1
|
Long Z, Phillips B, Radtke D, Meyer-Hermann M, Bannard O. Competition for refueling rather than cyclic reentry initiation evident in germinal centers. Sci Immunol 2022; 7:eabm0775. [PMID: 35275753 PMCID: PMC7614495 DOI: 10.1126/sciimmunol.abm0775] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antibody affinity maturation occurs in germinal centers (GCs) through iterative rounds of somatic hypermutation and proliferation in dark zones (DZs) and selection in light zones (LZs). GC B cells exit cell cycle a number of hours before entering LZs; therefore, continued participation in responses requires that they subsequently reenter cell cycle and move back to DZs, a process known as cyclic reentry. Affinity enhancements are thought to arise by B cells having to compete to initiate cyclic reentry each time they enter LZs, with T cell help being a major determinant; however, direct proof is lacking. Using Fucci2 mice, we confirmed an association between B cell receptor affinity and the first step of cyclic reentry, S phase initiation from a resting LZ state. However, neither T cell ablation nor MHCII deletion prevented resting LZ cells from reentering cell cycle, and this late G1-S transition was also not detectably restricted by competition. In contrast, using BATF induction as exemplar, we found that T cells "refueled" LZ cells in an affinity-dependent manner that was limited by both competition and cells' intrinsic antigen-acquiring abilities. Therefore, cyclic reentry initiation and B cell refueling are independently regulated in GCs, which may contribute to permitting cells of different competencies to be sustained alongside each other and allow T cell support to be provided across a dynamic range commensurate with affinity. We speculate that this less binary selection mechanism could help GCs nurture complex antibody maturation pathways and support the clonal diversity required for countering fast-evolving pathogens.
Collapse
Affiliation(s)
- Ziqi Long
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Bethan Phillips
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Daniel Radtke
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Michael Meyer-Hermann
- Department of Systems Biology and Braunschweig Integrated Center for Systems Biology (BRICS), Helmholtz Center for Infection Research, Rebenring 56, D-38106 Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Oliver Bannard
- MRC Human Immunology Unit, Nuffield Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
2
|
Lin JT, Lineberry NB, Kattah MG, Su LL, Utz PJ, Fathman CG, Wu L. Naive CD4 t cell proliferation is controlled by mammalian target of rapamycin regulation of GRAIL expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5919-28. [PMID: 19414743 PMCID: PMC2853371 DOI: 10.4049/jimmunol.0803986] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we demonstrate that the E3 ubiquitin ligase gene related to anergy in lymphocytes (GRAIL) is expressed in quiescent naive mouse and human CD4 T cells and has a functional role in inhibiting naive T cell proliferation. Following TCR engagement, CD28 costimulation results in the expression of IL-2 whose signaling through its receptor activates the Akt-mammalian target of rapamycin (mTOR) pathway. Activation of mTOR allows selective mRNA translation, including the epistatic regulator of GRAIL, Otubain-1 (Otub1), whose expression results in the degradation of GRAIL and allows T cell proliferation. The activation of mTOR appears to be the critical component of IL-2R signaling regulating GRAIL expression. CTLA4-Ig treatment blocks CD28 costimulation and resultant IL-2 expression, whereas rapamycin and anti-IL-2 treatment block mTOR activation downstream of IL-2R signaling. Thus, all three of these biotherapeutics inhibit mTOR-dependent translation of mRNA transcripts, resulting in blockade of Otub1 expression, maintenance of GRAIL, and inhibition of CD4 T cell proliferation. These observations provide a mechanistic pathway sequentially linking CD28 costimulation, IL-2R signaling, and mTOR activation as important requirements for naive CD4 T cell proliferation through the regulation of Otub1 and GRAIL expression. Our findings also extend the role of GRAIL beyond anergy induction and maintenance, suggesting that endogenous GRAIL regulates general cell cycle and proliferation of primary naive CD4 T cells.
Collapse
Affiliation(s)
- Jack T. Lin
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Neil B. Lineberry
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Michael G. Kattah
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Leon L. Su
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Paul J. Utz
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - C. Garrison Fathman
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | | |
Collapse
|
3
|
Jubala CM, Lamerato-Kozicki AR, Borakove M, Lang J, Gardner LA, Coffey D, Helm KM, Schaack J, Baier M, Cutter GR, Bellgrau D, Modiano JF. MHC-dependent desensitization of intrinsic anti-self reactivity. Cancer Immunol Immunother 2009; 58:171-85. [PMID: 18523772 PMCID: PMC2585149 DOI: 10.1007/s00262-008-0535-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
The survival of naive T cells is compromised in the absence of molecules encoded by the major histocompatibility complex (MHC) while antigen-experienced T cells survive. We hypothesized that survival pressures in an in vivo, MHC-deficient environment would permit enrichment of less frequent antigen-experienced autoreactive cells at the expense of the majority of antigen naive T cells. To test this hypothesis, we generated MHC class I- and class II-deficient mice in NOD and C57Bl/6 (B6) backgrounds, and examined the capacity of adoptively transferred autoimmune-prone NOD T cells, or non-autoimmune prone naive B6 T cells, respectively, to reject transplanted wild-type pancreatic islets or transplantable tumors in the MHC-deficient mice. In the MHC-deficient environment, CD4 T cells acquired self-hostile properties (islet rejection and tumor invasion) that were independent from their genetic propensity for autoreactivity, while CD8 T cells required appropriate prior exposure to antigen in order to survive and function (reject tumor) in this environment; however, disengagement of Tob1, a negative regulator of proliferation, led to a reverse phenotype with regard to persistence of CD4 and CD8 T cells in the MHC-deficient environment. Our data suggest that self-peptide/MHC interactions have dual roles to facilitate survival and restrain autoreactivity, thus acting as integral components of an intrinsic network of negative regulation that maintains tolerance.
Collapse
Affiliation(s)
| | - Angela R. Lamerato-Kozicki
- University of Colorado Cancer Center, Aurora, CO USA
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
- Present Address: Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI USA
| | - Michelle Borakove
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
| | - Julie Lang
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
| | | | - David Coffey
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
| | - Karen M. Helm
- University of Colorado Cancer Center, Aurora, CO USA
| | - Jerome Schaack
- University of Colorado Cancer Center, Aurora, CO USA
- Department of Microbiology, University of Colorado, Denver, CO USA
| | - Monika Baier
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL USA
- Present Address: Clinical & Regulatory Affairs/Biometrics Department Biostatistician, Novartis Pharma GmbH, Roonstrasse 25, 90429 Nuernberg, Germany
| | - Gary R. Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL USA
| | - Donald Bellgrau
- University of Colorado Cancer Center, Aurora, CO USA
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
- Integrated Department of Immunology, National Jewish Medical and Research Center, 1400 Jackson St. K503, Denver, CO 80206 USA
| | - Jaime F. Modiano
- University of Colorado Cancer Center, Aurora, CO USA
- Integrated Department of Immunology, University of Colorado, Denver, CO USA
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, 455 VMC MMC6194, 1365 Gortner Avenue, St. Paul, MN 55108 USA
| |
Collapse
|
4
|
Jabbari A, Harty JT. Cutting edge: differential self-peptide/MHC requirement for maintaining CD8 T cell function versus homeostatic proliferation. THE JOURNAL OF IMMUNOLOGY 2005; 175:4829-33. [PMID: 16210583 DOI: 10.4049/jimmunol.175.8.4829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Memory T cells do not require self-peptide/MHC (spMHC) complexes to survive long term in vivo. However, memory CD4 T cells lose the ability to reject skin grafts when transiently placed in an environment in which these low-level TCR stimulations are absent. Whether or not spMHC alters the ability of CD8 T cells to respond to stimulation in vivo remains unknown. Here, we show that memory CD8 T cells retain the ability to respond to dendritic cell-mediated stimulation after adoptive transfer into either TAP(-/-) (MHC class I-deficient) or wild-type mice. Surprisingly, naive CD8 T cells, which fail to undergo homeostatic proliferation and erode in number in the absence of MHC class I, also retain the ability to respond to dendritic cell-mediated antigenic stimulation for at least 1 wk after transfer into TAP(-/-) mice. These findings suggest a differential requirement for spMHC signals for maintenance of CD8 T cell function and homeostatic proliferation.
Collapse
Affiliation(s)
- Ali Jabbari
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
5
|
Kao C, Daniels MA, Jameson SC. Loss of CD8 and TCR binding to Class I MHC ligands following T cell activation. Int Immunol 2005; 17:1607-17. [PMID: 16263755 DOI: 10.1093/intimm/dxh340] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The capacity of T cells to bind peptide/MHC ligands changes with T cell development and differentiation. Here we study changes in peptide/MHC multimer binding following T cell activation. Surprisingly, T cell activation caused a marked reduction in specific peptide/MHC Class I multimer binding, which was distinct from transient TCR down-regulation, and was especially dramatic for engagement with low-affinity peptide/MHC ligands. Direct CD8-Class I interactions were also profoundly and rapidly impaired following T cell stimulation, even though surface CD8alpha and CD8beta levels were unchanged after activation, suggesting that decreased CD8 co-receptor binding contributes to this effect. Finally, we show that enzymatic desialylation restores much of the multimer binding on activated T cells, suggesting that altered glycosylation may inhibit TCR/CD8 binding to peptide/MHC ligands. These radical changes in activated T cells' ability to perceive peptide/MHC ligands may contribute to selective outgrowth of clones with high affinity for the stimulatory ligand.
Collapse
Affiliation(s)
- Charlly Kao
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, MMC 334, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
6
|
Vukmanović S, Santori FR. Cooperation or sabotage? Self-peptide-MHC complexes influence T-cell responses to antigens. Trends Immunol 2003; 24:472; author reply 473. [PMID: 12967668 DOI: 10.1016/s1471-4906(03)00209-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Chen J, Ge Q, Eisen HN. Response to Vukmanović and Santori: Evidence for mixed heterodimeric MHC II molecules. Trends Immunol 2003. [DOI: 10.1016/s1471-4906(03)00208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|