1
|
Wu PW, Huang CC, Chang PH, Lee TJ, Lin CY, Chang JTC, Huang CC. Post-irradiation Sinus Mucosa Disease in Nasopharyngeal Carcinoma Patients Treated With Proton Therapy. Laryngoscope 2025; 135:1908-1914. [PMID: 39714978 DOI: 10.1002/lary.31974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Post-irradiation sinonasal mucosa disease (SMD) is observed in patients with nasopharyngeal carcinoma (NPC) treated with radiotherapy (RT), leading to a detrimental impact on quality of life. This study aimed to assess the incidence, severity, and regression of the post-irradiation SMD among patients with NPC treated with proton therapy. METHODS NPC patients treated with proton therapy were retrospectively enrolled. The incidence of SMD was detected using scheduled follow-up magnetic resonance images. The severity of SMD was evaluated using the Lund-Mackay (L-M) staging system. Localized inflammation of the nasopharynx was measured with the endoscopy score. RESULTS A total of 161 NPC patients were recruited. The incidence of SMD significantly increased from the third month to the first year after RT. The severity of SMD gradually decreased over time. Regression analyses showed that patients with pre-treatment SMD (OR = 1.75; p = 0.005) and lower serum total protein (OR = 0.16; p = 0.01) were associated with persistence of SMD at 2 years post-RT. Correlations were observed between post-RT L-M and endoscopy scores (r s = 0.239, p < 0.001). A high endoscopy score (cut-off value, 1.5 [sensitivity, 87.5%; specificity, 49.2%]) predicted the persistence of SMD. CONCLUSIONS Proton therapy in patients with NPC induces SMD, which peaked at 3 months post-RT, decreased gradually with time, and became insignificant at 2 years post-RT. Pre-existence of SMD and lower serum total protein levels were factors associated with the persistence of post-irradiation SMDs. LEVEL OF EVIDENCE 4 Laryngoscope, 135:1908-1914, 2025.
Collapse
Affiliation(s)
- Pei-Wen Wu
- Division of Rhinology, Department of Otolaryngology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Che Huang
- Division of Rhinology, Department of Otolaryngology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hung Chang
- Division of Rhinology, Department of Otolaryngology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ta-Jen Lee
- Division of Rhinology, Department of Otolaryngology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chien-Yu Lin
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Joseph Tung-Chieh Chang
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chien-Chia Huang
- Division of Rhinology, Department of Otolaryngology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Sarlak S, Pagès G, Luciano F. Enhancing radiotherapy techniques for Triple-Negative breast cancer treatment. Cancer Treat Rev 2025; 136:102939. [PMID: 40286498 DOI: 10.1016/j.ctrv.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Breast cancer is the most prevalent cancer among women worldwide, with various subtypes that require distinct treatment approaches. Among these, Triple-Negative Breast Bancer (TNBC) is recognized as the most aggressive form, often associated with poor prognosis due to its lack of targeted therapeutic options. This review specifically focuses on Radiotherapy (RT) as a treatment modality for TNBC, evaluating recent advancements and ongoing challenges, particularly the issue of radioresistance. RT remains an essential part in the management of breast cancer, including TNBC. Over the years, multiple improvements have been made to enhance RT effectiveness and minimize resistance. The introduction of advanced techniques such as Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiosurgery (SRS) has significantly improved precision and reduced toxicity. More recently, proton radiation therapy, a novel RT modality, has been introduced, offering enhanced dose distribution and reducing damage to surrounding healthy tissues. Despite these technological advancements, a subset of TNBC patients continues to exhibit resistance to RT, leading to recurrence and poor treatment outcomes. To overcome radioresistance, there is an increasing interest in combining RT with targeted therapeutic agents that sensitize cancer cells to radiation. Radiosensitizing drugs have been explored to enhance the efficacy of RT by making cancer cells more susceptible to radiation-induced damage. Potential candidates include DNA damage repair inhibitors, immune checkpoint inhibitors, and small-molecule targeted therapies that interfere with key survival pathways in TNBC cells. In conclusion, while RT remains a crucial modality for TNBC treatment, radioresistance remains a significant challenge. Future research should focus on optimizing RT techniques while integrating radiosensitizing agents to improve treatment efficacy. By combining RT with targeted drug therapy, a more effective and personalized treatment approach can be developed, ultimately improving patient outcomes and reducing recurrence rates in TNBC.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Gilles Pagès
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Frédéric Luciano
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| |
Collapse
|
3
|
Taengsakul N, Nivatpumin P, Chotchutipan T, Tungfung S. Carotid artery stenosis and ischemic cerebrovascular events after radiotherapy in patients with head and neck cancer. PLoS One 2025; 20:e0314861. [PMID: 39883632 PMCID: PMC11781643 DOI: 10.1371/journal.pone.0314861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 02/01/2025] Open
Abstract
Radiotherapy is the main treatment for patients with head and neck cancer (HNC) and is associated with an increased risk of ischemic cerebrovascular events (ICVE). The purpose of this cross-sectional study was to determine the incidence of ICVE and carotid artery stenosis (CAS) in patients with HNC who receive radiotherapy and the risk factors for CAS. We enrolled 907 patients with HNC who underwent radiotherapy between February 2011 and June 2022 and obtained information on their clinical and tumor characteristics and their treatment from the clinical records. Data on risk factors for atherosclerosis, medications used, and radiotherapy were also collected. The patients were followed through to the end of 2023 unless they died or were lost to follow-up. The overall incidence of ICVE was 1.98%, with a cumulative incidence of 1.65% over 5 years. In patients who did not have a preexisting carotid artery lesion, the cumulative incidence of significant CAS was 1.3% at 12 months, 2.2% at 24 months, and 2.5% at 36 months post-radiotherapy. The most important risk factors for new CAS were age >65 years (aHR = 2.60, p = 0.008, 95% confidence Interval: 1.28-5.30), laryngeal cancer (aHR = 2.36, p<0.017, 95% confidence Interval: 1.01-5.55), and total plaque score (aHR = 1.38, p<0.001, 95% confidence Interval: 1.23-1.56). There was a significant increase in stenosis, plaque score, and wall thickness in all areas in the carotid artery (p<0.001). The incidence of ICVE and the cumulative incidence of CAS was found to be lower in the Thai population than in other populations. The main risk factors for new CAS were age >65 years, laryngeal cancer, and total plaque score. Changes in the carotid artery were detected early and affected all areas in the artery. Patients with HNC treated by radiotherapy should be assessed for risk factors for CAS and undergo vascular surveillance during follow-up.
Collapse
Affiliation(s)
- Nawaphan Taengsakul
- Department of Surgery, Chulabhorn Hospital, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Padungcharn Nivatpumin
- Department of Surgery, Chulabhorn Hospital, Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thong Chotchutipan
- Department of Radiation Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sunanta Tungfung
- Department of Radiation Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
4
|
van Rijn-Dekker MI, van der Schaaf A, Nienhuis SW, Arents-Huls AS, Ger RB, Hamming-Vrieze O, Hoebers FJP, de Ridder M, Vigorito S, Zwijnenburg EM, Langendijk JA, van Luijk P, Steenbakkers RJHM. Clinical Introduction of Stem Cell Sparing Radiotherapy to Reduce the Risk of Xerostomia in Patients with Head and Neck Cancer. Cancers (Basel) 2024; 16:4283. [PMID: 39766181 PMCID: PMC11674908 DOI: 10.3390/cancers16244283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Studies have shown that dose to the parotid gland stem cell rich (SCR) regions should be reduced to lower the risk of xerostomia after radiotherapy (RT). This study aimed to assess whether stem cell sparing (SCS)-RT can be adopted in routine clinical practice. METHODS Multiple planning studies were performed to compare SCS-RT with standard (ST)-RT using 30 head and neck cancer patients. Shifts in mean dose to the SCR regions (Dmean,SCR) and other organs at risk and their estimated impact on normal tissue complication probability (NTCP) for side-effects were compared using Wilcoxon signed-rank test. A multicenter study was performed (eight institutions, three patients) to test the generalizability of SCS-RT using the Friedman test. RESULTS Using photons, Dmean,SCR was reduced with median 4.1/3.5 Gy for ipsilateral/contralateral (p < 0.001). The largest reductions were when the SCR regions overlapped less with target volumes. Subsequently, NTCPs for xerostomia decreased (p < 0.001). Using protons, Dmean,SCR was also reduced (2.2/1.9 Gy for ipsilateral/contralateral, p < 0.002). Nevertheless, SCS-RT did not further decrease NTCPs for xerostomia (p > 0.17). Target coverage and prevention of other side-effects were not compromised. However, increased mean oral cavity dose was observed in some patients. Lastly, in the multicenter study Dmean,SCR could be reduced by slightly adjusting the standard optimization. Contralateral Dmean,SCR reductions differed between centers (p = 0.01), which was attributed to differences in ST-RT plans. CONCLUSIONS Stem cell sparing radiotherapy can be clinically introduced by making small adjustments to the optimization strategy and can reduce the risk of xerostomia.
Collapse
Affiliation(s)
- Maria I. van Rijn-Dekker
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.I.v.R.-D.); (A.v.d.S.); (S.W.N.); (J.A.L.); (P.v.L.)
| | - Arjen van der Schaaf
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.I.v.R.-D.); (A.v.d.S.); (S.W.N.); (J.A.L.); (P.v.L.)
| | - Sanne W. Nienhuis
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.I.v.R.-D.); (A.v.d.S.); (S.W.N.); (J.A.L.); (P.v.L.)
| | | | - Rachel B. Ger
- Radiation Oncology and Molecular Radiation Sciences, John Hopkins Medicine, Baltimore, MD 21287, USA;
| | - Olga Hamming-Vrieze
- Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands;
| | - Frank J. P. Hoebers
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University, 6229 ET Maastricht, The Netherlands;
| | - Mischa de Ridder
- Department of Radiation Oncology, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Sabrina Vigorito
- Unit of Medical Physics, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Ellen M. Zwijnenburg
- Department of Radiation Oncology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands;
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.I.v.R.-D.); (A.v.d.S.); (S.W.N.); (J.A.L.); (P.v.L.)
| | - Peter van Luijk
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.I.v.R.-D.); (A.v.d.S.); (S.W.N.); (J.A.L.); (P.v.L.)
| | - Roel J. H. M. Steenbakkers
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (M.I.v.R.-D.); (A.v.d.S.); (S.W.N.); (J.A.L.); (P.v.L.)
| |
Collapse
|
5
|
Youssef I, Mohamed N, Kallini D, Zakeri K, Lin H, Han D, Qi H, Nosov A, Riaz N, Chen L, Yu Y, Dunn LA, Sherman EJ, Wray R, Schöder H, Lee NY. An Analysis of Positron Emission Tomography Maximum Standard Uptake Value Among Patients With Head and Neck Cancer Receiving Photon and Proton Radiation. Int J Radiat Oncol Biol Phys 2024; 120:1326-1331. [PMID: 38499254 DOI: 10.1016/j.ijrobp.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE One main advantage of proton therapy versus photon therapy is its precise radiation delivery to targets without exit dose, resulting in lower dose to surrounding healthy tissues. This is critical, given the proximity of head and neck tumors to normal structures. However, proton planning requires careful consideration of factors, including air-tissue interface, anatomic uncertainties, surgical artifacts, weight fluctuations, rapid tumor response, and daily variations in setup and anatomy, as these heterogeneities can lead to inaccuracies in targeting and creating unwarranted hotspots to a greater extent than photon radiation. In addition, the elevated relative biological effectiveness at the Bragg peak's distal end can also increase hot spots within and outside the target area. METHODS AND MATERIALS The purpose of this study was to evaluate for a difference in positron emission tomography (PET) standard uptake value (SUV) after definitive treatment, between intensity modulated proton therapy (IMPT) and intensity modulated photon therapy (IMRT). In addition, we compared the biologic dose between PET areas of high and low uptake within the clinical target volume-primary of patients treated with IMPT. This work is assuming that the greater SUV may potentially result in greater toxicities. For the purposes of this short communication, we are strictly focusing on the SUV and do not have correlation with toxicity outcomes. To accomplish this, we compared the 3- and 6-month posttreatment fluorodeoxyglucose PET scans for 100 matched patients with oropharyngeal cancer treated definitively without surgery using either IMPT (n = 50) or IMRT (n = 50). RESULTS Our study found a significant difference in biologic dose between the high- and low-uptake regions on 3-month posttreatment scans of IMPT. However, this difference did not translate to a significant difference in PET uptake in the clinical target volume-primary at 3 and 6 months' follow-up between patients who received IMPT versus IMRT. CONCLUSIONS Studies have proposed that proton's greater relative biological effectiveness at the Bragg peak could lead to tissue inflammation. Our study did not corroborate these findings. This study's conclusion underscores the need for further investigations with ultimate correlation with clinical toxicity outcomes.
Collapse
Affiliation(s)
- Irini Youssef
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; New York Proton Center, New York, New York
| | - Nader Mohamed
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Kallini
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Haibo Lin
- New York Proton Center, New York, New York
| | - Dong Han
- New York Proton Center, New York, New York
| | - Hang Qi
- New York Proton Center, New York, New York
| | - Anton Nosov
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Linda Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lara Ann Dunn
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric J Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rick Wray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; New York Proton Center, New York, New York.
| |
Collapse
|
6
|
Schäfer M, Hildenbrand G, Hausmann M. Impact of Gold Nanoparticles and Ionizing Radiation on Whole Chromatin Organization as Detected by Single-Molecule Localization Microscopy. Int J Mol Sci 2024; 25:12843. [PMID: 39684554 DOI: 10.3390/ijms252312843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
In radiation tumor therapy, irradiation, on one hand, should cause cell death to the tumor. On the other hand, the surrounding non-tumor tissue should be maintained unaffected. Therefore, methods of local dose enhancements are highly interesting. Gold nanoparticles, which are preferentially uptaken by very-fast-proliferating tumor cells, may enhance damaging. However, the results in the literature obtained from cell culture and animal tissue experiments are very contradictory, i.e., only some experiments reveal increased cell killing but others do not. Thus, a better understanding of cellular mechanisms is required. Using the breast cancer cell model SkBr3, the effects of gold nanoparticles in combination with ionizing radiation on chromatin network organization were investigated by Single-Molecule Localization Microscopy (SMLM) and applications of mathematical topology calculations (e.g., Persistent Homology, Principal Component Analysis, etc.). The data reveal a dose and nanoparticle dependent re-organization of chromatin, although colony forming assays do not show a significant reduction of cell survival after the application of gold nanoparticles to the cells. In addition, the spatial organization of γH2AX clusters was elucidated, and characteristic changes were obtained depending on dose and gold nanoparticle application. The results indicate a complex response of ALU-related chromatin and heterochromatin organization correlating to ionizing radiation and gold nanoparticle incorporation. Such complex whole chromatin re-organization is usually associated with changes in genome function and supports the hypothesis that, with the application of gold nanoparticles, not only is DNA damage increasing but also the efficiency of DNA repair may be increased. The understanding of complex chromatin responses might help to improve the gold nanoparticle efficiency in radiation treatment.
Collapse
Affiliation(s)
- Myriam Schäfer
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Sciences Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Sciences Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Sami M, Yousuf M, Hashmi Q, Ahmad M, Ghilman M, Shareef H. Proton Radiation Therapy for Head and Neck Cancers. Cureus 2024; 16:e70752. [PMID: 39493189 PMCID: PMC11531088 DOI: 10.7759/cureus.70752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Head and neck (HnN) cancers are among the most common cancers in the world. Proton therapy (PT) is one of the latest advancements in the treatment modalities of cancers. Proton therapy is specifically used to treat HnN cancer patients due to its less toxic effects on the surrounding critical structures. Keeping in view the opportunities for further advancements, there is a lot of literature covering PT in HnN cancer patients. However, few compiled studies are not enough to compare the toxicities, overall survival (OS), local control (LC), and quality of life (QoL) of PT with that of intensity-modulated radiation therapy (IMRT). The objective of this review is to compile and summarize the literature available on the toxicities, OS, LC, and QoL in HnN cancer patients post PT. We have gathered and summarized the literature found under the keyword "proton therapy for head and neck cancers". Proton therapy is a preferable option over IMRT because it isolates tumors of the HnN, reduces exposure of healthy cells to radiation, and allows accurate tumor scanning using the pencil beam technique. In view of this article, we can say that PT is a preferable mode of radiotherapy for HnN cancer patients in view of its accuracy and lower incidents of acute and late toxicities.
Collapse
Affiliation(s)
| | | | - Qasim Hashmi
- Otolaryngology, Ruth K. M. Pfau, Civil Hospital Karachi, Karachi, PAK
| | | | - Mohammad Ghilman
- Medicine, Dow University of Health Sciences, Civil Hospital Karachi, Karachi, PAK
| | - Huzaifa Shareef
- Medicine, Dow University of Health Sciences, Civil Hospital Karachi, Karachi, PAK
| |
Collapse
|
8
|
Rubino F, Brahimaj B, Hanna EY, Su SY, Phan J, Grosshans DR, DeMonte F, Raza SM. Does Time to Initiation of Adjuvant Radiotherapy Affect Reconstruction Outcomes after Endoscopic Resection of Skull Base Malignancies? J Neurol Surg B Skull Base 2024; 85:445-457. [PMID: 39228888 PMCID: PMC11368463 DOI: 10.1055/a-2114-4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/19/2023] [Indexed: 09/05/2024] Open
Abstract
Introduction and Objective It is unclear if the length of the time interval to initiation of adjuvant radiation therapy (RT) after endoscopic endonasal surgery affects reconstruction outcomes. In this study we present our experience with adjuvant RT after endoscopic endonasal procedures, to determine if the time to RT after surgery impacts post-RT reconstruction complication rates. Methods A retrospective cohort study of 164 patients who underwent endoscopic endonasal surgery between 1998 and 2021 was conducted. Using Cox proportional hazard ratios (HRs), we evaluated several variables and the complications that occurred during the 1-year period after starting RT. Results Seventy-eight (47.5%) and eighty-six patients (52.5%) received RT before and after the sixth postoperative week, respectively. The overall post-RT complication rates were 28%, most of these were severe infections ( n = 20, 12.2%) and delayed CSF leak ( n = 4, 2.5%). There was no significant difference in the post-RT complications between the patients who received postoperative RT before or after the sixth operative week (HR: 1.13; 95% confidence interval: 0.63-2.02; p = 0.675 ). Univariate analysis demonstrated negative impact associated with smoking history ( p = 0.015 ), the use of neoadjuvant chemotherapy ( p = 0.0001 ), and the use of photon therapy ( p = 0.012 ); and we found a positive impact with the use of multilayer reconstruction techniques (overall, p = 0.041 ; with fat, p = 0.038 ; and/or fascia graft, p = 0.035 ). After a multivariate analysis only, smoking history was an independent risk factor for post-RT complications ( p = 0.012 ). Conclusion Delaying RT for more than 6 weeks after endoscopic endonasal surgery does not provide a significant benefit for reconstruction outcomes. However, special attention may be warranted in patients with smoking history who have received neoadjuvant chemotherapy, or in patients who will receive photon-based RT after surgery as these groups were found to have increased complication rates post-RT.
Collapse
Affiliation(s)
- Franco Rubino
- Division of Surgery, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Bledi Brahimaj
- Division of Surgery, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Ehab Y. Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Shirley Y. Su
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jack Phan
- Division of Radiation Oncology, Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - David R. Grosshans
- Division of Radiation Oncology, Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Franco DeMonte
- Division of Surgery, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Shaan M. Raza
- Division of Surgery, Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
9
|
Frank SJ, Das IJ, Simone CB, Davis BJ, Deville C, Liao Z, Lo SS, McGovern SL, Parikh RR, Reilly M, Small W, Schechter NR. ACR-ARS Practice Parameter for the Performance of Proton Beam Therapy. Int J Part Ther 2024; 13:100021. [PMID: 39347377 PMCID: PMC11437389 DOI: 10.1016/j.ijpt.2024.100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose This practice parameter for the performance of proton beam radiation therapy was revised collaboratively by the American College of Radiology (ACR) and the American Radium Society (ARS). This practice parameter was developed to serve as a tool in the appropriate application of proton therapy in the care of cancer patients or other patients with conditions in which radiation therapy is indicated. It addresses clinical implementation of proton radiation therapy, including personnel qualifications, quality assurance (QA) standards, indications, and suggested documentation. Materials and Methods This practice parameter for the performance of proton beam radiation therapy was developed according to the process described under the heading The Process for Developing ACR Practice Parameters and Technical Standards on the ACR website (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards) by the Committee on Practice Parameters - Radiation Oncology of the ACR Commission on Radiation Oncology in collaboration with the ARS. Results The qualifications and responsibilities of personnel, such as the proton center Chief Medical Officer or Medical Director, Radiation Oncologist, Radiation Physicist, Dosimetrist and Therapist, are outlined, including the necessity for continuing medical education. Proton therapy standard clinical indications and methodologies of treatment management are outlined by disease site and treatment group (e.g. pediatrics) including documentation and the process of proton therapy workflow and equipment specifications. Additionally, this proton therapy practice parameter updates policies and procedures related to a quality assurance and performance improvement program (QAPI), patient education, infection control, and safety. Conclusion As proton therapy becomes more accessible to cancer patients, policies and procedures as outlined in this practice parameter will help ensure quality and safety programs are effectively implemented to optimize clinical care.
Collapse
Affiliation(s)
- Steven J. Frank
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Indra J. Das
- Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Curtiland Deville
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhongxing Liao
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon S. Lo
- University of Washington Medical Center, Seattle, WA 98195, USA
| | - Susan L. McGovern
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rahul R. Parikh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maguire Center, Maywood, IL 60153, USA
| | | |
Collapse
|
10
|
Le K, Marchant JN, Le KDR. Evaluating the Effectiveness of Proton Beam Therapy Compared to Conventional Radiotherapy in Non-Metastatic Rectal Cancer: A Systematic Review of Clinical Outcomes. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1426. [PMID: 39336467 PMCID: PMC11433675 DOI: 10.3390/medicina60091426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Conventional radiotherapies used in the current management of rectal cancer commonly cause iatrogenic radiotoxicity. Proton beam therapy has emerged as an alternative to conventional radiotherapy with the aim of improving tumour control and reducing off-set radiation exposure to surrounding tissue. However, the real-world treatment and oncological outcomes associated with the use of proton beam therapy in rectal cancer remain poorly characterised. This systematic review seeks to evaluate the radiation dosages and safety of proton beam therapy compared to conventional radiotherapy in patients with non-metastatic rectal cancer. Materials and Methods: A computer-assisted search was performed on the Medline, Embase and Cochrane Central databases. Studies that evaluated the adverse effects and oncological outcomes of proton beam therapy and conventional radiotherapy in adult patients with non-metastatic rectal cancer were included. Results: Eight studies were included in this review. There was insufficient evidence to determine the adverse treatment outcomes of proton beam therapy versus conventional radiotherapy. No current studies assessed radiotoxicities nor oncological outcomes. Pooled dosimetric comparisons between proton beam therapy and various conventional radiotherapies were associated with reduced radiation exposure to the pelvis, bowel and bladder. Conclusions: This systematic review demonstrates a significant paucity of evidence in the current literature surrounding adverse effects and oncological outcomes related to proton beam therapy compared to conventional radiotherapy for non-metastatic rectal cancer. Pooled analyses of dosimetric studies highlight greater predicted radiation-sparing effects with proton beam therapy in this setting. This evidence, however, is based on evidence at a moderate risk of bias and clinical heterogeneity. Overall, more robust, prospective clinical trials are required.
Collapse
Affiliation(s)
- Kelvin Le
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - James Norton Marchant
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Khang Duy Ricky Le
- Department of General Surgical Specialties, The Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Geelong Clinical School, Deakin University, Geelong, VIC 3220, Australia
- Department of Medical Education, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
11
|
Johnson AL, Elder SS, McKendrick JG, Hegarty LM, Mercer E, Emmerson E. A single dose of radiation elicits comparable acute salivary gland injury to fractionated radiation. Dis Model Mech 2024; 17:dmm050733. [PMID: 39086326 PMCID: PMC11361643 DOI: 10.1242/dmm.050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
The salivary glands are often damaged during head and neck cancer radiotherapy. This results in chronic dry mouth, which adversely affects quality of life and for which there is no long-term cure. Mouse models of salivary gland injury are routinely used in regenerative research. However, there is no clear consensus on the radiation regime required to cause injury. Here, we analysed three regimes of γ-irradiation of the submandibular salivary gland. Transcriptional analysis, immunofluorescence and flow cytometry was used to profile DNA damage, gland architecture and immune cell changes 3 days after single doses of 10 or 15 Gy or three doses of 5 Gy. Irrespective of the regime, radiation induced comparable levels of DNA damage, cell cycle arrest, loss of glandular architecture, increased pro-inflammatory cytokines and a reduction in tissue-resident macrophages, relative to those observed in non-irradiated submandibular glands. Given these data, coupled with the fact that repeated anaesthetic can negatively affect animal welfare and interfere with saliva secretion, we conclude that a single dose of 10 Gy irradiation is the most refined method of inducing acute salivary gland injury in a mouse model.
Collapse
Affiliation(s)
- Amanda L. Johnson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sonia S. Elder
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - John G. McKendrick
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- The Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lizi M. Hegarty
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- The Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Ella Mercer
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
12
|
Bălan C, Granja C, Mytsin G, Shvidky S, Molokanov A, Marek L, Chiș V, Oancea C. Particle tracking, recognition and LET evaluation of out-of-field proton therapy delivered to a phantom with implants. Phys Med Biol 2024; 69:165006. [PMID: 38986478 DOI: 10.1088/1361-6560/ad61b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective.This study aims to assess the composition of scattered particles generated in proton therapy for tumors situated proximal to some titanium (Ti) dental implants. The investigation involves decomposing the mixed field and recording Linear Energy Transfer (LET) spectra to quantify the influence of metallic dental inserts located behind the tumor.Approach.A therapeutic conformal proton beam was used to deliver the treatment plan to an anthropomorphic head phantom with two types of implants inserted in the target volume (made of Ti and plastic, respectively). The scattered radiation resulted during the irradiation was detected by a hybrid semiconductor pixel detector MiniPIX Timepix3 that was placed distal to the Spread-out Bragg peak. Visualization and field decomposition of stray radiation were generated using algorithms trained in particle recognition based on artificial intelligence neural networks (AI NN). Spectral sensitive aspects of the scattered radiation were collected using two angular positions of the detector relative to the beam direction: 0° and 60°.Results.Using AI NN, 3 classes of particles were identified: protons, electrons & photons, and ions & fast neutrons. Placing a Ti implant in the beam's path resulted in predominantly electrons and photons, contributing 52.2% of the total number of detected particles, whereas for plastic implants, the contribution was 65.4%. Scattered protons comprised 45.5% and 31.9% with and without metal inserts, respectively. The LET spectra were derived for each group of particles identified, with values ranging from 0.01 to 7.5 keVμm-1for Ti implants/plastic implants. The low-LET component was primarily composed of electrons and photons, while the high-LET component corresponded to protons and ions.Significance.This method, complemented by directional maps, holds the potential for evaluating and validating treatment plans involving stray radiation near organs at risk, offering precise discrimination of the mixed field, and enhancing in this way the LET calculation.
Collapse
Affiliation(s)
- Cristina Bălan
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Radiotherapy, The Oncology Institute 'Prof. Dr Ion Chiricuta', Cluj-Napoca, Romania
| | | | - Gennady Mytsin
- International Intergovernmental Organization Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | - Sergey Shvidky
- International Intergovernmental Organization Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | - Alexander Molokanov
- International Intergovernmental Organization Joint Institute for Nuclear Research (JINR), Dubna, Russia
| | | | - Vasile Chiș
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | | |
Collapse
|
13
|
Zarinshenas R, Campbell P, Sun K, Molitoris JK, Patel AN, Witek ME, Cullen KJ, Mehra R, Hatten KM, Moyer KF, Taylor RJ, Vakharia KT, Wolf JS, Ferris MJ. Disease and toxicity outcomes for a modern cohort of patients with squamous cell carcinoma of cutaneous origin involving the parotid gland: Comparison of volumetric modulated arc therapy and pencil beam scanning proton therapy. Radiother Oncol 2024; 193:110112. [PMID: 38309587 DOI: 10.1016/j.radonc.2024.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVES We sought to describe outcomes for locally advanced cutaneous squamous cell carcinoma (SCC) involving the parotid treated with volumetric modulated arc therapy (VMAT) versus pencil beam scanning proton beam therapy (PBT). MATERIALS AND METHODS Patients were gathered from 2016 to 2022 from 5 sites of a large academic RT department; included patients were treated with RT and had parotid involvement by: direct extension of a cutaneous primary, parotid regional spread from a previously or contemporaneously resected but geographically separate cutaneous primary, or else primary parotid SCC (with a cutaneous primary ostensibly occult). Acute toxicities were provider-reported (CTCAE v5.0) and graded at each on treatment visit. Statistical analyses were conducted. RESULTS Median follow-up was 12.9 months (1.3 - 72.8); 67 patients were included. Positive margins/extranodal extension were present in 34 cases; gross disease in 17. RT types: 39 (58.2 %) VMAT and 28 (41.8 %) PBT. Concurrent systemic therapy was delivered in 10 (14.9 %) patients. There were 17 treatment failures (25.4 %), median time of 168 days. Pathologically positive neck nodes were associated with locoregional recurrence (p = 0.015). Oral cavity, pharyngeal constrictor, and contralateral parotid doses were all significantly lower for PBT. Median weight change was -3.8 kg (-14.1 - 5.1) for VMAT and -3 kg (-16.8 - 3) for PBT (p = 0.013). Lower rates of ≥ grade 1 xerostomia (p = 0.002) and ≥ grade 1 dysguesia (p < 0.001) were demonstrated with PBT. CONCLUSIONS Cutaneous SCC involving the parotid can be an aggressive clinical entity despite modern multimodal therapy. PBT offers significantly lower dose to organs at risk compared to VMAT, which seemingly yields diminished acute toxicities.
Collapse
Affiliation(s)
- Reza Zarinshenas
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
| | - Peter Campbell
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
| | - Kai Sun
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
| | - Jason K Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
| | - Akshar N Patel
- Chesapeake Oncology Hematology Associates, 305 Hospital Drive, 2nd Floor, Glen Burnie, MD 21061, USA
| | - Matthew E Witek
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA
| | - Kevin J Cullen
- Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, 22 S. Greene S.t, Baltimore, MD 21201, USA
| | - Ranee Mehra
- Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, 22 S. Greene S.t, Baltimore, MD 21201, USA
| | - Kyle M Hatten
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, 16 S. Eutaw St., Suite 500, Baltimore, MD 20201, USA
| | - Kelly F Moyer
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, 16 S. Eutaw St., Suite 500, Baltimore, MD 20201, USA
| | - Rodney J Taylor
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, 16 S. Eutaw St., Suite 500, Baltimore, MD 20201, USA
| | - Kalpesh T Vakharia
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, 16 S. Eutaw St., Suite 500, Baltimore, MD 20201, USA
| | - Jeffrey S Wolf
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, 16 S. Eutaw St., Suite 500, Baltimore, MD 20201, USA
| | - Matthew J Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Metzner M, Zhevachevska D, Schlechter A, Kehrein F, Schlecker J, Murillo C, Brons S, Jäkel O, Martišíková M, Gehrke T. Energy painting: helium-beam radiography with thin detectors and multiple beam energies. Phys Med Biol 2024; 69:055002. [PMID: 38295403 DOI: 10.1088/1361-6560/ad247e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Objective.Compact ion imaging systems based on thin detectors are a promising prospect for the clinical environment since they are easily integrated into the clinical workflow. Their measurement principle is based on energy deposition instead of the conventionally measured residual energy or range. Therefore, thin detectors are limited in the water-equivalent thickness range they can image with high precision. This article presents ourenergy paintingmethod, which has been developed to render high precision imaging with thin detectors feasible even for objects with larger, clinically relevant water-equivalent thickness (WET) ranges.Approach.A detection system exclusively based on pixelated silicon Timepix detectors was used at the Heidelberg ion-beam therapy center to track single helium ions and measure their energy deposition behind the imaged object. Calibration curves were established for five initial beam energies to relate the measured energy deposition to WET. They were evaluated regarding their accuracy, precision and temporal stability. Furthermore, a 60 mm × 12 mm region of a wedge phantom was imaged quantitatively exploiting the calibrated energies and five different mono-energetic images. These mono-energetic images were combined in a pixel-by-pixel manner by averaging the WET-data weighted according to their single-ion WET precision (SIWP) and the number of contributing ions.Main result.A quantitative helium-beam radiograph of the wedge phantom with an average SIWP of 1.82(5) % over the entire WET interval from 150 mm to 220 mm was obtained. Compared to the previously used methodology, the SIWP improved by a factor of 2.49 ± 0.16. The relative stopping power value of the wedge derived from the energy-painted image matches the result from range pullback measurements with a relative deviation of only 0.4 %.Significance.The proposed method overcomes the insufficient precision for wide WET ranges when employing detection systems with thin detectors. Applying this method is an important prerequisite for imaging of patients. Hence, it advances detection systems based on energy deposition measurements towards clinical implementation.
Collapse
Affiliation(s)
- Margareta Metzner
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Daria Zhevachevska
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Heidelberg University, Medical Faculty Mannheim, Heidelberg, Germany
| | - Annika Schlechter
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Florian Kehrein
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Julian Schlecker
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiooncology/Radiobiology, Germany
| | - Carlos Murillo
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiology, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Radiation Oncology - Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Radiation Oncology - Heidelberg University Hospital, Heidelberg, Germany
| | - Mária Martišíková
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
| | - Tim Gehrke
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Physics in Radiation Oncology, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Naceur A, Bienvenue C, Romano P, Chilian C, Carrier JF. Extending deterministic transport capabilities for very-high and ultra-high energy electron beams. Sci Rep 2024; 14:2796. [PMID: 38307920 PMCID: PMC11226718 DOI: 10.1038/s41598-023-51143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024] Open
Abstract
Focused Very-High Energy Electron (VHEE, 50-300 MeV) and Ultra-High Energy Electron (UHEE, > 300 MeV) beams can accurately target both large and deeply seated human tumors with high sparing properties, while avoiding the spatial requirements and cost of proton and heavy ion facilities. Advanced testing phases are underway at the CLEAR facilities at CERN (Switzerland), NLCTA at Stanford (USA), and SPARC at INFN (Italy), aiming to accelerate the transition to clinical application. Currently, Monte Carlo (MC) transport is the sole paradigm supporting preclinical trials and imminent clinical deployment. In this paper, we propose an alternative: the first extension of the nuclear-reactor deterministic chain NJOY-DRAGON for VHEE and UHEE applications. We have extended the Boltzmann-Fokker-Planck (BFP) multigroup formalism and validated it using standard radio-oncology benchmarks, complex assemblies with a wide range of atomic numbers, and comprehensive irradiation of the entire periodic table. We report that [Formula: see text] of water voxels exhibit a BFP-MC deviation below [Formula: see text] for electron energies under [Formula: see text]. Additionally, we demonstrate that at least [Formula: see text] of voxels of bone, lung, adipose tissue, muscle, soft tissue, tumor, steel, and aluminum meet the same criterion between [Formula: see text] and [Formula: see text]. For water, the thorax, and the breast intra-operative benchmark, typical average BFP-MC deviations of [Formula: see text] and [Formula: see text] were observed at [Formula: see text] and [Formula: see text], respectively. By irradiating the entire periodic table, we observed similar performance between lithium ([Formula: see text]) and cerium ([Formula: see text]). Deficiencies observed between praseodymium ([Formula: see text]) and einsteinium ([Formula: see text]) have been reported, analyzed, and quantified, offering critical insights for the ongoing development of the Evaluated Nuclear Data File mode in NJOY.
Collapse
Affiliation(s)
- Ahmed Naceur
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada.
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada.
| | - Charles Bienvenue
- École Polytechnique, Engineering Physics Department, Biomedical Engineering Institute, Montréal, H3T1J4, Canada
| | - Paul Romano
- Computational Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Cornelia Chilian
- École Polytechnique, SLOWPOKE Nuclear Reactor Laboratory, Nuclear Engineering Institute, Montréal, H3T1J4, Canada
| | - Jean-François Carrier
- Department of Physics, Université de Montréal, Montréal, H3T1J4, Canada
- CRCHUM, Centre hospitalier de l'Université de Montréal, Montréal, H2L4M1, Canada
| |
Collapse
|
16
|
Yi B, Jatczak J, Deng W, Poirier YP, Yao W, Witek ME, Molitoris JK, Zakhary MJ, Zhang B, Biswal NC, Ferris MJ, Mossahebi S. Is noncoplanar plan more robust to inter-fractional variations than coplanar plan in treating bilateral HN tumors with pencil-beam scanning proton beams? J Appl Clin Med Phys 2024; 25:e14186. [PMID: 37974385 PMCID: PMC10860533 DOI: 10.1002/acm2.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Noncoplanar plans (NCPs) are commonly used for proton treatment of bilateral head and neck (HN) malignancies. NCP requires additional verification setup imaging between beams to correct residual errors of robotic couch motion, which increases imaging dose and total treatment time. This study compared the quality and robustness of NCPs with those of coplanar plans (CPs). METHODS AND MATERIALS Under an IRB-approved study, CPs were created retrospectively for 10 bilateral HN patients previously treated with NCPs maintaining identical beam geometry of the original plan but excluding couch rotations. Plan robustness to the inter-fractional variation (IV) of both plans was evaluated through the Dose Volume Histograms (DVH) of weekly quality assurance CT (QACT) sets (39 total). In addition, delivery efficiency for both plans was compared using total treatment time (TTT) and beam-on time (BOT). RESULTS No significant differences in plan quality were observed in terms of clinical target volume (CTV) coverage (D95) or organ-at-risk (OAR) doses (p > 0.4 for all CTVs and OARs). No significant advantage of NCPs in the robustness to IV was found over CP, either. Changes in D95 of QA plans showed a linear correlation (slope = 1.006, R2 > 0.99) between NCP and CP for three CTV data points (CTV1, CTV2, and CTV3) in each QA plan (117 data points for 39 QA plans). NCPs showed significantly higher beam delivery time than CPs for TTT (539 ± 50 vs. 897 ± 142 s; p < 0.001); however, no significant differences were observed for BOT. CONCLUSION NCPs are not more robust to IV than CPs when treating bilateral HN tumors with pencil-beam scanning proton beams. CPs showed plan quality and robustness similar to NCPs while reduced treatment time (∼6 min). This suggests that CPs may be a more efficient planning technique for bilateral HN cancer proton therapy.
Collapse
Affiliation(s)
- ByongYong Yi
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Jenna Jatczak
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Wei Deng
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Yannick P. Poirier
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Weiguang Yao
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Matthew E. Witek
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Jason K. Molitoris
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Mark J. Zakhary
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Baoshe Zhang
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Nrusingh C. Biswal
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Matthew J. Ferris
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| | - Sina Mossahebi
- Department of Radiation OncologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Maryland Proton Treatment CenterBaltimoreMarylandUSA
| |
Collapse
|
17
|
Chiu KW, Yu TP, Kao YS. A systematic review and meta-analysis of osteoradionecrosis following proton therapy in patients with head and neck cancer. Oral Oncol 2024; 148:106649. [PMID: 38035508 DOI: 10.1016/j.oraloncology.2023.106649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Head and neck cancer ranks as the seventh most common cancer worldwide. Proton therapy is widely used in head and neck cancer. Osteoradionecrosis(ORN) is currently a commonly investigated side effect of proton therapy. A meta-analysis is needed to investigate this topic. MATERIAL/METHODS Two authors searched three databases, including PubMed, Embase, and Cochrane Library; the search period was from inception to June 2023. The search keyword was set to be ((("osteoradionecrosis") OR ("osteonecrosis")) AND ("proton")). RESULTS We initially collected 410 articles, and after article selections, 22 articles remained in our systematic reviews. Due to the overlapping of patient populations, 17 studies were finally included in our meta-analysis. The pooled grade 3 or more ORN rate is 0.01(95 % CI = 0.01-0.03). Subgroup analysis showed that IMPT didn't reduce grade 3 or more ORN compared with 3DCPT (p = 0.15). CONCLUSIONS Our meta-analysis showed that severe ORN rarely occurred in proton therapy for head and neck cancer patients.
Collapse
Affiliation(s)
- Kun-Wei Chiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Tzu-Ping Yu
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Yung-Shuo Kao
- Department of Radiation Oncology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, ROC.
| |
Collapse
|
18
|
Mumaw DA, Hazy AJ, Vayntraub A, Quinn TJ, Salari K, Chang JH, Kalman N, Katz S, Urbanic J, Press RH, Thukral AD, Tsai H, Laramore GE, Molitoris J, Vargas C, Patel SH, Stevens C, Deraniyagala RL. Low contralateral failure rate with unilateral proton beam radiotherapy for oropharyngeal squamous cell carcinoma: A multi-institutional prospective study from the proton collaborative group. Radiother Oncol 2024; 190:109977. [PMID: 37922991 DOI: 10.1016/j.radonc.2023.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Unilateral radiation therapy is appropriate for select patients with oropharyngeal squamous cell carcinoma (OPSCC). The use of proton beam therapy (PBT) in the unilateral setting decreases the dose to the contralateral neck and organs at risk. This study aims to evaluate contralateral recurrences in patients who received ipsilateral PBT. METHODS We evaluated the Proton Collaborative Group database for patients treated with PBT for head and neck squamous cell carcinoma between the years 2015-2020 at 12 institutions. Dosimetric analysis was performed in five cases. RESULTS Our analysis included 41 patients that received ipsilateral PBT with a mean follow-up of 14.7 months. 37% patients (n = 15) were treated for recurrent disease, and 63% (n = 26) were treated for de novo disease. Oropharyngeal sites included tonsillar fossa (n = 30) and base of tongue (n = 11). The median dose and BED delivered were 69.96 CGE and 84 Gy, respectively. Eight (20%) patients experienced at least one grade 3 dysphagia (n = 4) or esophagitis (n = 4) toxicity. No grade ≥ 4 toxicities were reported. There was one (2.4%) failure in the contralateral neck. The 1-year locoregional control was 88.9% and the freedom from distant metastasis was 95.5% (n = 2). The dosimetric analysis demonstrated similar ipsilateral level II cervical nodal region doses, whereas contralateral doses were higher with photon plans, mean: 15.5 Gy and 0.7CGE, D5%: 25.1 Gy and 6.6CGE. CONCLUSIONS Our series is the first to report outcomes for patients with OPSCC receiving unilateral PBT. The contralateral neck failure rate was excellent and comparable to failure rates with photon irradiation.
Collapse
Affiliation(s)
- Derek A Mumaw
- Corewell Health William Beaumont University Hospital, 3571 W 13 Mile Rd, Royal Oak, MI 48073, USA.
| | - Allison J Hazy
- Corewell Health William Beaumont University Hospital, 3571 W 13 Mile Rd, Royal Oak, MI 48073, USA
| | - Aleksander Vayntraub
- Corewell Health William Beaumont University Hospital, 3571 W 13 Mile Rd, Royal Oak, MI 48073, USA
| | - Thomas J Quinn
- Corewell Health William Beaumont University Hospital, 3571 W 13 Mile Rd, Royal Oak, MI 48073, USA
| | - Kamran Salari
- Corewell Health William Beaumont University Hospital, 3571 W 13 Mile Rd, Royal Oak, MI 48073, USA
| | - John H Chang
- Oklahoma Proton Center, 5901 W Memorial Rd, Oklahoma City, OK 73142, USA
| | - Noah Kalman
- Miami Cancer Institute Baptist Health South Florida, 8900 N Kendall Dr, Miami, FL 33176, USA
| | - Sanford Katz
- Willis-Knighton Cancer Center, 2600 Kings Hwy, Shreveport, LA 71103, USA
| | - James Urbanic
- UCSD California Protons, 9730 Summers Ridge Rd, San Diego, CA 92121, USA
| | - Robert H Press
- Miami Cancer Institute Baptist Health South Florida, 8900 N Kendall Dr, Miami, FL 33176, USA
| | - Arpi D Thukral
- Northwestern Proton Center, 4455 Weaver Pkwy, Warrenville, IL 60555, USA
| | - Henry Tsai
- Procure Proton Therapy, 103 Cedar Grove Ln, Somerset, NJ 08873, USA
| | - George E Laramore
- University of Washington Medical Center, 1959 NE Pacific St Main Hospital Seattle, WA 98195, USA
| | - Jason Molitoris
- Maryland Proton Treatment Center, 850 W Baltimore St, Baltimore, MD 21201, USA
| | | | | | - Craig Stevens
- Corewell Health William Beaumont University Hospital, 3571 W 13 Mile Rd, Royal Oak, MI 48073, USA
| | - Rohan L Deraniyagala
- Corewell Health William Beaumont University Hospital, 3571 W 13 Mile Rd, Royal Oak, MI 48073, USA
| |
Collapse
|
19
|
Amstutz F, Krcek R, Bachtiary B, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Treatment planning comparison for head and neck cancer between photon, proton, and combined proton-photon therapy - From a fixed beam line to an arc. Radiother Oncol 2024; 190:109973. [PMID: 37913953 DOI: 10.1016/j.radonc.2023.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE This study investigates whether combined proton-photon therapy (CPPT) improves treatment plan quality compared to single-modality intensity-modulated radiation therapy (IMRT) or intensity-modulated proton therapy (IMPT) for head and neck cancer (HNC) patients. Different proton beam arrangements for CPPT and IMPT are compared, which could be of specific interest concerning potential future upright-positioned treatments. Furthermore, it is evaluated if CPPT benefits remain under inter-fractional anatomical changes for HNC treatments. MATERIAL AND METHODS Five HNC patients with a planning CT and multiple (4-7) repeated CTs were studied. CPPT with simultaneously optimized photon and proton fluence, single-modality IMPT, and IMRT treatment plans were optimized on the planning CT and then recalculated and reoptimized on each repeated CT. For CPPT and IMPT, plans with different degrees of freedom for the proton beams were optimized. Fixed horizontal proton beam line (FHB), gantry-like, and arc-like plans were compared. RESULTS The target coverage for CPPT without adaptation is insufficient (average V95%=88.4 %), while adapted plans can recover the initial treatment plan quality for target (average V95%=95.5 %) and organs-at-risk. CPPT with increased proton beam flexibility increases plan quality and reduces normal tissue complication probability of Xerostomia and Dysphagia. On average, Xerostomia NTCP reductions compared to IMRT are -2.7 %/-3.4 %/-5.0 % for CPPT FHB/CPPT Gantry/CPPT Arc. The differences for IMPT FHB/IMPT Gantry/IMPT Arc are + 0.8 %/-0.9 %/-4.3 %. CONCLUSION CPPT for HNC needs adaptive treatments. Increasing proton beam flexibility in CPPT, either by using a gantry or an upright-positioned patient, improves treatment plan quality. However, the photon component is substantially reduced, therefore, the balance between improved plan quality and costs must be further determined.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.
| |
Collapse
|
20
|
Silvus A, Haefner J, Altman MB, Zhao T, Perkins S, Zhang T. Dosimetric evaluation of dose shaping by adaptive aperture and its impact on plan quality. Med Dosim 2023; 49:30-36. [PMID: 38087750 DOI: 10.1016/j.meddos.2023.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 02/12/2024]
Abstract
Mevion's single-room HYPERSCAN proton therapy system employs a proton multileaf collimator called the adaptive aperture (AA), which collimates individual spots in the proton delivery as determined by the Treatment Planning System (TPS). The purpose of this study is to assess the dosimetric benefits of the AA, specifically in the dynamic aperture (DA) mode, and evaluate its impact on proton treatment plan quality as compared to a traditional pencil beam scanning (PBS) system (Varian ProBeam). The spot dose distributions with dynamic collimation (DA), a unique AA shape for each energy layer, and with static collimation (SA), a single AA collimation shape shared by all energy layers per field, were calculated and compared with the spot dose distribution of the Varian ProBeam proton therapy system. The lateral and distal dose falloff gradients and their dependence on air gap were evaluated quantitatively. Treatment plans for ten arbitrarily selected intracranial target image sets were created, and the HYPERSCAN and ProBeam beam models were compared. The spot sizes of the HYPERSCAN system are significantly larger than ProBeam system, especially at low energy. With the help of DA, the lateral dose penumbra of the HYPERSCAN is dramatically improved at lower energy and comparable at higher to ProBeam PBS beams. While the ProBeam spot size does not change with the air gap, beam penumbra of the HYPERSCAN with DA increases with the air gap. The distal dose falloff gradient for the HYPERSCAN with or without DA remains consistently around 4.8 mm through all energies due to the beamline design, not substantially varying with energy or air gap. Treatment plans of ten randomly selected intracranial cases demonstrated favorable OAR sparing but unfavorable dose uniformity for the HYPERSCAN with DA compared to ProBeam. Dose shaping by adaptive aperture substantially improves the lateral penumbra without a significant change in the distal dose gradient. The dose gradients of the multiple beam DA plans with layer-by-layer blocking are improved compared with SA plans and are close to the ProBeam plans for the ten randomly selected brain cases. With layer-by-layer DA blocking, the HYPERSCAN plans have similar plan conformality indices as the ProBeam plans, but the overall plan quality indices are lower than ProBeam plans, largely due to the lower dose homogeneity. In some cases, DA blocking was found to be superior in sparing OAR surrounding the target.
Collapse
Affiliation(s)
- Aaron Silvus
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan Haefner
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael B Altman
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Stephanie Perkins
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tiezhi Zhang
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Almhagen E, Dasu A, Johansson S, Traneus E, Ahnesjö A. Plan robustness and RBE influence for proton dose painting by numbers for head and neck cancers. Phys Med 2023; 115:103157. [PMID: 37939480 DOI: 10.1016/j.ejmp.2023.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE To investigate the feasibility of dose painting by numbers (DPBN) with respect to robustness for proton therapy for head and neck cancers (HNC), and to study the influence of variable RBE on the TCP and OAR dose burden. METHODS AND MATERIALS Data for 19 patients who have been scanned pretreatment with PET-FDG and subsequently treated with photon therapy were used in the study. A dose response model developed for photon therapy was implemented in a TPS, allowing DPBN plans to be created. Conventional homogeneous dose and DPBN plans were created for each patient, optimized with either fixed RBE = 1.1 or a variable RBE model. Robust optimization was used to create clinically acceptable plans. To estimate the maximum potential loss in TCP due to actual SUV variations from the pre-treatment imaging, we applied a test case with randomized SUV distribution. RESULTS Regardless of the use of variable RBE for optimization or evaluation, a statistically significant increase (p < 0.001) in TCP was found for DPBN plans as compared to homogeneous dose plans. Randomizing the SUV distribution decreased the TCP for all plans. A correlation between TCP increase and variance of the SUV distribution and target volume was also found. CONCLUSION DPBN for protons and HNC is feasible and could lead to a TCP gain. Risks associated with the temporal variation of SUV distributions could be mitigated by imposing minimum doses to targets. The correlation found between TCP increase and SUV variance and target volume may be used for patient selection.
Collapse
Affiliation(s)
- Erik Almhagen
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden.
| | - Alexandru Dasu
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| | - Silvia Johansson
- Divison of Oncology, Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden
| |
Collapse
|
22
|
Liu CH, Lin CY, Huang BS, Wei YC, Chang TY, Yeh CH, Sung PS, Jiang JL, Lin LY, Chang JTC, Fan KH. Risk of temporal lobe necrosis between proton beam and volumetric modulated arc therapies in patients with different head and neck cancers. Radiat Oncol 2023; 18:155. [PMID: 37735389 PMCID: PMC10512503 DOI: 10.1186/s13014-023-02344-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND To investigate the frequency of temporal lobe necrosis (TLN) soon after radiotherapy (RT) and identify differences among patients with various types of head and neck cancer (HNC) and between different RT methods. METHODS We retrospectively reviewed 483 patients with HNC who had completed RT in our hospital after January, 2015. These patients were followed-up at the radio-oncology department and received contrast-enhanced magnetic resonance imaging (MRI) or computed tomography (CT) to identify metastases or recurrence of cancer at regular intervals. Meanwhile, the occurrence of TLN, graded according to the Common Terminology Criteria for Adverse Events V5.0, was recorded. We categorized the patients into nasopharyngeal carcinoma (NPC) and non-NPC groups and compared the cumulative occurrence of TLN between the groups using Kaplan-Meier and Cox regression analyses. We further compared the cumulative occurrence of TLN between proton beam therapy (PBT) and volumetric modulated arc therapy (VMAT) in patients with any HNC, NPC, and non-NPC HNC. RESULTS Compared with the non-NPC group, the NPC group had a higher frequency of TLN (5.6% vs. 0.4%, p < 0.01) and were more commonly associated with TLN in the Kaplan-Meier analysis (p < 0.01) and the Cox regression model after covariates were adjusted for (adjusted hazard ratio: 13.35, 95% confidence interval: 1.37-130.61) during the follow-up period. Furthermore, the frequency of TLN was similar between patients receiving PBT and those receiving VMAT (PBT vs. VMAT: 4.7% vs. 6.3%, p = 0.76). Kaplan-Meier analysis revealed that the accumulated risks of TLN were similar between PBT and VMAT in patients with any HNC (p = 0.44), NPC (p = 0.84), and non-NPC HNC (p = 0.70). CONCLUSION Our study demonstrated that patients with NPC are susceptible to TLN during the early period after RT. In addition, PBT may be associated with an equivalent risk of TLN when compared with VMAT in patients with NPC or other HNCs.
Collapse
Affiliation(s)
- Chi-Hung Liu
- Stroke Center, Department of Neurology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyüan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyüan, Taiwan
- Taipei Chang Gung Head and Neck Oncology Group, Chang Gung Memorial Hospital Linkou Medical Center, Taoyüan, Taiwan
- Particle Physics and Beam Delivery Core Laboratory of Institute for Radiological Research, Linkou Medical Center, Chang Gung University/Chang Gung Memorial Hospital, Taoyüan, Taiwan
| | - Bing-Shen Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyüan, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ting-Yu Chang
- Stroke Center, Department of Neurology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyüan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
| | - Chih-Hua Yeh
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Department of Neuroradiology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyüan, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Jian-Lin Jiang
- Stroke Center, Department of Neurology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyüan, Taiwan
| | - Li-Ying Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan
| | - Joseph Tung-Chieh Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan.
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyüan, Taiwan.
- Taipei Chang Gung Head and Neck Oncology Group, Chang Gung Memorial Hospital Linkou Medical Center, Taoyüan, Taiwan.
| | - Kang-Hsing Fan
- School of Medicine, College of Medicine, Chang Gung University, Taoyüan, Taiwan.
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyüan, Taiwan.
- Taipei Chang Gung Head and Neck Oncology Group, Chang Gung Memorial Hospital Linkou Medical Center, Taoyüan, Taiwan.
- Department of Radiation Oncology, New Taipei Municipal Tu-Cheng Hospital, New Taipei City, Taiwan.
| |
Collapse
|
23
|
Lalonde A, Bobić M, Sharp GC, Chamseddine I, Winey B, Paganetti H. Evaluating the effect of setup uncertainty reduction and adaptation to geometric changes on normal tissue complication probability using online adaptive head and neck intensity modulated proton therapy. Phys Med Biol 2023; 68:115018. [PMID: 37164020 PMCID: PMC10351361 DOI: 10.1088/1361-6560/acd433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Objective. To evaluate the impact of setup uncertainty reduction (SUR) and adaptation to geometrical changes (AGC) on normal tissue complication probability (NTCP) when using online adaptive head and neck intensity modulated proton therapy (IMPT).Approach.A cohort of ten retrospective head and neck cancer patients with daily scatter corrected cone-beam CT (CBCT) was studied. For each patient, two IMPT treatment plans were created: one with a 3 mm setup uncertainty robustness setting and one with no explicit setup robustness. Both plans were recalculated on the daily CBCT considering three scenarios: the robust plan without adaptation, the non-robust plan without adaptation and the non-robust plan with daily online adaptation. Online-adaptation was simulated using an in-house developed workflow based on GPU-accelerated Monte Carlo dose calculation and partial spot-intensity re-optimization. Dose distributions associated with each scenario were accumulated on the planning CT, where NTCP models for six toxicities were applied. NTCP values from each scenario were intercompared to quantify the reduction in toxicity risk induced by SUR alone, AGC alone and SUR and AGC combined. Finally, a decision tree was implemented to assess the clinical significance of the toxicity reduction associated with each mechanism.Main results. For most patients, clinically meaningful NTCP reductions were only achieved when SUR and AGC were performed together. In these conditions, total reductions in NTCP of up to 30.48 pp were obtained, with noticeable NTCP reductions for aspiration, dysphagia and xerostomia (mean reductions of 8.25, 5.42 and 5.12 pp respectively). While SUR had a generally larger impact than AGC on NTCP reductions, SUR alone did not induce clinically meaningful toxicity reductions in any patient, compared to only one for AGC alone.SignificanceOnline adaptive head and neck proton therapy can only yield clinically significant reductions in the risk of long-term side effects when combining the benefits of SUR and AGC.
Collapse
Affiliation(s)
- Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- ETH Zürich, Zürich, Switzerland
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
Mendenhall WM, Beitler JJ, Saba NF, Shaha AR, Nuyts S, Strojan P, Bollen H, Cohen O, Smee R, Ng SP, Eisbruch A, Ng WT, Kirwan JM, Ferlito A. Proton Beam Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma. Int J Part Ther 2023; 9:243-252. [PMID: 37169005 PMCID: PMC10166016 DOI: 10.14338/ijpt-22-00030.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/10/2023] [Indexed: 05/13/2023] Open
Abstract
Purpose To discuss the role of proton beam therapy (PBT) in the treatment of patients with oropharyngeal squamous cell carcinoma (OPSCC). Materials and Methods A review of the pertinent literature. Results Proton beam therapy likely results in reduced acute and late toxicity as compared with intensity-modulated radiation therapy (IMRT). The extent of the reduced toxicity, which may be modest, depends on the endpoint and technical factors such as pencil beam versus passive scattered PBT and adaptive replanning. The disease control rates after PBT are likely similar to those after IMRT. Conclusion Proton beam therapy is an attractive option to treat patients with OPSCC. Whether it becomes widely available depends on access.
Collapse
Affiliation(s)
- William M. Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jonathan J. Beitler
- Harold Alfonds Center for Cancer Care, Maine General Hospital, Augusta, ME, USA
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ashok R. Shaha
- Department of Head and Neck Surgery and Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sandra Nuyts
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Heleen Bollen
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - Oded Cohen
- Department of Otolaryngology - Head and Neck Surgery and Oncology, Soroka Medical Center, Tel Aviv, Affiliated with Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Robert Smee
- Department of Radiation Oncology, The Prince of Wales Cancer Centre, Sydney, NSW, Australia
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre, Austin Health, Melbourne, Australia
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan Medicine, Ann Arbor, Michigan, USA
| | - Wai Tong Ng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jessica M. Kirwan
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
25
|
Nakamura M, Ohnishi K, Uchida F, Saito T, Kitagawa Y, Matsuoka R, Yanagawa T, Sakurai H. Proton beam therapy for cervical lymph node metastasis in an octogenarian with melanoma of unknown primary: a case report. Int Cancer Conf J 2023; 12:160-165. [PMID: 36896196 PMCID: PMC9989079 DOI: 10.1007/s13691-023-00597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
An 80-year-old man with an approximately 3-cm mass in the right submandibular region presented to our institution. Magnetic resonance imaging revealed enlarged lymph nodes (LNs) in the right neck, and fluorine-18-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) indicated positive FDG accumulation in the right neck LNs only. Excisional biopsy was performed for suspected malignant lymphoma, and the biopsy revealed melanoma. Close examination of the skin, nasal cavity, oral pharyngeal and laryngeal cavities, and gastrointestinal tract were performed. No primary tumor was detected by these examinations, and the patient was diagnosed with cervical LN metastasis from melanoma of unknown primary of clinical stage T0N3bM0 stage IIIC. The patient refused cervical neck dissection because of his age and comorbidity of Alzheimer's disease and instead opted for proton beam therapy (PBT) at a total dose of 69 Gy (relative biological effectiveness) in 23 fractions. He did not receive any systemic therapy. The enlarged LNs shrunk slowly, and FDG PET/CT at 1 year after PBT showed that the right submandibular LN had shrunk from 27 to 7 mm in length, and there was no significant FDG accumulation. At 6 years and 4 months after PBT, the patient is alive without any recurrence.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Kayoko Ohnishi
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan.,Department of Radiology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686 Japan
| | - Fumihiko Uchida
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Takashi Saito
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Yuri Kitagawa
- Department of Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576 Japan
| | - Ryota Matsuoka
- Department of Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| |
Collapse
|
26
|
Singh A, Kitpanit S, Neal B, Yorke E, White C, Yom SK, Randazzo JD, Wong RJ, Huryn JM, Tsai CJ, Zakeri K, Lee NY, Estilo CL. Osteoradionecrosis of the Jaw Following Proton Radiation Therapy for Patients With Head and Neck Cancer. JAMA Otolaryngol Head Neck Surg 2023; 149:151-159. [PMID: 36547968 PMCID: PMC9912132 DOI: 10.1001/jamaoto.2022.4165] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
Importance Proton radiation therapy (PRT) has reduced radiation-induced toxic effects, such as mucositis and xerostomia, over conventional photon radiation therapy, leading to significantly improved quality of life in patients with head and neck cancers. However, the prevalence of osteoradionecrosis (ORN) of the jaw following PRT in these patients is less clear. Objective To report the prevalence and clinical characteristics of ORN in patients with oral and oropharyngeal cancer (OOPC) treated with PRT. Design, Setting, and Participants This case series reports a single-institution experience (Memorial Sloan Kettering Cancer Center, New York, New York) between November 2013 and September 2019 and included 122 radiation therapy-naive patients with OOPC treated with PRT. Data were analyzed from 2013 to 2019. Main Outcomes and Measures Clinical parameters, including sex, age, comorbidities, tumor histology, concurrent chemotherapy, smoking, comorbidities, and preradiation dental evaluation, were obtained from the medical record. Patients with clinical or radiographic signs of ORN were identified and graded using the adopted modified Glanzmann and Grätz grading system. Characteristics of ORN, such as location, clinical presentation, initial stage at diagnosis, etiology, time to diagnosis, management, and clinical outcome at the last follow-up, were also collected. Results Of the 122 patients (mean [SD] age, 63 [13] years; 45 [36.9%] women and 77 [63.1%] men) included in this study, 13 (10.6%) developed ORN following PRT during a median (range) follow-up time of 40.6 (<1-101) months. All patients had spontaneous development of ORN. At the time of initial diagnosis, grade 0, grade 1, grade 2, and grade 3 ORN were seen in 2, 1, 9, and 1 patient, respectively. The posterior ipsilateral mandible within the radiation field that received the full planned PRT dose was the most involved ORN site. At a median (range) follow-up of 13.5 (0.2-58.0) months from the time of ORN diagnosis, complete resolution, stable condition, and progression of ORN were seen in 3, 6, and 4 patients, respectively. The 3-year rates of ORN and death in the total cohort were 5.2% and 21.5%, while the 5-year rates of ORN and death were 11.5% and 34.4%, respectively. Conclusions and Relevance In this case series, the prevalence of ORN following PRT was found to be 10.6%, indicating that ORN remains a clinical challenge even in the era of highly conformal PRT. Clinicians treating patients with OOPC with PRT should be mindful of this complication.
Collapse
Affiliation(s)
- Annu Singh
- Dental Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarin Kitpanit
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Pathumwan, Bangkok
| | - Brian Neal
- ProCure Proton Therapy Center, Somerset, New Jersey
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charlie White
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - SaeHee K. Yom
- Dental Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph D. Randazzo
- Dental Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph M. Huryn
- Dental Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Dental Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chiaojung Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cherry L. Estilo
- Dental Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
27
|
Padannayil NM, Sharma DS, Nangia S, Patro KC, Gaikwad U, Burela N. IMPT of head and neck cancer: unsupervised machine learning treatment planning strategy for reducing radiation dermatitis. Radiat Oncol 2023; 18:11. [PMID: 36639667 PMCID: PMC9840252 DOI: 10.1186/s13014-023-02201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Radiation dermatitis is a major concern in intensity modulated proton therapy (IMPT) for head and neck cancer (HNC) despite its demonstrated superiority over contemporary photon radiotherapy. In this study, dose surface histogram data extracted from forty-four patients of HNC treated with IMPT was used to predict the normal tissue complication probability (NTCP) of skin. Grades of NTCP-skin were clustered using the K-means clustering unsupervised machine learning (ML) algorithm. A new skin-sparing IMPT (IMPT-SS) planning strategy was developed with three major changes and prospectively implemented in twenty HNC patients. Across skin surfaces exposed from 10 (S10) to 70 (S70) GyRBE, the skin's NTCP demonstrated the strongest associations with S50 and S40 GyRBE (0.95 and 0.94). The increase in the NTCP of skin per unit GyRBE is 0.568 for skin exposed to 50 GyRBE as compared to 0.418 for 40 GyRBE. Three distinct clusters were formed, with 41% of patients in G1, 32% in G2, and 27% in G3. The average (± SD) generalised equivalent uniform dose for G1, G2, and G3 clusters was 26.54 ± 6.75, 38.73 ± 1.80, and 45.67 ± 2.20 GyRBE. The corresponding NTCP (%) were 4.97 ± 5.12, 48.12 ± 12.72 and 87.28 ± 7.73 respectively. In comparison to IMPT, new IMPT-SS plans significantly (P < 0.01) reduced SX GyRBE, gEUD, and associated NTCP-skin while maintaining identical dose volume indices for target and other organs at risk. The mean NTCP-skin value for IMPT-SS was 34% lower than that of IMPT. The dose to skin in patients treated prospectively for HNC was reduced by including gEUD for an acceptable radiation dermatitis determined from the local patient population using an unsupervised MLA in the spot map optimization of a new IMPT planning technique. However, the clinical finding of acute skin toxicity must also be related to the observed reduction in skin dose.
Collapse
Affiliation(s)
- Noufal Manthala Padannayil
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu, 400053, India
| | | | - Sapna Nangia
- Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu, India
| | - Kartikeshwar C Patro
- Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu, 400053, India
| | - Utpal Gaikwad
- Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu, India
| | - Nagarjuna Burela
- Department of Radiation Oncology, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai, Tamil Nadu, India
| |
Collapse
|
28
|
Kasamatsu K, Matsuura T, Yasuda K, Miyazaki K, Takao S, Tamura M, Otsuka M, Uchinami Y, Aoyama H. Hyperfractionated intensity-modulated proton therapy for pharyngeal cancer with variable relative biological effectiveness: A simulation study. Med Phys 2022; 49:7815-7825. [PMID: 36300598 DOI: 10.1002/mp.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The relative biological effectiveness (RBE) of proton is considered to be dependent on biological parameters and fractional dose. While hyperfractionated photon therapy was effective in the treatment of patients with head and neck cancers, its effect in intensity-modulated proton therapy (IMPT) under the variable RBE has not been investigated in detail. PURPOSE To study the effect of variable RBE on hyperfractionated IMPT for the treatment of pharyngeal cancer. We investigated the biologically effective dose (BED) to determine the theoretical effective hyperfractionated schedule. METHODS The treatment plans of three pharyngeal cancer patients were used to define the ΔBED for the clinical target volume (CTV) and soft tissue (acute and late reaction) as the difference between the BED for the altered schedule with variable RBE and conventional schedule with constant RBE. The ΔBED with several combinations of parameters (treatment days, number of fractions, and prescribed dose) was comprehensively calculated. Of the candidate schedules, the one that commonly gave a higher ΔBED for CTV was selected as the resultant schedule. The BED volume histogram was used to compare the influence of variable RBE and fractionation. RESULTS In the conventional schedule, compared with the constant RBE, the variable RBE resulted in a mean 2.6 and 2.7 Gy reduction of BEDmean for the CTV and soft tissue (acute reaction) of the three plans, respectively. Moreover, the BEDmean for soft tissue (late reaction) increased by 7.4 Gy, indicating a potential risk of increased RBE. Comprehensive calculation of the ΔBED resulted in the hyperfractionated schedule of 80.52 Gy (RBE = 1.1)/66 fractions in 6.5 weeks. When variable RBE was used, compared with the conventional schedule, the hyperfractionated schedule increased the BEDmean for CTV by 7.6 Gy; however, this was associated with a 7.8 Gy increase for soft tissue (acute reaction). The BEDmean for soft tissue (late reaction) decreased by 2.4 Gy. CONCLUSION The results indicated a potential effect of the variable RBE on IMPT for pharyngeal cancer but with the possibility that hyperfractionation could outweigh this effect. Although biological uncertainties require conservative use of the resultant schedule, hyperfractionation is expected to be an effective strategy in IMPT for pharyngeal cancer.
Collapse
Affiliation(s)
- Koki Kasamatsu
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koichi Miyazaki
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Research and Development Group, Hitachi, Ltd., Hitachi-shi, Japan
| | - Seishin Takao
- Faculty of Engineering, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Masaya Tamura
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Manami Otsuka
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Uchinami
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Pan-Canadian consensus recommendations for proton beam therapy access in Canada. Radiother Oncol 2022; 176:228-233. [PMID: 36228758 DOI: 10.1016/j.radonc.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Proton Beam Therapy (PBT)is a treatment option for select cancer patients. It is currently not available in Canada. Assessment and referral processes for out-of-country treatment for eligible patients vary by jurisdiction, leading to variability in access to this treatment for Canadian cancer patients. The purpose of this initiative was to develop a framework document to inform consistent and equitable PBT access for appropriate patients through the creation of pan-Canadian PBT access consensus recommendations. MATERIALS AND METHODS A modified Delphiprocess was used to develop pan-Canadian recommendations with input from 22 PBT clinical and administrative experts across all provinces, external peer-review by provincial cancer and system partners, and feedback from a targeted community consultation. This was conducted by electronic survey and live discussion. Consensus threshold was set at 70% agreement. RESULTS Fourconsensus rounds resulted in a final set of 27 recommendations divided into three categories: patient eligibility (n = 9); program level (n = 10); and system level (n = 8). Patient eligibility included: anatomic site (n = 4), patient characteristics (n = 3), clinical efficacy (n = 2). Program level included: regulatory and staff requirements (n = 5), equipment and technologies (n = 4), quality assurance (n = 1). System level included: referral process (n = 5), costing, budget impact and quality adjusted life years (n = 2), eligible patient estimates (n = 1). Recommendations were released nationally in June 2021 and distributed to all 43 cancer programs in Canada. CONCLUSION A pan-Canadian consensus-building approach was successful in creating an evidence-based, peer-reviewed suite of recommendations thatsupportapplication of consistent clinical criteria to inform treatment options, facility set-up and access to high quality proton therapy.
Collapse
|
30
|
Youssef I, Yoon J, Mohamed N, Zakeri K, Press RH, Chen L, Gelblum DY, McBride SM, Tsai CJ, Riaz N, Yu Y, Cohen MA, Dunn LA, Ho AL, Wong RJ, Michel LS, Boyle JO, Singh B, Kriplani A, Ganly I, Sherman EJ, Pfister DG, Fetten J, Lee NY. Toxicity Profiles and Survival Outcomes Among Patients With Nonmetastatic Oropharyngeal Carcinoma Treated With Intensity-Modulated Proton Therapy vs Intensity-Modulated Radiation Therapy. JAMA Netw Open 2022; 5:e2241538. [PMID: 36367724 PMCID: PMC9652753 DOI: 10.1001/jamanetworkopen.2022.41538] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPORTANCE Patients with oropharyngeal carcinoma (OPC) treated with radiotherapy often experience substantial toxic effects, even with modern techniques such as intensity-modulated radiation therapy (IMRT). Intensity-modulated proton therapy (IMPT) has a potential advantage over IMRT due to reduced dose to the surrounding organs at risk; however, data are scarce given the limited availability and use of IMPT. OBJECTIVE To compare toxic effects and oncologic outcomes among patients with newly diagnosed nonmetastatic OPC treated with IMPT vs IMRT with or without chemotherapy. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included patients aged 18 years or older with newly diagnosed nonmetastatic OPC who received curative-intent radiotherapy with IMPT or IMRT at a single-institution tertiary academic cancer center from January 1, 2018, to December 31, 2021, with follow-up through December 31, 2021. EXPOSURES IMPT or IMRT with or without chemotherapy. MAIN OUTCOMES AND MEASURES The main outcomes were the incidence of acute and chronic (present after ≥6 months) treatment-related adverse events (AEs) and oncologic outcomes, including locoregional recurrence (LRR), progression-free survival (PFS), and overall survival (OS). Fisher exact tests and χ2 tests were used to evaluate associations between toxic effects and treatment modality (IMPT vs IMRT), and the Kaplan-Meier method was used to compare LRR, PFS, and OS between the 2 groups. RESULTS The study included 292 patients with OPC (272 [93%] with human papillomavirus [HPV]-p16-positive tumors); 254 (87%) were men, 38 (13%) were women, and the median age was 64 years (IQR, 58-71 years). Fifty-eight patients (20%) were treated with IMPT, and 234 (80%) were treated with IMRT. Median follow-up was 26 months (IQR, 17-36 months). Most patients (283 [97%]) received a dose to the primary tumor of 70 Gy. Fifty-seven of the patients treated with IMPT (98%) and 215 of those treated with IMRT (92%) had HPV-p16-positive disease. There were no significant differences in 3-year OS (97% IMPT vs 91% IMRT; P = .18), PFS (82% IMPT vs 85% IMRT; P = .62), or LRR (5% IMPT vs 4% IMRT; P = .59). The incidence of acute toxic effects was significantly higher for IMRT compared with IMPT for oral pain of grade 2 or greater (42 [72%] IMPT vs 217 [93%] IMRT; P < .001), xerostomia of grade 2 or greater (12 [21%] IMPT vs 68 [29%] IMRT; P < .001), dysgeusia of grade 2 or greater (16 [28%] IMPT vs 134 [57%] IMRT; P < .001), grade 3 dysphagia (4 [7%] IMPT vs 29 [12%] IMRT; P < .001), mucositis of grade 3 or greater (10 [53%] IMPT vs 13 [70%] IMRT; P = .003), nausea of grade 2 or greater (0 [0%] IMPT vs 18 [8%] IMRT; P = .04), and weight loss of grade 2 or greater (22 [37%] IMPT vs 138 [59%] IMRT; P < .001). There were no significant differences in chronic toxic effects of grade 3 or greater, although there was a significant difference for chronic xerostomia of grade 2 or greater (6 IMPT [11%] vs 22 IMRT [10%]; P < .001). Four patients receiving IMRT (2%) vs 0 receiving IMPT had a percutaneous endoscopic gastrostomy tube for longer than 6 months. CONCLUSIONS AND RELEVANCE In this study, curative-intent radiotherapy with IMPT for nonmetastatic OPC was associated with a significantly reduced acute toxicity burden compared with IMRT, with few chronic toxic effects and favorable oncologic outcomes, including locoregional recurrence of only 5% at 2 years. Prospective randomized clinical trials comparing these 2 technologies and of patient-reported outcomes are warranted.
Collapse
Affiliation(s)
- Irini Youssef
- Department of Radiation Oncology, SUNY Downstate Health Sciences University, Brooklyn, New York
| | - Jennifer Yoon
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick
| | - Nader Mohamed
- Department of Radiation Oncology, SUNY Downstate Health Sciences University, Brooklyn, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kaveh Zakeri
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Linda Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daphna Y. Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean M. McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chiaojung Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc A. Cohen
- Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lara Ann Dunn
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan L. Ho
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard J. Wong
- Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Loren S. Michel
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jay O. Boyle
- Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bhuvanesh Singh
- Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuja Kriplani
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian Ganly
- Department of Head and Neck Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric J. Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David G. Pfister
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James Fetten
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
31
|
Zhou C, Fabbrizi MR, Hughes JR, Grundy GJ, Parsons JL. Effectiveness of PARP inhibition in enhancing the radiosensitivity of 3D spheroids of head and neck squamous cell carcinoma. Front Oncol 2022; 12:940377. [PMID: 36052247 PMCID: PMC9424551 DOI: 10.3389/fonc.2022.940377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
A critical risk factor for head and neck squamous cell carcinoma (HNSCC), particularly of the oropharynx, and the response to radiotherapy is human papillomavirus (HPV) type-16/18 infection. Specifically, HPV-positive HNSCC display increased radiosensitivity and improved outcomes, which has been linked with defective signalling and repair of DNA double-strand breaks (DSBs). This differential response to radiotherapy has been recapitulated in vitro using cell lines, although studies utilising appropriate 3D models that are more reflective of the original tumour are scarce. Furthermore, strategies to enhance the sensitivity of relatively radioresistant HPV-negative HNSCC to radiotherapy are still required. We have analysed the comparative response of in vitro 3D spheroid models of oropharyngeal squamous cell carcinoma to x-ray (photon) irradiation and provide further evidence that HPV-positive cells, in this case now grown as spheroids, show greater inherent radiosensitivity compared to HPV-negative spheroids due to defective DSB repair. We subsequently analysed these and an expanded number of spheroid models, with a particular focus on relatively radioresistant HPV-negative HNSCC, for impact of poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib and talazoparib) in significantly inhibiting spheroid growth in response to photons but also proton beam therapy. We demonstrate that in general, PARP inhibition can further radiosensitise particularly HPV-negative HNSCC spheroids to photons and protons leading to significant growth suppression. The degree of enhanced radiosensitivity was observed to be dependent on the model and on the tumour site (oropharynx, larynx, salivary gland, or hypopharynx) from which the cells were derived. We also provide evidence suggesting that PARP inhibitor effectiveness relates to homologous recombination repair proficiency. Interestingly though, we observed significantly enhanced effectiveness of talazoparib versus olaparib specifically in response to proton irradiation. Nevertheless, our data generally support that PARP inhibition in combination with radiotherapy (photons and protons) should be considered further as an effective treatment for HNSCC, particularly for relatively radioresistant HPV-negative tumours.
Collapse
Affiliation(s)
- Chumin Zhou
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maria Rita Fabbrizi
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan R. Hughes
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabrielle J. Grundy
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jason L. Parsons
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
- *Correspondence: Jason L. Parsons,
| |
Collapse
|
32
|
A deep LSTM autoencoder-based framework for predictive maintenance of proton radiotherapy delivery system. Artif Intell Med 2022; 132:102387. [DOI: 10.1016/j.artmed.2022.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
|
33
|
Fang K, Lee C, Chuang H, Huang T, Chien C, Tsai W, Fang F. Acute radiation dermatitis among patients with nasopharyngeal carcinoma treated with proton beam therapy: Prognostic factors and treatment outcomes. Int Wound J 2022; 20:499-507. [PMID: 35880316 PMCID: PMC9885453 DOI: 10.1111/iwj.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/03/2023] Open
Abstract
A high incidence of severe acute radiation dermatitis (ARD) has been reported for cancer patients treated by proton beam therapy (PBT). This observational study investigated the prognostic factors and treatment outcomes of ARD among patients with nasopharyngeal carcinoma (NPC) treated with PBT. Fifty-seven patients with newly diagnosed NPC and treated with PBT were enrolled. ARD was recorded weekly based on the criteria of Common Terminology Criteria for Adverse Events version 4.0 at treatment visits (1st to 7th weeks) and 1 week (8th week) and 1 month (11th week) after the completion of PBT. The maximum ARD grade was 1, 2, and 3 in 26 (45.6%), 24 (42.1%), and 7 (12.3%) of the patients, respectively. The peak incidence of grade 2 and 3 ARD was observed during the period of the 6th to 8th weeks. Treatment of ARD included topical corticosteroid alone in 24 (42.1%) patients, topical corticosteroid plus silver sulfadiazine in 33 (57.9%) patients, and non-adhering silicone dressing to cover severe skin wound area in 25 (43.8%) patients. In the 11th week, most grade 2 and 3 ARD had disappeared and 93.0% of the patients had ARD of grade 1 or lower. In the binary logistic regression model, we identified habitual smoking (odds ratio [OR]: 5.2, 95% confidence interval [CI]: 1.3-18.8, P = .012) and N2 to N3 nodal status (OR: 4.9, 95% CI: 1.6-15.4, P = .006) as independent predictors of grade 2 and 3 ARD. The results show ARD is a major concern for patients with NPC treated with PBT, especially those with habitual smoking or advanced nodal status. Topical corticosteroid, silver sulfadiazine, and non-adhering silicone dressing are effective for treating ARD induced by PBT.
Collapse
Affiliation(s)
- Ko‐Chun Fang
- Department of EducationKaohsiung Chang‐Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chih‐Hung Lee
- Department of DermatologyKaohsiung Chang‐Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Hui‐Ching Chuang
- Department of OtolaryngologyKaohsiung Chang‐Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan,Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Tai‐Lin Huang
- Department of Hematology and OncologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chih‐Yen Chien
- Department of OtolaryngologyKaohsiung Chang‐Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan,Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan
| | - Wen‐Ling Tsai
- Department of Cosmetics and Fashion StylingCenter for Environmental Toxin and Emerging‐Contaminant Research, Cheng Shiu UniversityKaohsiungTaiwan
| | - Fu‐Min Fang
- Department of MedicineChang Gung University College of MedicineTaoyuanTaiwan,Department of Radiation OncologyKaohsiung Chang‐Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| |
Collapse
|
34
|
Dosimetric Parameters Related to Acute Radiation Dermatitis of Patients with Nasopharyngeal Carcinoma Treated by Intensity-Modulated Proton Therapy. J Pers Med 2022; 12:jpm12071095. [PMID: 35887590 PMCID: PMC9318665 DOI: 10.3390/jpm12071095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/08/2022] Open
Abstract
Background: Growing patients with nasopharyngeal carcinoma (NPC) were treated with intensity-modulated proton therapy (IMPT). However, a high probability of severe acute radiation dermatitis (ARD) was observed. The objective of the study is to investigate the dosimetric parameters related to ARD for NPC patients treated with IMPT. Methods: Sixty-two patients with newly diagnosed NPC were analyzed. The ARD was recorded based on the criteria of Common Terminology Criteria for Adverse Events version 4.0. Logistic regression model was performed to identify the clinical and dosimetric parameters related to ARD. Receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC) were used to evaluate the performance of the models. Results: The maximum ARD grade was 1, 2, and 3 in 27 (43.5%), 26 (42.0%), and 9 (14.5%) of the patients, respectively. Statistically significant differences (p < 0.01) in average volume to skin 5 mm with the respective doses were observed in the range 54−62 Cobalt Gray Equivalent (CGE) for grade 2 and 3 versus grade 1 ARD. Smoking habit and N2-N3 status were identified as significant predictors to develop grade 2 and 3 ARD in clinical model, and V58CGE to skin 5 mm as an independent predictor in dosimetric model. After adding the variable of V58CGE to the metric incorporating two parameters of smoking habit and N status, the AUC value of the metric increases from 0.78 (0.66−0.90) to 0.82 (0.72−0.93). The most appropriate cut-off value of V58CGE to skin 5 mm as determined by ROC curve was 5.0 cm3, with a predicted probability of 54% to develop grade 2 and 3 ARD. Conclusion: The dosimetric parameter of V58CGE to skin 5 mm < 5.0 cm3 could be used as a constraint in treatment planning for NPC patients treated by IMPT.
Collapse
|
35
|
Liu CH, Huang BS, Lin CY, Yeh CH, Lee TH, Wu HC, Chang CH, Chang TY, Huang KL, Jiang JL, Chang JTC, Chang YJ. Head and Neck Cancer Types and Risks of Cervical-Cranial Vascular Complications within 5 Years after Radiation Therapy. J Pers Med 2022; 12:jpm12071060. [PMID: 35887557 PMCID: PMC9317699 DOI: 10.3390/jpm12071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Background and purpose: to investigate the frequency of cervical−cranial vascular complications soon after radiation therapy (RT) and identify differences among patients with various types of head and neck cancer (HNC). Methods: We enrolled 496 patients with HNC who had received their final RT dose in our hospital. These patients underwent carotid duplex ultrasound (CDU) for monitoring significant carotid artery stenosis (CAS). Brain imaging were reviewed to detect vertebral, intracranial artery stenosis, or preexisted CAS before RT. Primary outcome was significant CAS at the internal or common carotid artery within first 5 years after RT. We categorized the patients into nasopharyngeal carcinoma (NPC) and non-NPC groups and compared the cumulative occurrence of significant CAS between the groups using Kaplan−Meier and Cox-regression analyses. Results: Compared to the NPC group, the non-NPC group had a higher frequency of significant CAS (12.7% vs. 2.0%) and were more commonly associated with significant CAS after adjusting the covariates (Adjusted hazard ratio: 0.17, 95% confident interval: 0.05−0.57) during the follow-up period. All the non-NPC subtypes (oral cancer/oropharyngeal, hypopharyngeal, and laryngeal cancers) were associated with higher risks of significant CAS than the NPC group (p < 0.001 respectively). Conclusion: Significant CAS was more frequently noted within 5 years of RT among the patients with non-NPC HNC than among the patients with NPC. Scheduled carotid artery surveillance and vascular risk monitoring should be commenced earlier for patients with non-NPC HNC. By contrast, vascular surveillance could be deferred to 5 years after RT completion in NPC patients.
Collapse
Affiliation(s)
- Chi-Hung Liu
- Stroke Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33333, Taiwan; (C.-H.L.); (T.-H.L.); (H.-C.W.); (C.-H.C.); (T.-Y.C.); (K.-L.H.); (J.-L.J.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
| | - Bing-Shen Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyuan 33333, Taiwan
| | - Chien-Yu Lin
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyuan 33333, Taiwan
- Taipei Chang Gung Head & Neck Oncology Group, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 33333, Taiwan
- Particle Physics and Beam Delivery Core Laboratory of Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Linkou Medical Center, Taoyuan 33333, Taiwan
| | - Chih-Hua Yeh
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
- Department of Neuroradiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33333, Taiwan
| | - Tsong-Hai Lee
- Stroke Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33333, Taiwan; (C.-H.L.); (T.-H.L.); (H.-C.W.); (C.-H.C.); (T.-Y.C.); (K.-L.H.); (J.-L.J.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
| | - Hsiu-Chuan Wu
- Stroke Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33333, Taiwan; (C.-H.L.); (T.-H.L.); (H.-C.W.); (C.-H.C.); (T.-Y.C.); (K.-L.H.); (J.-L.J.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
| | - Chien-Hung Chang
- Stroke Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33333, Taiwan; (C.-H.L.); (T.-H.L.); (H.-C.W.); (C.-H.C.); (T.-Y.C.); (K.-L.H.); (J.-L.J.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
| | - Ting-Yu Chang
- Stroke Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33333, Taiwan; (C.-H.L.); (T.-H.L.); (H.-C.W.); (C.-H.C.); (T.-Y.C.); (K.-L.H.); (J.-L.J.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
| | - Kuo-Lun Huang
- Stroke Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33333, Taiwan; (C.-H.L.); (T.-H.L.); (H.-C.W.); (C.-H.C.); (T.-Y.C.); (K.-L.H.); (J.-L.J.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
| | - Jian-Lin Jiang
- Stroke Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33333, Taiwan; (C.-H.L.); (T.-H.L.); (H.-C.W.); (C.-H.C.); (T.-Y.C.); (K.-L.H.); (J.-L.J.)
| | - Joseph Tung-Chieh Chang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Taoyuan 33333, Taiwan
- Taipei Chang Gung Head & Neck Oncology Group, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 33333, Taiwan
- Correspondence: (J.T.-C.C.); (Y.-J.C.)
| | - Yeu-Jhy Chang
- Stroke Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33333, Taiwan; (C.-H.L.); (T.-H.L.); (H.-C.W.); (C.-H.C.); (T.-Y.C.); (K.-L.H.); (J.-L.J.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan; (B.-S.H.); (C.-Y.L.); (C.-H.Y.)
- Chang Gung Medical Education Research Centre, Taoyuan 33333, Taiwan
- Correspondence: (J.T.-C.C.); (Y.-J.C.)
| |
Collapse
|
36
|
Lower-Neck Sparing Using Proton Therapy in Patients with Uninvolved Neck Nasopharyngeal Carcinoma: Is It Safe? J Clin Med 2022; 11:jcm11123297. [PMID: 35743368 PMCID: PMC9225079 DOI: 10.3390/jcm11123297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Undifferentiated carcinoma of the nasopharynx (NPC) is a rare disease, which usually occurs in the Asian population. Due to its anatomic location, it is characterised by rich lymph node drainage and has a high incidence of cervical node metastasis. However, cervical nodal metastasis commonly involves retropharyngeal nodes and level II nodes, followed by level III nodes. In recent years, innovations in terms of systemic treatments and radiotherapy techniques have improved oncological outcome and treatment-related toxicities. Therefore, there is a growing interest in de-intensification strategies of reducing volumes and treatment-related side effects, especially in patients with NPC with N0–N1-stage disease. Proton therapy could represent a valid alternative to Intensity Modulated Radiotherapy (IMRT) in the management of NPC in this setting. With this Commentary, we aim to explore the feasibility of Intensity Modulated Proton Therapy (IMPT) in upper-neck irradiation of NPC N1-stage disease. We selected an NPC patient with N1 disease and compared the original IMRT plan with the IMPT plan in terms of dosimetric parameters. IMPT offers a minimal dosimetric advantage over IMRT in the bilateral lower-neck sparing. Clinical trials are needed to evaluate the significance of these proposed suggestions and their applicability in non-endemic areas.
Collapse
|
37
|
Falek S, Regmi R, Herault J, Dore M, Vela A, Dutheil P, Moignier C, Marcy PY, Drouet J, Beddok A, Letwin NE, Epstein J, Parvathaneni U, Thariat J. Dental management in head and neck cancers: from intensity-modulated radiotherapy with photons to proton therapy. Support Care Cancer 2022; 30:8377-8389. [PMID: 35513755 DOI: 10.1007/s00520-022-07076-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Despite reduction of xerostomia with intensity-modulated compared to conformal X-ray radiotherapy, radiation-induced dental complications continue to occur. Proton therapy is promising in head and neck cancers to further reduce radiation-induced side-effects, but the optimal dental management has not been defined. MATERIAL AND METHODS Dental management before proton therapy was assessed compared to intensity-modulated radiotherapy based on a bicentric experience, a literature review and illustrative cases. RESULTS Preserved teeth frequently contain metallic dental restorations (amalgams, crowns, implants). Metals blur CT images, introducing errors in tumour and organ contour during radiotherapy planning. Due to their physical interactions with matter, protons are more sensitive than photons to tissue composition. The composition of restorative materials is rarely documented during radiotherapy planning, introducing dose errors. Manual artefact recontouring, metal artefact-reduction CT algorithms, dual or multi-energy CT and appropriate dose calculation algorithms insufficiently compensate for contour and dose errors during proton therapy. Physical uncertainties may be associated with lower tumour control probability and more side-effects after proton therapy. Metal-induced errors should be quantified and removal of metal restorations discussed on a case by case basis between dental care specialists, radiation oncologists and physicists. Metallic amalgams can be replaced with water-equivalent materials and crowns temporarily removed depending on rehabilitation potential, dental condition and cost. Implants might contraindicate proton therapy if they are in the proton beam path. CONCLUSION Metallic restorations may more severely affect proton than photon radiotherapy quality. Personalized dental care prior to proton therapy requires multidisciplinary assessment of metal-induced errors before choice of conservation/removal of dental metals and optimal radiotherapy.
Collapse
Affiliation(s)
- Sabah Falek
- Department of Oral and Maxillo-Facial Surgery, Francois Baclesse Center, Caen, France
| | - Rajesh Regmi
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | - Joel Herault
- Institut Méditerranéen de Protonthérapie, Antoine Lacassagne Center, Nice, France
| | - Melanie Dore
- Department of Radiation Oncology, Institut de Cancérologie de L'Ouest, Nantes, France
| | - Anthony Vela
- Department of Medical Physics, François Baclesse Center / Proton Therapy Center, Caen, France
| | - Pauline Dutheil
- Department of Medical Physics, François Baclesse Center / Proton Therapy Center, Caen, France
| | - Cyril Moignier
- Department of Medical Physics, François Baclesse Center / Proton Therapy Center, Caen, France
| | - Pierre-Yves Marcy
- Radiodiagnostics and Interventional Radiology, Polyclinique ELSAN, Ollioules, France
| | - Julien Drouet
- Department of Oral and Maxillo-Facial Surgery, Francois Baclesse Center, Caen, France
| | - Arnaud Beddok
- Department of Radiation Oncology, Curie Institute, Paris, France
| | - Noah E Letwin
- Swedish Medical Center General Practice Residency, Seattle, WA and owner Seattle Special Care Dentistry, Seattle, WA, USA
| | - Joel Epstein
- City of Hope Comprehensive Cancer Center, Duarte CA and Cedars-Sinai Medical System, Los Angeles, CA, USA
| | - Upendra Parvathaneni
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, USA
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, Caen, France.
- Laboratoire de Physique Corpusculaire, IN2P3/ENISAEN-CNRS, Caen, France.
- Normandie Universite, Caen, France.
- SAS Cyclhad, Hérouville-Saint-Clair, France.
| |
Collapse
|
38
|
Zhang Y, McGowan Holloway S, Zoë Wilson M, Alshaikhi J, Tan W, Royle G, Bär E. DIR-based models to predict weekly anatomical changes in head and neck cancer proton therapy. Phys Med Biol 2022; 67:095001. [PMID: 35316795 PMCID: PMC10437002 DOI: 10.1088/1361-6560/ac5fe2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Objective. We proposed two anatomical models for head and neck patients to predict anatomical changes during the course of radiotherapy.Approach. Deformable image registration was used to build two anatomical models: (1) the average model (AM) simulated systematic progressive changes across the patient cohort; (2) the refined individual model (RIM) used a patient's CT images acquired during treatment to update the prediction for each individual patient. Planning CTs and weekly CTs were used from 20 nasopharynx patients. This dataset included 15 training patients and 5 test patients. For each test patient, a spot scanning proton plan was created. Models were evaluated using CT number differences, contours, proton spot location deviations and dose distributions.Main results. If no model was used, the CT number difference between the planning CT and the repeat CT at week 6 of treatment was on average 128.9 Hounsfield Units (HU) over the test population. This can be reduced to 115.5 HU using the AM, and to 110.5 HU using the RIM3(RIM, updated at week (3). When the predicted contours from the models were used, the average mean surface distance of parotid glands can be reduced from 1.98 (no model) to 1.16 mm (AM) and 1.19 mm (RIM3) at week 6. Using the proton spot range, the average anatomical uncertainty over the test population reduced from 4.47 ± 1.23 (no model) to 2.41 ± 1.12 mm (AM), and 1.89 ± 0.96 mm (RIM3). Based on the gamma analysis, the average gamma index over the test patients was improved from 93.87 ± 2.48 % (no model) to 96.16 ± 1.84% (RIM3) at week 6.Significance. The AM and the RIM both demonstrated the ability to predict anatomical changes during the treatment. The RIM can gradually refine the prediction of anatomical changes based on the AM. The proton beam spots provided an accurate and effective way for uncertainty evaluation.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Stacey McGowan Holloway
- CRUK RadNet Glasgow, University of Glasgow, Beatson West of Scotland Cancer Centre, Radiotherapy Physics, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Megan Zoë Wilson
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jailan Alshaikhi
- Saudi Proton Therapy Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wenyong Tan
- Department of Oncology, Shenzhen Hospital of Southern Medical University Shenzhen 518101, People's Republic of China
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Esther Bär
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
- University College London Hospitals NHS Foundation Trust, Radiotherapy Physics, 250 Euston Road, London NW1 2PG, United Kingdom
| |
Collapse
|
39
|
Campbell G, Glazer TA, Kimple RJ, Bruce JY. Advances in Organ Preservation for Laryngeal Cancer. Curr Treat Options Oncol 2022; 23:594-608. [PMID: 35303749 PMCID: PMC9405127 DOI: 10.1007/s11864-022-00945-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
OPINION STATEMENT At the University of Wisconsin, all treatment of head and neck cancer patients begins with discussion at our multi-disciplinary tumor board. Most patients with T4 disease, with existing laryngeal dysfunction, considered unlikely to complete definitive CRT or who have a high risk of persistent aspiration after non-operative management undergo total laryngectomy. A laryngeal sparing approach is attempted on most other patients. Radiotherapy is delivered over 6.5 weeks, preferably with concurrent weekly cisplatin. If the patient is hesitant of chemotherapy or has contraindications to cisplatin, concurrent cetuximab may be offered. Patients treated with RT alone are often treated to the same dose, but via an accelerated schedule by adding a 6th fraction per week. The 6th fraction is given by delivering two treatments at least 6 h apart on a weekday of the patient's choosing. We consider the following to be major risk factors for clinically significant weight loss during treatment: a 10% or greater loss of weight in the 6 months prior to starting treatment, delivery of concurrent cisplatin, and treatment of the bilateral neck with radiation. Patients who have 2-3 of these characteristics are often given gastrostomy tubes prophylactically. Patients are seen 2 weeks after completion of therapy, and then every 3 months after completion for 2 years. A CT neck and PET-CT are performed at the first 3-month visit. They are seen twice in year three, and then yearly until years 5-7. At each of these visits, we have a low threshold to present the patient at our multidisciplinary tumor board for consideration of salvage laryngectomy if there are signs of progression.
Collapse
Affiliation(s)
- Graham Campbell
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tiffany A Glazer
- Department of Surgery - Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Justine Yang Bruce
- Department of Medicine - Medical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA. .,University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, USA.
| |
Collapse
|
40
|
High-Throughput 3D Tumor Spheroid Array Platform for Evaluating Sensitivity of Proton-Drug Combinations. Int J Mol Sci 2022; 23:ijms23020587. [PMID: 35054773 PMCID: PMC8775525 DOI: 10.3390/ijms23020587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines—Fadu and Cal27—cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.
Collapse
|
41
|
Post-Irradiation Sinus Mucosa Disease in Nasopharyngeal Carcinoma Patients Treated with Intensity-Modulated Proton Therapy. Cancers (Basel) 2022; 14:cancers14010225. [PMID: 35008389 PMCID: PMC8750360 DOI: 10.3390/cancers14010225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Chronic rhinosinusitis (CRS) is a common treatment complication in patients with nasopharyngeal carcinoma (NPC) after radiotherapy. In this study, we aimed to investigate the incidence and severity of CRS in NPC patients who underwent intensity-modulated proton therapy (IMPT) by evaluating the sinus mucosa change in imaging studies, and we compared these patients with those who underwent volume-modulated arc therapy (VMAT). This was a retrospective case–control study in which 53 and 54 patients were treated with IMPT and VMAT, respectively. We noted that patients in the IMPT group had a significantly lower incidence and decreased severity of sinus mucosa abnormality than those with VMAT. Better and faster recovery of sinonasal function after radiotherapy in the IMPT group was also observed. IMPT techniques deposit the bulk of their radiation doses in highly confined areas, allowing lower exposure of non-target organs during irradiation, which results in more sinonasal mucosa being retained. Abstract In the past decade, patients with nasopharyngeal cancer (NPC) have been deemed candidates for proton radiotherapy, due to the large and comprehensive target volumes and the necessity for the retention of the surrounding healthy tissues. In this study, we aimed to compare the incidence and severity of post-irradiation sinusitis by detecting sinus mucosa diseases (SMDs) via the magnetic resonance imaging (MRI) of patients with NPC after intensity-modulated proton therapy (IMPT) and volume-modulated arc therapy (VMAT). A total of 53 patients in the IMPT group and 54 patients in the VMAT group were enrolled in this study. There were significantly lower endoscopic scores and Lund–Mackay staging scores determined from MRI scans in the IMPT group during different follow-up periods. For the most vulnerable sinuses, the incidence and severity of SMD were the highest during the third post-radiotherapy month in both groups. These decreased steadily, and there was no significant increase in the incidence and severity of SMD during the second post-radiotherapy year in the IMPT group. Our data show that NPC patients with IMPT have a significantly lower incidence and decreased severity of SMD than those with VMAT. A better and faster recovery of sinonasal function after radiotherapy in the IMPT group was also observed.
Collapse
|
42
|
Ureba A, Ödén J, Toma-Dasu I, Lazzeroni M. Photon and Proton Dose Painting Based on Oxygen Distribution – Feasibility Study and Tumour Control Probability Assessment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:223-228. [PMID: 36527641 DOI: 10.1007/978-3-031-14190-4_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solid tumours may present hypoxic sub-regions of increased radioresistance. Hypoxia quantification requires of clinically implementable, non-invasive and reproducible techniques as positron emission tomography (PET). PET-based dose painting strategies aiming at targeting those sub-regions may be limited by the resolution gap between the PET imaging resolution and the smaller scale at which hypoxia occurs. The ultimate benefit of the usage of dose painting may be reached if the planned dose distribution can be performed and delivered consistently. This study aimed at assessing the feasibility of two PET-based dose painting strategies using two beam qualities (photon or proton beams) in terms of tumour control probability (TCP), accounting for underlying oxygen distribution at sub-millimetre scale.A tumour oxygenation model at submillimetre scale was created consisting of three regions with different oxygen partial pressure distributions, being hypoxia decreasing from core to periphery. A published relationship between uptake and oxygen partial pressure was used and a PET image of the tumour was simulated. The fundamental effects that limit the PET camera resolution were considered by processing the uptake distribution with a Gaussian 3D filter and re-binning to a PET image voxel size of 2 mm. Prescription doses to overcome tumour hypoxia were calculated based on the processed images, and planned using robust optimisation.Normal tissue complication probabilities and TCPs after the delivery of the planned doses were calculated for the nominal plan and the lowest bounds of the dose volume histograms resulting from the robust scenarios planned, taking into account the underlying oxygenation at submillimetre scale. Results were presented for the two beam qualities and the two dose painting strategies: by contours (DPBC) and by using a voxel grouping-based approach (DPBOX).In the studied case, DPBOX outperforms DPBC with respect to TCP regardless the beam quality, although both dose painting strategy plans demonstrated robust target coverage.
Collapse
|
43
|
Hedrick SG, Petro S, Ward A, Morris B. Validation of automated complex head and neck treatment planning with pencil beam scanning proton therapy. J Appl Clin Med Phys 2021; 23:e13510. [PMID: 34936205 PMCID: PMC8833278 DOI: 10.1002/acm2.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pencil beam scanning (PBS) proton therapy offers dosimetric advantages for several treatment sites, including head and neck (H&N). However, to achieve the optimal target coverage and robustness, these plans can be complex and time consuming to develop and optimize. Automating the treatment planning process can ensure a high‐quality and standardized plan, reduce burden to the planner, and decrease time‐to‐treatment. We utilized in‐house scripting to automate a four‐field multi‐field optimization (MFO) H&N planning technique. Methods and materials Ten bilateral H&N patients were planned in RayStation v6 with a four‐field modified‐X beam configuration using MFO planning. Automation included creation of avoidance structures to control spot placement and development of standardized beams, PBS spot settings, robust optimization objectives, and patient‐specific predicted planning constraints. Each patient was planned both with and without automation to evaluate differences in planning time, perceived effort and plan quality, plan robustness, and OAR sparing. Results On average, scripted plans required 3.2 h, compared to 4.3 h without the script. There was no difference in target coverage or plan robustness with or without automation. Automation significantly reduced mean dose to the oral cavity, parotids, esophagus, trachea, and larynx. Perceived effort was scaled from 1 (minimum effort) to 100 (maximum effort), and automation reduced perceived effort by 42% (p < 0.05). Two non‐scripted plans required re‐planning due to errors. Conclusions Automation of this multi‐beam, the MFO proton planning process reduced planning time and improved OAR sparing compared to the same planning process without scripting. Scripting generation of complex structures and planning objectives reduced burden on the planner. With most current treatment planning software, this automation is simple to implement and can standardize quality of care across all treatment planners.
Collapse
Affiliation(s)
| | - Scott Petro
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| | - Alex Ward
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| | - Bart Morris
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| |
Collapse
|
44
|
Mohamed N, Lee A, Lee NY. Proton beam radiation therapy treatment for head and neck cancer. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nader Mohamed
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY USA
| | - Anna Lee
- Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Nancy Y. Lee
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York NY USA
| |
Collapse
|
45
|
Liu Z, Chen Y, Su Y, Hu X, Peng X. Nasopharyngeal Carcinoma: Clinical Achievements and Considerations Among Treatment Options. Front Oncol 2021; 11:635737. [PMID: 34912697 PMCID: PMC8667550 DOI: 10.3389/fonc.2021.635737] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a severe malignancy arising from the nasopharyngeal epithelium and is southern China's third most common cancer. With the advancement of treatment methods, early-stage NPC patients usually have a better prognosis and more prolonged survival period than those with other malignant tumors. Most treatment failures are due to distant metastasis or a locally advanced stage of NPC in the initial diagnosis. In addition, approximately 10% of patients develop local recurrence, and 10%-20% of patients experience distant metastasis after treatment. These patients have a poor prognosis, with a median survival of only approximately 10-15 months. In the rapid development of treatment options, the efficacy and safety of some treatments have been validated and approved for first-line treatment, while those of other treatments remain unclear. The present study aims to provide a comprehensive overview of recent advances in NPC treatment and explain the various therapeutic possibilities in treating locally advanced, recurrent, and metastatic NPC patients.
Collapse
Affiliation(s)
- Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Medical Oncology, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yonglin Su
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolin Hu
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Stopping-power ratio of mouthpiece materials for charged-particle therapy in head and neck cancer. Radiol Phys Technol 2021; 15:83-88. [PMID: 34822100 PMCID: PMC8888382 DOI: 10.1007/s12194-021-00643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
In this study, the stopping-power ratios (SPRs) of mouthpiece materials were measured and the errors in the predicted SPRs based on conversion table values were further investigated. The SPRs of the five mouthpiece materials were predicted from their computed tomography (CT) numbers using a calibrated conversion table. Independently, the SPRs of the materials were measured from the Bragg peak shift of a carbon-ion beam passing through the materials. The errors in the SPRs of the materials were determined as the difference between the predicted and measured values. The measured SPRs (errors) of the Nipoflex 710™ and Bioplast™ ethylene–vinyl acetate copolymers (EVAs) were 0.997 (0.023) and 0.982 (0.007), respectively. The SPRs of the vinyl silicon impression material, light-curable resin, and bis-acrylic resin were 1.517 (0.134), 1.161 (0.068), and 1.26 (0.101), respectively. Among the five tested materials, the EVAs had the lowest SPR errors, indicating the highest human-tissue equivalency.
Collapse
|
47
|
Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson D, Li L, Tao Q, Chan KCA, To KF, King AD, Ma BBY, Chan ATC. Nasopharyngeal carcinoma: an evolving paradigm. Nat Rev Clin Oncol 2021; 18:679-695. [PMID: 34194007 DOI: 10.1038/s41571-021-00524-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
The past three decades have borne witness to many advances in the understanding of the molecular biology and treatment of nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-associated cancer endemic to southern China, southeast Asia and north Africa. In this Review, we provide a comprehensive, interdisciplinary overview of key research findings regarding NPC pathogenesis, treatment, screening and biomarker development. We describe how technological advances have led to the advent of proton therapy and other contemporary radiotherapy approaches, and emphasize the relentless efforts to identify the optimal sequencing of chemotherapy with radiotherapy through decades of clinical trials. Basic research into the pathogenic role of EBV and the genomic, epigenomic and immune landscape of NPC has laid the foundations of translational research. The latter, in turn, has led to the development of new biomarkers and therapeutic targets and of improved approaches for individualizing immunotherapy and targeted therapies for patients with NPC. We provide historical context to illustrate the effect of these advances on treatment outcomes at present. We describe current preclinical and clinical challenges and controversies in the hope of providing insights for future investigation.
Collapse
Affiliation(s)
- Kenneth C W Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wai Kei Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - David Johnson
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Lili Li
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Qian Tao
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwan Chee Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ann D King
- Department of Diagnostic Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Anthony T C Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| |
Collapse
|
48
|
Sidebottom RB, Allison JC, Aulwes EF, Broder BA, Freeman MS, Magnelind PE, Mariam FG, Merrill FE, Neukirch LP, Schurman T, Sinnis J, Tang Z, Tupa D, Tybo JL, Wilde CH, Espy M. Contrast-enhanced proton radiographic sensitivity limits for tumor detection. J Med Imaging (Bellingham) 2021; 8:053501. [PMID: 34708145 DOI: 10.1117/1.jmi.8.5.053501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Proton radiography may guide proton therapy cancer treatments with beam's-eye-view anatomical images and a proton-based estimation of proton stopping power. However, without contrast enhancement, proton radiography will not be able to distinguish tumor from tissue. To provide this contrast, functionalized, high- Z nanoparticles that specifically target a tumor could be injected into a patient before imaging. We conducted this study to understand the ability of gold, as a high- Z , biologically compatible tracer, to differentiate tumors from surrounding tissue. Approach: Acrylic and gold phantoms simulate a tumor tagged with gold nanoparticles (AuNPs). Calculations correlate a given thickness of gold to levels of tumor AuNP uptake reported in the literature. An identity, × 3 , and × 7 proton magnifying lens acquired lens-refocused proton radiographs at the 800-MeV LANSCE proton beam. The effects of gold in the phantoms, in terms of percent density change, were observed as changes in measured transmission. Variable areal densities of acrylic modeled the thickness of the human body. Results: A 1 - μ m -thick gold strip was discernible within 1 cm of acrylic, an areal density change of 0.2%. Behind 20 cm of acrylic, a 40 - μ m gold strip was visible. A 1-cm-diameter tumor tagged with 1 × 10 5 50-nm AuNPs per cell has an amount of contrast agent embedded within it that is equivalent to a 65 - μ m thickness of gold, an areal density change of 0.63% in a tissue thickness of 20 cm, which is expected to be visible in a typical proton radiograph. Conclusions: We indicate that AuNP-enhanced proton radiography might be a feasible technology to provide image-guidance to proton therapy, potentially reducing off-target effects and sparing nearby tissue. These data can be used to develop treatment plans and clinical applications can be derived from the simulations.
Collapse
Affiliation(s)
| | - Jason C Allison
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Ethan F Aulwes
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Brittany A Broder
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Matthew S Freeman
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Per E Magnelind
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Fesseha G Mariam
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Frank E Merrill
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Levi P Neukirch
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Tamsen Schurman
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - James Sinnis
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Zhaowen Tang
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Dale Tupa
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Joshua L Tybo
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Carl H Wilde
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Michelle Espy
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| |
Collapse
|
49
|
Prasanna PG, Rawojc K, Guha C, Buchsbaum JC, Miszczyk JU, Coleman CN. Normal Tissue Injury Induced by Photon and Proton Therapies: Gaps and Opportunities. Int J Radiat Oncol Biol Phys 2021; 110:1325-1340. [PMID: 33640423 PMCID: PMC8496269 DOI: 10.1016/j.ijrobp.2021.02.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022]
Abstract
Despite technological advances in radiation therapy (RT) and cancer treatment, patients still experience adverse effects. Proton therapy (PT) has emerged as a valuable RT modality that can improve treatment outcomes. Normal tissue injury is an important determinant of the outcome; therefore, for this review, we analyzed 2 databases: (1) clinical trials registered with ClinicalTrials.gov and (2) the literature on PT in PubMed, which shows a steady increase in the number of publications. Most studies in PT registered with ClinicalTrials.gov with results available are nonrandomized early phase studies with a relatively small number of patients enrolled. From the larger database of nonrandomized trials, we listed adverse events in specific organs/sites among patients with cancer who are treated with photons and protons to identify critical issues. The present data demonstrate dosimetric advantages of PT with favorable toxicity profiles and form the basis for comparative randomized prospective trials. A comparative analysis of 3 recently completed randomized trials for normal tissue toxicities suggests that for early stage non-small cell lung cancer, no meaningful comparison could be made between stereotactic body RT and stereotactic body PT due to low accrual (NCT01511081). In addition, for locally advanced non-small cell lung cancer, a comparison of intensity modulated RTwith passive scattering PT (now largely replaced by spot-scanned intensity modulated PT), PT did not provide any benefit in normal tissue toxicity or locoregional failure over photon therapy. Finally, for locally advanced esophageal cancer, proton beam therapy provided a lower total toxicity burden but did not improve progression-free survival and quality of life (NCT01512589). The purpose of this review is to inform the limitations of current trials looking at protons and photons, considering that advances in technology, physics, and biology are a continuum, and to advocate for future trials geared toward accurate precision RT that need to be viewed as an iterative process in a defined path toward delivering optimal radiation treatment. A foundational understanding of the radiobiologic differences between protons and photons in tumor and normal tissue responses is fundamental to, and necessary for, determining the suitability of a given type of biologically optimized RT to a patient or cohort.
Collapse
Affiliation(s)
- Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland.
| | - Kamila Rawojc
- The University Hospital in Krakow, Department of Endocrinology, Nuclear Medicine Unit, Krakow, Poland
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Justyna U Miszczyk
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
50
|
Chou YC, Fan KH, Lin CY, Hung TM, Huang BS, Chang KP, Kang CJ, Huang SF, Chang PH, Hsu CL, Wang HM, Hsieh JCH, Cheng AJ, Chang JTC. Intensity Modulated Proton Beam Therapy versus Volumetric Modulated Arc Therapy for Patients with Nasopharyngeal Cancer: A Propensity Score-Matched Study. Cancers (Basel) 2021; 13:cancers13143555. [PMID: 34298769 PMCID: PMC8307135 DOI: 10.3390/cancers13143555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: We compared the outcomes of patients with nasopharyngeal carcinoma treated with IMPT and VMAT. (2) Methods: We performed a retrospective propensity score matching analysis (1:1) of patients treated with IMPT (years: 2016-2018) and VMAT (2014-2018). Survival was estimated using the Kaplan-Meier method. Multivariate Cox proportional hazards regression analysis was used to identify the independent predictors of survival. Binary toxicity endpoint analyses were performed using a Cox model and logistic regression. (3) Results: Eighty patients who received IMPT and VMAT were included. The median follow-up time was 24.1 months in the IMPT group. Progression-free survival (PFS) and overall survival (OS) were not statistically different between the two groups but potentially better in IMPT group. In multivariate analysis, advanced N-stage and body weight loss (BWL; >7%) during radiotherapy were associated with decreased PFS. The IMPT group had significantly less requirement for nasogastric (NG) tube placement and BWL during treatment. The mean oral cavity dose was the only predictive factor in stepwise regression analysis, and IMPT required a significantly lower mean dose. However, IMPT increased the grade 3 radiation dermatitis. (4) Conclusions: IMPT is associated with reduced rates of NG tube insertion and BWL through reducing oral mean dose, potentially producing better oncologic outcomes.
Collapse
Affiliation(s)
- Yung-Chih Chou
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (K.-H.F.); (C.-Y.L.); (T.-M.H.); (B.-S.H.); (A.-J.C.)
- Department of Radiation Oncology, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan
| | - Kang-Hsing Fan
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (K.-H.F.); (C.-Y.L.); (T.-M.H.); (B.-S.H.); (A.-J.C.)
- Department of Radiation Oncology, New Taipei Municipal Tucheng Hospital, New Taipei City 236, Taiwan
| | - Chien-Yu Lin
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (K.-H.F.); (C.-Y.L.); (T.-M.H.); (B.-S.H.); (A.-J.C.)
| | - Tsung-Min Hung
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (K.-H.F.); (C.-Y.L.); (T.-M.H.); (B.-S.H.); (A.-J.C.)
| | - Bing-Shen Huang
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (K.-H.F.); (C.-Y.L.); (T.-M.H.); (B.-S.H.); (A.-J.C.)
| | - Kai-Ping Chang
- Department of Otolaryngology-Head Neck Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (K.-P.C.); (C.-J.K.); (S.-F.H.); (P.-H.C.)
| | - Chung-Jan Kang
- Department of Otolaryngology-Head Neck Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (K.-P.C.); (C.-J.K.); (S.-F.H.); (P.-H.C.)
| | - Shiang-Fu Huang
- Department of Otolaryngology-Head Neck Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (K.-P.C.); (C.-J.K.); (S.-F.H.); (P.-H.C.)
| | - Po-Hung Chang
- Department of Otolaryngology-Head Neck Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (K.-P.C.); (C.-J.K.); (S.-F.H.); (P.-H.C.)
| | - Cheng-Lung Hsu
- Division of Medical Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (C.-L.H.); (H.-M.W.); (J.C.-H.H.)
| | - Hung-Ming Wang
- Division of Medical Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (C.-L.H.); (H.-M.W.); (J.C.-H.H.)
| | - Jason Chia-Hsun Hsieh
- Division of Medical Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (C.-L.H.); (H.-M.W.); (J.C.-H.H.)
| | - Ann-Joy Cheng
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (K.-H.F.); (C.-Y.L.); (T.-M.H.); (B.-S.H.); (A.-J.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Joseph Tung-Chieh Chang
- Proton and Radiation Therapy Center, Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (K.-H.F.); (C.-Y.L.); (T.-M.H.); (B.-S.H.); (A.-J.C.)
- Department of Radiation Oncology, Xiamen Chang Gung Memorial Hospital, Xiamen 361000, China
- Correspondence: ; Tel.: +886-3-3281200 (ext. 7000); Fax: +886-3-3280797
| |
Collapse
|