1
|
Liu J, Yuan S, Deng Q, Ji Y. The modified combo i3 + 3 design for novel-novel combination dose-finding trials in oncology. Contemp Clin Trials 2025; 152:107857. [PMID: 39987962 DOI: 10.1016/j.cct.2025.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/16/2024] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
We consider a modified Ci3 + 3 (MCi3 + 3) design for dual-agent dose-finding trials in which both agents are tested on multiple doses. This usually happens when the agents are novel therapies. The MCi3 + 3 design offers a two-stage or three-stage version, depending on the practical need. The first stage begins with single-agent dose escalation, the second stage launches a model-free combination dose finding for both agents, and optionally, the third stage follows with a model-based design. MCi3 + 3 aims to maintain a relatively simple framework to facilitate practical application, while also address challenges that are unique to novel-novel combination dose finding. Through simulations, we demonstrate that the MCi3 + 3 design adeptly manages various toxicity scenarios. It exhibits operational characteristics on par with other combination designs, while offering an enhanced safety profile. The design is motivated and tested for a real-life clinical trial.
Collapse
Affiliation(s)
| | - Shijie Yuan
- Department of Statistics and Data Science, The University of Texas at Austin, Austin, USA
| | | | - Yuan Ji
- Department of Public Health Sciences, The University of Chicago, Chicago, USA.
| |
Collapse
|
2
|
Lv Z, Wu J. Research Hotspots of Interferon Gamma in the Treatment of Lung Cancer: A Bibliometric Analysis Based on CiteSpace. J Interferon Cytokine Res 2025; 45:109-118. [PMID: 39874560 DOI: 10.1089/jir.2024.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Interferon-gamma (IFN-γ) is an important cytokine associated with antitumor immunity and has been implicated in the pathogenesis and progression of lung cancer. Nevertheless, no bibliometric analyses have been published in this field to date, and thus we aim to address this gap in knowledge. A search of the Web of Science (WOS) for literature related to the treatment of lung cancer with IFN-γ was conducted from 2002 to 2024. The extracted information from the included articles was subjected to visual analysis, and network diagrams were generated using software such as CiteSpace and VOSviewer. In total, 589 articles related to the treatment of lung cancer with IFN-γ were included in WOS between 2002 and 2024. The number of articles and citation frequency generally showed an increasing trend year by year. The United States and the University of California are the countries and institutions with the largest number of articles. The researcher who made the largest contribution to this field was Xin Cai from China (6). The Journal for ImmunoTherapy of Cancer published the largest number of relevant papers in the field (16 papers, IF = 12.469). The research hotspots in the field of immune escape in recent years have been IFN-γ, mechanism, immune checkpoints, and microtumor inhibitors. The field of IFN-γ treatment of lung cancer is evolving at a rapid pace. The current research focus within this field is on elucidating the mechanism of IFN-γ treatment of lung cancer, investigating the role of immune checkpoint inhibitors, and examining the tumor microenvironment and other pertinent topics.
Collapse
Affiliation(s)
- Zhen Lv
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jianjun Wu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Connor C, Carr QL, Sweazy A, McMasters K, Hao H. Clinical Approaches for the Management of Skin Cancer: A Review of Current Progress in Diagnosis, Treatment, and Prognosis for Patients with Melanoma. Cancers (Basel) 2025; 17:707. [PMID: 40002300 PMCID: PMC11853469 DOI: 10.3390/cancers17040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Melanoma represents a significant public health challenge due to its increasing incidence and potential for metastasis. This review will explore the current clinical approaches to the management of melanoma, focusing on advancements in diagnosis, treatment, and prognosis. Methods for early detection and accurate staging have been enhanced by new diagnostic strategies. Treatment modalities have expanded beyond traditional surgical excision to include targeted therapy and immunotherapy. Prognostic assessment has benefited from the development of novel biomarkers and genetic profiling. This review will highlight the progress made in the multidisciplinary management of melanoma, underscoring the importance of continuous research to improve patient outcomes.
Collapse
Affiliation(s)
- Colton Connor
- School of Medicine, University of Louisville, Louisville, KY 40202, USA; (C.C.); (Q.L.C.)
| | - Quinton L. Carr
- School of Medicine, University of Louisville, Louisville, KY 40202, USA; (C.C.); (Q.L.C.)
| | - Alisa Sweazy
- The Hiram C. Polk, Jr., MD Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (A.S.); (K.M.)
| | - Kelly McMasters
- The Hiram C. Polk, Jr., MD Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (A.S.); (K.M.)
| | - Hongying Hao
- The Hiram C. Polk, Jr., MD Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (A.S.); (K.M.)
| |
Collapse
|
4
|
Höppener DJ, Grünhagen DJ, Eggermont AMM, van der Veldt AAM, Verhoef C. An Overview of Liver Directed Locoregional Therapies. Hematol Oncol Clin North Am 2025; 39:103-123. [PMID: 39510668 DOI: 10.1016/j.hoc.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An overview of all liver-directed locoregional therapies, including surgical resection for melanoma liver metastases (MLMs), is provided. MLM patients are divided by their primary melanoma location; cutaneous, uvea (eye), and mucosal melanoma. If patients with isolated cutaneous MLMs are considered for surgical resection, treatment with systemic therapy should be part of the treatment course. For uveal MLMs, complete surgical or ablative treatment of all MLMs suggests superior results compared with other liver-directed or systemic therapies, based on current evidence, no recommendations for any liver-directed regional therapy in the treatment of mucosal MLMs can be made.
Collapse
Affiliation(s)
- Diederik J Höppener
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Dirk J Grünhagen
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Alexander M M Eggermont
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Teo AYT, Yau CE, Low CE, Pereira JVB, Ng JYX, Soong TK, Lo JYT, Yang VS. Effectiveness of immune checkpoint inhibitors and other treatment modalities in patients with advanced mucosal melanomas: a systematic review and individual patient data meta-analysis. EClinicalMedicine 2024; 77:102870. [PMID: 39416390 PMCID: PMC11474374 DOI: 10.1016/j.eclinm.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mucosal melanomas (MM) are an aggressive subtype of melanoma. Given the rarity of this disease, the conduct of clinical trials is challenging and has been limited. Current treatment options have been extrapolated from the more common cutaneous melanoma even though MM is distinct in pathogenesis, etiology and prognosis. This is the first meta-analysis to comprehensively assess the efficacy of immune checkpoint inhibitors (anti-PD1 and anti-CTLA4) and other treatment modalities (targeted therapy such as KIT inhibitors and VEGF inhibitors, as well as radiotherapy) on survival outcomes in MM to develop clinical guidelines for evidence-based management. Methods The protocol was prospectively registered on PROSPERO (PROSPERO ID: CRD42023411195). PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science and Google Scholar were searched from inception until 25 July 2024, for all cohort and observational studies. Eligible studies included those with five or more participants with locally advanced or metastatic MM treated with anti-PD1, anti-CTLA4, VEGF inhibitors and/or KIT inhibitors. Titles and abstracts of potential articles were screened and full texts of all potentially eligible studies were retrieved and reviewed by two independent reviewers. Individual patient data (IPD) from published Kaplan-Meier curves were reconstructed using a graphical reconstruction method and pooled as a one-stage meta-analysis. A sensitivity analysis using a two-stage meta-analysis approach was conducted. Extracted outcomes included overall survival (OS) and progression-free survival (PFS). For each treatment arm, median survival time and 12-month survival proportion were estimated. Data from double-arm trials was pooled to estimate hazard ratios (HRs), ratios of restricted mean time lost (RMTL) and restricted mean survival time (RMST). Findings From a total of 7402 studies, 35 eligible studies comprising a total of 2833 participants were included. Combined anti-PD1 and anti-CTLA4 therapy had the highest 12-month OS and 12-month PFS at 71.8% (95% CI: 67.6%, 76.2%, n = 476) and 35.1% (95% CI: 30.5%, 40.4%, n = 401) respectively, followed by anti-PD1 therapy alone (OS: 64.0% (95% CI: 61.4%, 66.7%, n = 1399); PFS: was 28.3% (95% CI: 25.8%, 31.2%, n = 1142), anti-PD1 and VEGF inhibitor combination therapy (OS: 57.1% (95% CI: 51.0%, 63.9%)), KIT inhibitors (OS: 48.2% (95% CI: 37.6%, 61.8%); PFS: 8.3% (95% CI: 3.7%, 18.7%)) and anti-CTLA4 therapy alone (OS: 33.3% (95% CI: 28.4%, 39.1%); PFS: 9.8% (95% CI: 5.9%, 16.5%)). In the double-arm studies, combination therapy with anti-PD1 and anti-CTLA4 had similar OS and PFS with anti-PD1 alone (OS: HR 0.856 (95% CI: 0.704, 1.04); RMTL ratio 0.932 (95% CI: 0.832, 1.044, P = 0.225); RMST ratio 1.102 (95% CI: 0.948, 1.281, P = 0.204); PFS: HR 0.919 (95% CI: 0.788, 1.07); RMTL ratio 0.936 (95% CI: 0.866, 1.013, P = 0.100); RMST ratio 1.21 (95% CI: 0.979, 1.496, P = 0.078)), however, anti-PD1 therapy alone had significantly better PFS than anti-CTLA4 alone (HR 0.548 (95% CI: 0.376, 0.799); RMTL ratio 0.715 (95% CI: 0.606, 0.844, P < 0.001); RMST ratio 1.659 (95% CI: 1.316, 2.092, P < 0.001)). Anti-PD1 therapy with radiotherapy versus anti-PD1 alone showed no significant difference (OS: HR 0.854 (95% CI: 0.567, 1.29); RMTL ratio 0.855 (95% CI: 0.675, 1.083, P = 0.193); RMST ratio 1.194 (95% CI: 0.928, 1.536, P = 0.168; PFS: HR 0.994 (95% CI: 0.710, 1.39); RMTL ratio 1.006 (95% CI: 0.87, 1.162, P = 0.939); RMST ratio 0.984 (95% CI: 0.658, 1.472, P = 0.939)). Interpretation For the systemic treatment of MM, anti-PD1 is the best monotherapy. While combining anti-PD1 with other treatment options such as anti-CTLA4, VEGF inhibitors or radiotherapy might achieve better outcomes, these improvements did not reach statistical significance when evaluated by HR, RMTL and RMST ratios. Funding This work was supported by the National Medical Research Council Transition Award (TA20nov-0020), SingHealth Duke-NUS Oncology Academic Clinical Programme (08/FY2020/EX/67-A143 and 08/FY2021/EX/17-A47), the Khoo Pilot Collaborative Award (Duke-NUS-KP(Coll)/2022/0020A), the National Medical Research Council Clinician Scientist-Individual Research Grant-New Investigator Grant (CNIGnov-0025), the Terry Fox Grant (I1056) and the Khoo Bridge Funding Award (Duke-NUS-KBrFA/2024/0083I).
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Singapore General Hospital, Singapore, 169608, Singapore
| | - Chun En Yau
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Chen Ee Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | - Jack Yu Tung Lo
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Valerie Shiwen Yang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, 138673, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
| |
Collapse
|
6
|
Song Q, Jiang M, Pan X, Zhou G, Zhang X. A study on the efficacy and Safety Evaluation of a novel PD-1/CTLA-4 bispecific antibody. Immunobiology 2024; 229:152844. [PMID: 39226691 DOI: 10.1016/j.imbio.2024.152844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Tumors constitute a significant health concern for humans, and PD-1 and CTLA-4 monoclonal antibodies have been proven effective in cancer treatment. Some researchers have identified that the combination of PD-1 and CTLA-4 dual blockade demonstrates superior therapeutic efficacy. However, the development of PD-1/CTLA-4 bispecific antibodies faces challenges in terms of both safety and efficacy. The present study discloses a novel PD-1/CTLA-4 bispecific antibody, designated as SH010. Experimental validation through surface plasmon resonance (SPR) confirmed that SH010 exhibits favorable binding activity with both PD-1 and CTLA-4. Flow cytometry analysis demonstrated stable binding of SH010 antibody to CHOK1 cells overexpressing human or cynomolgus monkey PD-1 protein and to 293F cells overexpressing human or cynomolgus monkey CTLA-4 protein. Moreover, it exhibited excellent blocking capabilities in protein binding between human PD-1 and PD-L1, as well as human CTLA-4 and CD80/CD86. Simultaneously, in vitro experiments indicate that SH010 exerts a significant activating effect on hPBMCs. In murine transplant models of human prostate cancer (22RV1) and small cell lung cancer (NCI-H69), administration of varying concentrations of the bispecific antibody significantly inhibits tumor growth. MSD analysis revealed that stimulation of hPBMCs from three different donors with SH010 did not induce the production of cytokine release syndrome. Furthermore, Single or repeated intravenous administrations of SH010 in cynomolgus monkeys show favorable systemic exposure without noticeable drug accumulation or apparent toxicity. In conclusion, SH010 represents a novel cancer therapeutic drug poised to enter clinical trials and obtain market approval.
Collapse
Affiliation(s)
- Qi Song
- Department of Pharmacology, SanHome, Nanjing, PR China; College of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Meiling Jiang
- Department of Pharmacology, SanHome, Nanjing, PR China
| | - Xinrong Pan
- Department of Pharmacology, SanHome, Nanjing, PR China
| | - Guanyue Zhou
- Department of Pharmacology, SanHome, Nanjing, PR China
| | | |
Collapse
|
7
|
Ungureanu L, Vasilovici AF, Halmágyi SR, Trufin II, Apostu AP, Şenilă SC. The many faces of autoimmune-mediated melanocyte destruction in melanoma. Front Immunol 2024; 15:1417273. [PMID: 39421737 PMCID: PMC11484273 DOI: 10.3389/fimmu.2024.1417273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Melanoma is the most severe form of skin cancer with an incidence that is increasing all over the world. Melanoma cells derive from normal melanocytes and share different melanocyte-specific antigens, the same antigens against which an immune reaction develops in vitiligo, a skin disease characterized by autoimmune-mediated melanocyte destruction. The purpose of this review is to present the autoimmune-mediated melanocyte destruction associated with melanoma development, progression and treatment. Patients with vitiligo seem to have a lower chance of developing melanoma. On the other hand, patients with melanoma can develop depigmented lesions even at distant sites from the primary tumor, defined as melanoma-associated leukoderma (MAL). Drug-associated leukoderma (DAL) was also described in melanoma patients treated with immunotherapy or targeted therapy and it seems to be a favorable prognostic factor. Clinically, MAL and DAL can be diagnosed as vitiligo and there are few differences between these three entities. In this review, the incidence of DAL in melanoma patients treated with different therapies was researched in the literature and patient outcome was recorded, with studies showing a prolonged disease-free survival in melanoma patients with DAL, treated with immune checkpoint inhibitors. Further studies are however needed to understand the dynamics of autoimmune-mediated melanocyte destruction.
Collapse
Affiliation(s)
- Loredana Ungureanu
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Emergency County Hospital, Cluj-Napoca, Romania
| | - Alina Florentina Vasilovici
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Emergency County Hospital, Cluj-Napoca, Romania
| | - Salomea-Ruth Halmágyi
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Ioana Irina Trufin
- Department of Dermatology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Adina Patricia Apostu
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Simona Corina Şenilă
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Dermatology, Emergency County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Hossain SM, Ly K, Sung YJ, Braithwaite A, Li K. Immune Checkpoint Inhibitor Therapy for Metastatic Melanoma: What Should We Focus on to Improve the Clinical Outcomes? Int J Mol Sci 2024; 25:10120. [PMID: 39337605 PMCID: PMC11432671 DOI: 10.3390/ijms251810120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enhancing anti-tumour immune responses, demonstrating significant efficacy in various malignancies, including melanoma. However, over 50% of patients experience limited or no response to ICI therapy. Resistance to ICIs is influenced by a complex interplay of tumour intrinsic and extrinsic factors. This review summarizes current ICIs for melanoma and the factors involved in resistance to the treatment. We also discuss emerging evidence that the microbiota can impact ICI treatment outcomes by modulating tumour biology and anti-tumour immune function. Furthermore, microbiota profiles may offer a non-invasive method for predicting ICI response. Therefore, future research into microbiota manipulation could provide cost-effective strategies to enhance ICI efficacy and improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kevin Ly
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Yih Jian Sung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Antony Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
9
|
Meng Y, Sun J, Zhang G. A viable remedy for overcoming resistance to anti-PD-1 immunotherapy: Fecal microbiota transplantation. Crit Rev Oncol Hematol 2024; 200:104403. [PMID: 38838927 DOI: 10.1016/j.critrevonc.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Anti-PD-1 immunotherapy is a cancer therapy that focuses explicitly on the PD-1 receptor found on the surface of immune cells. This targeted therapeutic strategy is specifically designed to amplify the immune system's innate capacity to detect and subsequently eliminate cells that have become cancerous. Nevertheless, it should be noted that not all patients exhibit a favourable response to this particular therapeutic modality, necessitating the exploration of novel strategies to augment the effectiveness of immunotherapy. Previous studies have shown that fecal microbiota transplantation (FMT) can enhance the efficacy of anti-PD-1 immunotherapy in advanced melanoma patients. To investigate this intriguing possibility further, we turned to PubMed and conducted a comprehensive search for studies that analyzed the interplay between FMT and anti-PD-1 therapy in the context of tumor treatment. Our search criteria were centred around two key phrases: "fecal microbiota transplantation" and "anti-PD-1 therapy." The studies we uncovered all echo a similar sentiment. They pointed towards the potential of FMT to improve the effectiveness of immunotherapy. FMT may enhance the effectiveness of immunotherapy by altering the gut microbiota and boosting the patient's immunological response. Although promising, additional investigation is needed to improve the efficacy of FMT in the context of cancer therapy and attain a comprehensive understanding of the possible advantages and drawbacks associated with this therapeutic strategy.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
10
|
Quandt Z, Jacob S, Fadlullah MZH, Wu C, Wu C, Huppert L, Levine LS, Sison P, Tsai KK, Chow M, Kang JH, Hwang J, Lee JC, Oglesby A, Venegas J, Brintz BJ, Tan AC, Anderson MS, Rosenblum MD, Young A, Daud AI. Phase II trial of pembrolizumab, ipilimumab, and aspirin in melanoma: clinical outcomes and translational predictors of response. BJC REPORTS 2024; 2:46. [PMID: 39516257 PMCID: PMC11524064 DOI: 10.1038/s44276-024-00057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Many patients with melanoma treated with immune checkpoint inhibitors (ICIs) do not derive response. Preclinical and retrospective studies identified that inhibition of the cyclooxygenase (COX) pathway may improve response to ICI treatment. METHODS This prospective single site phase II trial accrued patients with advanced/metastatic melanoma. Participants underwent high-dose aspirin daily combined with pembrolizumab and ipilimumab every 3 weeks for 4 cycles followed by high-dose aspirin and pembrolizumab monotherapy. The primary endpoint was objective response rate (ORR). Longitudinal sampling of blood was performed to assess peripheral immune correlates. RESULTS Twenty-seven subjects were enrolled with median follow-up of 32 months. An ORR of 62.9% was reached prior to discontinuation due to low likelihood of achieving the pre-specified ORR of 80%. 17 patients (63%) experienced a treatment-related adverse event (TRAEs) grade 3 or higher. A per-protocol analysis showed that patients able to continue aspirin alongside ICI through the induction period experienced significant survival benefit. Ten cytokines and increased regulatory T cells in the periphery correlated with beneficial response. CONCLUSIONS The addition of high-dose aspirin to combination ICI within this study results in response comparable to ICI alone. Future clinical studies of COX inhibition will need to focus on mitigation of AEs to establish the clinical utility of this combination.
Collapse
Affiliation(s)
- Zoe Quandt
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Saya Jacob
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | - Chaorong Wu
- Division of Epidemiology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Clinton Wu
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Laura Huppert
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Lauren S Levine
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Paula Sison
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Katy K Tsai
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Melissa Chow
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jee Hye Kang
- Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jimmy Hwang
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - James C Lee
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ariel Oglesby
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jessica Venegas
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, 84112, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Ben J Brintz
- Division of Epidemiology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aik Choon Tan
- Departments of Oncological Sciences and Biomedical Informatics, University of Utah, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, 84112, USA
| | - Mark S Anderson
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Michael D Rosenblum
- Dermatology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Arabella Young
- Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, 84112, USA.
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Adil I Daud
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
11
|
Fu Z, Liu J, Zhang C, Hu H, Li S, Zhang Y, You R. Hepatitis-related adverse events associated with immune checkpoint inhibitors in cancer patients: an observational, retrospective, pharmacovigilance study using the FAERS database. Front Pharmacol 2024; 15:1383212. [PMID: 38948476 PMCID: PMC11211592 DOI: 10.3389/fphar.2024.1383212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs), including anti-PD-1, anti-PD-L1 and anti-CTLA-4 antibodies, have become a standard treatment for multiple cancer types. However, ICIs can induce immune-related adverse events, with hepatitis-related adverse events (HRAEs) being of particular concern. Our objective is to identify and characterize HRAEs that exhibit a significant association with ICIs using real-world data. Methods: In this observational and retrospective pharmacovigilance study, we extracted real-world adverse events reports from the FDA Adverse Event Reporting System database spanning from the first quarter of 2004 to the first quarter of 2023. We conducted both Frequentist and Bayesian methodologies in the framework of disproportionality analysis, which included the reporting odds ratios (ROR) and information components (IC) to explore the intricate relationship between ICIs and HRAEs. Results: Through disproportionality analysis, we identified three categories of HRAEs as being significantly related with ICIs, including autoimmune hepatitis (634 cases, ROR 19.34 [95% CI 17.80-21.02]; IC025 2.43), immune-mediated hepatitis (546 cases, ROR 217.24 [189.95-248.45]; IC025 4.75), and hepatitis fulminant (80 cases, ROR 4.56 [3.65-5.70]; IC025 0.49). The median age of patients who report ICI-related HRAEs was 63 years (interquartile range [IQR] 53.8-72), with a fatal outcome observed in 24.9% (313/1,260) of these reports. Cases pertaining to skin cancer, lung cancer, and kidney cancer constituted the majority of these occurrences. Patients treated with anti-PD-1 or anti-PD-L1 antibodies exhibited a higher frequency of immune-mediated hepatitis in comparison to those undergoing anti-CTLA-4 monotherapy, with a ROR of 3.59 (95% CI 1.78-6.18). Moreover, the dual ICI therapy demonstrated higher reporting rates of ICI-related HRAEs compared to ICI monotherapy. Conclusion: Our findings confirm that ICI treatment carries a significant risk of severe HRAEs, in particular autoimmune hepatitis, immune-mediated hepatitis, and hepatitis fulminant. Healthcare providers should exercise heightened vigilance regarding these risks when managing patients receiving ICIs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruxu You
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Gâta VA, Pașca A, Roman A, Muntean MV, Morariu DȘ, Bonci EA, Dina C, Ungureanu L. The Expression of Forkhead Box P3 T Regulatory Lymphocytes as a Prognostic Factor in Malignant Melanomas. Int J Mol Sci 2024; 25:6377. [PMID: 38928083 PMCID: PMC11204253 DOI: 10.3390/ijms25126377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Since transcription factor Forkhead Box P3 (FoxP3) was identified as a specific regulatory T cell (Treg) marker, researchers have scrutinized its value as a potential novel therapeutic target or a prognostic factor in various types of cancer with inconsistent results. The present analysis was performed to assess the influence of Treg FoxP3 expression on the prognosis of primary melanoma and to evaluate the correlations with various clinicopathological prognostic factors. We analyzed all eligible patients with stage pT3 primary malignant melanomas treated in a tertiary cancer center. Immunohistochemical staining for Treg FoxP3 expression was performed on retrospectively identified paraffin blocks and subsequently correlated with the outcomes of the patients. A total of 81% of the patients presented a positive Treg FoxP3 expression, being correlated with a higher risk of lymph node metastasis, tumor relapse, and death. Moreover, positive expression was statistically associated with a shorter OS. The tumor relapse rate was estimated at 36.7%. A positive expression of Treg FoxP3 and lymph node metastasis were associated with a higher risk of death based on multivariate analysis. Treg FoxP3 expression may be used as an independent prognostic factor in patients with malignant melanoma to evaluate tumor progression and survival.
Collapse
Affiliation(s)
- Vlad Alexandru Gâta
- Department of Surgical Oncology and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
| | - Andrei Pașca
- Department of Surgical Oncology and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
| | - Andrei Roman
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
- Department of Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Maximilian Vlad Muntean
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
- Department of Plastic and Reconstructive Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | | - Eduard Alexandru Bonci
- Department of Surgical Oncology and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- “Champalimaud“ Research and Clinical Centre, 1400-038 Lisbon, Portugal
| | - Constantin Dina
- Department of Anatomy, Faculty of Medicine, Ovidius University, 900470 Constanta, Romania
| | - Loredana Ungureanu
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Dermatology, Emergency County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Rogiers A, Dimitriou F, Lobon I, Harvey C, Vergara IA, Pires da Silva I, Lo SN, Scolyer RA, Carlino MS, Menzies AM, Long GV. Seasonal patterns of toxicity in melanoma patients treated with combination anti-PD-1 and anti-CTLA-4 immunotherapy. Eur J Cancer 2024; 198:113506. [PMID: 38184928 DOI: 10.1016/j.ejca.2023.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors are frequently associated with the development of immunotherapy-related adverse events (irAEs). The exact etiology, including the role of environmental factors, remains incompletely understood. METHODS We analyzed the records of 394 melanoma patients from three centers (northern and southern hemisphere). Patients had received at least one cycle of anti-PD-1/anti-CTLA-4 with a minimum follow-up of 3 months. We study the distribution and time to irAEs onset throughout the calendar year. RESULTS 764 irAEs were recorded; the most frequent were skin rash (35%), hepatitis (32%) and colitis (30%). The irAEs incidence was the highest in autumn and winter, and the ratio for the 'number of irAEs' per 'therapies commenced' was the highest in winter and lowest in summer (2.4 and 1.7, respectively). Season-specific patterns in the time of irAEs onset were observed for pneumonitis (shorter time to onset in autumn, p = 0.025), hepatitis (shorter time to onset in spring, p = 0.016) and sarcoid-like immune reaction (shorter time to onset in autumn, p = 0.041). Season-specific patterns for early-onset irAEs were observed for hepatitis (spring, p = 0.023) and nephritis (summer, p = 0.017). Early-onset pneumonitis was more frequent in autumn-winter (p = 0.008) and early-onset nephritis in spring-summer (p = 0.004). CONCLUSIONS Environmental factors that are associated with particular seasons may contribute to the development of certain irAEs and suggest the potential effect of environmental triggers. The identification of these factors may enhance preventive and therapeutic strategies to reduce the morbidity of irAEs.
Collapse
Affiliation(s)
- Aljosja Rogiers
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Florentia Dimitriou
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Irene Lobon
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Catriona Harvey
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| | - Serigne N Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Westmead and Blacktown Hospitals, Sydney, New South Wales, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Curkovic NB, Bai K, Ye F, Johnson DB. Incidence of Cutaneous Immune-Related Adverse Events and Outcomes in Immune Checkpoint Inhibitor-Containing Regimens: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:340. [PMID: 38254829 PMCID: PMC10814132 DOI: 10.3390/cancers16020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are used to treat many cancers, and cutaneous immune-related adverse events (cirAEs) are among the most frequently encountered toxic effects. Understanding the incidence and prognostic associations of cirAEs is of importance as their uses in different settings, combinations, and tumor types expand. To evaluate the incidence of cirAEs and their association with outcome measures across a variety of ICI regimens and cancers, we performed a systematic review and meta-analysis of published trials of anti-programmed death-1/ligand-1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) ICIs, both alone and in combination with chemotherapy, antiangiogenic agents, or other ICIs in patients with melanoma, renal cell carcinoma, non-small cell lung cancer, and urothelial carcinoma. Key findings of our study include variable cirAE incidence among tumors and ICI regimens, positive association with increased cirAE incidence and response rate, as well as significant association between increased vitiligo incidence and overall survival. Across 174 studies, rash, pruritis, and vitiligo were the most reported cirAEs, with incidences of 16.7%, 18.0%, and 6.6%, respectively. Higher incidence of cirAEs was associated with ICI combination regimens and with CTLA-4-containing regimens, particularly with higher doses of ipilimumab, as compared to PD-1/L1 monotherapies. Outcome measures including response rate and progression-free survival were positively correlated with incidence of cirAEs. The response rate and incidence of pruritis, vitiligo, and rash were associated with expected rises in incidence of 0.17% (p = 0.0238), 0.40% (p = 0.0010), and 0.18% (p = 0.0413), respectively. Overall survival was positively correlated with the incidence of pruritis, vitiligo, and rash; this association was significant for vitiligo (p = 0.0483). Our analysis provides benchmark incidence rates for cirAEs and links cirAEs with favorable treatment outcomes at a study level across diverse solid tumors and multiple ICI regimens.
Collapse
Affiliation(s)
- Nina B. Curkovic
- School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Kun Bai
- Vanderbilt Ingram Cancer Center, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Fei Ye
- Vanderbilt Ingram Cancer Center, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Douglas B. Johnson
- Vanderbilt Ingram Cancer Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
15
|
Fiorentino V, Pizzimenti C, Franchina M, Pepe L, Russotto F, Tralongo P, Micali MG, Militi GB, Lentini M. Programmed Cell Death Ligand 1 Immunohistochemical Expression and Cutaneous Melanoma: A Controversial Relationship. Int J Mol Sci 2024; 25:676. [PMID: 38203846 PMCID: PMC10779806 DOI: 10.3390/ijms25010676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Cutaneous melanoma (CM) is traditionally considered one of the most "immunogenic" tumors, eliciting a high immune response. However, despite the presence of tumor-infiltrating lymphocytes (TILs), melanoma cells use strategies to suppress antitumor immunity and avoid being eliminated by immune surveillance. The PD-1 (programmed death-1)/PD-L1 (programmed death-ligand 1) axis is a well-known immune escape system adopted by neoplastic cells. Therefore, immunotherapy with PD-1 and PD-L1 inhibitors is quickly becoming the main treatment approach for metastatic melanoma patients. However, the clinical utility of PD-L1 expression assessment in CM is controversial, and the interpretation of PD-L1 scores in clinical practice is still a matter of debate. Nonetheless, the recent literature data show that by adopting specific PD-L1 assessment methods in melanoma samples, a correlation between the expression of such a biomarker and a positive response to PD-1-based immunotherapy can be seen. Our review aims to describe the state-of-the-art knowledge regarding the prognostic and predictive role of PD-L1 expression in CM while also referring to possible biological explanations for the variability in its expressions and related treatment responses.
Collapse
Affiliation(s)
- Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Ludovica Pepe
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Fernanda Russotto
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Pietro Tralongo
- Department of Women, Children and Public Health Sciences, Catholic University of the Sacred Heart, Agostino Gemelli IRCCS University Hospital Foundation, 00168 Rome, Italy;
| | - Marina Gloria Micali
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| | - Gaetano Basilio Militi
- Department of Sciences for Promotion of Health and Mother and Child Care, Anatomic Pathology, University of Palermo, 90133 Palermo, Italy;
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.F.); (L.P.); (F.R.); (M.G.M.); (M.L.)
| |
Collapse
|
16
|
Benito JM, Restrepo C, García-Foncillas J, Rallón N. Immune checkpoint inhibitors as potential therapy for reverting T-cell exhaustion and reverting HIV latency in people living with HIV. Front Immunol 2023; 14:1270881. [PMID: 38130714 PMCID: PMC10733458 DOI: 10.3389/fimmu.2023.1270881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
The immune system of people living with HIV (PLWH) is persistently exposed to antigens leading to systemic inflammation despite combination antiretroviral treatment (cART). This inflammatory milieu promotes T-cell activation and exhaustion. Furthermore, it produces diminished effector functions including loss of cytokine production, cytotoxicity, and proliferation, leading to disease progression. Exhausted T cells show overexpression of immune checkpoint molecules (ICs) on the cell surface, including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), and lymphocyte activation gene-3 (LAG-3). The ICs also play a crucial role in T-cell exhaustion by reducing the immune response to cancer antigens. Immunotherapy based on immune checkpoint inhibitors (ICIs) has changed the management of a diversity of cancers. Additionally, the interest in exploring this approach in the setting of HIV infection has increased, including AIDS-defining cancers and non-AIDS-defining cancers in PLWH. To date, research on this topic suggests that ICI-based therapies in PLWH could be a safe and effective approach. In this review, we provide an overview of the current literature on the potential role of ICI-based immunotherapy not only in cancer remission in PLWH but also as a therapeutic intervention to restore immune response against HIV, revert HIV latency, and attain a functional cure for HIV infection.
Collapse
Affiliation(s)
- José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | - Jesús García-Foncillas
- Department of Oncology and Cancer Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
17
|
Gudd CLC, Sheth R, Thursz MR, Triantafyllou E, Possamai LA. Immune Checkpoint Inhibitor-Induced Liver Injury. Semin Liver Dis 2023; 43:402-417. [PMID: 38101418 DOI: 10.1055/s-0043-1776761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In recent years cancer treatment has been revolutionized by the development and wide application of checkpoint inhibitor (CPI) drugs, which are a form of immunotherapy. CPI treatment is associated with immune-related adverse events, off-target tissue destructive inflammatory complications, which may affect a range of organs, with liver inflammation (hepatitis) being one of the more commonly noted events. This is a novel form of drug-induced liver injury and a rapidly evolving field, as our understanding of both the basic immunopathology of CPI hepatitis (CPI-H) and optimal clinical management, races to catch up with the increasing application of this form of immunotherapy in clinical practice. In this review, we summarize current evidence and understanding of CPI-H, from fundamental immunology to practical patient management.
Collapse
Affiliation(s)
- Cathrin L C Gudd
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Roosey Sheth
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Mark R Thursz
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Liver and Antiviral Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lucia A Possamai
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Liver and Antiviral Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
18
|
Banerjee A, Narasimhulu CA, Singla DK. Immune interactions in pembrolizumab (PD-1 inhibitor) cancer therapy and cardiovascular complications. Am J Physiol Heart Circ Physiol 2023; 325:H751-H767. [PMID: 37594487 PMCID: PMC10659324 DOI: 10.1152/ajpheart.00378.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The use of immunotherapies like pembrolizumab (PEM) is increasingly common for the management of numerous cancer types. The use of PEM to bolster T-cell response against tumor growth is well documented. However, the interactions PEM has on other immune cells to facilitate tumor regression and clearance is unknown and warrants further investigation. In this review, we present literature findings that have reported the interactions of PEM in stimulating innate and adaptive immune cells, which enhance cytotoxic phenotypes. This triggers secretion of cytokines and chemokines, which have both beneficial and detrimental effects. We also describe how this leads to the development of rare but underreported occurrence of PEM-induced immune-related cardiovascular complications that arise suddenly and progress rapidly to debilitating and fatal consequences. This review encourages further research and investigation of PEM-induced cardiovascular complications and other immune cell interactions in patients with cancer. As PEM therapy in treating cancer types is expanding, we expect that this review will inform health care professionals of diverse specializations of medicine like dermatology (melanoma skin cancers), ophthalmology (eye cancers), and pathology (hematological malignancies) about PEM-induced cardiac complications.
Collapse
Affiliation(s)
- Abha Banerjee
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
19
|
Martel J, Hanania HL, Patel AB. Immune checkpoint inhibitor-induced cutaneous toxicities: a review of histopathologic and clinical features. Hum Pathol 2023; 140:144-172. [PMID: 37141978 DOI: 10.1016/j.humpath.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) represent an emerging treatment option for a variety of cancer types. Through inhibition of programmed cell death protein 1 (PD-1), programmed cell death ligand 1 (PD-L1), and/or cytotoxic lymphocyte-associated antigen-4 (CTLA-4), ICIs activate the host's immune system causing a heightened anti-tumor response. However, off-target effects of ICIs can result in numerous different immune-related cutaneous adverse events (irCAEs). Beyond impacting quality of life, irCAEs can lead to dose limitations or discontinuation of anti-cancer therapies. Correct diagnosis is necessary for expedient and appropriate management. Skin biopsies are often performed to increase diagnostic accuracy and guide clinical management. An extensive literature review was performed using the PubMed database to identify the reported clinical and histopathologic features of irCAEs. This comprehensive review primarily details the histopathologic features of various irCAEs reported to date. Clinical presentation and immunopathogenesis are also discussed in relation to histopathology.
Collapse
Affiliation(s)
- Julianna Martel
- Department of Dermatology, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Anisha B Patel
- Department of Dermatology, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Long GV, Swetter SM, Menzies AM, Gershenwald JE, Scolyer RA. Cutaneous melanoma. Lancet 2023:S0140-6736(23)00821-8. [PMID: 37499671 DOI: 10.1016/s0140-6736(23)00821-8] [Citation(s) in RCA: 267] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 07/29/2023]
Abstract
Cutaneous melanoma is a malignancy arising from melanocytes of the skin. Incidence rates are rising, particularly in White populations. Cutaneous melanoma is typically driven by exposure to ultraviolet radiation from natural sunlight and indoor tanning, although there are several subtypes that are not related to ultraviolet radiation exposure. Primary melanomas are often darkly pigmented, but can be amelanotic, with diagnosis based on a combination of clinical and histopathological findings. Primary melanoma is treated with wide excision, with margins determined by tumour thickness. Further treatment depends on the disease stage (following histopathological examination and, where appropriate, sentinel lymph node biopsy) and can include surgery, checkpoint immunotherapy, targeted therapy, or radiotherapy. Systemic drug therapies are recommended as an adjunct to surgery in patients with resectable locoregional metastases and are the mainstay of treatment in advanced melanoma. Management of advanced melanoma is complex, particularly in those with cerebral metastasis. Multidisciplinary care is essential. Systemic drug therapies, particularly immune checkpoint inhibitors, have substantially increased melanoma survival following a series of landmark approvals from 2011 onward.
Collapse
Affiliation(s)
- Georgina V Long
- Melanoma Institute Australia, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia; Department of Medical Oncology, Mater Hospital, Sydney, NSW, Australia.
| | - Susan M Swetter
- Department of Dermatology and Pigmented Lesion and Melanoma Program, Stanford University Medical Center and Cancer Institute, Stanford, CA, USA; Department of Dermatology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Alexander M Menzies
- Melanoma Institute Australia, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia; Department of Medical Oncology, Mater Hospital, Sydney, NSW, Australia
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; NSW Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
21
|
Thomas AR, Eyada M, Kono M, Varatharajalu K, Lu Y, Xu G, Panneerselvam K, Shatila M, Altan M, Wang J, Thompson JA, Zhang HC, Khan MA, Raju GS, Thomas AS, Wang Y. Characteristics, treatment, and outcome of diverticulitis after immune checkpoint inhibitor treatment in patients with malignancies. J Cancer Res Clin Oncol 2023; 149:4805-4816. [PMID: 36242603 DOI: 10.1007/s00432-022-04405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/05/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) are efficacious for treating various malignancies. In addition to immune-related adverse events (irAEs), growing evidence suggests that ICIs might also be associated with diverticulitis. We aim to assess the clinical presentations and management of colonic diverticulitis among cancer patients after ICI treatment. METHODS A retrospective study was conducted on ICI-treated adult cancer patients between 01/2010 and 06/2020. Patients were grouped based on when diverticulitis developed relative to ICI treatment, either before (controls) or after (cases). Patient clinical characters, treatment, and outcomes were compared between both groups. RESULTS 77 eligible patients were included: 63 patients developed diverticulitis after ICI exposure (46 had initial episode after ICI exposure, 17 had a history of diverticulitis prior then recurred after ICI exposure), and 14 had diverticulitis before ICI exposure. Diverticulitis occurred after a median of 129 days after ICI initiation. Clinical characteristics overlapped with traditional diverticulitis. 93% of patients had symptom resolution after treatment, while 23.8% experienced complications. These patients exhibited higher rates of hospitalization (87% vs 48%, P = 0.015) and surgery/interventional radiology procedures (27% vs 0, P = 0.002), and worse overall survival (P = 0.022). History of diverticulitis was not associated with a more severe disease course. Immunosuppressants (e.g., corticosteroids) were rarely required unless for concurrent ICI-mediated colitis. CONCLUSION Colonic diverticulitis can occur after ICI therapy at very low incidence (0.5%). Its clinical presentation, evaluation, and management are similar to traditional diverticulitis, but associated with higher complication rates requiring surgical intervention and has lower overall survival.
Collapse
Affiliation(s)
- Austin R Thomas
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Mostafa Eyada
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miho Kono
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishnavathana Varatharajalu
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Lu
- Division of Diagnostic Imaging, Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guofan Xu
- Division of Diagnostic Imaging, Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavea Panneerselvam
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Malek Shatila
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet Altan
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A Thompson
- Department of Medicine, University of Washington Member, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hao Chi Zhang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Ali Khan
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gottumukkala S Raju
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anusha S Thomas
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Tuerxun H, Zhao Y, Li Y, Liu X, Wen S, Cao J, Cui J, Zhao Y. Immune Checkpoint Inhibitors as A Threat to Reproductive Function: A Systematic Review. Crit Rev Oncol Hematol 2023:104064. [PMID: 37379960 DOI: 10.1016/j.critrevonc.2023.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023] Open
Abstract
In recent years, the indications for immunotherapy in cancer treatment have been expanding. The increased risk of cancer in young people, coupled with the fact that many women or men choose to delay childbearing, has made an increasing number of patients of childbearing age eligible for immunotherapy. Furthermore, with the improvements of various treatments, more young people and children are able to survive cancer. As a result, long-term sequelae of cancer treatments, such as reproductive dysfunction, are increasingly important for survivors. While many anti-cancer drugs are known to cause reproduction dysfunction, the effects of immune checkpoint inhibitors (ICIs) on reproduction function remain largely unknown. Through a retrospective analysis of previous reports and literature, this article aims to elucidate the causes of reproductive dysfunction induced by ICIs and focus on their specific mechanisms, in order to providing some guidance to clinicians and patients.
Collapse
Affiliation(s)
- Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jingjing Cao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
23
|
Lai-Kwon J, Jacques S, Carlino M, Benannoune N, Robert C, Allayous C, Baroudjian B, Lebbe C, Zimmer L, Eroglu Z, Topcu TO, Dimitriou F, Haydon A, Lo SN, Menzies AM, Long GV. Efficacy of ipilimumab 3mg/kg following progression on low dose ipilimumab in metastatic melanoma. Eur J Cancer 2023; 186:12-21. [PMID: 37018924 DOI: 10.1016/j.ejca.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Differing doses of ipilimumab (IPI) are used in combination with an anti-PD1 antibody in advanced melanoma. There is no data on the outcomes of patients who progress following low-dose IPI (< 3 mg/kg) and are subsequently treated with IPI 3 mg/kg (IPI3). We conducted a multicentre retrospective survey to assess the efficacy of this strategy. METHODS Patients with resected stage III, unresectable stage III or IV melanoma who received low dose IPI (< 3 mg/kg) with an anti-PD1 antibody with recurrence (neo/adjuvant) or progressive disease (metastatic), who then received IPI3± anti-PD1 antibody were eligible. Best investigator-determined Response Evaluation Criteria in Solid Tumours response, progression-free survival (PFS) and overall survival (OS) were analysed. RESULTS Total 36 patients received low-dose IPI with an anti-PD1 antibody, 18 (50%) in the neo/adjuvant and 18 (50%) in the metastatic setting. Of which, 20 (56%) had primary resistance and 16 (44%) had acquired resistance. All patients received IPI3 for unresectable stage III or IV melanoma; median age 60 (29-78), 18 (50%) M1d disease, 32 (89%) Eastern Cooperative Oncology Group performance status 0-1. Around 35 (97%) received IPI3 with nivolumab and 1 received IPI3 alone. The response rate to IPI3 was 9/36 (25%). In patients with primary resistance, the response rate was 6/20 (30%). After a median follow-up of 22 months (95% CI: 15-27 months), the median PFS and OS were not reached in patients who responded; 1-year PFS and OS were 73% and 100%, respectively. CONCLUSIONS IPI3 following recurrence/progression on low dose IPI has clinical activity, including in primary resistance. IPI dosing is therefore critical in a subset of patients.
Collapse
|
24
|
Chesney JA, Ribas A, Long GV, Kirkwood JM, Dummer R, Puzanov I, Hoeller C, Gajewski TF, Gutzmer R, Rutkowski P, Demidov L, Arenberger P, Shin SJ, Ferrucci PF, Haydon A, Hyngstrom J, van Thienen JV, Haferkamp S, Guilera JM, Rapoport BL, VanderWalde A, Diede SJ, Anderson JR, Treichel S, Chan EL, Bhatta S, Gansert J, Hodi FS, Gogas H. Randomized, Double-Blind, Placebo-Controlled, Global Phase III Trial of Talimogene Laherparepvec Combined With Pembrolizumab for Advanced Melanoma. J Clin Oncol 2023; 41:528-540. [PMID: 35998300 PMCID: PMC9870217 DOI: 10.1200/jco.22.00343] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/09/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The combination of talimogene laherparepvec (T-VEC) and pembrolizumab previously demonstrated an acceptable safety profile and an encouraging complete response rate (CRR) in patients with advanced melanoma in a phase Ib study. We report the efficacy and safety from a phase III, randomized, double-blind, multicenter, international study of T-VEC plus pembrolizumab (T-VEC-pembrolizumab) versus placebo plus pembrolizumab (placebo-pembrolizumab) in patients with advanced melanoma. METHODS Patients with stage IIIB-IVM1c unresectable melanoma, naïve to antiprogrammed cell death protein-1, were randomly assigned 1:1 to T-VEC-pembrolizumab or placebo-pembrolizumab. T-VEC was administered at ≤ 4 × 106 plaque-forming unit (PFU) followed by ≤ 4 × 108 PFU 3 weeks later and once every 2 weeks until dose 5 and once every 3 weeks thereafter. Pembrolizumab was administered intravenously 200 mg once every 3 weeks. The dual primary end points were progression-free survival (PFS) per modified RECIST 1.1 by blinded independent central review and overall survival (OS). Secondary end points included objective response rate per mRECIST, CRR, and safety. Here, we report the primary analysis for PFS, the second preplanned interim analysis for OS, and the final analysis. RESULTS Overall, 692 patients were randomly assigned (346 T-VEC-pembrolizumab and 346 placebo-pembrolizumab). T-VEC-pembrolizumab did not significantly improve PFS (hazard ratio, 0.86; 95% CI, 0.71 to 1.04; P = .13) or OS (hazard ratio, 0.96; 95% CI, 0.76 to 1.22; P = .74) compared with placebo-pembrolizumab. The objective response rate was 48.6% for T-VEC-pembrolizumab (CRR 17.9%) and 41.3% for placebo-pembrolizumab (CRR 11.6%); the durable response rate was 42.2% and 34.1% for the arms, respectively. Grade ≥ 3 treatment-related adverse events occurred in 20.7% of patients in the T-VEC-pembrolizumab arm and in 19.5% of patients in the placebo-pembrolizumab arm. CONCLUSION T-VEC-pembrolizumab did not significantly improve PFS or OS compared with placebo-pembrolizumab. Safety results of the T-VEC-pembrolizumab combination were consistent with the safety profiles of each agent alone.
Collapse
Affiliation(s)
- Jason A. Chesney
- UofL Health—Brown Cancer Center, University of Louisville, Louisville, KY
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California Los Angeles, Los Angeles, CA
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | | | | | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Christoph Hoeller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Ralf Gutzmer
- Medizinische Hochschule Hannover, Hannover, Germany
- Mühlenkreiskliniken Minden, Ruhr University Bochum, Bochum, Germany
| | - Piotr Rutkowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Lev Demidov
- N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Petr Arenberger
- University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Sang Joon Shin
- Division of Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Pier Francesco Ferrucci
- Biotherapy of Tumors Unit, Department of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Andrew Haydon
- Department of Medical Oncology, Alfred Hospital, Melbourne, Australia
| | - John Hyngstrom
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT
| | | | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Josep Malvehy Guilera
- Department of Dermatology, Barcelona University, Barcelona, IDIBAPS, CIBER de Enfermedades Raras ISCIII, Madrid, Spain
| | - Bernardo Leon Rapoport
- The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ari VanderWalde
- Department of Hematology/Oncology, West Cancer Center & Research Institute, Memphis, TN
| | | | | | | | | | | | | | | | - Helen Gogas
- National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Liu Z, Zhu Y, Xie H, Zou Z. Immune-mediated hepatitis induced by immune checkpoint inhibitors: Current updates and future perspectives. Front Pharmacol 2023; 13:1077468. [PMID: 36699050 PMCID: PMC9868416 DOI: 10.3389/fphar.2022.1077468] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, cancer immunotherapy has made remarkable achievements. Immune checkpoint inhibitors (ICIs) have been used successfully in several types of cancer in the past decade. However, expanded indication and increased use of Immune checkpoint inhibitors have resulted in increased reports of toxicity called immune-related adverse events (irAEs). Due to the unique immunological characteristics of the liver, a hepatic immune-related adverse events has also been reported, which is usually termed Immune-mediated hepatitis (IMH). So far, it is generally considered that the mechanism of IMH induced by Immune checkpoint inhibitors is mainly the overactivation of T cells. It has been reported that the incidence of IMH ranges from 1% to 15%. Because of the lack of specific markers, a diagnosis of exclusion of IMH is critical. Although most IMH is mild and recoverable, several death cases have been reported, which has been increasingly concerned. This review summarizes the current understanding of the pathophysiology, epidemiology, diagnosis, management and prognosis of IMH caused by Immune checkpoint inhibitors. It also discusses the controversial issues in IMH, such as the role of liver biopsy, grading criteria, risk factors, rational treatment strategies with steroids, and the timing of Immune checkpoint inhibitors rechallenging, which may provide helpful information for IMH in future clinical practice.
Collapse
Affiliation(s)
- Zherui Liu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Yun Zhu
- Medical School of Chinese PLA, Beijing, China
| | - Huan Xie
- Medical School of Chinese PLA, Beijing, China
| | - Zhengsheng Zou
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Zhengsheng Zou,
| |
Collapse
|
26
|
Da Cunha T, Wu GY, Vaziri H. Immunotherapy-induced Hepatotoxicity: A Review. J Clin Transl Hepatol 2022; 10:1194-1204. [PMID: 36381098 PMCID: PMC9634765 DOI: 10.14218/jcth.2022.00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) suppress the function of immune checkpoints, which are involved in downregulating immune responses. These lead to an increased activation of the function of T cells, increased release of cytokines, and decreased activity of regulatory T cells. This allows for a more significant and less regulated immune response and subsequent enhanced cytotoxic activity against cancer cells. A number of cancers are now being treated with these agents and this increased use has resulted in more reports of toxicity. While almost every organ can be affected, the skin, gastrointestinal tract, liver, and endocrine glands are most commonly involved. It is necessary that gastroenterologists and hepatologists familiarize themselves with diagnostic steps and management plan in patients with these undesirable outcomes. When assessing for possible ICIs induced hepatotoxicity, it is of utmost importance to use a formal scoring system such as the Roussel Uclaf causality assessment method (RUCAM) to assess for risk factors, alternative causes, and response to cessation and re-exposure of a given drug. While this review is based on studies with and without RUCAM, the conclusions were carefully established mainly from studies that used RUCAM. The aim of this review is to provide information on the epidemiology, risk factors, clinical presentation, diagnostic tools, and management plan based on the most recent studies of immunotherapy-induced hepatotoxicity.
Collapse
Affiliation(s)
- Teresa Da Cunha
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Haleh Vaziri
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
27
|
Shui IM, Scherrer E, Frederickson A, Li JW, Mynzhassarova A, Druyts E, Tawbi H. Resistance to anti-PD1 therapies in patients with advanced melanoma: systematic literature review and application of the Society for Immunotherapy of Cancer Immunotherapy Resistance Taskforce anti-PD1 resistance definitions. Melanoma Res 2022; 32:393-404. [PMID: 36223314 DOI: 10.1097/cmr.0000000000000850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nearly half of advanced melanoma patients do not achieve a clinical response with anti-programmed cell death 1 protein (PD1) therapy (i.e. primary resistance) or initially achieve a clinical response but eventually progress during or following further treatment (i.e. secondary resistance). A consensus definition for tumor resistance to anti-PD1 monotherapy was published by Society for Immunotherapy of Cancer Immunotherapy Resistance Taskforce (SITC) in 2020. A systematic literature review (SLR) of clinical trials and observational studies was conducted to characterize the proportions of advanced melanoma patients who have progressed on anti-PD1 therapies. The SLR included 55 unique studies and the SITC definition of primary resistance was applied to 37 studies that specified disease progression by best overall response. Median and range of patients with primary resistance in studies that specified first-line and second-line or higher anti-PD1 monotherapy was 35.50% (21.19-39.13%; n = 4 studies) and 41.54% (30.00-56.41%, n = 3 studies); median and range of patients with primary resistance in studies that specified first-line and second-line or higher combination therapy was 30.23% (15.79-33.33%; n = 6 studies), and 70.00% (61.10-73.33%; n = 3 studies). Primary resistance to anti-PD1 monotherapies and when in combination with ipilimumab are higher in patients receiving second-line or higher therapies, in patients with acral, mucosal, and uveal melanoma, and in patients with active brain metastases. The percentage of patients with primary resistance was generally consistent across clinical trials, with variability in resistance noted for observational studies. Limitations include applying the SITC definitions to combination therapies, where consensus definitions are not yet available. Future studies should highly consider utilizing the SITC definitions to harmonize how resistance is classified and facilitate meaningful context for clinical activity.
Collapse
Affiliation(s)
| | | | | | - Joyce W Li
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | | | - Eric Druyts
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
28
|
Nahar KJ, Marsh-Wakefield F, Rawson RV, Gide TN, Ferguson AL, Allen R, Quek C, da Silva IP, Tattersal S, Kiely CJ, Sandanayake N, Carlino MS, McCaughan G, Wilmott JS, Scolyer RA, Long GV, Menzies AM, Palendira U. Distinct pretreatment innate immune landscape and posttreatment T cell responses underlie immunotherapy-induced colitis. JCI Insight 2022; 7:157839. [PMID: 36173679 PMCID: PMC9675442 DOI: 10.1172/jci.insight.157839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Immune-related adverse events represent a major hurdle to the success of immunotherapy. The immunological mechanisms underlying their development and relation to antitumor responses are poorly understood. By examining both systemic and tissue-specific immune changes induced by combination anti-CTLA-4 and anti-PD-1 immunotherapy, we found distinct repertoire changes in patients who developed moderate-severe colitis, irrespective of their antitumor response to therapy. The proportion of circulating monocytes were significantly increased at baseline in patients who subsequently developed colitis compared with patients who did not develop colitis, and biopsies from patients with colitis showed monocytic infiltration of both endoscopically and histopathologically normal and inflamed regions of colon. The magnitude of systemic expansion of T cells following commencement of immunotherapy was also greater in patients who developed colitis. Importantly, we show expansion of specific T cell subsets within inflamed regions of the colon, including tissue-resident memory CD8+ T cells and Th1 CD4+ T cells in patients who developed colitis. Our data also suggest that CD8+ T cell expansion was locally induced, while Th1 cell expansion was systemic. Together, our data show that exaggerated innate and T cell responses to combination immunotherapy synergize to propel colitis in susceptible patients.
Collapse
Affiliation(s)
- Kazi J. Nahar
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Felix Marsh-Wakefield
- Faculty of Medicine and Health,,Charles Perkins Centre, and,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert V. Rawson
- Melanoma Institute Australia,,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Tuba N. Gide
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Angela L. Ferguson
- Faculty of Medicine and Health,,Charles Perkins Centre, and,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth Allen
- Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Camelia Quek
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Ines Pires da Silva
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | | | | | | | - Matteo S. Carlino
- Melanoma Institute Australia,,Crown Princess Mary Cancer Centre and Westmead Hospitals, New South Wales, Australia
| | - Geoff McCaughan
- Faculty of Medicine and Health,,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - James S. Wilmott
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Richard A. Scolyer
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Georgina V. Long
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Royal North Shore Hospital, Sydney, New South Wales Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Royal North Shore Hospital, Sydney, New South Wales Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| |
Collapse
|
29
|
Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat Med 2022; 28:2344-2352. [PMID: 36138151 DOI: 10.1038/s41591-022-01965-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/22/2022] [Indexed: 01/14/2023]
Abstract
The gut microbiota shapes the response to immune checkpoint inhibitors (ICIs) in cancer, however dietary and geographic influences have not been well-studied in prospective trials. To address this, we prospectively profiled baseline gut (fecal) microbiota signatures and dietary patterns of 103 trial patients from Australia and the Netherlands treated with neoadjuvant ICIs for high risk resectable metastatic melanoma and performed an integrated analysis with data from 115 patients with melanoma treated with ICIs in the United States. We observed geographically distinct microbial signatures of response and immune-related adverse events (irAEs). Overall, response rates were higher in Ruminococcaceae-dominated microbiomes than in Bacteroidaceae-dominated microbiomes. Poor response was associated with lower fiber and omega 3 fatty acid consumption and elevated levels of C-reactive protein in the peripheral circulation at baseline. Together, these data provide insight into the relevance of native gut microbiota signatures, dietary intake and systemic inflammation in shaping the response to and toxicity from ICIs, prompting the need for further studies in this area.
Collapse
|
30
|
Vorobjeva IV, Zhirnov OP. Modern approaches to treating cancer with oncolytic viruses. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-91-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
According to the World Health Organization, cancer is the second leading cause of death in the world. This serves as a powerful incentive to search for new effective cancer treatments. Development of new oncolytic viruses capable of selectively destroying cancer cells is one of the modern approaches to cancer treatment. The advantage of this method – the selective lysis of tumor cells with the help of viruses – leads to an increase in the antitumor immune response of the body, that in turn promotes the destruction of the primary tumor and its metastases. Significant progress in development of this method has been achieved in the last decade. In this review we analyze the literature data on families of oncolytic viruses that have demonstrated a positive therapeutic effect against malignant neoplasms in various localizations. We discuss the main mechanisms of the oncolytic action of viruses and assess their advantages over other methods of cancer therapy as well as the prospects for their use in clinical practice.
Collapse
Affiliation(s)
- I. V. Vorobjeva
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology
| | - O. P. Zhirnov
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology; The Russian-German Academy of Medical and Biotechnological Sciences
| |
Collapse
|
31
|
Sommerfelt H, Sandvik LF, Bachmann IM, Brekke RL, Svendsen HL, Guttormsen AB, Aziz S, Dillekås H, Straume O. Toxic epidermal necrolysis after immune checkpoint inhibition, case report, and review of the literature. Acta Oncol 2022; 61:1295-1299. [PMID: 36073292 DOI: 10.1080/0284186x.2022.2119099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hanne Sommerfelt
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Lene F Sandvik
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg M Bachmann
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ragnvald Ljones Brekke
- Department of Plastic, Hand, and Reconstructive surgery, National Burn Centre, Haukeland University Hospital, Bergen, Norway
| | - Henrik Løvendahl Svendsen
- Department of Plastic, Hand, and Reconstructive surgery, National Burn Centre, Haukeland University Hospital, Bergen, Norway
| | - Anne Berit Guttormsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Anaesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway
| | - Sura Aziz
- Department of Pathology, Haukeland University Hospital Bergen, Bergen, Norway
| | - Hanna Dillekås
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Oddbjørn Straume
- Department of Oncology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| |
Collapse
|
32
|
Differential RNA expression of immune-related genes and tumor cell proximity from intratumoral M1 macrophages in acral lentiginous melanomas treated with PD-1 blockade. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166516. [DOI: 10.1016/j.bbadis.2022.166516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
|
33
|
Villani A, Potestio L, Fabbrocini G, Troncone G, Malapelle U, Scalvenzi M. The Treatment of Advanced Melanoma: Therapeutic Update. Int J Mol Sci 2022; 23:ijms23126388. [PMID: 35742834 PMCID: PMC9223461 DOI: 10.3390/ijms23126388] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Cutaneous melanoma is the main cause of death for skin cancer. The majority of patients with a diagnosis of melanoma have localized disease, which can be successfully treated with surgical treatment. However, the surgical approach is not curative for advanced melanoma (AM). Indeed, the management of AM is still challenging, since melanoma is the solid tumor with the highest number of mutations and cancer cells have the capacity to evade the immune system. In the past, the treatment of AM relied on chemotherapeutic agents, without showing efficacy data. Recent knowledge on melanoma pathogenesis as well as the introduction of immunotherapies, targeted therapies vaccines, small molecules, and combination therapies has revolutionized AM management, showing promising results in terms of effectiveness and safety. The aim of this review is to assess and to discuss the role of emerging therapies for AM management in order to obtain a complete overview of the currently available treatment options and future perspectives.
Collapse
Affiliation(s)
- Alessia Villani
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (L.P.); (G.F.); (M.S.)
- Correspondence: ; Tel.: +39-081-7462457; Fax: +39-081-7462442
| | - Luca Potestio
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (L.P.); (G.F.); (M.S.)
| | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (L.P.); (G.F.); (M.S.)
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy; (G.T.); (U.M.)
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy; (G.T.); (U.M.)
| | - Massimiliano Scalvenzi
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (L.P.); (G.F.); (M.S.)
| |
Collapse
|
34
|
Xu Y, Cao C, Zhu Z, Wang Y, Tan Y, Xu X. Novel Hypoxia-Associated Gene Signature Depicts Tumor Immune Microenvironment and Predicts Prognosis of Colon Cancer Patients. Front Genet 2022; 13:901734. [PMID: 35734431 PMCID: PMC9208084 DOI: 10.3389/fgene.2022.901734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia, a typical hallmark of numerous tumors, indicates poor infiltration of antitumor lymphocytes, as well as facilitates the development, progression, and drug resistance of malignant cells. Here, the present research was performed to identify novel hypoxia-related molecular markers and their correlation to the tumor immune microenvironment (TIME) in colon cancer. The expression of hypoxia-related gene signature was extracted from The Cancer Genome Atlas (TCGA) COAD cohort. Based on this signature, a risk score model was constructed using the Lasso regression model. Its discrimination ability and stability were validated in another independent cohort (GSE17536) from Gene Expression Omnibus (GEO) database. Moreover, molecular biology experiments (quantitative real-time PCR and multiple immunohistochemistry) were performed to validate the results of bioinformatics analyses. Three hub genes, including PPFIA4, SERPINE1, and STC2, were chosen to build the risk score model. All of these genes were increasingly expressed in the hypoxia subgroup (HS). Compared with the normoxia subgroup (NS), HS had worse pathological features (T, N, M, and stage) and overall survival (OS), more expression of immune checkpoint molecules, poorer infiltration of some pro-inflammation immune cells (CD4+ T cells and CD8+ T cells), and enriched infiltration of M0/M2 macrophages. After the risk model was proven to be valuable and stable, a nomogram was built based on this model and some clinicopathological factors. Moreover, it had been identified that three hub genes were all increasingly expressed in hypoxic conditions by quantitative real-time PCR (qPCR). The results of multiple immunohistochemistry (mIHC) also showed that higher expression of hub genes was associated with poorer infiltration of pro-inflammation immune cells (CD8+ T cells and M1 macrophages) and richer infiltration of anti-inflammation immune cells (Treg cells and M2 macrophages). In conclusion, the present study uncovered the relations among hypoxia, TIME, and clinicopathological features of colon cancer. It might provide new insight and a potential therapeutic target for immunotherapy.
Collapse
Affiliation(s)
- Yixin Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- Department of General Surgery, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Can Cao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyan Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibo Wang
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Yulin Tan
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- *Correspondence: Xuezhong Xu, ; Yulin Tan,
| | - Xuezhong Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- *Correspondence: Xuezhong Xu, ; Yulin Tan,
| |
Collapse
|
35
|
Aroldi F, Middleton MR. Long-Term Outcomes of Immune Checkpoint Inhibition in Metastatic Melanoma. Am J Clin Dermatol 2022; 23:331-338. [PMID: 35359259 DOI: 10.1007/s40257-022-00681-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/14/2022]
Abstract
Increasing knowledge about the biology of melanoma and of immunology has led to the development and regulatory approval of the immune checkpoint inhibitors ipilimumab, nivolumab, and pembrolizumab, which are indicated for the treatment of melanoma irrespective of the B-Raf proto-oncogene mutation status of the tumour. Only a subset of patients will respond, but those who do can expect long-lasting, previously unheard-of responses. Long-term survival results for the registration trials, including CheckMate 067, Keynote-006, and Keynote-001, have recently been published. In particular, the combination of ipilimumab and nivolumab showed an impressive 5-year overall survival of just over 50%. However, toxicity remains a significant concern, with some of the side effects being life threatening and/or life changing. In this review, we discuss the safety and efficacy data of all the agents currently approved for the first-line treatment of advanced melanoma, identifying factors that influence the choice of a single agent rather than combination therapy. We highlight the potential biomarkers of response, effects of long-term toxicity, and options after progression.
Collapse
|
36
|
Yuen KCJ, Samson SL, Bancos I, Gosmanov AR, Jasim S, Fecher LA, Weber JS. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGY (AACE) DISEASE STATE CLINICAL REVIEW EVALUATION AND MANAGEMENT OF IMMUNE CHECKPOINT INHIBITOR-MEDIATED ENDOCRINOPATHIES: A PRACTICAL CASE-BASED CLINICAL APPROACH. Endocr Pract 2022; 28:719-731. [PMID: 35477029 DOI: 10.1016/j.eprac.2022.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this case-based clinical review is to provide a practical approach for clinicians regarding the management of patients with immune checkpoint inhibitor (ICI)-mediated endocrinopathies. METHODS A literature search was conducted using PubMed, Embase and Scopus, and appropriate keywords. The discussions and strategies for diagnosis and management of ICI-mediated endocrinopathies are based on evidence available from prospective randomized clinical studies, cohort studies, cross-sectional studies, case-based studies, and expert consensus. RESULTS Immunotherapy with ICIs has transformed the treatment landscape of diverse cancer types, but frequently results in immune-mediated endocrinopathies that can cause acute and persistent morbidity, and rarely, death. The patterns of endocrinopathies differ between inhibitors of the CTLA-4 and PD-1/PD-L1 pathways, but most often involve the thyroid and pituitary glands. Less common but important presentations include insulin-deficient diabetes mellitus, primary adrenal insufficiency, primary hypoparathyroidism, central diabetes insipidus, primary hypogonadism, and pancreatitis with or without subsequent progression to diabetes or exocrine insufficiency. CONCLUSION In recent years, with increasing numbers of cancer patients being treated with ICIs, more clinicians in a variety of specialties are called upon to diagnose and treat ICI-mediated endocrinopathies. Herein, we review case scenarios of various clinical manifestations, and emphasize the need for a high index of clinical suspicion by all clinicians caring for these patients including endocrinologists, oncologists, primary care providers, and emergency department physicians. We also provide diagnostic and therapeutic approaches for ICI-induced endocrinopathies, and we propose that patients on ICI-therapy be evaluated and treated in a multidisciplinary team in collaboration with endocrinologists.
Collapse
Affiliation(s)
- Kevin C J Yuen
- Co-Chair of Task Force; Professor of Medicine, Department of Medicine, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona.
| | - Susan L Samson
- Co-Chair of Task Force; Senior Associate Consultant, Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Jacksonville, Florida
| | - Irina Bancos
- Associate Professor of Medicine; Associate Program Director, Endocrinology Fellowship Program, Division of Endocrinology, Metabolism and Nutrition, Mayo Clinic, Rochester, MN
| | - Aidar R Gosmanov
- Professor of Medicine, Division of Endocrinology, Albany Medical College; Chief, Endocrinology Section, Stratton VAMC, Albany, NY
| | - Sina Jasim
- Associate Professor of Medicine, Washington University in St. Louis, School of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, Missouri
| | - Leslie A Fecher
- ASCO Representative, Associate Professor of Medicine and Dermatology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan
| | - Jeffrey S Weber
- ASCO Representative, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
37
|
Dixon-Douglas JR, Patel RP, Somasundram PM, McArthur GA. Triplet Therapy in Melanoma - Combined BRAF/MEK Inhibitors and Anti-PD-(L)1 Antibodies. Curr Oncol Rep 2022; 24:1071-1079. [PMID: 35366166 PMCID: PMC9249697 DOI: 10.1007/s11912-022-01243-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW We provide an updated review of clinical trials evaluating the combination of BRAF/MEK inhibitors with anti-PD-(L)1 therapy (triplet therapy) for patients with advanced BRAF-mutant melanoma, accompanied by a summary of the biological evidence supporting this combination. RECENT FINDINGS Resistance to BRAF/MEK inhibition and comparatively low response rates to immune checkpoint inhibitors remain clinical challenges in the treatment of melanoma. Preclinical data demonstrates that targeted therapy is immune-modulatory and synergises with immune checkpoint inhibition. Several randomised controlled trials have evaluated the combination of targeted therapy with immune checkpoint inhibition. Triplet therapy has shown improvements in progression-free survival and durability of response compared to BRAF/MEK inhibition alone; however, questions remain regarding the best clinical scenario for implementation of this regimen in the era of front-line immunotherapy.
Collapse
Affiliation(s)
- Julia R Dixon-Douglas
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Riyaben P Patel
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Pretashini M Somasundram
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Grant A McArthur
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Department of Oncology, Sir Peter MacCallum, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Ernst M, Giubellino A. The Current State of Treatment and Future Directions in Cutaneous Malignant Melanoma. Biomedicines 2022; 10:822. [PMID: 35453572 PMCID: PMC9029866 DOI: 10.3390/biomedicines10040822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Malignant melanoma is the leading cause of death among cutaneous malignancies. While its incidence is increasing, the most recent cancer statistics show a small but clear decrease in mortality rate. This trend reflects the introduction of novel and more effective therapeutic regimens, including the two cornerstones of melanoma therapy: immunotherapies and targeted therapies. Immunotherapies exploit the highly immunogenic nature of melanoma by modulating and priming the patient's own immune system to attack the tumor. Treatments combining immunotherapies with targeted therapies, which disable the carcinogenic products of mutated cancer cells, have further increased treatment efficacy and durability. Toxicity and resistance, however, remain critical challenges to the field. The present review summarizes past treatments and novel therapeutic interventions and discusses current clinical trials and future directions.
Collapse
Affiliation(s)
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
39
|
Sabbatino F, Liguori L, Pepe S, Ferrone S. Immune checkpoint inhibitors for the treatment of melanoma. Expert Opin Biol Ther 2022; 22:563-576. [PMID: 35130816 PMCID: PMC9038682 DOI: 10.1080/14712598.2022.2038132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Immune checkpoint inhibitor (ICI) based immunotherapy is dramatically changing the management of many types of cancers including melanoma. In this malignancy, ICIs have been shown to prolong disease and progression free survival as well as overall survival of a percentage of treated patients, becoming the cornerstone of melanoma treatment. AREAS COVERED : In this review, first, we will describe the mechanisms of immune checkpoint activation and inhibition, second, we will summarize the results obtained with ICIs in melanoma treatment in terms of efficacy as well as toxicity, third, we will discuss the potential mechanisms of immune escape from ICI, and lastly, we will review the potential predictive biomarkers of clinical efficacy of ICI-based immunotherapy in melanoma. EXPERT OPINION : ICIs represent one of the pillars of melanoma treatment. The success of ICI-based therapy is limited by the development of escape mechanisms which allow melanoma cells to avoid recognition and destruction by immune cells. These results emphasize the need of additional studies to confirm the efficacy of therapies which combine different classes of ICIs as well as ICIs with other types of therapies. Furthermore, novel and more effective predictive biomarkers are needed to better stratify melanoma patients in order to define more precisely the therapeutic algorithms.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy 84131
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy 80131
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy 84131
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
40
|
Moyers JT, Glitza Oliva IC. Immunotherapy for Melanoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:81-111. [PMID: 34972963 DOI: 10.1007/978-3-030-79308-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanoma is the leading cause of death from skin cancer and is responsible for over 7000 deaths in the USA each year alone. For many decades, limited treatment options were available for patients with metastatic melanoma; however, over the last decade, a new era in treatment dawned for oncologists and their patients. Targeted therapy with BRAF and MEK inhibitors represents an important cornerstone in the treatment of metastatic melanoma; however, this chapter carefully reviews the past and current therapy options available, with a significant focus on immunotherapy-based approaches. In addition, we provide an overview of the results of recent advances in the adjuvant setting for patients with resected stage III and stage IV melanoma, as well as in patients with melanoma brain metastases. Finally, we provide a brief overview of the current research efforts in the field of immuno-oncology for melanoma.
Collapse
Affiliation(s)
- Justin T Moyers
- Department of Investigational Cancer Therapeutics, UT MD Anderson Cancer Center, Houston, TX, USA.,Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, USA
| | | |
Collapse
|
41
|
Michielin O, Lalani AK, Robert C, Sharma P, Peters S. Defining unique clinical hallmarks for immune checkpoint inhibitor-based therapies. J Immunother Cancer 2022; 10:e003024. [PMID: 35078922 PMCID: PMC8796265 DOI: 10.1136/jitc-2021-003024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
IntroductionImmuno-oncology therapies, including immune checkpoint inhibitors (ICIs), have transformed cancer care and have brought into question whether classic oncology efficacy assessments adequately describe the distinctive responses observed with these agents. With more ICI-based therapies being approved across multiple tumor types, it is essential to define unique clinical hallmarks of these agents and their associated assessments to better reflect the therapeutic impact for both patients and physicians. Long-term survival and objective responses, such as depth and durability of responses, treatment-free survival, efficacy in brain metastases, improved health-related quality of life, and unique safety profiles, are among the hallmarks that have emerged for ICI therapies. An established clinical hallmark is a sustained long-term survival, as evidenced by a delayed separation of Kaplan-Meier survival curves, and a plateau at ~3 years. Combination ICI therapies provide the opportunity to raise this plateau, thereby affording durable survival benefits to more patients. Deepening of responses over time is a unique clinical ICI hallmark, with patients responding long term and with more durable complete responses. Depth of response has demonstrated prognostic value for long-term survival in some cancers, and several ICI studies have shown sustained responses even after discontinuing ICI therapy, offering the potential for treatment-free intervals. Although clinical evidence supporting efficacy in brain metastases is limited, favorable ICI intracranial responses have been seen that are largely concordant with extracranial responses. While patient outcomes can be significantly improved with ICIs, they are associated with unique immune-mediated adverse reactions (IMARs), including delayed ICI toxicities, and may require multidisciplinary management for optimal care. Interestingly, patients discontinuing ICIs for IMARs may maintain responses similar to patients who did not discontinue for an IMAR, whether they restarted ICI therapy or not.ConclusionHerein, we comprehensively review and refine the clinical hallmarks uniquely associated with ICI therapies, which not only will rejuvenate our assessment of ICI therapeutic outcomes but also will lead to a greater appreciation of the effectiveness of ICI therapies.
Collapse
Affiliation(s)
- Olivier Michielin
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Aly-Khan Lalani
- Department of Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, Ontario, Canada
| | - Caroline Robert
- Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
- Paris-Saclay University, Orsay, France
| | - Padmanee Sharma
- Departments of Genitourinary Medical Oncology and Immunology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Solange Peters
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
42
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
43
|
White MG, Szczepaniak Sloane R, Witt RG, Reuben A, Gaudreau PO, Andrews MC, Feng N, Johnson S, Class CA, Bristow C, Wani K, Hudgens C, Nezi L, Manzo T, De Macedo MP, Hu J, Davis R, Jiang H, Prieto P, Burton E, Hwu P, Tawbi H, Gershenwald J, Lazar AJ, Tetzlaff MT, Overwijk W, Woodman SE, Cooper ZA, Marszalek JR, Davies MA, Heffernan TP, Wargo JA. Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in Braf-mutated melanoma. Oncoimmunology 2021; 10:1992880. [PMID: 34777916 PMCID: PMC8583008 DOI: 10.1080/2162402x.2021.1992880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten−/−). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies.
Collapse
Affiliation(s)
- Michael G White
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Russell G Witt
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pierre Olivier Gaudreau
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miles C Andrews
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Ningping Feng
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Johnson
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caleb A Class
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Bristow
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney Hudgens
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Nezi
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teresa Manzo
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jianhua Hu
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Davis
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Jiang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Prieto
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth Burton
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Gershenwald
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Tetzlaff
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Willem Overwijk
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Oncology Research, Nektar Therapeutics, San Francisco, CA, USA
| | - Scott E Woodman
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary A Cooper
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Translational Sciences Oncology, MedImmune, Gaithersburg, MD, USA
| | - Joseph R Marszalek
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy P Heffernan
- Translational Research to AdvanCe Therapeutics and Innovation in ONcology (TRACTION), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Klee G, Kurzhals J, Hagelstein V, Zillikens D, Recke A, Langan EA, Terheyden P. Low-dose ipilimumab combined with anti-PD-1 immunotherapy in patients with metastatic melanoma following anti-PD-1 treatment failure. Melanoma Res 2021; 31:464-471. [PMID: 34284462 DOI: 10.1097/cmr.0000000000000760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Combined immunotherapy is associated with a significant risk of severe and potentially fatal immune-related adverse events (irAEs). Therefore, we retrospectively analyzed the side profile and efficacy of low-dose ipilimumab (1 mg/kg, IPI1) combined with anti-PD-1 immunotherapy in patients who progressed after anti-PD-1 monotherapy. Nine patients with unresectable stage III or IV melanoma treated with combined low-dose ipilimumab (1 mg/kg, IPI1) and anti-PD-1 immunotherapy, following progression after anti-PD-1 treatment, were identified. Treatment response and irAEs were recorded. Grade 3 irAEs occurred in one-third of patients. Interestingly, there were no grade 4 or 5 irAEs. In fact, four out of the nine patients experienced no irAEs at all. One patient discontinued combined immunotherapy due to immune-related colitis. The mean time to the onset of grade 3 irAEs was 14.3 weeks. The objective response rate was 33.3% and a disease control rate of 66.7% was achieved. Median progression-free survival (PFS) was 5.7 months and median overall survival (OS) was 21.6 months. The median PFS when IPI1 and anti-PD-1 treatment was administered in the second-line setting was not reached, but only 2.8 months when used in subsequent treatment settings. Combined IPI1 and anti-PD-1 immunotherapy was well tolerated. Its use in the third-line or above setting was associated with a significantly poorer prognosis than in the second-line setting. Larger, prospective studies are required to evaluate the safety and efficacy of this dosing regimen following anti-PD-1 treatment failure.
Collapse
Affiliation(s)
- Gina Klee
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Jonas Kurzhals
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | | | - Detlef Zillikens
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Andreas Recke
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Ewan A Langan
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Department of Dermatological Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
45
|
Long GV, Robert C, Butler MO, Couture F, Carlino MS, O'Day S, Atkinson V, Cebon JS, Brown MP, Dalle S, Hill AG, Gibney GT, McCune S, Menzies AM, Niu C, Ibrahim N, Moreno BH, Diab A. Standard-Dose Pembrolizumab Plus Alternate-Dose Ipilimumab in Advanced Melanoma: KEYNOTE-029 Cohort 1C, a Phase 2 Randomized Study of Two Dosing Schedules. Clin Cancer Res 2021; 27:5280-5288. [PMID: 34210681 PMCID: PMC9401495 DOI: 10.1158/1078-0432.ccr-21-0793] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/16/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Standard-dose pembrolizumab plus alternative-dose ipilimumab (1 mg/kg Q3W for 4 doses) were tolerable and had robust antitumor activity in advanced melanoma in cohort B of the phase 1 KEYNOTE-029 study. Cohort C evaluated standard-dose pembrolizumab with two other alternative ipilimumab regimens. PATIENTS AND METHODS Patients with treatment-naive unresectable stage III/IV melanoma were randomly assigned 1:1 to pembrolizumab 200 mg Q3W for ≤24 months plus ipilimumab 50 mg Q6W for 4 doses (PEM200+IPI50), or the same pembrolizumab regimen plus ipilimumab 100 mg Q12W for 4 doses (PEM200+IPI100). Primary end points were incidence of grade 3-5 treatment-related adverse events (TRAE) and objective response rate (ORR) per RECIST v1.1 by independent central review. Per protocol-defined thresholds, grade 3-5 TRAE incidence ≤26% indicated meaningful toxicity reduction and ORR ≥48% indicated no decrease in efficacy versus data reported for other PD-1 inhibitor/ipilimumab combinations. RESULTS Median follow-up on February 18, 2019, was 16.3 months in PEM200+IPI50 (N = 51) and 16.4 months in PEM200+IPI100 (N = 51). Grade 3-5 TRAEs occurred in 12 (24%) patients in PEM200+IPI50 and 20 (39%) in PEM200+IPI100. One patient in PEM200+IPI50 died from treatment-related autoimmune myocarditis. Immune-mediated AEs or infusion reactions occurred in 21 (42%) patients in PEM200+IPI50 and 28 (55%) in PEM200+IPI100. ORR was 55% in PEM200+IPI50; 61% in PEM200+IPI100. CONCLUSIONS Pembrolizumab 200 mg Q3W plus ipilimumab 50 mg Q6W or 100 mg Q12W demonstrated antitumor activity above the predefined threshold; pembrolizumab plus ipilimumab 50 mg Q6W had lower incidence of grade 3-5 TRAEs than the predefined threshold, suggesting a reduction in toxicity. See related commentary by Jameson-Lee and Luke, p. 5153.
Collapse
Affiliation(s)
- Georgina V. Long
- Department of Medical Oncology and Translational Research, Melanoma Institute Australia, The University of Sydney, and Mater and Royal North Shore Hospitals, Sydney, New South Wales, Australia
| | - Caroline Robert
- Department of Medicine, Dermatology Service, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Marcus O. Butler
- Department of Medical Oncology, The Princess Margaret Cancer Center and University of Toronto, Toronto, Ontario, Canada
| | - Felix Couture
- Department of Hematology, CHU de Québec—Hôtel-Dieu de Québec, Québec City, Québec, Canada
| | - Matteo S. Carlino
- Department of Medicine, Westmead and Blacktown Hospitals, Melanoma Institute Australia, and The University of Sydney, Sydney, New South Wales, Australia
| | - Steven O'Day
- Department of Medical Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Victoria Atkinson
- University of Queensland, Division of Cancer Sciences, Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Jonathan S. Cebon
- Department of Hematology/Oncology, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Michael P. Brown
- Cancer Clinical Trials Unit, Royal Adelaide Hospital and University of Adelaide, Adelaide, South Australia, Australia
| | - Stéphane Dalle
- University of Lyon, Hospices Civils de Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Andrew G. Hill
- Department of Health, Tasman Oncology Research, Southport, Queensland, Australia
| | - Geoffrey T. Gibney
- Melanoma Disease Group, Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC
| | - Steven McCune
- Department of Clinical Research, Wellstar Health System, Marietta, Georgia
| | - Alexander M. Menzies
- Department of Medical Oncology and Translational Research, Melanoma Institute Australia, The University of Sydney, and Mater and Royal North Shore Hospitals, Sydney, New South Wales, Australia
| | - Cuizhen Niu
- Department of Clinical Oncology, MSD China, Beijing, China
| | - Nageatte Ibrahim
- Department of Clinical Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | | | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
46
|
Lemaire V, Shemesh CS, Rotte A. Pharmacology-based ranking of anti-cancer drugs to guide clinical development of cancer immunotherapy combinations. J Exp Clin Cancer Res 2021; 40:311. [PMID: 34598713 PMCID: PMC8485537 DOI: 10.1186/s13046-021-02111-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
The success of antibodies targeting Programmed cell death protein 1 (PD-1) and its ligand L1 (PD-L1) in cancer treatment and the need for improving response rates has led to an increased demand for the development of combination therapies with anti-PD-1/PD-L1 blockers as a backbone. As more and more drugs with translational potential are identified, the number of clinical trials evaluating combinations has increased considerably and the demand to prioritize combinations having potential for success over the ones that are unlikely to be successful is rising. This review aims to address the unmet need to prioritize cancer immunotherapy combinations through comprehensive search of potential drugs and ranking them based on their mechanism of action, clinical efficacy and safety. As lung cancer is one of the most frequently studied cancer types, combinations that showed potential for the treatment of lung cancer were prioritized. A literature search was performed to identify drugs with potential in combination with PD-1/PD-L1 blockers and the drugs were ranked based on their mechanism of action and known clinical efficacy. Nineteen drugs or drug classes were identified from an internal list of lead molecules and were scored for their clinical potential. Efficacy and safety data from pivotal studies was summarized for the selected drugs. Further, overlap of mechanisms of action and adverse events was visualized using a heat map illustration to help screen drugs for combinations. The quantitative scoring methodology provided in this review could serve as a template for preliminary ranking of novel combinations.
Collapse
Affiliation(s)
- Vincent Lemaire
- Department of Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Colby S Shemesh
- Department of Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Anand Rotte
- Independent Consultant, Santa Clara, USA
- Current address: Clinical and Regulatory Affairs, Arcellx, Gaithersburg, USA
| |
Collapse
|
47
|
Yuan J, Khilnani A, Brody J, Andtbacka RHI, Hu-Lieskovan S, Luke JJ, Diab A, Marabelle A, Snyder A, Cao ZA, Hodi FS. Current strategies for intratumoural immunotherapy - Beyond immune checkpoint inhibition. Eur J Cancer 2021; 157:493-510. [PMID: 34561127 DOI: 10.1016/j.ejca.2021.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy has revolutionised cancer treatment through restoration of host antitumour immune response. Immune checkpoint inhibitors (ICIs) confer durable responses in only a subset of patients. Mechanisms of ICI resistance to improve durable response rates and overall survival are an area of intense clinical research. Robust clinical development is ongoing to evaluate novel combination therapies to overcome ICI resistance, including targeting immunoregulatory pathways in the tumour microenvironment. Intratumoural (IT) immunotherapies such as toll-like receptor agonists, stimulator of interferon-induced gene agonists, retinoic-inducible gene I-like receptor agonists and oncolytic viruses may represent potential combination treatment options to overcome ICI resistance. Use of IT immunotherapies in combination with ICIs may alter the tumour microenvironment to address resistance mechanisms and improve antitumour response. Optimisation of IT immunotherapy clinical trials will elucidate resistance mechanisms, facilitate clinical trial design, define pharmacodynamic predictors that identify patients who may most benefit and inform clinical development of combination immunotherapy regimens. Here we provide an overview of IT immunotherapy principles, mechanisms of action, categories of IT immunotherapeutics, emerging data, clinical development strategies, response assessment, dose and schedule determination, clinical trial design and translational study design.
Collapse
Affiliation(s)
- Jianda Yuan
- Department of Translational Oncology and Early Oncology Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA.
| | - Anuradha Khilnani
- Department of Translational Oncology and Early Oncology Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA.
| | - Joshua Brody
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA.
| | - Robert H I Andtbacka
- Seven and Eight Biopharmaceuticals Inc., 343 Thornall Street, Suite 520, Edison, NJ, 08837, USA.
| | - Siwen Hu-Lieskovan
- Department of Internal Medicine-Oncology, Huntsman Cancer Institute, University of Utah, 2000 Cir of Hope Dr #1950, Salt Lake City, UT, 84112, USA.
| | - Jason J Luke
- Department of Hematology/Oncology, University of Pittsburgh Hillman Cancer Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA.
| | - Adi Diab
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Aurelien Marabelle
- Department of Therapeutic Innovation and Early Trials, Gustave Roussy, University of Paris-Saclay, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| | - Alexandra Snyder
- Department of Translational Oncology and Early Oncology Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA.
| | - Z Alexander Cao
- Department of Translational Oncology and Early Oncology Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA.
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
48
|
Ferrucci PF, Di Giacomo AM, Del Vecchio M, Atkinson V, Schmidt H, Schachter J, Queirolo P, Long GV, Stephens R, Svane IM, Lotem M, Abu-Amna M, Gasal E, Ghori R, Diede SJ, Croydon ES, Ribas A, Ascierto PA. KEYNOTE-022 part 3: a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J Immunother Cancer 2021; 8:jitc-2020-001806. [PMID: 33361337 PMCID: PMC7768966 DOI: 10.1136/jitc-2020-001806] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background In the KEYNOTE-022 study, pembrolizumab with dabrafenib and trametinib (triplet) improved progression-free survival (PFS) versus placebo with dabrafenib and trametinib (doublet) without reaching statistical significance. Mature results on PFS, duration of response (DOR), and overall survival (OS) are reported. Methods The double-blind, phase 2 part of KEYNOTE-022 enrolled patients with previously untreated BRAFV600E/K-mutated advanced melanoma from 22 sites in seven countries. Patients were randomly assigned 1:1 to intravenous pembrolizumab (200 mg every 3 weeks) or placebo plus dabrafenib (150 mg orally two times per day) and trametinib (2 mg orally one time a day). Primary endpoint was PFS. Secondary endpoints were objective response rate, DOR, and OS. Efficacy was assessed in the intention-to-treat population, and safety was assessed in all patients who received at least one dose of study drug. This analysis was not specified in the protocol. Results Between November 30, 2015 and April 24, 2017, 120 patients were randomly assigned to triplet (n=60) or doublet (n=60) therapy. With 36.6 months of follow-up, median PFS was 16.9 months (95% CI 11.3 to 27.9) with triplet and 10.7 months (95% CI 7.2 to 16.8) with doublet (HR 0.53; 95% CI 0.34 to 0.83). With triplet and doublet, respectively, PFS at 24 months was 41.0% (95% CI 27.4% to 54.2%) and 16.3% (95% CI 8.1% to 27.1%); median DOR was 25.1 months (95% CI 14.1 to not reached) and 12.1 months (95% CI 6.0 to 15.7), respectively. Median OS was not reached with triplet and was 26.3 months with doublet (HR 0.64; 95% CI 0.38 to 1.06). With triplet and doublet, respectively, OS at 24 months was 63.0% (95% CI 49.4% to 73.9%) and 51.7% (95% CI 38.4% to 63.4%). Grade 3–5 treatment-related adverse events (TRAEs) occurred in 35 patients (58%, including one death) receiving triplet and 15 patients (25%) receiving doublet. Conclusion In BRAFV600E/K-mutant advanced melanoma, pembrolizumab plus dabrafenib and trametinib substantially improved PFS, DOR, and OS with a higher incidence of TRAEs. Interpretation of these results is limited by the post hoc nature of the analysis.
Collapse
Affiliation(s)
- Pier Francesco Ferrucci
- Cancer Biotherapy Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, University Hospital of Siena; University of Siena, Siena, Italy
| | - Michele Del Vecchio
- Unit of Melanoma Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Victoria Atkinson
- University of Queensland, and Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Woolloongabba, Queensland, Australia
| | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Schachter
- Division of Oncology, Sheba Medical Centre, Tel HaShomer Hospital, Tel Aviv, Israel
| | - Paola Queirolo
- Divisione di Oncologia Medica del Melanoma, Sarcoma e Tumori Rari, European Institute of Oncology IRCCS, Milan, Italy
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, and Royal North Shore Hospital, Sydney, New South Wales, Australia.,Department of Medical Oncology and Translational Research, Mater Hospital, North Sydney, New South Wales, Australia
| | | | - Inge Marie Svane
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | - Eduard Gasal
- Global Drug Development, Oncology, Novartis, East Hanover, New Jersey, USA
| | - Razi Ghori
- Department of Clinical Oncology, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Scott J Diede
- Department of Clinical Oncology, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Elizabeth S Croydon
- Department of Clinical Oncology, Merck & Co Inc, Kenilworth, New Jersey, USA
| | - Antoni Ribas
- Department of Medicine, University of California Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, California, USA
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Naples, Italy
| | | |
Collapse
|
49
|
Huppert LA, Daud AI. Pembrolizumab and Ipilimumab as Second-Line Therapy for Advanced Melanoma. J Clin Oncol 2021; 39:2637-2639. [PMID: 34138634 DOI: 10.1200/jco.21.00943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Laura A Huppert
- Division of Hematology Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Adil I Daud
- Division of Hematology Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA
| |
Collapse
|
50
|
Olson DJ, Eroglu Z, Brockstein B, Poklepovic AS, Bajaj M, Babu S, Hallmeyer S, Velasco M, Lutzky J, Higgs E, Bao R, Carll TC, Labadie B, Krausz T, Zha Y, Karrison T, Sondak VK, Gajewski TF, Khushalani NI, Luke JJ. Pembrolizumab Plus Ipilimumab Following Anti-PD-1/L1 Failure in Melanoma. J Clin Oncol 2021; 39:2647-2655. [PMID: 33945288 PMCID: PMC8376314 DOI: 10.1200/jco.21.00079] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Combination of antiprogrammed cell death protein-1 (PD-1) plus anti-cytotoxic T-cell lymphocyte-4 (anti-CTLA-4) immunotherapy shows greater response rates (RRs) than anti-PD-1 antibody alone in melanoma, but RR after initial anti-PD-1 and programmed death ligand-1 (PD-L1) antibody progression awaits robust investigation. Anti-CTLA-4 antibody alone after anti-PD-1/L1 antibody progression has a historical RR of 13%. We report the results of the first prospective clinical trial evaluating ipilimumab 1 mg/kg plus pembrolizumab following progression on anti-PD-1 immunotherapy. METHODS Patients with advanced melanoma who had progressed on anti-PD-1/L1 antibody as immediate prior therapy (including non-anti-CTLA-4 antibody combinations) were eligible. Patients received pembrolizumab 200 mg plus ipilimumab 1 mg/kg once every 3 weeks for four doses, followed by pembrolizumab monotherapy. The primary end point was RR by irRECIST. After 35 patients, the trial met the primary end point and was expanded to enroll a total of 70 patients to better estimate the RR. RESULTS Prior treatments included 60 on anti-PD-1 antibody alone and 10 on anti-PD-1/L1 antibody-based combinations. Thirteen patients had progressed in the adjuvant setting. The median length of prior treatment with anti-PD-1/L1 antibody was 4.8 months. Response assessments included five complete and 15 partial responses, making the irRECIST RR 29% among the entire trial population. The median progression-free survival was 5.0 months, and the median overall survival was 24.7 months. The median duration of response was 16.6 months. There was no difference in median time on prior anti-PD1/L1 or time to PD1 + CTLA4 initiation between responders and nonresponders. Grade 3-4 drug-related adverse events occurred in 27% of patients. Responses occurred in PD-L1-negative, non-T-cell-inflamed, and intermediate tumor phenotypes. CONCLUSION To our knowledge, this is the first prospective study in melanoma of pembrolizumab plus low-dose ipilimumab after anti-PD-1/L1 immunotherapy failure, demonstrating significant antitumor activity and tolerability.
Collapse
Affiliation(s)
- Daniel J. Olson
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Zeynep Eroglu
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | | | - Sunil Babu
- Fort Wayne Medical Oncology and Hematology, Ft Wayne, IN
| | | | | | - Jose Lutzky
- University of Miami Sylvester Comprehensive Cancer Center, Miami Beach, FL
| | - Emily Higgs
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, PA
| | | | - Brian Labadie
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Thomas Krausz
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Yuanyuan Zha
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | | | | | | | | | | |
Collapse
|