signaling pathway promotes cell growth, metastasis, and drug resistance in many types of cancers, including UM, where expression of the IGF1 receptor (IGF1R) correlates with a poor prognosis. In this article, we show that direct inhibition of Gαq/11 by the cyclic depsipeptide YM-254890 in combination with inhibition of IGF1R by linsitinib cooperatively inhibits downstream signaling and proliferation of UM cells. We further demonstrate that a 2-week combination treatment of 0.3 to 0.4 mg/kg of YM-254890 administered by intraperitoneal injection and 25 to 40 mg/kg linsitinib administered by oral gavage effectively inhibits the growth of metastatic UM tumors in immunodeficient NOD scid gamma (NSG) mice and identifies the IGF1 pathway as a potential resistance mechanism in response to Gαq/11 inhibition in UM. These data suggest that the combination of Gαq/11 and IGF1R inhibition provides a promising therapeutic strategy to treat metastatic UM.
Collapse
Affiliation(s)
- Dominic Lapadula
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Bao Lam
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Mizue Terai
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Takahito Sugase
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryota Tanaka
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Eduardo Farias
- Icahn School of Medicine at Mount, New York, NY, United States
| | - Rama Kadamb
- Albert Einstein College of Medicine, Bronx, NewYork, United States
| | | | - Christian C Heine
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | | | | | - Andrew E Aplin
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Takami Sato
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Jeffrey L Benovic
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Adrenocortical carcinoma (ACC) is a rare, aggressive disease with a paucity of data and great variability between published studies regarding its treatment. This review provides information on current clinical management and oncological and endocrine outcomes. RECENT FINDINGS Complete surgical resection is the only potentially curative treatment for adrenocortical carcinoma (ACC). Adjuvant mitotane treatment is recommended in patients with favourable/intermediate prognosis. As part of the endocrine follow-up, steroid hormones and thyroid hormones may be decreased or increased and may need to be substituted or suppressed. Recurrences are common. If the disease-free interval is more than 12 months, surgery is a treatment if complete resection is feasible. In advanced/metastatic ACC patients, the prognosis is poor. Mitotane monotherapy is only appropriate for patients with low tumour burden and indolent disease. Patients with unfavourable prognosis should be treated with aggressive cytotoxic therapy. Patients requiring third-line treatment should be considered for clinical trials. Immunotherapy and targeted therapy are currently being investigated, but have so far yielded only unsatisfactory results. SUMMARY There is scarce evidence for the treatment of ACC, which often complicates clinical decision-making. Patients who progress on EDP-M should be treated in clinical trials.
Collapse
|
43
|
Ruggiero E, Tizianel I, Caccese M, Lombardi G, Pambuku A, Zagonel V, Scaroni C, Formaglio F, Ceccato F. Advanced Adrenocortical Carcinoma: From Symptoms Control to Palliative Care. Cancers (Basel) 2022; 14:5901. [PMID: 36497381 PMCID: PMC9739560 DOI: 10.3390/cancers14235901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
The prognosis of patients with advanced adrenocortical carcinoma (ACC) is often poor: in the case of metastatic disease, five-year survival is reduced. Advanced disease is not a non-curable disease and, in referral centers, the multidisciplinary approach is the standard of care: if a shared decision regarding several treatments is available, including the correct timing for the performance of each one, overall survival is increased. However, many patients with advanced ACC experience severe psychological and physical symptoms secondary to the disease and the cancer treatments. These symptoms, combined with existential issues, debase the quality of the remaining life. Recent strong evidence from cancer research supports the early integration of palliative care principles and skills into the advanced cancer patient's trajectory, even when asymptomatic. A patient with ACC risks quickly suffering from symptoms/effects alongside the disease; therefore, early palliative care, in some cases concurrent with oncological treatment (simultaneous care), is suggested. The aims of this paper are to review current, advanced ACC approaches, highlight appropriate forms of ACC symptom management and suggest when and how palliative care can be incorporated into the ACC standard of care.
Collapse
Affiliation(s)
- Elena Ruggiero
- Pain Therapy and Palliative Care with Hospice Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Irene Tizianel
- Department of Medicine DIMED, University of Padova, 35128 Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, 35128 Padova, Italy
| | - Mario Caccese
- Department of Oncology, Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Ardi Pambuku
- Pain Therapy and Palliative Care with Hospice Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Carla Scaroni
- Department of Medicine DIMED, University of Padova, 35128 Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, 35128 Padova, Italy
| | - Fabio Formaglio
- Pain Therapy and Palliative Care with Hospice Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Filippo Ceccato
- Department of Medicine DIMED, University of Padova, 35128 Padova, Italy
- Endocrine Disease Unit, University-Hospital of Padova, 35128 Padova, Italy
| |
Collapse
|
44
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
45
|
Activating IGF1R hotspot non-frameshift insertions define a novel, potentially targetable molecular subtype of adenoid cystic carcinoma. Mod Pathol 2022; 35:1618-1623. [PMID: 35970994 DOI: 10.1038/s41379-022-01126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Activation of the tyrosine kinase receptor IGF1R is targetable with existing tyrosine kinase inhibitors (TKIs) and monoclonal antibodies, but mutations in IGF1R have not been systematically characterized. Pan-cancer analysis of 326,911 tumors identified two distinct, activating non-frameshift insertion hotspots in IGF1R, which were significantly enriched in adenoid cystic carcinomas (ACCs). IGF1R alterations from 326,911 subjects were analyzed by variant effect prediction class, position within the gene, and cancer type. 6502 (2.0%) samples harbored one or more alterations in IGF1R. Two regions were enriched for non-frameshift insertions: codons 663-666 at the hinge region of the fibronectin type 3 domain and codons 1034-1049 in the tyrosine kinase domain. Hotspot insertions were highly enriched in ACCs (27.3-fold higher than in the remainder of the pan-cancer dataset; P = 2.3 × 10-17). Among salivary gland tumors, IGF1R hotspot insertions were entirely specific to ACCs. IGF1R alterations were most often mutually exclusive with other ACC drivers (9/15, 60%). Tumors with non-frameshift hotspot IGF1R insertions represent a novel, potentially targetable subtype of ACC. Additional studies are needed to determine whether these patients respond to existing IGF1R inhibitors.
Collapse
|
46
|
Bridging the Scientific Gaps to Identify Effective Treatments in Adrenocortical Cancer. Cancers (Basel) 2022; 14:cancers14215245. [DOI: 10.3390/cancers14215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocortical cancer (ACC) typically presents in advanced stages of disease and has a dismal prognosis. One of the foremost reasons for this is the lack of available systemic therapies, with mitotane remaining the backbone of treatment since its discovery in the 1960s, despite underwhelming efficacy. Surgery remains the only potentially curative option, but about half of patients will recur post-operatively, often with metastatic disease. Other local treatment options have been attempted but are only used practically on a case-by-case basis. Over the past few decades there have been significant advances in understanding the molecular background of ACC, but this has not yet translated to better treatment options. Attempts at novel treatment strategies have not provided significant clinical benefit. This paper reviews our current treatment options and molecular understanding of ACC and the reasons why a successful treatment has remained elusive. Additionally, we discuss the knowledge gaps that need to be overcome to bring us closer to successful treatment and ways to bridge them.
Collapse
|
47
|
Lippert J, Fassnacht M, Ronchi CL. The role of molecular profiling in adrenocortical carcinoma. Clin Endocrinol (Oxf) 2022; 97:460-472. [PMID: 34750847 DOI: 10.1111/cen.14629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare, aggressive cancer with still partially unknown pathogenesis, heterogenous clinical behaviour and no effective treatment for advanced stages. Therefore, there is an urgent clinical unmet need for better prognostication strategies, innovative therapies and significant improvement of the management of the individual patients. In this review, we summarize available studies on molecular prognostic markers and markers predictive of response to standard therapies as well as newly proposed drug targets in sporadic ACC. We include in vitro studies and available clinical trials, focusing on alterations at the DNA, RNA and epigenetic levels. We also discuss the potential of biomarkers to be implemented in a clinical routine workflow for improved ACC patient care.
Collapse
Affiliation(s)
- Juliane Lippert
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- College of Medical and Dental Sciences, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
48
|
SFRP4 + stromal cell subpopulation with IGF1 signaling in human endometrial regeneration. Cell Discov 2022; 8:95. [PMID: 36163341 PMCID: PMC9512788 DOI: 10.1038/s41421-022-00438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Abstract
Our understanding of full-thickness endometrial regeneration after injury is limited by an incomplete molecular characterization of the cell populations responsible for the organ functions. To help fill this knowledge gap, we characterized 10,551 cells of full-thickness normal human uterine from two menstrual phases (proliferative and secretory phase) using unbiased single cell RNA-sequencing. We dissected cell heterogeneity of main cell types (epithelial, stromal, endothelial, and immune cells) of the full thickness uterine tissues, cell population architectures of human uterus cells across the menstrual cycle. We identified an SFRP4+ stromal cell subpopulation that was highly enriched in the regenerative stage of the human endometria during the menstrual cycle, and the SFRP4+ stromal cells could significantly enhance the proliferation of human endometrial epithelial organoid in vitro, and promote the regeneration of endometrial epithelial glands and full-thickness endometrial injury through IGF1 signaling pathway in vivo. Our cell atlas of full-thickness uterine tissues revealed the cellular heterogeneities, cell population architectures, and their cell-cell communications during the monthly regeneration of the human endometria, which provide insight into the biology of human endometrial regeneration and the development of regenerative medicine treatments against endometrial damage and intrauterine adhesion.
Collapse
|
49
|
Faron M, Lamartina L, Hescot S, Moog S, Deschamps F, Roux C, Libe R, Durand-Labrunie J, Al Ghuzlan A, Hadoux J, Baudin E. New endpoints in adrenocortical carcinoma studies: a mini review. Endocrine 2022; 77:419-424. [PMID: 35869971 DOI: 10.1007/s12020-022-03128-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Adrenocortical carcinoma (ACC) is a very rare and aggressive malignant disease. Therefore, overall survival (OS) has long been considered as the best endpoint. Yet, a unique endpoint is not optimal to take into account the heterogeneity in tumor profile and the diversification of therapeutic option. The purpose of this mini review was to describe endpoints used in the past, present and future in the field of ACC. METHODS Pubmed and Clinicaltrial.gov were used to identify relevant studies. RESULTS Before year 2000 only three endpoints were regularly used: OS, recurrence-free survival (RFS) and response rate. These endpoints were used because ACC was seen as a homogeneous diseases with a high recurrence rate and low rate of long-term survival. Since 2000; along with the apparition of new class of drug, progression-free survival (PFS) has been more and more used. Other endpoints as "time to chemotherapy" or "Progression-free survival 2" were used to evaluate multimodal therapies or treatment with a delayed action. Finally, there is a hope that in the near future, quality of life along with other patient-reported outcomes may be used more frequently. CONCLUSION While OS and PFS are currently the most used endpoints in ACC, new endpoints are needed to better take into account the challenges offered by different situations and treatment strategies.
Collapse
Affiliation(s)
- Matthieu Faron
- Department de Chirurgie Oncologique, Gustave Roussy Cancer Campus, Villejuif, France.
- INSERM 1018, Equipe Oncostat, Université Paris Saclay, Gif-sur-Yvette, France.
| | - Livia Lamartina
- Service d'oncologie Endocrinienne, Département d'imagerie, Gustave Roussy, Villejuif, France
| | - Segolene Hescot
- Service de Médecine Nucléaire, Institute Curie, Saint-Cloud, France
| | - Sophie Moog
- Service d'oncologie Endocrinienne, Département d'imagerie, Gustave Roussy, Villejuif, France
| | - Frederic Deschamps
- Service de Radiologie Interventionelle, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charles Roux
- Service de Radiologie Interventionelle, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rosella Libe
- Coordinator of the INCA-COMETE Network, Gustave Roussy Cancer Campus, Villejuif, France
- Service d'Endocrinologie, Cochin Hospital, Paris, France
| | | | - Abir Al Ghuzlan
- Service d'anatomopathologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Julien Hadoux
- Service d'oncologie Endocrinienne, Département d'imagerie, Gustave Roussy, Villejuif, France
| | - Eric Baudin
- Service d'oncologie Endocrinienne, Département d'imagerie, Gustave Roussy, Villejuif, France
| |
Collapse
|
50
|
Cremaschi V, Abate A, Cosentini D, Grisanti S, Rossini E, Laganà M, Tamburello M, Turla A, Sigala S, Berruti A. Advances in adrenocortical carcinoma pharmacotherapy: what is the current state of the art? Expert Opin Pharmacother 2022; 23:1413-1424. [PMID: 35876101 DOI: 10.1080/14656566.2022.2106128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Surgery, followed or not by adjuvant mitotane, is the current mainstay of therapy for patients with early-stage adrenocortical carcinoma (ACC). Mitotane, either alone or in association with EDP (Etoposide-Doxorubicin-Cisplatin) combination chemotherapy, is the standard approach for patients with metastatic ACC. AREAS COVERED The activity of newer cytotoxic drugs, radioligands, targeted therapies and immunotherapy, both in preclinical and in clinical studies, will be reviewed in this paper. EXPERT OPINION ADIUVO trial revealed that the administration of adjuvant mitotane is not advantageous in patients with good prognosis. Future strategies are to intensify efforts in adjuvant setting in patients with high risk of relapse. In patients with advanced/metastatic disease, modern targeted therapies have shown significant cytotoxicity in preclinical studies, however, studies in ACC patients reported disappointing results so far. The absence of targeted agents specifically inhibiting the major molecular pathways of ACC growth is the main cause of the failure of these drugs. Since ACC is often antigenic but poorly immunogenic, the results of immunotherapy trials appeared inferior to those achieved in the management of patients with other malignancies. Radioligand therapy may also be a promising approach. Combination of chemotherapy plus immunotherapy could be interesting to be tested in the future.
Collapse
Affiliation(s)
- Valentina Cremaschi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Antonella Turla
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|