1
|
Hou X, Chen W, Zhang X, Wang G, Chen J, Zeng P, Fu X, Zhang Q, Liu X, Diao H. Preselection TCR repertoire predicts CD4 + and CD8 + T-cell differentiation state. Immunology 2020; 161:354-363. [PMID: 32875554 DOI: 10.1111/imm.13256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/15/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
T cells must display diversity regarding both the cell state and T-cell receptor (TCR) repertoire to provide effective immunity against pathogens; however, the generation and evolution of cellular T-cell heterogeneity in the adaptive immune system remains unclear. In the present study, a combination of multiplex PCR and immune repertoire sequencing (IR-seq) was used for a standardized analysis of the TCR β-chain repertoire of CD4+ naive, CD4+ memory, CD8+ naive and CD8+ memory T cells. We showed that the T-cell subsets could be distinguished from each another with regard to the TCR β-chain (TCR-β) diversity, CDR3 length distribution and TRBV usage, which could be observed both in the preselection and in the post-selection repertoire. Moreover, the Dβ-Jβ and Vβ-Dβ combination patterns at the initial recombination step, template-independent insertion of nucleotides and inter-subset overlap were consistent between the pre- and post-selection repertoires, with a remarkably positive correlation. Taken together, these results support differentiation of the CD4+ and CD8+ T-cell subsets prior to thymic selection, and these differences survived both positive and negative selection. In conclusion, these findings provide deeper insight into the generation and evolution of TCR repertoire generation.
Collapse
Affiliation(s)
- Xianliang Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangyu Wang
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyan Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Liu
- College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Schistosome syntenin partially protects vaccinated mice against Schistosoma mansoni infection. PLoS Negl Trop Dis 2014; 8:e3107. [PMID: 25144756 PMCID: PMC4140676 DOI: 10.1371/journal.pntd.0003107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/09/2014] [Indexed: 12/21/2022] Open
Abstract
Background Schistosomiasis is a neglected tropical disease caused by several species of trematode of the genus Schistosoma. The disease affects more than 200 million people in the world and causes up to 280,000 deaths per year, besides having high morbidity due to chronic illness that damages internal organs. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control disease is a combination of drug treatment and immunization with an anti-schistosome vaccine. Among the most promising molecules as vaccine candidates are the proteins present in the tegument and digestive tract of the parasite. Methodology/Principal Findings In this study, we describe for the first time Schistosoma mansoni syntenin (SmSynt) and we evaluate its potential as a recombinant vaccine. We demonstrate by real-time PCR that syntenin is mainly expressed in intravascular life stages (schistosomula and adult worms) of the parasite life cycle and, by confocal microscopy, we localize it in digestive epithelia in adult worms and schistosomula. Administration of siRNAs targeting SmSynt leads to the knock-down of syntenin gene and protein levels, but this has no demonstrable impact on parasite morphology or viability, suggesting that high SmSynt gene expression is not essential for the parasites in vitro. Mice immunization with rSmSynt, formulated with Freund's adjuvant, induces a Th1-type response, as suggested by the production of IFN-γ and TNF-α by rSmSynt-stimulated cultured splenocytes. The protective effect conferred by vaccination with rSmSynt was demonstrated by 30–37% reduction of worm burden, 38–43% reduction in the number, and 35–37% reduction in the area, of liver granulomas. Conclusions/Significance Our report is the first characterization of syntenin in Schistosoma mansoni and our data suggest that this protein is a potential candidate for the development of a multi-antigen vaccine to control schistosomiasis. Schistosomiasis affects more than 200 million people worldwide and causes up to 280,000 deaths per year. In terms of global mortality and morbidity, this disease is the most important human helminth infection. Current control strategies are based on chemotherapy, but recurrent re-infection of people living in endemic areas makes many researchers, and also the World Health Organization, search for an effective vaccine to provide protection against schistosomiasis. Substantial efforts have been committed to the characterization of new antigens for an anti-schistosome vaccine and, in order to find new targets for vaccine and/or drug development, we searched transcriptomics and proteomics of Schistosoma mansoni and identified the protein syntenin (SmSynt) for analysis. In this study, we characterize SmSynt and evaluate its potential as a vaccine candidate to protect mice against S. mansoni infection. We demonstrate that SmSynt is expressed in schistosomula and adult worms, the intravascular stages of S. mansoni and it is located in the intestinal tract of the worms, an important host/parasite interface. Furthermore, vaccination of mice with rSmSynt confers partial protection against S. mansoni challenge infection and ameliorates parasite-induced liver pathology. Our data suggest that SmSynt is a potential candidate in the development of a vaccine against schistosomiasis.
Collapse
|
3
|
Nickel T, Emslander I, Sisic Z, David R, Schmaderer C, Marx N, Schmidt-Trucksäss A, Hoster E, Halle M, Weis M, Hanssen H. Modulation of dendritic cells and toll-like receptors by marathon running. Eur J Appl Physiol 2011; 112:1699-708. [PMID: 21881949 DOI: 10.1007/s00421-011-2140-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 08/18/2011] [Indexed: 12/11/2022]
Abstract
The focus of this study was to assess exercise-induced alterations of circulating dendritic cell (DC) subpopulations and toll-like receptor (TLR) expression after marathon running. Blood sampling was performed in 15 obese non-elite (ONE), 16 lean non-elite (LNE) and 16 lean elite (LE) marathon runners pre- and post-marathon as well as 24 h after the race. Circulating DC-fractions were measured by flow-cytometry analyzing myeloid DCs (BDCA-1+) and plasmacytoid DCs (BDCA-2+). We further analyzed the (TLR) -2/-4/-7 in peripheral blood mononuclear cells (rt-PCR/Western Blot) and the cytokines CRP, IL-6, IL-10, TNF-α and oxLDL by ELISA. After the marathon, BDCA-1 increased significantly in all groups [LE (pre/post): 0.35/0.47%; LNE: 0.26/0.50% and ONE: 0.30/0.49%; all p < 0.05]. In contrast, we found a significant decrease for BDCA-2 directly after the marathon (LE: 0.09/0.01%; LNE: 0.12/0.03% and ONE: 0.10/0.02%; all p < 0.05). Levels of TLR-7 mRNA decreased in all groups post-marathon (LE 44%, LNE 67% and ONE 52%; all p < 0.01), with a consecutive protein reduction (LE 31%, LNE 52%, ONE 42%; all p < 0.05) 24 h later. IL-6 and IL-10 levels increased immediately after the run, whereas increases of TNF-α and CRP-levels were seen after 24 h. oxLDL levels remained unchanged post-marathon. In our study population, we did not find any relevant differences regarding training level or body weight. Prolonged endurance exercise induces both pro- and anti-inflammatory cytokines. Anti-inflammatory cytokines, such as IL-10, may help to prevent excessive oxidative stress. Marathon running is associated with alterations of DC subsets and TLR-expression independent of training level or body weight. Myeloid and plasmacytoid DCs are differently affected by the excessive physical stress. Immunomodulatory mechanisms seem to play a key role in the response and adaptation to acute excessive exercise.
Collapse
Affiliation(s)
- Thomas Nickel
- Medizinische Klinik und Poliklinik 1, Campus Grosshadern, Ludwig-Maximilians-Universität München, Marchioninistr 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Melenhorst JJ, Lay MDH, Price DA, Adams SD, Zeilah J, Sosa E, Hensel NF, Follmann D, Douek DC, Davenport MP, Barrett AJ. Contribution of TCR-beta locus and HLA to the shape of the mature human Vbeta repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:6484-9. [PMID: 18453566 DOI: 10.4049/jimmunol.180.10.6484] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells that survive thymic selection express a diverse array of unique heterodimeric alphabeta TCRs that mediate peptide-MHC Ag recognition. The proportion of the total T cell repertoire that expresses a particular Vbeta protein may be determined by a variety of factors: 1) germline preference for use of particular Vbeta genes; 2) allelic effects on the expression of different Vbeta genes; and 3) HLA effects on the expression of different Vbeta genes (acting via thymic selection and/or peripheral mechanisms). In this study, we show that Vbeta usage by human CD4(+) and CD8(+) T cells in neonatal and adult donors is highly correlated between unrelated individuals, suggesting that a large proportion of the observed pattern of Vbeta expression is determined by factors intrinsic to the TCR-beta locus. The presence of identical TCR alleles (within an individual) leads to a significantly better correlation between CD4(+) and CD8(+) T cells with respect to Vbeta expression; these effects are, however, relatively minor. The sharing of HLA alleles between individuals also leads to an increased correlation between their Vbeta expression patterns, although this did not reach statistical significance. We therefore conclude that the correlation in Vbeta expression patterns between CD4(+) and CD8(+) T cells can be explained predominantly by germline TCR-beta locus factors and not TCR-beta allelic or HLA effects.
Collapse
Affiliation(s)
- J Joseph Melenhorst
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Saada R, Weinberger M, Shahaf G, Mehr R. Models for antigen receptor gene rearrangement: CDR3 length. Immunol Cell Biol 2007; 85:323-32. [PMID: 17404591 DOI: 10.1038/sj.icb.7100055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the various processing steps involved in V(D)J recombination, which could potentially introduce many biases in the length distribution of complementarity determining region 3 (CDR3) segments, the observed CDR3 length distributions for complete repertoires are very close to a normal-like distribution. This raises the question of whether this distribution is simply a result of the random steps included in the process of gene rearrangement, or has been optimized during evolution. We have addressed this issue by constructing a simulation of gene rearrangement, which takes into account the DNA modification steps included in the process, namely hairpin opening, nucleotide additions, and nucleotide deletions. We found that the near-Gaussian- shape of CDR3 length distribution can only be obtained under a relatively narrow set of parameter values, and thus our model suggests that specific biases govern the rearrangement process. In both B-cell receptor (BCR) heavy chain and T-cell receptor beta chain, we obtained a Gaussian distribution using identical parameters, despite the difference in the number and the lengths of the D segments. Hence our results suggest that these parameters most likely reflect the optimal conditions under which the rearrangement process occurs. We have subsequently used the insights gained in this study to estimate the probability of occurrence of two exactly identical BCRs over the course of a human lifetime. Whereas identical rearrangements of the heavy chain are highly unlikely to occur within one human lifetime, for the light chain we found that this probability is not negligible, and hence the light chain CDR3 alone cannot serve as an indicator of B-cell clonality.
Collapse
MESH Headings
- B-Lymphocytes
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Computer Simulation
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- Humans
- Models, Genetic
- Normal Distribution
- Probability Theory
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- T-Lymphocytes
Collapse
Affiliation(s)
- Ravit Saada
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
6
|
Pereira P, Boucontet L. Rates of recombination and chain pair biases greatly influence the primary gammadelta TCR repertoire in the thymus of adult mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:3261-70. [PMID: 15322188 DOI: 10.4049/jimmunol.173.5.3261] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Analyses of the rearrangement status of the TCRgamma and TCRdelta chain loci in progenies of individual gammadelta thymocytes showed a hierarchy of the different Vgamma and Vdelta gene segments to participate in a recombination reaction. Moreover, individual TCRgamma chains only pair efficiently with a variable number of TCRdelta chains. Interestingly, these two parameters are inversely correlated such that the TCRgamma and TCRdelta chains that rearrange more often show a higher level of restriction in their pairing capabilities. Our data suggest that these mechanisms, together with a natural variation affecting the expected frequencies at which rearrangement of different Vgamma gene segments give raise to functional TCRgamma chains, have coevolved to maximize the diversity of the gammadelta TCR repertoire minimizing the risk that a gammadelta T cell will express more than one TCR specificity at the cell surface, despite the fact that multiple TCRgamma rearrangements take place in the same progenitor cell.
Collapse
Affiliation(s)
- Pablo Pereira
- Unité du Développement des Lymphocytes, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1961, Institut Pasteur, Paris, France.
| | | |
Collapse
|
7
|
Abstract
The primary T-cell receptor repertoire is generated by somatic rearrangement of discontinuous gene segments. The shape of the combinatorial repertoire is stereotypical and, in part, evolutionarily conserved among mammals. Rearrangement is initiated by specific interactions between the recombinase and the recombination signals (RSs) that flank the gene segments. Conserved sequence variations in the RS, which modulate its interactions with the recombinase, appear to be a major factor in shaping the primary repertoire. In vitro, biochemical studies have revealed distinct steps in these complex recombinase-RS interactions that may determine the final frequency of gene segment rearrangement. These studies offer a plausible model to explain gene segment selection, but new, more physiological approaches will have to be developed to verify and refine the mechanism by which the recombinase targets the RS in its endogenous chromosomal context in vivo.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Damage/physiology
- Gene Rearrangement, T-Lymphocyte
- Genes, Immunoglobulin/immunology
- Genes, Immunoglobulin/physiology
- Genes, T-Cell Receptor
- Humans
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- VDJ Recombinases/physiology
Collapse
Affiliation(s)
- Ferenc Livák
- Department of Microbiology and Immunology, Graduate Program in Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Zhou P, Borojevic R, Streutker C, Snider D, Liang H, Croitoru K. Expression of dual TCR on DO11.10 T cells allows for ovalbumin-induced oral tolerance to prevent T cell-mediated colitis directed against unrelated enteric bacterial antigens. THE JOURNAL OF IMMUNOLOGY 2004; 172:1515-23. [PMID: 14734729 DOI: 10.4049/jimmunol.172.3.1515] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The triggering Ag for inflammatory bowel disease and animal models of colitis is not known, but may include gut flora. Feeding OVA to DO11.10 mice with OVA-specific transgenic (Tg) TCR generates Ag-specific immunoregulatory CD4(+) T cells (Treg) cells. We examined the ability of oral Ag-induced Treg cells to suppress T cell-mediated colitis in mice. SCID-bg mice given DO11.10 CD4(+)CD45RB(high) T cells developed colitis, and cotransferring DO11.10 CD45RB(low)CD4(+) T cells prevented CD4(+)CD45RB(high) T cell-induced colitis in the absence of OVA. The induction and prevention of disease by DO11.10 CD4(+) T cell subsets were associated with an increase in endogenous TCRalpha chain expression on Tg T cells. Feeding OVA to SCID-bg mice reconstituted with DO11.10 CD4(+)CD45RB(high) attenuated the colitis in association with increased TGF-beta and IL-10 secretion, and decreased proliferative responses to both OVA and cecal bacteria Ag. OVA feeding also attenuated colitis in SCID-bg mice reconstituted with a mix of BALB/c and DO11.10 CD45RB(high) T cells, suggesting that OVA-induced Treg cells suppressed BALB/c effector cells. The expression of endogenous non-Tg TCR allowed for DO11.10-derived T cells to respond to enteric flora Ag. Furthermore, feeding OVA-induced Treg cells prevented colitis by inducing tolerance in both OVA-reactive and non-OVA-reactive T cells and by inducing Ag-nonspecific Treg cells. Such a mechanism might allow for Ag-nonspecific modulation of intestinal inflammation in inflammatory bowel disease.
Collapse
MESH Headings
- Administration, Oral
- Adoptive Transfer
- Animals
- Antigens, Bacterial/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/transplantation
- Cecum/immunology
- Cecum/microbiology
- Cell Division/genetics
- Cell Division/immunology
- Cell Line
- Colitis/genetics
- Colitis/immunology
- Colitis/pathology
- Colitis/prevention & control
- Cytokines/biosynthesis
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Immune Tolerance/genetics
- Immunity, Mucosal/genetics
- Immunophenotyping
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Leukocyte Common Antigens/administration & dosage
- Leukocyte Common Antigens/biosynthesis
- Leukocyte Common Antigens/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin-2/biosynthesis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Pengfei Zhou
- Intestinal Disease Research Program, Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Olaru A, Patterson DN, Villey I, Livák F. DNA-Rag Protein Interactions in the Control of Selective D Gene Utilization in the TCRβ Locus. THE JOURNAL OF IMMUNOLOGY 2003; 171:3605-11. [PMID: 14500657 DOI: 10.4049/jimmunol.171.7.3605] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ordered assembly of Ag receptor genes by VDJ recombination is a key determinant of successful lymphocyte differentiation and function. Control of gene rearrangement has been traditionally viewed as a result of complex reorganization of the nucleochromatin mediated by several nuclear factors. Selective recombination of the variable (V) genes to the diversity (D), but not joining (J), gene segments within the TCRbeta locus has been shown to be controlled by recombination signal (RS) sequences that flank the gene segments. Through ex vivo and in vitro recombination assays, we demonstrate that the Rag proteins can discriminate between the RS of the D and J genes and enforce selective D gene incorporation into the TCRbeta variable domain in the absence of other nuclear factors or chromatin structure. DNA binding studies indicate that discrimination is not simply caused by higher affinity binding of the Rag proteins to the isolated 12RS of the D as opposed to the J genes. Furthermore, we also demonstrate that the 12RS within the TCRbeta locus is functionally inferior to the consensus 12RS. We propose that selective gene segment usage is controlled at the level of differential assembly and/or stability of synaptic RS complexes, and that evolutionary "deterioration" of the RS motifs may have been important to allow the VDJ recombinase to exert autonomous control over gene segment use during gene rearrangement.
Collapse
Affiliation(s)
- Alexandru Olaru
- Department of Microbiology and Immunology, Graduate Program in Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
10
|
Livák F. Evolutionarily conserved pattern of gene segment usage within the mammalian TCRbeta locus. Immunogenetics 2003; 55:307-14. [PMID: 12845497 DOI: 10.1007/s00251-003-0577-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 03/26/2003] [Indexed: 10/26/2022]
Abstract
Antigen receptor gene rearrangement is mediated by interactions between the VDJ recombinase and the recombination signal sequences that flank the antigen receptor gene segments. In this report I present phylogenetic analyses that suggest a remarkable evolutionary conservation of the recombination signal sequences flanking some of the orthologous T-cell receptor-beta locus gene segments between human and mouse. Comparison of published data on the usage of the same gene segments between human and mouse indicates similar conservation in the shape of the primary T-cell receptor-beta repertoire. I propose that interactions between the recombinase and its cognate recognition sequences play a hitherto underestimated role in the formation of the specific pattern of the primary, combinatorial antigen receptor repertoire and that this pattern appears to be conserved in diverse mammalian species. Generation of a conserved pattern of the primary T-cell receptor repertoire may be critical for efficient selection of immature T lymphocytes.
Collapse
Affiliation(s)
- Ferenc Livák
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, 655 West Baltimore St, BRB 13-017, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Cowell LG, Davila M, Kepler TB, Kelsoe G. Identification and utilization of arbitrary correlations in models of recombination signal sequences. Genome Biol 2002; 3:RESEARCH0072. [PMID: 12537561 PMCID: PMC151174 DOI: 10.1186/gb-2002-3-12-research0072] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Revised: 09/04/2002] [Accepted: 10/10/2002] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND A significant challenge in bioinformatics is to develop methods for detecting and modeling patterns in variable DNA sequence sites, such as protein-binding sites in regulatory DNA. Current approaches sometimes perform poorly when positions in the site do not independently affect protein binding. We developed a statistical technique for modeling the correlation structure in variable DNA sequence sites. The method places no restrictions on the number of correlated positions or on their spatial relationship within the site. No prior empirical evidence for the correlation structure is necessary. RESULTS We applied our method to the recombination signal sequences (RSS) that direct assembly of B-cell and T-cell antigen-receptor genes via V(D)J recombination. The technique is based on model selection by cross-validation and produces models that allow computation of an information score for any signal-length sequence. We also modeled RSS using order zero and order one Markov chains. The scores from all models are highly correlated with measured recombination efficiencies, but the models arising from our technique are better than the Markov models at discriminating RSS from non-RSS. CONCLUSIONS Our model-development procedure produces models that estimate well the recombinogenic potential of RSS and are better at RSS recognition than the order zero and order one Markov models. Our models are, therefore, valuable for studying the regulation of both physiologic and aberrant V(D)J recombination. The approach could be equally powerful for the study of promoter and enhancer elements, splice sites, and other DNA regulatory sites that are highly variable at the level of individual nucleotide positions.
Collapse
Affiliation(s)
- Lindsay G Cowell
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
12
|
Livák F, Petrie HT. Access roads for RAG-ged terrains: control of T cell receptor gene rearrangement at multiple levels. Semin Immunol 2002; 14:297-309. [PMID: 12220931 DOI: 10.1016/s1044-5323(02)00063-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antigen-specific immune response requires the generation of a diverse antigen (Ag)-receptor repertoire. The primary repertoire is generated through somatic gene rearrangement and molded by subsequent cellular selection. Constraints during gene recombination influence the ultimate shape of the repertoire. One major control mechanism of gene rearrangement, investigated for many years, is exerted through regulated chromosomal accessibility of the recombinase to the antigen receptor loci. More recent studies began to explore the role of interactions between the recombinase and its cognate recognition DNA sequences. The emerging results suggest that formation of the primary repertoire is controlled by two, partially independent factors: chromosomal accessibility and direct recombinase-DNA interactions.
Collapse
Affiliation(s)
- Ferenc Livák
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
13
|
Dyer MJS, Oscier DG. The configuration of the immunoglobulin genes in B cell chronic lymphocytic leukemia. Leukemia 2002; 16:973-84. [PMID: 12040429 DOI: 10.1038/sj.leu.2402528] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2001] [Accepted: 02/19/2002] [Indexed: 01/30/2023]
Abstract
B cell chronic lymphocytic leukemia (CLL) lacks a consistent genetic abnormality. However, immunoglobulin V(H) gene segment mutation analysis has provided insights into the pathogenesis of these diseases and allowed the development of powerful prognostic markers. Immunoglobulin gene chromosomal translocations are rare in CLL and involve a distinct subset of genes including BCL3, BCL11A and CCND2. BCL2 translocations in CLL appear to arise via a different mechanism from comparable translocations seen in B cell non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- M J S Dyer
- Department of Haematology, University of Leicester, Leicester Royal Infirmary, UK
| | | |
Collapse
|