1
|
Chu X, Yang Y, Guo H, Ji X. SARS-CoV-2 NSP2 specifically interacts with cellular protein SmgGDS. Biochem Biophys Res Commun 2025; 764:151828. [PMID: 40253909 DOI: 10.1016/j.bbrc.2025.151828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
The novel coronavirus, SARS-CoV-2, is responsible for the ongoing global pandemic of Coronavirus disease 2019 (COVID-19). SARS-CoV-2 belongs to the Coronaviridae family, which also includes the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Recent studies using affinity purification mass spectrometry analysis have revealed that SARS-CoV-2 NSP2 may interact with cellular protein Small G-protein dissociation stimulator (SmgGDS), a guanine nucleotide exchange factor (GEF) that specifically regulates RhoA and RhoC proteins, which are involved in a range of cellular activities, including actin reorganization, cell motility and adhesion. Biochemical experiments have confirmed that NSP2 binds directly to SmgGDS and that this interaction requires the full-length NSP2. Given the low sequence conservation compared to other coronaviruses, this interaction with SmgGDS appears specific to SARS-CoV-2, with similar proteins in other coronaviruses unable to bind SmgGDS. Further studies have revealed that the binding of SARS-CoV-2 NSP2 to SmgGDS has a significant inhibitory effect on the GEF activity of SmgGDS. This inhibition disrupts the nucleotide exchange process on RhoA, impairing its function and potentially contributing to the pathogenic mechanisms of SARS-CoV-2. These findings highlight a novel pathway through which SARS-CoV-2 may influence host cellular processes, providing insights into the unique impact of coronaviruses on cellular regulation.
Collapse
Affiliation(s)
- Xiaoyu Chu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Yixuan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China.
| |
Collapse
|
2
|
Tian X, Ran Z, Yan B, Zhu J, Zhou Q, Kong F, Yan X, Xu J. Lipid droplets play versatile roles in ovarian development of the razor clam Sinonovacula constricta: Insights from proteomic and lipidomic analyses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101519. [PMID: 40288072 DOI: 10.1016/j.cbd.2025.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Lipid droplet (LD) deposition is a common phenomenon during ovarian development across marine mollusks; however, studies on the protein and lipid composition of their ovarian LDs remain limited. Here, we purified LDs from the ovaries of Sinonovacula constricta and isolated proteins and lipids from these purified LDs for proteomic and lipidomic analyses. Our proteomic analysis identified 3243 proteins, with PLIN2 being the most abundant (37.03 ± 13.56 %). We subsequently conducted a functional analysis of the top 500 most abundant LD-associated proteins, categorizing them into 15 groups, including those involved in lipid metabolism, sterol biosynthesis, tricarboxylic acid cycle, carbohydrate metabolism, G protein superfamily, protein chaperones, transport proteins, nucleotide-catabolic process, protein processing and degradation, cytoskeletal proteins, oxidative stress and immunity, and ribosome-associated proteins. In our lipidomic analysis, we identified 1158 molecules across 52 lipid classes, with phosphatidylcholine (PC) exhibiting the greatest diversity at 209 varieties, followed by EtherPC with 177 varieties and triglyceride (TG) with 149 varieties. The fatty acid (FA) analysis of LDs revealed that 16:0 was the most abundant (30.01 ± 0.42 %). Additionally, LDs were found rich in long-chain polyunsaturated FAs (35.63 ± 4.36 %), particularly EPA and DHA. Moreover, we analyzed the FA composition of TGs, PCs, and EtherPCs derived from ovarian LDs. In PCs and TGs, the predominant FAs were 16:0, 16:1, and 18:3, while 16:0, 22:6, and 18:4 constituted the major FA species in EtherPCs. Together, our results suggest that ovarian LDs in S. constricta not only participate in lipid metabolism but also interact with other organelles and metabolic processes, thereby facilitating ovarian development.
Collapse
Affiliation(s)
- Xuxu Tian
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Zhaoshou Ran
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo 315211, China; Ningbo Yongyuan Aquatic Products Co Ltd, Ningbo 315601, China.
| | - Bowen Yan
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiaxin Zhu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Qiang Zhou
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Fei Kong
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo 315211, China; Ningbo Yongyuan Aquatic Products Co Ltd, Ningbo 315601, China; Fujian Dalai Seeding Technology Co Ltd, Fuzhou 350600, China.
| |
Collapse
|
3
|
Fonseca AF, Coelho R, da-Silva ML, Lemos L, Hall MJ, Oliveira D, Falcão AS, Tenreiro S, Seabra MC, Antas P. Modeling Choroideremia Disease with Isogenic Induced Pluripotent Stem Cells. Stem Cells Dev 2024; 33:528-539. [PMID: 39078329 DOI: 10.1089/scd.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy causing progressive vision loss due to mutations in the CHM gene, leading to Rab escort protein 1 loss of function. CHM disease is characterized by a progressive degeneration of the choroid, the retinal pigment epithelium (RPE), and the retina. The RPE is a monolayer of polarized cells that supports photoreceptors, providing nutrients, growth factors, and ions, and removes retinal metabolism waste products, having a central role in CHM pathogenesis. Commonly used models such as ARPE-19 cells do not reproduce accurately the nature of RPE cells. Human induced pluripotent stem cells (hiPSCs) can be differentiated into RPE cells (hiPSC-RPE), which mimic key features of native RPE, being more suited to study retinal diseases. Therefore, we took advantage of hiPSCs to generate new human-based CHM models. Two isogenic hiPSC lines were generated through CRISPR/Cas9: a CHM knock-out line from a healthy donor and a corrected CHM patient line using a knock-in approach. The differentiated hiPSC-RPE lines exhibited critical morphological and physiological characteristics of native RPE, including the presence of the tight junction markers Claudin-19 and Zonula Occludens-1, phagocytosis of photoreceptor outer segments, pigmentation, a postmitotic state, and the characteristic polygonal shape. In addition, all the studied cells were able to form retinal organoids. This work resulted in the establishment of isogenic hiPSC lines, representing a new and important CHM cellular model. To our knowledge, this is the first time that isogenic cell lines have been developed to model CHM disease, providing a valuable tool for studying the mechanisms at the onset of RPE degeneration.
Collapse
Affiliation(s)
- Ana Fragoso Fonseca
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Rita Coelho
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mafalda Lopes- da-Silva
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Luísa Lemos
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Michael J Hall
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Daniela Oliveira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Pedro Antas
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
4
|
Hoffmann ME, Jacomin AC, Popovic D, Kalina D, Covarrubias-Pinto A, Dikic I. TBC1D2B undergoes phase separation and mediates autophagy initiation. J Cell Biochem 2024; 125:e30481. [PMID: 38226533 DOI: 10.1002/jcb.30481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/28/2023] [Accepted: 09/17/2023] [Indexed: 01/17/2024]
Abstract
Small ubiquitin-like modifiers from the ATG8 family regulate autophagy initiation and progression in mammalian cells. Their interaction with LC3-interacting region (LIR) containing proteins promotes cargo sequestration, phagophore assembly, or even fusion between autophagosomes and lysosomes. Previously, we have shown that RabGAP proteins from the TBC family directly bind to LC3/GABARAP proteins. In the present study, we focus on the function of TBC1D2B. We show that TBC1D2B contains a functional canonical LIR motif and acts at an early stage of autophagy by binding to both LC3/GABARAP and ATG12 conjugation complexes. Subsequently, TBC1D2B is degraded by autophagy. TBC1D2B condensates into liquid droplets upon autophagy induction. Our study suggests that phase separation is an underlying mechanism of TBC1D2B-dependent autophagy induction.
Collapse
Affiliation(s)
- Marina E Hoffmann
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Anne-Claire Jacomin
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Doris Popovic
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniel Kalina
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
- Biomedical Research Laboratory, Department of Internal Medicine, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Adriana Covarrubias-Pinto
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Ivan Dikic
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Signaling Group, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
5
|
Neto MV, De Rossi G, Berkowitz BA, Seabra MC, Luthert PJ, Futter CE, Burgoyne T. Daily Light Onset and Plasma Membrane Tethers Regulate Mitochondria Redistribution within the Retinal Pigment Epithelium. Cells 2024; 13:1100. [PMID: 38994953 PMCID: PMC11240580 DOI: 10.3390/cells13131100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The retinal pigment epithelium (RPE) is an essential component of the retina that plays multiple roles required to support visual function. These include light onset- and circadian rhythm-dependent tasks, such as daily phagocytosis of photoreceptor outer segments. Mitochondria provide energy to the highly specialized and energy-dependent RPE. In this study, we examined the positioning of mitochondria and how this is influenced by the onset of light. We identified a population of mitochondria that are tethered to the basal plasma membrane pre- and post-light onset. Following light onset, mitochondria redistributed apically and interacted with melanosomes and phagosomes. In a choroideremia mouse model that has regions of the RPE with disrupted or lost infolding of the plasma membrane, the positionings of only the non-tethered mitochondria were affected. This provides evidence that the tethering of mitochondria to the plasma membrane plays an important role that is maintained under these disease conditions. Our work shows that there are subpopulations of RPE mitochondria based on their positioning after light onset. It is likely they play distinct roles in the RPE that are needed to fulfil the changing cellular demands throughout the day.
Collapse
Affiliation(s)
- Matilde V. Neto
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Giulia De Rossi
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Miguel C. Seabra
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Philip J. Luthert
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Clare E. Futter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
6
|
Song DH, Lee JS, Lee JH, Kim DC, Yang JW, Kim MH, Na JM, Cho HK, Yoo J, An HJ. Exosome-mediated secretion of miR-127-3p regulated by RAB27A accelerates metastasis in renal cell carcinoma. Cancer Cell Int 2024; 24:153. [PMID: 38685086 PMCID: PMC11057152 DOI: 10.1186/s12935-024-03334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The exosome-mediated extracellular secretion of miRNAs occurs in many cancers, and RAB27A is a potent regulator of exosome secretion. For metastatic renal cell carcinoma (RCC), this study examines the mechanisms of cancer metastasis via the RAB27A-regulated secretion of specific miRNAs. METHODS RAB27A knockdown (KD) and overexpressing (OE) RCC cells were used to examine cell migration and adhesion. The particle counts and sizes of exosomes in RAB27A OE cells were analyzed using Exoview, and those of intraluminal vesicles (ILV) and multivesicular bodies (MVB) were measured using an electron microscope. Analysis of RNA sequences, protein-protein interaction networks, and the competing endogenous RNA (ceRNA) network were used to identify representative downregulated miRNAs that are likely to undergo cargo-sorting into exosomes and subsequent secretion. A molecular beacon of miR-137-3p, one of the most representatively downregulated genes with a fold change of 339, was produced, and its secretion was analyzed using Exoview. RAB27A OE and control cells were incubated in an exosome-containing media to determine the uptake of tumor suppressor miRNAs that affect cancer cell metastasis. RESULTS Migration and cell adhesion were higher in RAB27A OE cells than in RAB27A KD cells. Electron microscopy revealed that the numbers of multivesicular bodies and intraluminal vesicles per cell were higher in RAB27A OE cells than in control cells, suggesting their secretion. The finding revealed that miR-127-3p was sorted into exosomes and disposed of extracellularly. Protein-protein interaction analysis revealed MYCN to be the most significant hub for RAB27A-OE RCC cells. ceRNA network analysis revealed that MAPK4 interacted strongly with miR-127-3p. CONCLUSION The disposal of miR-127-3p through exosome secretion in RAB27A overexpressing cells may not inhibit the MAPK pathway to gain metastatic potential by activating MYCN. The exosomes containing miRNAs are valuable therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Dae Hyun Song
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Jong Sil Lee
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Jeong-Hee Lee
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Dong Chul Kim
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Jung Wook Yang
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Min Hye Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Ji Min Na
- Department of Pathology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Hyun-Kyung Cho
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Gyeongsang National University, School of Medicine, Changwon, South Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Hyo Jung An
- Department of Pathology, Gyeongsang National University Changwon Hospital, Changwon, South Korea.
- Institute of Medical Sciences, Gyeongsang National University, Jinju, South Korea.
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, South Korea.
| |
Collapse
|
7
|
Zeng Y, Zhao J, Wu Z, Huang Y, Wang A, Zhu J, Xu M, Zhang W, Zhang X, Li J, Huang JA, Liu Z. Targeting TYK2 alleviates Rab27A-induced malignant progression of non-small cell lung cancer via disrupting IFNα-TYK2-STAT-HSPA5 axis. NPJ Precis Oncol 2024; 8:74. [PMID: 38521810 PMCID: PMC10960821 DOI: 10.1038/s41698-024-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024] Open
Abstract
Rab27A is a small GTPase-mediating exosome secretion, which participates in tumorigenesis of multiple cancer types. Understanding the biological role of Rab27A in non-small cell lung cancer (NSCLC) is of great importance for oncological research and clinical treatment. In this study, we investigate the function and internal mechanism of Rab27A in NSCLC. Results show that Rab27A is overexpressed in NSCLC, and regulates the tumor proliferation, migration, invasion, and cell motility in vitro and in vivo, and is negatively regulated by miR-124. Further research reveals that upregulated Rab27A can induce the production of IFNα in the medium by mediating exosome secretion. Then IFNα activates TYK2/STAT/HSPA5 signaling to promote NSCLC cell proliferation and metastasis. This process can be suppressed by TYK2 inhibitor Cerdulatinib. These results suggest that Rab27A is involved in the pathogenesis of NSCLC by regulating exosome secretion and downstream signaling, and inhibitors targeting this axis may become a promising strategy in future clinical practice.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
- Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China
| | - Jian Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Zhengyan Wu
- Department of Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Suzhou, China
| | - Yongkang Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
- Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China
- Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China
| | - Mengmeng Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Weijie Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Xiaohui Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Jianjun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
- Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China.
- Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China.
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
- Institute of Respiratory Diseases, Soochow University, 215006, Suzhou, China.
- Suzhou Key Laboratory for Respiratory Diseases, 215006, Suzhou, China.
| |
Collapse
|
8
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
9
|
Toualbi L, Toms M, Almeida PV, Harbottle R, Moosajee M. Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia. Int J Mol Sci 2023; 24:15225. [PMID: 37894906 PMCID: PMC10607001 DOI: 10.3390/ijms242015225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Richard Harbottle
- cDNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.V.A.)
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
10
|
Grafanaki K, Grammatikakis I, Ghosh A, Gopalan V, Olgun G, Liu H, Kyriakopoulos GC, Skeparnias I, Georgiou S, Stathopoulos C, Hannenhalli S, Merlino G, Marie KL, Day CP. Noncoding RNA circuitry in melanoma onset, plasticity, and therapeutic response. Pharmacol Ther 2023; 248:108466. [PMID: 37301330 PMCID: PMC10527631 DOI: 10.1016/j.pharmthera.2023.108466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ioannis Grammatikakis
- Cancer Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arin Ghosh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gulden Olgun
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George C Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerrie L Marie
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. Mol Biol Cell 2023; 34:ar38. [PMID: 36857153 PMCID: PMC10162416 DOI: 10.1091/mbc.e23-01-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport. To explore this possibility, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab Ypt51. The Sec2GEF-GFP-CUE construct localized to bright puncta predominantly near sites of polarized growth, and this localization was dependent on the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with various efficiencies. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near-normal efficiency, implying that Golgi-derived secretory vesicles were delivered to polarized sites of cell growth despite the misdirection of Sec4 and its effectors. A low efficiency mechanism for localization of Sec2 to secretory vesicles that is independent of known cues might be responsible. In total, the results suggest that while Rabs may play a critical role in specifying the direction of vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Eric Griffis
- Nikon Imaging Center, University of California, San Diego, La Jolla, CA 92093-0694
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| |
Collapse
|
12
|
Seliverstova EV, Prutskova NP. Renal protein reabsorption impairment related to a myxosporean infection in the grass frog (Rana temporaria L.). Parasitol Res 2023; 122:1303-1316. [PMID: 37012507 DOI: 10.1007/s00436-023-07830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
A morphophysiological study of tubular reabsorption and mechanisms of protein endocytosis in the kidney of frogs (Rana temporaria L.) during parasitic infection was carried out. Pseudoplasmodia and spores of myxosporidia, beforehand assigned to the genus Sphaerospora, were detected in Bowman's capsules and in the lumen of individual renal tubules by light and electron microscopy. Remarkable morphological alteration and any signs of pathology in kidney tissue related to this myxosporean infection have not been noted. At the same time, significant changes in protein reabsorption and distribution of molecular markers of endocytosis in the proximal tubule (PT) cells in infected animals were detected by immunofluorescence confocal microscopy. In lysozyme injection experiments, the endocytosed protein and megalin expression in the infected PTs were not revealed. Tubular expression of cubilin and clathrin decreased, but endosomal recycling marker Rab11 increased or remained unchanged. Thus, myxosporean infection resulted in the alterations in lysozyme uptake and expression of the main molecular determinants of endocytosis. The inhibition of receptor-mediated clathrin-dependent protein endocytosis in amphibian kidneys due to myxosporidiosis was shown for the first time. Established impairment of the endocytic process is a clear marker of tubular cell dysfunction that can be used to assess the functioning of amphibian kidneys during adaptation to adverse environmental factors.
Collapse
Affiliation(s)
- Elena V Seliverstova
- Laboratory of Renal Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Torez Av., 44, Saint Petersburg, 194223, Russian Federation.
| | - Natalya P Prutskova
- Laboratory of Renal Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Torez Av., 44, Saint Petersburg, 194223, Russian Federation
| |
Collapse
|
13
|
Li X, Liu D, Griffis E, Novick P. Exploring the consequences of redirecting an exocytic Rab onto endocytic vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527811. [PMID: 36798320 PMCID: PMC9934678 DOI: 10.1101/2023.02.09.527811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport because anterograde vesicles are marked with a different Rab than retrograde vesicles. To explore this proposal, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab, Ypt51. The Sec2GEF-GFP-CUE construct was found to localize to bright puncta predominantly near sites of polarized growth and this localization was strongly dependent upon the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with varying efficiency. The puncta appeared to consist of clusters of 80 nm vesicles and although the puncta are largely static, FRAP analysis suggests that traffic into and out of these clusters continues. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near normal efficiency, implying that Golgi derived secretory vesicles were delivered to polarized sites of cell growth, where they tethered and fused with the plasma membrane despite the misdirection of Sec4 and its effectors. In total, the results suggest that while Rabs play a critical role in regulating vesicular transport, cells are remarkably tolerant of Rab misdirection.
Collapse
Affiliation(s)
- Xia Li
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| | - Eric Griffis
- Nikon Imaging Center, University of California at San Diego, La Jolla, California, United States
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States
| |
Collapse
|
14
|
Rab7l1 plays a role in regulating surface expression of toll like receptors and downstream signaling in activated macrophages. Biochem Biophys Res Commun 2023; 640:125-133. [PMID: 36502628 DOI: 10.1016/j.bbrc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Rab GTPases are known for controlling intracellular membrane traffic in a GTP-dependent manner. Rab7l1, belonging to family of Rab GTPases, is important for both endosomal sorting and retrograde transport. In our previous study, we identified a novel role of Rab7l1 in phagosome maturation. However, its role in regulating macrophage innate-effector signaling and cytokine response is not clearly understood. In this study, we have demonstrated that upon treatment of Rab7l1-knocked-down (Rab7l1-KD) THP-1 macrophages with lipopolysaccharide (LPS) and Pam3CSK4 has led to higher induction levels of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) as compared to the control cells that received scrambled shRNA. Similar results were observed in Rab7l1-KD RAW 264.7 and Balb/c peritoneal macrophages. The phospho-ERK 1/2 (extracellular signal-regulated kinase 1/2) and phospho-p38 MAPK (mitogen-activated protein kinase) levels, known to be responsible for higher induction of TNF-α and IL-10 respectively, were higher in Rab7l1-KD THP-1 macrophages which also displayed higher nuclear translocation of p50/p65 nuclear factor kappa B (NF-κB) upon stimulation with LPS. Surface expression levels of toll-like receptor 2 (TLR2), TLR4 and CD14 receptors were higher in Rab7l1-KD THP-1 macrophages as compared to the control cells. However, intracellular levels of these receptors were lower in Rab7l1-KD THP-1 macrophages as compared to the control group. Together, our study suggests that Rab7l1 has a role in regulating MAPK signaling and cytokine effector responses in macrophages by regulating the surface expression of membrane receptors.
Collapse
|
15
|
Sharma P, Sharma BS, Raval H, Singh V. Endocytosis of GABA receptor: Signaling in nervous system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:125-139. [PMID: 36813355 DOI: 10.1016/bs.pmbts.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
GABA (ᵞ-aminobutyric acid), is the principal neurotransmitter known for its inhibitory role in chemical synapses. Being localized primarily in the central nervous system (CNS) it maintains a balance between excitatory (regulated by another neurotransmitter, glutamate) and inhibitory impulses. GABA acts by binding to their specific receptors GABAA and GABAB when released into the post-synaptic nerve terminal. Both of these receptors are responsible for fast and slow inhibition of neurotransmission, respectively. GABAA is a ligand-gated ionopore receptor which opens the Cl- ion channel and decreases the resting potential of the membrane resulting into inhibition of the synapse. On the other hand, GABAB is a metabotropic receptor which increases the K+ ion levels preventing Ca+ ion release inhibiting the release of other neurotransmitters into the presynaptic membrane. The internalization and trafficking of these receptors is also conducted through distinct pathways and mechanism, discussed in detail in the chapter. Without the desired levels of GABA in the body, the psychological and neurological states of brain get hard to maintain. Various neurodegenerative diseases/disorders have been associated to low levels of GABA, such as anxiety, mood disorders, fear, schizophrenia, hungtington's chorea, seizures, epilepsy, etc. The allosteric sites present on GABA receptors have been proved to be potent drug targets to pacify the pathological states of these brain related disorders to an extent. Further in depth studies focussing on the subtypes of GABA receptors and their comprehensive mechanism are required to explore new drug targets and therapeutic avenues for effectual management of GABA related neurological diseases.
Collapse
Affiliation(s)
- Preeti Sharma
- Shree Vipratech Diagnostics, Dehgam, Gujarat, India.
| | - B Sharan Sharma
- Rivaara Labs, KD Hospital, Vaishnodevi Circle, Ahmedabad, Gujarat, India
| | - Hardik Raval
- Shree Vipratech Diagnostics, Dehgam, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
16
|
Mächtel R, Boros FA, Dobert JP, Arnold P, Zunke F. From Lysosomal Storage Disorders to Parkinson's Disease - Challenges and Opportunities. J Mol Biol 2022:167932. [PMID: 36572237 DOI: 10.1016/j.jmb.2022.167932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson's disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friederike Zunke
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany.
| |
Collapse
|
17
|
Rep15 interacts with several Rab GTPases and has a distinct fold for a Rab effector. Nat Commun 2022; 13:4262. [PMID: 35871249 PMCID: PMC9308819 DOI: 10.1038/s41467-022-31831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn their GTP-bound (active) form, Rab proteins interact with effector proteins that control downstream signaling. One such Rab15 effector is Rep15, which is known to have a role in receptor recycling from the endocytic recycling compartment but otherwise remains poorly characterized. Here, we report the characterization of the Rep15:Rab15 interaction and identification of Rab3 paralogs and Rab34 as Rep15 interacting partners from a yeast two-hybrid assay. Biochemical validation of the interactions is presented and crystal structures of the Rep15:Rab3B and Rep15:Rab3C complexes provide additional mechanistic insight. We find that Rep15 adopts a globular structure that is distinct from other reported Rab15, Rab3 and Rab34 effectors. Structure-based mutagenesis experiments explain the Rep15:Rab interaction specificity. Rep15 depletion in U138MG glioblastoma cells impairs cell proliferation, cell migration and receptor recycling, underscoring the need for further clarification of the role of Rep15 in cancer.
Collapse
|
18
|
Karthikeyan S, Casey PJ, Wang M. RAB4A GTPase regulates epithelial-to-mesenchymal transition by modulating RAC1 activation. Breast Cancer Res 2022; 24:72. [PMID: 36307864 DOI: 10.1186/s13058-022-01564-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical underpinning process for cancer progression, recurrence and resistance to drug treatment. Identification of new regulators of EMT could lead to the development of effective therapies to improve the outcome of advanced cancers. In the current study we discovered, using a variety of in vitro and in vivo approaches, that RAB4A function is essential for EMT and related manifestation of stemness and invasive properties. Consistently, RAB4A suppression abolished the cancer cells' self-renewal and tumor forming ability. In terms of downstream signaling, we found that RAB4A regulation of EMT is achieved through its control of activation of the RAC1 GTPase. Introducing activated RAC1 efficiently rescued EMT gene expression, invasion and tumor formation suppressed by RAB4A knockdown in both the in vitro and in vivo cancer models. In summary, this study identifies a RAB4A-RAC1 signaling axis as a key regulatory mechanism for the process of EMT and cancer progression and suggests a potential therapeutic approach to controlling these processes.
Collapse
Affiliation(s)
- Subbulakshmi Karthikeyan
- Program in Cancer Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Patrick J Casey
- Program in Cancer Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mei Wang
- Program in Cancer Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
19
|
Beyreli I, Karakahya O, Cicek AE. DeepND: Deep multitask learning of gene risk for comorbid neurodevelopmental disorders. PATTERNS (NEW YORK, N.Y.) 2022; 3:100524. [PMID: 35845835 PMCID: PMC9278518 DOI: 10.1016/j.patter.2022.100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 01/24/2023]
Abstract
Autism spectrum disorder and intellectual disability are comorbid neurodevelopmental disorders with complex genetic architectures. Despite large-scale sequencing studies, only a fraction of the risk genes was identified for both. We present a network-based gene risk prioritization algorithm, DeepND, that performs cross-disorder analysis to improve prediction by exploiting the comorbidity of autism spectrum disorder (ASD) and intellectual disability (ID) via multitask learning. Our model leverages information from human brain gene co-expression networks using graph convolutional networks, learning which spatiotemporal neurodevelopmental windows are important for disorder etiologies and improving the state-of-the-art prediction in single- and cross-disorder settings. DeepND identifies the prefrontal and motor-somatosensory cortex (PFC-MFC) brain region and periods from early- to mid-fetal and from early childhood to young adulthood as the highest neurodevelopmental risk windows for ASD and ID. We investigate ASD- and ID-associated copy-number variation (CNV) regions and report our findings for several susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid disorders.
Collapse
Affiliation(s)
- Ilayda Beyreli
- Department of Computer Engineering, Bilkent University, Ankara 06810, Turkey
| | - Oguzhan Karakahya
- Department of Computer Engineering, Bilkent University, Ankara 06810, Turkey
| | - A. Ercument Cicek
- Department of Computer Engineering, Bilkent University, Ankara 06810, Turkey
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, 15213 PA, USA
| |
Collapse
|
20
|
Khan TG, Ginsburg D, Emmer BT. The small GTPase RAB10 regulates endosomal recycling of the LDL receptor and transferrin receptor in hepatocytes. J Lipid Res 2022; 63:100248. [PMID: 35753407 PMCID: PMC9305350 DOI: 10.1016/j.jlr.2022.100248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) mediates the hepatic uptake of circulating low-density lipoproteins (LDLs), a process that modulates the development of atherosclerotic cardiovascular disease. We recently identified RAB10, encoding a small GTPase, as a positive regulator of LDL uptake in hepatocellular carcinoma cells (HuH7) in a genome-wide CRISPR screen, though the underlying molecular mechanism for this effect was unknown. We now report that RAB10 regulates hepatocyte LDL uptake by promoting the recycling of endocytosed LDLR from RAB11-positive endosomes to the plasma membrane. We also show that RAB10 similarly promotes the recycling of the transferrin receptor, which binds the transferrin protein that mediates the transport of iron in the blood, albeit from a distinct RAB4-positive compartment. Taken together, our findings suggest a model in which RAB10 regulates LDL and transferrin uptake by promoting both slow and rapid recycling routes for their respective receptor proteins.
Collapse
Affiliation(s)
- Taslima Gani Khan
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI; Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - David Ginsburg
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI; Life Sciences Institute, University of Michigan, Ann Arbor, MI; Department of Internal Medicine, University of Michigan, Ann Arbor, MI; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI; Departments of Human Genetics and Pediatrics, University of Michigan, Ann Arbor, MI
| | - Brian T Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
21
|
Hong ZB, Huang JM, Tsai CM, Lin WC. Potential role of Acanthamoeba Rab7. Exp Parasitol 2022; 239:108312. [PMID: 35738459 DOI: 10.1016/j.exppara.2022.108312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Acanthamoeba castellanii is a free-living protozoan that causes several severe human parasitic diseases such as Acanthamoeba keratitis and granulomatous encephalitis. A. castellanii feeds on bacteria, yeasts, and other organic particles as food sources, but the mechanisms of digestion in acanthamoebal cells are unclear. Rab GTPases participate in endosomal delivery in eukaryotes after phagocytosis. This study aimed to determine the potential functions of A. castellanii Rab7 (AcRab7), which is involved in phagocytosis, and the relationship between AcRab7 and further cellular physiological phenomena. In this study, the inhibitor CID1067700 (CID) was used to specifically inhibit the binding of nucleotides to confirm the potential functions of AcRab7. Cellular proliferation and ATP assays were also used to detect underlying cellular physiological functions after blocking the phagocytosis pathway. We found that AcRab7 expression increased as the co-culture time with Escherichia coli increased. Immunofluorescence staining showed that AcRab7 colocalized with lysosomes in its GTP-activating form. In addition, AcRab7 inhibition resulted in a reduction in cell proliferation and ATP levels. Our results suggest that AcRab7 participates in endosomal delivery and dominates energy production and cell growth.
Collapse
Affiliation(s)
- Zih-Bin Hong
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Jian-Ming Huang
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Ming Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
22
|
Kumari S, Dash PK, Kumari T, Guo ML, Ghosh JK, Buch SJ, Tripathi RK. HIV-1 Nef hijacks both exocytic and endocytic pathways of host intracellular trafficking through differential regulation of Rab GTPases. Biol Cell 2022; 114:276-292. [PMID: 35713972 DOI: 10.1111/boc.202100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Abstract
HIV-1 Nef regulates several cellular functions in an infected cell which results in viral persistence and AIDS pathogenesis. The currently understood molecular mechanism(s) underlying Nef-dependent cellular function(s) are unable to explain how events are coordinately regulated in the host cell. Intracellular membranous trafficking maintains cellular homeostasis and is regulated by Rab GTPases - a member of the Ras superfamily. In the current study, we tried to decipher the role of Nef on the Rab GTPases-dependent complex and vesicular trafficking. Expression profiling of Rabs in Nef-expressing cells showed that Nef differentially regulates the expression of individual Rabs in a cell-specific manner. Further analysis of Rabs in HIV-1NL4-3 or ΔNef infected cells demonstrated that the Nef protein is responsible for variation in Rabs expression. Using a panel of competitive peptide inhibitors against Nef, we identified the critical domain of HIV-1 Nef involved in modulation of Rabs expression. The molecular function of Nef-mediated upregulation of Rab5 and Rab7 and downregulation of Rab11 increased the transport of SERINC5 from the cell surface to the lysosomal compartment. Moreover, the Nef-dependent increase in Rab27 expression assists exosome release. Reversal of Rabs expression using competitive inhibitors against Nef and manipulation of Rabs expression reduced viral release and infectivity of progeny virions. Overall, this study demonstrates that Nef differentially regulates the expression of Rab proteins in HIV-1 infected cells to hijack the host intracellular trafficking, which augments viral replication and HIV-1 pathogenesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sushila Kumari
- Virus Research and Therapeutics Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, U.P., 226031, India
| | - Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tripti Kumari
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, U.P., 226031, India
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, U.P., 226031, India
| | - Shilpa J Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raj Kamal Tripathi
- Virus Research and Therapeutics Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow, U.P., 226031, India
| |
Collapse
|
23
|
AAV2-hCHM Subretinal Delivery to the Macula in Choroideremia: Two Year Interim Results of an Ongoing Phase I/II Gene Therapy Trial. Ophthalmology 2022; 129:1177-1191. [PMID: 35714735 DOI: 10.1016/j.ophtha.2022.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To assess the safety of the subretinal delivery of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human CHM-encoding cDNA in choroideremia (CHM). DESIGN Prospective, open-label, non-randomized, dose-escalation, phase 1/2 clinical trial. SUBJECTS, PARTICIPANTS, AND/OR CONTROLS Fifteen CHM patients (ages 20-57 years at dosing). METHODS, INTERVENTION, OR TESTING Patients received uniocular subfoveal injections of low dose (up to 5x1010 vector genome (vg) per eye, n=5) or high dose (up to 1x1011 vg per eye, n=10) AAV2-hCHM. Patients were evaluated pre- and post-operatively for two years with ophthalmic examinations, multimodal retinal imaging and psychophysical testing. MAIN OUTCOME Measures: visual acuity (VA), perimetry (10-2 protocol), spectral-domain optical coherence tomography (SD-OCT) and short-wavelength fundus autofluorescence (SW-FAF). RESULTS We detected no vector-related or systemic toxicities. VA returned to within 15 letters of baseline in all but two patients (one developed acute foveal thinning, another patient, a macular hole); the rest showed no gross changes in foveal structure at two years. There were no significant differences between intervention and control eyes in mean light-adapted sensitivity by perimetry, or in the lateral extent of retinal pigment epithelium (RPE) relative preservation by SD-OCT and SW-FAF. Microperimetry showed non-significant (<3SD of the intervisit variability) gains in sensitivity in some locations and participants in the intervention eye. There were no obvious dose-dependent relationships. CONCLUSIONS VA was within 15 letters of baseline after the subfoveal AAV2-hCHM injections in 13/15 (87%) of the patients. Acute foveal thinning with unchanged perifoveal function in one patient and macular hole in a second suggests foveal vulnerability to the subretinal injections. Longer observation intervals will help establish the significance of the minor differences in sensitivities and rate of disease progression observed between intervention and control eyes.
Collapse
|
24
|
Wang T, Jin MJ, Li LK. The GTP-Bound form of Rab3D Promotes Lipid Droplet Growth in Adipocyte. Mol Biol 2022. [DOI: 10.1134/s0026893322040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Behl T, Kaur D, Sehgal A, Singh S, Makeen HA, Albratty M, Abdellatif AAH, Dachani SR, Bungau S. Exploring the potential role of rab5 protein in endo-lysosomal impairment in Alzheimer's disease. Biomed Pharmacother 2022; 148:112773. [PMID: 35245734 DOI: 10.1016/j.biopha.2022.112773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022] Open
Abstract
Growing evidence suggests that neuronal dysfunction in the endo-lysosomal and autophagic processes contributes to the onset and progression of neurodegenerative diseases such as Alzheimer's disease (AD). Since they are the primary cellular systems involved in the production and clearance of aggregated amyloid plaques, endo-lysosomal or autophagic equilibrium must be maintained throughout life. As a result, variations in the autophagic and endo-lysosomal torrent, as a measure of degenerative function in these sections or pathways, may have a direct impact on disease-related processes, such as Aß clearance from the brain and interneuronal deposition of Aß and tau aggregates, thus disrupting synaptic plasticity. The discovery of several chromosomal factors for Alzheimer's disease that are clinically linked to regulation of the endocytic pathway, including protein aggregation and removal, supports the theory that the endo-lysosomal/autophagic torrent is more susceptible to impairment, especially as people age, thus catalysing the onset of disease. Although the role of endo-lysosomal/autophagic dysfunction in neurodegeneration has progressed in recent years, the field remains underdeveloped. Because of its possible therapeutic implications in Alzheimer's disease, further study is needed to explain the possibilities for effective autophagy regulation.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Dapinder Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy, Department, College of Pharmacy, Jazan University, P.O. Box-114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sudharshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| |
Collapse
|
26
|
Wang L, Zhu L, Zheng Z, Meng L, Liu H, Wang K, Chen J, Li P, Yang H. Mevalonate pathway orchestrates insulin signaling via RAB14 geranylgeranylation-mediated phosphorylation of AKT to regulate hepatic glucose metabolism. Metabolism 2022; 128:155120. [PMID: 34995578 DOI: 10.1016/j.metabol.2021.155120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Statin use accompanies with increased risk of new onset of type 2 diabetes, however, the underlying mechanisms remain not be fully understood and effective prevention strategies are still lacking. Herein, we find that both pharmacological and genetic inhibition of GGTase II mimic the disruption of simvastatin on hepatic insulin signaling and glucose metabolism in vitro. AAV8-mediated knockdown of liver RABGGTA, the specific subunit of GGTase II, triggers systemic glucose metabolism disorders in vivo. By adopting a small-scale siRNA screening, we identify RAB14 as a regulator of hepatic insulin signaling and glucose metabolism. Geranylgeranylation deficiency of RAB14 inhibits the phosphorylation of AKT (Ser473) and disrupts hepatic insulin signaling and glucose metabolism possibly via impeding mTORC2 complex assembly. Finally, geranylgeranyl pyrophosphate (GGPP) supplementation is sufficient to prevent simvastatin-caused disruption of hepatic insulin signaling and glucose metabolism in vitro. Geranylgeraniol (GGOH), a precursor of GGPP, is able to ameliorate simvastatin-induced systemic glucose metabolism disorders in vivo. In conclusion, our data indicate that statins-targeted mevalonate pathway regulates hepatic insulin signaling and glucose metabolism via geranylgeranylation of RAB14. GGPP/GGOH supplementation might be an effective strategy for the prevention of the diabetic effects of statins.
Collapse
Affiliation(s)
- Lai Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lijun Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zuguo Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingchang Meng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanling Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Keke Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
27
|
Shulgin AA, Lebedev TD, Prassolov VS, Spirin PV. Plasmolipin and Its Role in Cell Processes. Mol Biol 2021; 55:773-785. [PMID: 34955555 PMCID: PMC8682038 DOI: 10.1134/s0026893321050113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/04/2022]
Abstract
The mechanisms involved in the origin and development of malignant and neurodegenerative diseases are an important area of modern biomedicine. A crucial task is to identify new molecular markers that are associated with rearrangements of intracellular signaling and can be used for prognosis and the development of effective treatment approaches. The proteolipid plasmolipin (PLLP) is a possible marker. PLLP is a main component of the myelin sheath and plays an important role in the development and normal function of the nervous system. PLLP is involved in intracellular transport, lipid raft formation, and Notch signaling. PLLP is presumably involved in various disorders, such as cancer, schizophrenia, Alzheimer's disease, and type 2 diabetes mellitus. PLLP and its homologs were identified as possible virus entry receptors. The review summarizes the data on the PLLP structure, normal functions, and role in diseases.
Collapse
Affiliation(s)
- A. A. Shulgin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow oblast Russia
| | - T. D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
28
|
C-Terminal Domain of Aquaporin-5 Is Required to Pass Its Protein Quality Control and Ensure Its Trafficking to Plasma Membrane. Int J Mol Sci 2021; 22:ijms222413461. [PMID: 34948259 PMCID: PMC8707437 DOI: 10.3390/ijms222413461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/25/2023] Open
Abstract
Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, lacrimal, and submucosal glands. It is important for the secretory function of exocrine glands because mice with the knockout of AQP5 exhibit a significant reduction in secretion from these glands. Previous reports indicated that the AQP5 C-terminal domain is crucial for the localization of AQP5 at the plasma membrane, but it remains unclear which motif or amino acid residues in the C-terminal domain are essential for this. In this study, we examined the effects of various AQP5 C-terminal deletions or mutations on the expression of AQP5 on the cell surface. AQP5 C-terminal domain mutants did not localize on the plasma membrane, and Leu262 was shown to be crucial for AQP5′s plasma membrane localization. The mutants localized in the autophagosome or lysosome and showed decreased protein stability via lysosomal degradation. Taking these findings together, our study suggests that the C-terminal domain is required for AQP5 to pass protein quality control and be trafficked to the plasma membrane.
Collapse
|
29
|
Bizkarguenaga M, Gomez-Santos L, Madrid JF, Sáez FJ, Alonso E. Zona Pellucida sperm-binding protein 3 receptor distribution during Gopc -/- globozoospermic spermatogenesis. Microsc Res Tech 2021; 85:1454-1464. [PMID: 34870349 DOI: 10.1002/jemt.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 11/05/2022]
Abstract
Globozoospermia is a type of teratozoospermia characterized by round morphology of the sperm head. Gopc-/- infertile globozoospermic murine model has failures during spermiogenesis, such as the incorrect biogenesis of the acrosome, disorganized acroplaxome and manchette, round nuclei and spiral flagella. In this study, Western blot, RT-PCR, immunohistochemistry and immunogold were done for the localization of the acrosome protein Zona Pellucida sperm-binding protein 3 receptor (ZP3R), also called sp56, in wild type and Gopc-/- mice testis. The ZP3R protein was located in the acrosome and pseudo-acrosome vesicles of wild type and Gopc-/- mice, respectively. Also, it is distributed through the cytoplasm of the haploid spermatids only. The incorrect spermiogenesis of Gopc-/- mice causes a deregulation in the expression of ZP3R in the globozoospermic spermatids. Our results suggest that although the lack of GOPC causes a failure during the transport of the pre-acrosomal vesicles, the acrosome protein ZP3R is localized in the acrosome and is distributed through the cytoplasm only during spermiogenesis. Furthermore, the failure in spermiogenesis does not impair the synthesis of ZP3R and its localization in the pre-acrosomal vesicles.
Collapse
Affiliation(s)
- Maider Bizkarguenaga
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Gomez-Santos
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Murcia, Spain
| | - Francisco José Sáez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Edurne Alonso
- Department of Cell Biology and Histology, Faculty of Pharmacy University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
30
|
Kalatzis V, Roux AF, Meunier I. Molecular Therapy for Choroideremia: Pre-clinical and Clinical Progress to Date. Mol Diagn Ther 2021; 25:661-675. [PMID: 34661884 DOI: 10.1007/s40291-021-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.
Collapse
Affiliation(s)
- Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
31
|
Cao GJ, Wang D, Zeng ZP, Wang GX, Hu CJ, Xing ZF. Direct interaction between Rab5a and Rab4a enhanced epidermal growth factor-stimulated proliferation of gastric cancer cells. World J Gastrointest Oncol 2021; 13:1492-1505. [PMID: 34721780 PMCID: PMC8529933 DOI: 10.4251/wjgo.v13.i10.1492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Although targeted therapies such as antibodies against human epidermal growth factor receptor 2 or vascular endothelial growth factor receptor 2 have been widely used in the treatment of metastatic cancer, the overall outcomes are poor. Therefore, elucidation of the mechanism underlying cancer progression is important to improve prognosis. Overexpression of the Rab5a gene has been confirmed to correlate with tumorigenesis of many cancers, but the mechanism underling, especially of GC, is still unclear. AIM To investigate the effects of Rab5a overexpression on the tumorigenesis of GC. METHODS First, the expression levels of Rab5a and Rab4a in primary tumorous tissues of GC patients diagnosed between 2015 and 2018 were analyzed. Then we constructed HGC-27 cell lines overexpressing green fluorescent protein-Rab5a or red fluorescent protein-Rab4a and investigated the interaction between Rab5a or Rab4a using Western blotting, co-immunoprecipitation, confocal microscopy, and colocalization analysis. Finally, epidermal growth factor-stimulated proliferation of these cell lines was analyzed using cell counting kit-8 cell viability assay. RESULTS Compared with normal gastric tissues, the expression levels of Rab5a and Rab4a increased progressively both in paracancerous tissues and in advanced cancerous tissues. Epidermal growth factor could promote the proliferation of HGC-27 cells, especially Rab5a-overexpressing HGC-27 cells. Notably, Rab5a and Rab4a co-overexpression promoted the proliferation of HGC-27 cells to the greatest extent. Further analysis identified a direct interaction between Rab5a and Rab4a in HGC-27 cells. CONCLUSION Co-overexpression of Rab5a and Rab4a in GC may promote the endosomal recycling of epidermal growth factor receptor, which in turn contributes to poor prognosis and tumor progression in GC patients. Inhibition of Rab5a or Rab4a expression might be a promising therapy for refractory GC.
Collapse
Affiliation(s)
- Guo-Jun Cao
- Department of Laboratory Medicine, Huashan Hospital North, Shanghai Medical College, Fudan University, Shanghai 201907, China
| | - Di Wang
- Department of Laboratory Medicine, Huashan Hospital North, Shanghai Medical College, Fudan University, Shanghai 201907, China
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhao-Pei Zeng
- Department of Laboratory Medicine, Diniu (Shanghai) Health Technology Co., Shanghai 201703, China
| | - Guo-Xiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chun-Jiu Hu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo 315000, Zhejiang Province, China
| | - Zhi-Fang Xing
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
32
|
High fat / high cholesterol diet does not provoke atherosclerosis in the ω3-and ω6-polyunsaturated fatty acid synthesis-inactivated Δ6-fatty acid desaturase-deficient mouse. Mol Metab 2021; 54:101335. [PMID: 34530175 PMCID: PMC8479258 DOI: 10.1016/j.molmet.2021.101335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Objective An increased ω6/ω3-polyunsaturated fatty acid ratio in the current Western diet is regarded as a critical epigenetic nutritional factor in the pathogenesis of several human lifestyle diseases, metabolic syndrome, cardiovascular disease, the central nervous system and the female and male reproductive systems. The impact of nutrient ω3-and ω6-PUFAs in the pathogenesis of dyslipoproteinemia and atherosclerosis has been a topic of intense efforts for several decades. Cellular homeostasis of the ω3-and ω6- PUFA pool is maintained by the synthesis of ω3-and ω6-PUFAs from essential fatty acids (EFA) (linoleic and α-linolenic acid) and their dietary supply. In this study, we used the auxotrophic Δ6-fatty acid desaturase- (FADS2) deficient mouse (fads2−/−), an unbiased model congenial for stringent feeding experiments, to investigate the molecular basis of the proposed protective role of dietary ω3-and ω6-PUFAs (Western diet) in the pathogenesis of multifactorial dyslipoproteinemia and atherosclerosis. We focused on the metabolic axis—liver endoplasmic reticulum (ER), serum lipoprotein system (Lp) and aorta vessel wall. Furthermore, we addressed the impact of the inactivated fads2-locus with inactivated PUFA synthesis on the development and progression of extended atherosclerosis in two different mouse mutants with disrupted cholesterol homeostasis, using the apoe−/− and ldlr−/− mutants and the fads2−/− x apoe−/− and fads2−/− x ldlr−/− double mutants. Methods Cohorts of +/+ and fads2−/− mice underwent two long-term dietary regimens: a) a PUFA-free standard chow diet containing only EFAs, essential for viability, and b) a high fat/high cholesterol (HFHC) diet, a mimicry of the human atherogenic “Western” diet. c) To study the molecular impact of PUFA synthesis deficiency on the development and progression of atherosclerosis in the hypercholesterolemic apoe−/− and ldlr−/− mouse models fed PUFA-free regular and sustained HFHC diets, we generated the fads2−/− x apoe−/− and the fads2−/− x ldlr−/− double knockout mutants. We assessed essential molecular, biochemical and cell biological links between the diet-induced modified lipidomes of the membrane systems of the endoplasmic reticulum/Golgi complex, the site of lipid synthesis, the PL monolayer and neutral lipid core of LD and serum-Lp profiles and cellular reactions in the aortic wall. Results ω3-and ω6-PUFA synthesis deficiency in the fads2−/− mouse causes a) hypocholesterolemia and hypotriglyceridemia, b) dyslipoproteinemia with a shift of high-density lipoprotein (HDL) to very low-density lipoprotein (VLDL)-enriched Lp-pattern and c) altered liver lipid droplet structures. d) Long-term HFHC diet does not trigger atherosclerotic plaque formation in the aortic arc, the thoracic and abdominal aorta of PUFA-deficient fads2−/− mice. Inactivation of the fads2−/− locus, abolishing systemic PUFA synthesis in the fads2−/− x apoe−/− and fads2−/− x ldlr−/− double knockout mouse lines. Conclusions Deficiency of ω3-and ω6-PUFA in the fads2−/− mutant perturbs liver lipid metabolism, causes hypocholesterolemia and hypotriglyceridemia and renders the fads2−/− mutant resistant to sustained atherogenic HFHC diet. Neither PUFA-free regular nor long-term HFHC-diet impacts the apoe- and LDL-receptor deficiency–provoked hypercholesterolemia and atherosclerotic plaque formation, size and distribution in the aorta. Our study strongly suggests that the absence of PUFAs as highly vulnerable chemical targets of autoxidation attenuates inflammatory responses and the formation of atherosclerotic lesions. The cumulative data and insight into the molecular basis of the pleiotropic functions of PUFAs challenge a differentiated view of PUFAs as culprits or benefactors during a lifespan, pivotal for legitimate dietary recommendations. ω3-and ω6-PUFA synthesis deficiency in the auxotrophic fads2−/− mouse. Perturbs liver membrane lipidomes and lipid metabolism Remodels the lipid droplet- and serum lipoprotein-systems Prevents PUFA-derived peroxidation products, protein modification, and inflammation Protects from high fat/high cholesterol (“Western diet”) that promotes atherosclerosis
Collapse
|
33
|
Newer Methods Drive Recent Insights into Rab GTPase Biology: An Overview. Methods Mol Biol 2021. [PMID: 34453706 DOI: 10.1007/978-1-0716-1346-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The conserved Ypt/Rab GTPases regulate all major intracellular protein traffic pathways, including secretion, endocytosis and autophagy. These GTPases undergo distinct changes in conformation between their GTP- and GDP-bound forms and cycle between the cytoplasm and membranes with the aid of their upstream regulators. When activated on the membrane in the GTP-bound form, they recruit their downstream effectors, which include components of vesicular transport. Progress in the past 5 years regarding mechanisms of Rab action, functions, and the effects of disruption of these functions on the well-being of cells and organisms has been propelled by advances in methodologies in molecular and cellular biology. Here, we highlight methods used recently to analyze regulation, localization, interactions, and function of Rab GTPases and their roles in human disease. We discuss contributions of these methods to new insights into Rabs, as well as their future use in addressing open questions in the field of Rab biology.
Collapse
|
34
|
Ataluren-Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals (Basel) 2021; 14:ph14080785. [PMID: 34451881 PMCID: PMC8398184 DOI: 10.3390/ph14080785] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Around 12% of hereditary disease-causing mutations are in-frame nonsense mutations. The expression of genes containing nonsense mutations potentially leads to the production of truncated proteins with residual or virtually no function. However, the translation of transcripts containing premature stop codons resulting in full-length protein expression can be achieved using readthrough agents. Among them, only ataluren was approved in several countries to treat nonsense mutation Duchenne muscular dystrophy (DMD) patients. This review summarizes ataluren’s journey from its identification, via first in vitro activity experiments, to clinical trials in DMD, cystic fibrosis, and aniridia. Additionally, data on its pharmacokinetics and mechanism of action are presented. The range of diseases with underlying nonsense mutations is described for which ataluren therapy seems to be promising. What is more, experiments in which ataluren did not show its readthrough activity are also included, and reasons for their failures are discussed.
Collapse
|
35
|
Brandt AC, Koehn OJ, Williams CL. SmgGDS: An Emerging Master Regulator of Prenylation and Trafficking by Small GTPases in the Ras and Rho Families. Front Mol Biosci 2021; 8:685135. [PMID: 34222337 PMCID: PMC8242357 DOI: 10.3389/fmolb.2021.685135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Newly synthesized small GTPases in the Ras and Rho families are prenylated by cytosolic prenyltransferases and then escorted by chaperones to membranes, the nucleus, and other sites where the GTPases participate in a variety of signaling cascades. Understanding how prenylation and trafficking are regulated will help define new therapeutic strategies for cancer and other disorders involving abnormal signaling by these small GTPases. A growing body of evidence indicates that splice variants of SmgGDS (gene name RAP1GDS1) are major regulators of the prenylation, post-prenylation processing, and trafficking of Ras and Rho family members. SmgGDS-607 binds pre-prenylated small GTPases, while SmgGDS-558 binds prenylated small GTPases. This review discusses the history of SmgGDS research and explains our current understanding of how SmgGDS splice variants regulate the prenylation and trafficking of small GTPases. We discuss recent evidence that mutant forms of RabL3 and Rab22a control the release of small GTPases from SmgGDS, and review the inhibitory actions of DiRas1, which competitively blocks the binding of other small GTPases to SmgGDS. We conclude with a discussion of current strategies for therapeutic targeting of SmgGDS in cancer involving splice-switching oligonucleotides and peptide inhibitors.
Collapse
Affiliation(s)
- Anthony C Brandt
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Olivia J Koehn
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carol L Williams
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
36
|
Zhang L, Zhang X, Hsieh LS, Lin TV, Bordey A. Rab27a-Dependent Paracrine Communication Controls Dendritic Spine Formation and Sensory Responses in the Barrel Cortex. Cells 2021; 10:cells10030622. [PMID: 33799820 PMCID: PMC8000154 DOI: 10.3390/cells10030622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022] Open
Abstract
Rab27a is an evolutionarily conserved small GTPase that regulates vesicle trafficking, and copy number variants of RAB27a are associated with increased risk of autism. However, the function of Rab27a on brain development is unknown. Here, we identified a form of paracrine communication that regulates spine development between distinct populations of developing cortical neurons. In the developing somatosensory cortex of mice, we show that decreasing Rab27a levels in late-born pyramidal neurons destined for layer (L) 2/3 had no cell-autonomous effect on their synaptic integration but increased excitatory synaptic transmission onto L4 neurons that receive somatosensory information. This effect resulted in an increased number of L4 neurons activated by whisker stimulation in juvenile mice. In addition, we found that Rab27a, the level of which decreases as neurons mature, regulates the release of small extracellular vesicles (sEVs) in developing neurons in vitro and decreasing Rab27a levels led to the accumulation of CD63-positive vesicular compartments in L2/3 neurons in vivo. Together, our study reveals that Rab27a-mediated paracrine communication regulates the development of synaptic connectivity, ultimately tuning responses to sensory stimulation, possibly via controlling the release of sEVs.
Collapse
Affiliation(s)
- Longbo Zhang
- Departments of Neurosurgery, and Cellular & Molecular Physiology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520-8082, USA; (L.Z.); (L.S.H.); (T.V.L.)
| | - Xiaobing Zhang
- Department of Psychology, Florida State University, Tallahassee, FL 32306, USA;
| | - Lawrence S. Hsieh
- Departments of Neurosurgery, and Cellular & Molecular Physiology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520-8082, USA; (L.Z.); (L.S.H.); (T.V.L.)
| | - Tiffany V. Lin
- Departments of Neurosurgery, and Cellular & Molecular Physiology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520-8082, USA; (L.Z.); (L.S.H.); (T.V.L.)
| | - Angélique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520-8082, USA; (L.Z.); (L.S.H.); (T.V.L.)
- Correspondence: ; Tel.: +1-203-737-2515; Fax: +1-203-737-2159
| |
Collapse
|
37
|
Longitudinal Study to Assess the Quantitative Use of Fundus Autofluorescence for Monitoring Disease Progression in Choroideremia. J Clin Med 2021; 10:jcm10020232. [PMID: 33440637 PMCID: PMC7826764 DOI: 10.3390/jcm10020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 01/03/2023] Open
Abstract
Background: Characterisation of preserved autofluorescence (PAF) area in choroideremia (CHM) and its validity for monitoring disease progression in clinical trials is of importance. Methods: Eighty patients with molecularly confirmed CHM were recruited. PAF area was measured manually by 2 graders and half-life was calculated based on exponential decay model. Results: Mean age at baseline and follow-up examination was 38.1 (range, 10–69) and 40.7 (range, 11–70) years. Mean follow-up interval was 29 months (range, 6–104). The median LogMAR visual acuity was 0.10 (OD) and 0.18 (OS). Interobserver repeatability for PAF area was −0.99 to 1.03 mm2 (−6.46 to 6.49% of area). There was a statistically significant relationship between age and rate of PAF area loss (r2 = 0.28, p = 0.012). The half-life for PAF area was 13.7 years (range, 1.7–216.0 years). The correlation between half-life and age was stronger than between half-life and log transformed baseline PAF area, although neither was statistically significant. Conclusions: The intra- and inter-observer PAF area measurement variability provides a baseline change, which must be overcome in a clinical trial if this metric were to be used. Treatments must slow progression to alter the exponential decay in a timely manner accounting for naturally slow progression patterns.
Collapse
|
38
|
Ohishi Y, Ammann S, Ziaee V, Strege K, Groß M, Amos CV, Shahrooei M, Ashournia P, Razaghian A, Griffiths GM, Ehl S, Fukuda M, Parvaneh N. Griscelli Syndrome Type 2 Sine Albinism: Unraveling Differential RAB27A Effector Engagement. Front Immunol 2020; 11:612977. [PMID: 33362801 PMCID: PMC7758216 DOI: 10.3389/fimmu.2020.612977] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Griscelli syndrome type 2 (GS-2) is an inborn error of immunity characterized by partial albinism and episodes of hemophagocytic lymphohistiocytosis (HLH). It is caused by RAB27A mutations that encode RAB27A, a member of the Rab GTPase family. RAB27A is expressed in many tissues and regulates vesicular transport and organelle dynamics. Occasionally, GS-2 patients with RAB27A mutation display normal pigmentation. The study of such variants provides the opportunity to map distinct binding sites for tissue-specific effectors on RAB27A. Here we present a new case of GS-2 without albinism (GS-2 sine albinism) caused by a novel missense mutation (Val143Ala) in the RAB27A and characterize its functional cellular consequences. Using pertinent animal cell lines, the Val143Ala mutation impairs both the RAB27A–SLP2-A interaction and RAB27A–MUNC13-4 interaction, but it does not affect the RAB27A–melanophilin (MLPH)/SLAC2-A interaction that is crucial for skin and hair pigmentation. We conclude that disruption of the RAB27A–MUNC13-4 interaction in cytotoxic lymphocytes leads to the HLH predisposition of the GS-2 patient with the Val143Ala mutation. Finally, we include a review of GS-2 sine albinism cases reported in the literature, summarizing their genetic and clinical characteristics.
Collapse
Affiliation(s)
- Yuta Ohishi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Vahid Ziaee
- Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Katharina Strege
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Carla Vazquez Amos
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Shahrooei
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Parisa Ashournia
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Anahita Razaghian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
39
|
Abstract
Mutation in CFAP43 leads to severe asthenozoospermia and multiple morphological abnormalities of the sperm flagellum (MMAF) in both human and mouse. Previous studies have shown that disruption of intra-manchette transport (IMT) caused failure of flagellum assembly and sperm head shaping. In a previous study, therefore, we postulated that disruption of IMT may contribute to the failure of sperm flagellum formation and result in MMAF, however the mechanisms underlying these defects are still poorly understood. Cfap43-deficient mice were studied here to reveal the cellular mechanisms of abnormal sperm head morphology and MMAF. Depletion of Cfap43 led to abnormal spermiogenesis and caused MMAF, sperm head abnormality and oligozoospermia. Furthermore, both abnormal manchette and disorganized ectoplasmic specialization (ES) could be observed at the elongated spermatids in Cfap43-deficient mice. Therefore, our findings demonstrated that, in mice, CFAP43-mediated IMT is essential for sperm head shaping and sperm flagellum formation.
Collapse
|
40
|
Hyperactive and impulsive behaviors of LMTK1 knockout mice. Sci Rep 2020; 10:15461. [PMID: 32963255 PMCID: PMC7508861 DOI: 10.1038/s41598-020-72304-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/25/2020] [Indexed: 12/03/2022] Open
Abstract
Lemur tail kinase 1 (LMTK1), previously called Apoptosis-Associated Tyrosine Kinase (AATYK), remains an uncharacterized Ser/Thr protein kinase that is predominantly expressed in the brain. It is recently reported that LMTK1A, an isoform of LMTK1, binds to recycling endosomes through its palmitoylation and regulates endosomal trafficking by suppressing the activity of Rab11 small GTPase. In neurons, knockdown or knockout of LMTK1 results in longer axons, greater branching of dendrites and increased number of spines, suggesting that LMTK1 plays a role in neuronal circuit formation. However, its in vivo function remained to be investigated. Here, we examined the brain structures and behaviors of LMTK1 knockout (KO) mice. LMTK1 was expressed in most neurons throughout the brain. The overall brain structure appeared to be normal in LMTK1 KO mice, but the numbers of synapses were increased. LMTK1 KO mice had a slight impairment in memory formation and exhibited distinct psychiatric behaviors such as hyperactivity, impulsiveness and high motor coordination without social interaction deficits. Some of these abnormal behaviors represent core features of attention deficit hyperactive disorder (ADHD), suggesting the possible involvement of LMTK1 in the pathogenesis of ADHD.
Collapse
|
41
|
Costa G, Bradbury JJ, Tarannum N, Herbert SP. RAB13 mRNA compartmentalisation spatially orients tissue morphogenesis. EMBO J 2020; 39:e106003. [PMID: 32946121 PMCID: PMC7604621 DOI: 10.15252/embj.2020106003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Polarised targeting of diverse mRNAs to cellular protrusions is a hallmark of cell migration. Although a widespread phenomenon, definitive functions for endogenous targeted mRNAs and their relevance to modulation of in vivo tissue dynamics remain elusive. Here, using single-molecule analysis, gene editing and zebrafish live-cell imaging, we report that mRNA polarisation acts as a molecular compass that orients motile cell polarity and spatially directs tissue movement. Clustering of protrusion-derived RNAseq datasets defined a core 192-nt localisation element underpinning precise mRNA targeting to sites of filopodia formation. Such targeting of the small GTPase RAB13 generated tight spatial coupling of mRNA localisation, translation and protein activity, achieving precise subcellular compartmentalisation of RAB13 protein function to create a polarised domain of filopodia extension. Consequently, genomic excision of this localisation element and perturbation of RAB13 mRNA targeting-but not translation-depolarised filopodia dynamics in motile endothelial cells and induced mispatterning of blood vessels in zebrafish. Hence, mRNA polarisation, not expression, is the primary determinant of the site of RAB13 action, preventing ectopic functionality at inappropriate subcellular loci and orienting tissue morphogenesis.
Collapse
Affiliation(s)
- Guilherme Costa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| | - Joshua J Bradbury
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nawseen Tarannum
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shane P Herbert
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Xu Y, Hu Y, Zhou Y, Jiang C, Ye T. Rab9 defense against white spot syndrome virus by participation in autophagy in Marsupenaeus japonicas. FISH & SHELLFISH IMMUNOLOGY 2020; 104:245-251. [PMID: 32526284 DOI: 10.1016/j.fsi.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
White spot syndrome virus (WSSV) is the main pathogen of shrimp and has led to considerable economic losses to the shrimp industry around the world. However, so far there are still no effective strategies to address this problem. In this paper, the tissue distribution of Rab9 as well as its defense mechanism against WSSV in Japanese shrimp (Marsupenaeus japonicas) was investigated. The results revealed that Rab9 had a higher expression in hemocyte and gill while expression was lower in heart, muscle, intestine, liver, indicating Rab9 was involved in the innate immune process. The results showed that the Rab9 expression increased when shrimp was challenged with WSSV compared with that of control, while the silence of Rab9 led to the increase of WSSV copies. In order to explore the antiviral mechanism of Rab9, it was demonstrated that the expression level of Rab9 changed during autophagy process, which indicated that Rab9 is participated in the autophagy procedure of shrimp. The fact that autophagy decreased after Rab9 silenced, may also suggest that Rab9 protein could affect autophagy. In short, the results showed Rab9 played a key role in antivirus through regulating autophagy. The results not only enlarge the limited views about molecular mechanism of Rab in invertebrate, but also help to enrich the immunological content in marine invertebrate.
Collapse
Affiliation(s)
- Yuxue Xu
- Department of Development Technology of Marine Resources,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Laboratory of Marine Ecosystem and Biogeochemistry, SOA, Second Institute of Oceanography, SOA, Hangzhou, 310012, China
| | - Yiqi Hu
- Department of Development Technology of Marine Resources,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yadong Zhou
- Laboratory of Marine Ecosystem and Biogeochemistry, SOA, Second Institute of Oceanography, SOA, Hangzhou, 310012, China
| | - Caiying Jiang
- Department of Development Technology of Marine Resources,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Ting Ye
- Department of Development Technology of Marine Resources,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
43
|
Storm T, Burgoyne T, Futter CE. Membrane trafficking in the retinal pigment epithelium at a glance. J Cell Sci 2020; 133:133/16/jcs238279. [PMID: 32855284 DOI: 10.1242/jcs.238279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a highly specialised pigmented monolayer sandwiched between the choroid and the photoreceptors in the retina. Key functions of the RPE include transport of nutrients to the neural retina, removal of waste products and water from the retina to the blood, recycling of retinal chromophores, absorption of scattered light and phagocytosis of the tips of the photoreceptor outer segments. These functions place a considerable membrane trafficking burden on the RPE. In this Cell Science at a Glance article and the accompanying poster, we focus on RPE-specific adaptations of trafficking pathways. We outline mechanisms underlying the polarised expression of membrane proteins, melanosome biogenesis and movement, and endocytic trafficking, as well as photoreceptor outer segment phagocytosis and degradation. We also briefly discuss theories of how dysfunction in trafficking pathways contributes to retinal disease.
Collapse
Affiliation(s)
- Tina Storm
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Thomas Burgoyne
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Clare E Futter
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
44
|
Xun C, Ge L, Tang F, Wang L, Zhuo Y, Long L, Qi J, Hu L, Duan D, Chen P, Lu M. Insight into the proteomic profiling of exosomes secreted by human OM-MSCs reveals a new potential therapy. Biomed Pharmacother 2020; 131:110584. [PMID: 32841894 DOI: 10.1016/j.biopha.2020.110584] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/25/2020] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been used for the treatment of neuronal injury and neurodegenerative diseases. Their underlying mechanism may involve increased secretion of paracrine factors, which promotes tissue repair. Presently, exosomes have been regarded as important components of paracrine secretion and paracrine factors. MSC exosomes represent a promising opportunity to develop novel cell-free therapy approaches. In this study, exosomes from nasal olfactory mucosa MSCs (OM-MSCs) were extracted and purified using ultracentrifugation, resulting in exosome diameters of 40-130 nm. Similar to other exosomes, OM-MSC exosomes were CD63- and CD81-positive and calnexin-negative. Functionally, OM-MSC exosomes promoted human brain microvascular endothelial cell (HBMEC) proliferation and migration. The present study analyzed the OM-MSC exosome paracrine proteome. A total of 304 exosome-associated proteins were identified by LC-MS/MS, including plasminogen activator inhibitor 1 (SERPINE 1), insulin-like growth factor binding protein family members (IGFBP 4 and 5), epidermal growth factor receptor (EGFR), neurogenic locus notch homolog protein 2 (NOTCH 2), apolipoprotein E (APOE), and heat shock protein HSP90-beta (HSP90AB1). These molecules are known to be important in neurotrophic, angiogenesis, cell growth, differentiation, apoptosis, and inflammation and are highly correlated with the mechanism of tissue repair and neural restoration. These observations may provide a basis for further evaluation of OM-MSC exosome potential as a novel therapeutic modality.
Collapse
Affiliation(s)
- Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China; Department of Neurology, Second Xiangya Hospital, Central South University, Changsha Hunan, 410011, China; Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Feng Tang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Lu Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China; Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Lang Long
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Jiaomei Qi
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Li Hu
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Da Duan
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China.
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China; Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China.
| |
Collapse
|
45
|
Antiparasitic dibenzalacetone inhibits the GTPase activity of Rab6 protein of Leishmania donovani (LdRab6), a potential target for its antileishmanial effect. Parasitol Res 2020; 119:2991-3003. [PMID: 32748038 DOI: 10.1007/s00436-020-06810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Visceral leishmaniasis (VL, also known as kala-azar) is a vector borne disease caused by obligate intracellular protozoan parasite Leishmania donovani. To overcome the limitations of currently available drugs for VL, molecular target-based study is a promising tool to develop new drugs to treat this neglected tropical disease. One such target we recently identified from L. donovani (Ld) genome (WGS, clinical Indian isolate; BHU 1220, AVPQ01000001) is a small GTP-binding protein, Rab6 protein. We now report a specific inhibitor of the GTPase activity of Rab6 protein of L. donovani (LdRab6) without restricting host enzyme activity. First, to understand the nature of LdRab6 protein, we generated recombinant LdRab6 mutant proteins (rLdRab6) by systematically introducing deletion (two cysteine residues at C-terminal) and mutations [single amino acid substitutions in the conserved region of GTP (Q84L)/GDP(T38N) coding sequence]. The GTPase activity of rLdRab6:GTP and rLdRab6:GDP locked mutant proteins showed ~ 8-fold and ~ 1.5-fold decreases in enzyme activity, respectively, compared to the wild type enzyme activity. The mutant protein rLdRab6:ΔC inhibited the GTPase activity. Sequence alignment analysis of Rab6 protein of L. donovani with Homo sapiens showed identical amino acids in the G conserved region (GTP/GDP-binding sites) but it differed in the C-terminal region. We then evaluated the inhibitory activity of trans-dibenzalacetone (DBA, a synthetic analog of curcumin with strong antileishmanial activity reported earlier by us) in the GTPase activity of LdRab6 protein. Comparative molecular docking analysis of DBA and specific inhibitors of Rab proteins (Lovastatin, BFA, Zoledronate, and NE10790) indicated that DBA had optimum binding affinity with LdRab6 protein. This was further confirmed by the GTPase activity of DBA-treated LdRab6 which showed a basal GTP level significantly lower than that of the wild-type rLdRab6. The results confirm that DBA inhibits the GTPase activity of LdRab6 protein from L. donovani (LdRab6), a potential target for its antileishmanial effect.
Collapse
|
46
|
Yu F, Wu W, Liang M, Huang Y, Chen C. Prognostic Significance of Rab27A and Rab27B Expression in Esophageal Squamous Cell Cancer. Cancer Manag Res 2020; 12:6353-6361. [PMID: 32801878 PMCID: PMC7394507 DOI: 10.2147/cmar.s258940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose Rab27A and Rab27B, members of the Rab family of small GTPases, have aberrant expression and exert different roles in various cancers. However, their expression and potential prognostic values in esophageal squamous cell cancer (ESCC) still remain elusive. In the present study, we explored the association of Rab27A and Rab27B expression with clinical significance and prognosis in ESCC. Patients and Methods A total of 100 surgically resected ESCC tissues were examined to evaluate Rab27A and Rab27B expression levels using the immunohistochemistry method. The relationship of Rab27A and Rab27B with clinicopathological features and prognosis was analyzed. We also investigated the correlation between Rab27A and Rab27B through external and internal validation. Results High-expression Rab27A was found to be significantly correlated with N (p=0.045) and TNM (p=0.005) stage, while up-regulated Rab27B was remarkably associated with N stage (p=0.033), TNM stage (p=0.009), and differentiation (p=0.013). High expression of both Rab27A and Rab27B had a worse overall survival (OS) rate. In addition, multivariate Cox regression analyses were utilized to validate that Rab27B expression is an independent prognostic factor for unfavorable OS. Further combined analyses showed that the Rab27Alow/Blow group had a superior OS rate than the Rab27Ahigh/Blow group, Rab27Alow/Bhigh group, and Rab27Ahigh/Bhigh group. Nevertheless, the latter three groups displayed rare significance between each two comparisons. Furthermore, our data demonstrated that Rab27A expression was positively correlated with Rab27B expression, which were also verified in TCGA datasets. Conclusion Rab27A and Rab27B expression levels could be potentially novel prognostic biomarkers in ESCC.
Collapse
Affiliation(s)
- Fengqiang Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Weihan Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Mingqiang Liang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Yu Huang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
47
|
Hisanaga SI, Wei R, Huo A, Tomomura M. LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Front Mol Neurosci 2020; 13:112. [PMID: 32714146 PMCID: PMC7344150 DOI: 10.3389/fnmol.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons extend long processes known as axons and dendrites, through which they communicate with each other. The neuronal circuits formed by the axons and dendrites are the structural basis of higher brain functions. The formation and maintenance of these processes are essential for physiological brain activities. Membrane components, both lipids, and proteins, that are required for process formation are supplied by vesicle transport. Intracellular membrane trafficking is regulated by a family of Rab small GTPases. A group of Rabs regulating endosomal trafficking has been studied mainly in nonpolarized culture cell lines, and little is known about their regulation in polarized neurons with long processes. As shown in our recent study, lemur tail (former tyrosine) kinase 1 (LMTK1), an as yet uncharacterized Ser/Thr kinase associated with Rab11-positive recycling endosomes, modulates the formation of axons, dendrites, and spines in cultured primary neurons. LMTK1 knockdown or knockout (KO) or the expression of a kinase-negative mutant stimulates the transport of endosomal vesicles in neurons, leading to the overgrowth of axons, dendrites, and spines. More recently, we found that LMTK1 regulates TBC1D9B Rab11 GAP and proposed the Cdk5/p35-LMTK1-TBC1D9B-Rab11 pathway as a signaling cascade that regulates endosomal trafficking. Here, we summarize the biochemical, cell biological, and physiological properties of LMTK1.
Collapse
Affiliation(s)
- Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Japan
| |
Collapse
|
48
|
Henning RJ. Cardiovascular Exosomes and MicroRNAs in Cardiovascular Physiology and Pathophysiology. J Cardiovasc Transl Res 2020; 14:195-212. [PMID: 32588374 DOI: 10.1007/s12265-020-10040-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
Cardiac exosomes mediate cell-to-cell communication, stimulate or inhibit the activities of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling, angiogenesis, and atherosclerosis. The exosomes that are released in the heart from cardiomyocytes, vascular cells, fibroblasts, and resident stem cells are hypoimmunogenic, are physiologically more stable than cardiac cells, can circulate in the body, and are able to cross the blood-brain barrier. Exosomes utilize three mechanisms for cellular communication: (1) internalization by cells, (2) direct fusion to the cell membrane, and (3) receptor-ligand interactions. Cardiac exosomes transmit proteins, mRNA, and microRNAs to other cells during both physiological and pathological process. Cardiac-specific exosome miRNAs can regulate the expression of sarcomeric genes, ion channel genes, autophagy, anti-apoptotic and anti-fibrotic activity, and angiogenesis. This review discusses the role of exosomes and microRNAs in normal myocardium, myocardial injury and infarction, atherosclerosis, and the importance of circulating microRNAs as biomarkers of cardiac disease. Graphical Abstract.
Collapse
Affiliation(s)
- Robert J Henning
- University of South Florida, 13201 Bruce B. Downs Blvd., Tampa, FL, 33612-3805, USA.
| |
Collapse
|
49
|
Rab27a Contributes to the Processing of Inflammatory Pain in Mice. Cells 2020; 9:cells9061488. [PMID: 32570938 PMCID: PMC7349490 DOI: 10.3390/cells9061488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Tissue injury and inflammation may result in chronic pain, a severe debilitating disease that is associated with great impairment of quality of life. An increasing body of evidence indicates that members of the Rab family of small GTPases contribute to pain processing; however, their specific functions remain poorly understood. Here, we found using immunofluorescence staining and in situ hybridization that the small GTPase Rab27a is highly expressed in sensory neurons and in the superficial dorsal horn of the spinal cord of mice. Rab27a mutant mice, which carry a single-nucleotide missense mutation of Rab27a leading to the expression of a nonfunctional protein, show reduced mechanical hyperalgesia and spontaneous pain behavior in inflammatory pain models, while their responses to acute noxious mechanical and thermal stimuli is not affected. Our study uncovers a previously unrecognized function of Rab27a in the processing of persistent inflammatory pain in mice.
Collapse
|
50
|
Whole exome sequencing of a family revealed a novel variant in the CHM gene, c.22delG p.(Glu8Serfs*4), which co-segregated with choroideremia. Biosci Rep 2020; 40:223574. [PMID: 32364220 PMCID: PMC7218218 DOI: 10.1042/bsr20200067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/17/2023] Open
Abstract
Choroideremia is a complex form of blindness-causing retinal degeneration. The aim of the present study was to investigate the pathogenic variant and molecular etiology associated with choroideremia in a Chinese family. All available family members underwent detailed ophthalmological examinations. Whole exome sequencing, bioinformatics analysis, Sanger sequencing, and co-segregation analysis of family members were used to validate sequencing data and confirm the presence of the disease-causing gene variant. The proband was diagnosed with choroideremia on the basis of clinical manifestations. Whole exome sequencing showed that the proband had a hemizygous variant in the CHM gene, c.22delG p. (Glu8Serfs*4), which was confirmed by Sanger sequencing and found to co-segregate with choroideremia. The variant was classified as likely pathogenic and has not previously been described. These results expand the spectrum of variants in the CHM gene, thus potentially enriching the understanding of the molecular basis of choroideremia. Moreover, they may provide insight for future choroideremia diagnosis and gene therapy.
Collapse
|