1
|
Xie LQ, Hu B, Lu RB, Cheng YL, Chen X, Wen J, Xiao Y, An YZ, Peng N, Dai Y, Xie G, Guo Q, Peng H, Luo XH. Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity. Cell Res 2025; 35:165-185. [PMID: 39875551 PMCID: PMC11909135 DOI: 10.1038/s41422-025-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin. Raptin release is timed by the circuit from vasopressin-expressing neurons in the suprachiasmatic nucleus to RCN2-positive neurons in the paraventricular nucleus. Raptin levels peak during sleep, which is blunted by sleep deficiency. Raptin binds to glutamate metabotropic receptor 3 (GRM3) in neurons of the hypothalamus and stomach to inhibit appetite and gastric emptying, respectively. Raptin-GRM3 signaling mediates anorexigenic effects via PI3K-AKT signaling. Of note, we verify the connections between deficiencies in the sleeping state, impaired Raptin release, and obesity in patients with sleep deficiency. Moreover, humans carrying an RCN2 nonsense variant present with night eating syndrome and obesity. These data define a unique hormone that suppresses food intake and prevents obesity.
Collapse
Affiliation(s)
- Ling-Qi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ren-Bin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya-Lun Cheng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie Wen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ning Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Dai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Genqing Xie
- Department of Endocrinology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
2
|
Suresh V, Bardhan M, Ghosh S, Chandani Y, Satapathy P, Roy P, Shamim MA, Gandhi AP, Sandeep M, Rustagi S, Sah R, Padhi BK. Exploring the role of Orexin-A neuropeptide in Parkinson's disease: A systematic review and meta-analysis. Clin Neurol Neurosurg 2024; 242:108320. [PMID: 38781804 DOI: 10.1016/j.clineuro.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurological condition that affects movement and coordination. Orexin-A (OXA) is an excitatory neuropeptide that is found throughout the central nervous system. There is growing interest in investigating the potential diagnostic and therapeutic utility of OXA in PD. To date, studies have reported a wide range of OXA concentrations in patients with PD. In this review, we discuss the current understanding of the dysregulation of OXA in PD and analyze its levels in the CSF. METHODS We searched six databases (PubMed, Scopus, Web of Science, EMBASE, ProQuest, and EBSCOHost) and preprint servers using a predetermined search strategy through 4th March 4, 2023. The search keywords included "Parkinson's disease", "Orexin-A", "Hypocretin-1", "cerebrospinal fluid", and "CSF". Studies that reported OXA/Hypocretin-1 levels in the CSF of patients with PD were included. Two researchers independently reviewed the records and extracted data. FINDINGS Eighteen studies involving 244 patients were analyzed. CSF Orexin-A concentrations were lower in patients with Parkinson's disease than in controls, with a mean difference of -59.21 (95 % CI: -89.10 to -29.32). The mean OXA levels were 281.52 (95 % CI: 226.65-336.40). CONCLUSION Our analysis reveals lower concentrations of orexin-A in the cerebrospinal fluid of Parkinson's disease patients compared to controls, but within the normal range. These findings suggest a potential, but not significant, disruption in the orexinergic system associated with the disease.
Collapse
Affiliation(s)
- Vinay Suresh
- King George's Medical University, Lucknow 226003, India; Global Center for Evidence Synthesis, Chandigarh, 160036 India
| | - Mainak Bardhan
- Department of Neuro oncology,Miami Cancer Institute, Baptist Health South Florida,USA.
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | - Yash Chandani
- King George's Medical University, Lucknow 226003, India
| | | | - Priyanka Roy
- Deputy Chief Inspector of Factories/ Deputy Director (Medical) and Certifying Surgeon, Directorate of Factories, Department of Labour, Government of West Bengal, India
| | - Muhammad Aaqib Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342008, India
| | - Aravind P Gandhi
- Global Center for Evidence Synthesis, Chandigarh, 160036 India; Assistant Professor, Department of Community Medicine, ESIC Medical College & Hospital, Sanath Nagar, Hyderabad, India
| | - Mokanpally Sandeep
- Global Center for Evidence Synthesis, Chandigarh, 160036 India; School of Medical Sciences, University of Hyderabad, Telangana 500046, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu 46000, Nepal; Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411018, India; Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra 411000, India
| | - Bijaya K Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
3
|
Appel A, Spier E. Strategy and Philosophy for Treating Pain and Sleep in Disorders of Consciousness. Phys Med Rehabil Clin N Am 2024; 35:145-154. [PMID: 37993184 DOI: 10.1016/j.pmr.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite the evolving practice of brain injury medicine, consciousness remains enigmatic. Most patients with disorders of consciousness have disordered sleep and return of normal sleep architecture is essential to the emergence of consciousness and the healing brain. In this article we lay a framework for understanding the emergence of consciousness in brain-injured patients. We then explore ways to use that framework to evaluate and tailor treatment of sleep and pain in patients with disorders of consciousness. Although more research is needed to empower better treatment in the future, validated tools now exist for evaluation of emergent consciousness, pain, and sleep.
Collapse
Affiliation(s)
- Amanda Appel
- Department of Pediatric Rehabilitation Medicine, Children's Hospital Colorado, Aurora, CO, USA; Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, USA; Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | | |
Collapse
|
4
|
Mogavero MP, Lanza G, DelRosso LM, Ferri R. Psychophysiology of Sleep. NEUROMETHODS 2024:263-286. [DOI: 10.1007/978-1-0716-3545-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Abstract
Sleep health is an important factor across several physical and mental health disorders, and a growing scientific consensus has identified sleep as a critical component of opioid use disorder (OUD), both in the active disease state and during OUD recovery. The goal of this narrative review is to collate the literature on sleep, opioid use, and OUD as a means of identifying therapeutic targets to improve OUD treatment outcomes. Sleep disturbance is common and often severe in persons with OUD, especially during opioid withdrawal, but also in persons on opioid maintenance therapies. There is ample evidence that sleep disturbances including reduced total sleep time, disrupted sleep continuity, and poor sleep quality often accompany negative OUD treatment outcomes. Sleep disturbances are bidirectionally associated with several other factors related to negative treatment outcomes, including chronic stress, stress reactivity, low positive affect, high negative affect, chronic pain, and drug craving. This constellation of outcome variables represents a more comprehensive appraisal of the quality of life and quality of recovery than is typically assessed in OUD clinical trials. To date, there are very few clinical trials or experimental studies aimed at improving sleep health in OUD patients, either as a means of improving stress, affect, and craving outcomes, or as a potential mechanistic target to reduce opioid withdrawal and drug use behaviors. As such, the direct impact of sleep improvement in OUD patients is largely unknown, yet mechanistic and clinical research suggests that therapeutic interventions that target sleep are a promising avenue to improve OUD treatment. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
6
|
Fujimoto T, Rikimaru K, Fukuda K, Sugimoto H, Masuda K, Ohyabu N, Banno Y, Tokunaga N, Kawamoto T, Tomata Y, Kumagai Y, Iida M, Nagano Y, Yoneyama-Hirozane M, Shimizu Y, Sasa K, Ishikawa T, Yukitake H, Ito M, Aoyama K, Matsumoto T. Discovery of TAK-925 as a Potent, Selective, and Brain-Penetrant Orexin 2 Receptor Agonist. ACS Med Chem Lett 2022; 13:457-462. [PMID: 35295087 PMCID: PMC8919389 DOI: 10.1021/acsmedchemlett.1c00626] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
![]()
TAK-925, a potent,
selective, and brain-penetrant orexin 2 receptor
(OX2R) agonist, [methyl (2R,3S)-3-((methylsulfonyl)amino)-2-(((cis-4-phenylcyclohexyl)oxy)methyl)piperidine-1-carboxylate, 16], was identified through the optimization of compound 2, which was discovered by a high throughput screening (HTS)
campaign. Subcutaneous administration of compound 16 produced
wake-promoting effects in mice during the sleep phase. Compound 16 (TAK-925) is being developed for the treatment of narcolepsy
and other related disorders.
Collapse
Affiliation(s)
- Tatsuhiko Fujimoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kentaro Rikimaru
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koichiro Fukuda
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiromichi Sugimoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kei Masuda
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Norio Ohyabu
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihiro Banno
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Norihito Tokunaga
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuji Kawamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshihide Tomata
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasumi Kumagai
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Motoo Iida
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoichi Nagano
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mariko Yoneyama-Hirozane
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuji Shimizu
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsunori Sasa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takashi Ishikawa
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Yukitake
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mitsuhiro Ito
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazunobu Aoyama
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiro Matsumoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
7
|
Ramser A, Dridi S. Avian Orexin: Feed Intake Regulator or Something Else? Vet Sci 2022; 9:vetsci9030112. [PMID: 35324840 PMCID: PMC8950792 DOI: 10.3390/vetsci9030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Originally named for its expression in the posterior hypothalamus in rats and after the Greek word for “appetite”, hypocretin, or orexin, as it is known today, gained notoriety as a neuropeptide regulating feeding behavior, energy homeostasis, and sleep. Orexin has been proven to be involved in both central and peripheral control of neuroendocrine functions, energy balance, and metabolism. Since its discovery, its ability to increase appetite as well as regulate feeding behavior has been widely explored in mammalian food production animals such as cattle, pigs, and sheep. It is also linked to neurological disorders, leading to its intensive investigation in humans regarding narcolepsy, depression, and Alzheimer’s disease. However, in non-mammalian species, research is limited. In the case of avian species, orexin has been shown to have no central effect on feed-intake, however it was found to be involved in muscle energy metabolism and hepatic lipogenesis. This review provides current knowledge and summarizes orexin’s physiological roles in livestock and pinpoints the present lacuna to facilitate further investigations.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-(479)-575-2583; Fax: +1-(479)-575-7139
| |
Collapse
|
8
|
Irzan H, Pozzi M, Chikhladze N, Cebanu S, Tadevosyan A, Calcii C, Tsiskaridze A, Melbourne A, Strazzer S, Modat M, Molteni E. Emerging Treatments for Disorders of Consciousness in Paediatric Age. Brain Sci 2022; 12:198. [PMID: 35203961 PMCID: PMC8870410 DOI: 10.3390/brainsci12020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
The number of paediatric patients living with a prolonged Disorder of Consciousness (DoC) is growing in high-income countries, thanks to substantial improvement in intensive care. Life expectancy is extending due to the clinical and nursing management achievements of chronic phase needs, including infections. However, long-known pharmacological therapies such as amantadine and zolpidem, as well as novel instrumental approaches using direct current stimulation and, more recently, stem cell transplantation, are applied in the absence of large paediatric clinical trials and rigorous age-balanced and dose-escalated validations. With evidence building up mainly through case reports and observational studies, there is a need for well-designed paediatric clinical trials and specific research on 0-4-year-old children. At such an early age, assessing residual and recovered abilities is most challenging due to the early developmental stage, incompletely learnt motor and cognitive skills, and unreliable communication; treatment options are also less explored in early age. In middle-income countries, the lack of rehabilitation services and professionals focusing on paediatric age hampers the overall good assistance provision. Young and fast-evolving health insurance systems prevent universal access to chronic care in some countries. In low-income countries, rescue networks are often inadequate, and there is a lack of specialised and intensive care, difficulty in providing specific pharmaceuticals, and lower compliance to intensive care hygiene standards. Despite this, paediatric cases with DoC are reported, albeit in fewer numbers than in countries with better-resourced healthcare systems. For patients with a poor prospect of recovery, withdrawal of care is inhomogeneous across countries and still heavily conditioned by treatment costs as well as ethical and cultural factors, rather than reliant on protocols for assessment and standardised treatments. In summary, there is a strong call for multicentric, international, and global health initiatives on DoC to devote resources to the paediatric age, as there is now scope for funders to invest in themes specific to DoC affecting the early years of the life course.
Collapse
Affiliation(s)
- Hassna Irzan
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 7JE, UK
| | - Marco Pozzi
- Scientific Institute IRCCS E. Medea, Acquired Brain Injury Unit, 22040 Bosisio Parini, Italy; (M.P.); (S.S.)
| | - Nino Chikhladze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia; (N.C.); (A.T.)
| | - Serghei Cebanu
- Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD-2004 Chišināu, Moldova; (S.C.); (C.C.)
| | - Artashes Tadevosyan
- Department of Public Health and Healthcare Organization, Yerevan State Medical University, Yerevan 0025, Armenia;
| | - Cornelia Calcii
- Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD-2004 Chišināu, Moldova; (S.C.); (C.C.)
| | - Alexander Tsiskaridze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia; (N.C.); (A.T.)
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 7JE, UK
| | - Sandra Strazzer
- Scientific Institute IRCCS E. Medea, Acquired Brain Injury Unit, 22040 Bosisio Parini, Italy; (M.P.); (S.S.)
- Rehabilitation Service, “Usratuna” Health and Rehabilitation Centre, Juba, South Sudan
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
| | - Erika Molteni
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
| |
Collapse
|
9
|
Masneuf S, Imbach LL, Büchele F, Colacicco G, Penner M, Moreira CG, Ineichen C, Jahanshahi A, Temel Y, Baumann CR, Noain D. Altered sleep intensity upon DBS to hypothalamic sleep-wake centers in rats. Transl Neurosci 2021; 12:611-625. [PMID: 35070444 PMCID: PMC8729228 DOI: 10.1515/tnsci-2020-0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Deep brain stimulation (DBS) has been scarcely investigated in the field of sleep research. We hypothesize that DBS onto hypothalamic sleep- and wake-promoting centers will produce significant neuromodulatory effects and potentially become a therapeutic strategy for patients suffering severe, drug-refractory sleep–wake disturbances. We aimed to investigate whether continuous electrical high-frequency DBS, such as that often implemented in clinical practice, in the ventrolateral preoptic nucleus (VLPO) or the perifornical area of the posterior lateral hypothalamus (PeFLH), significantly modulates sleep–wake characteristics and behavior. We implanted healthy rats with electroencephalographic/electromyographic electrodes and recorded vigilance states in parallel to bilateral bipolar stimulation of VLPO and PeFLH at 125 Hz and 90 µA over 24 h to test the modulating effects of DBS on sleep–wake proportions, stability and spectral power in relation to the baseline. We unexpectedly found that VLPO DBS at 125 Hz deepens slow-wave sleep (SWS) as measured by increased delta power, while sleep proportions and fragmentation remain unaffected. Thus, the intensity, but not the amount of sleep or its stability, is modulated. Similarly, the proportion and stability of vigilance states remained altogether unaltered upon PeFLH DBS but, in contrast to VLPO, 125 Hz stimulation unexpectedly weakened SWS, as evidenced by reduced delta power. This study provides novel insights into non-acute functional outputs of major sleep–wake centers in the rat brain in response to electrical high-frequency stimulation, a paradigm frequently used in human DBS. In the conditions assayed, while exerting no major effects on the sleep–wake architecture, hypothalamic high-frequency stimulation arises as a provocative sleep intensity-modulating approach.
Collapse
Affiliation(s)
- Sophie Masneuf
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lukas L Imbach
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabian Büchele
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Marco Penner
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Ineichen
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, DPPP, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Sleep disorders in traumatic brain injury. ACTA ACUST UNITED AC 2020; 32:178-187. [PMID: 34218878 DOI: 10.1016/j.neucie.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022]
Abstract
The purpose of the review is to collect the most relevant current literature on the mechanisms of normal sleep and sleep disorders associated with traumatic brain injury (TBI), to discuss the most frequent conditions and the evidence on their possible treatments and future research. Sleep disorders are extremely prevalent after TBI (30-84%). Insomnia and circadian rhythm disorders are the most frequent disorders among the population that has suffered mild TBI, while hypersomnolence disorders are more frequent in populations that have suffered moderate and severe TBI. The syndrome of obstructive sleep apnea and restless leg syndrome are also very frequent in these patients; and patients exposed to multiple TBIs (war veterans) are especially susceptible to sleep disorders. The treatment of these disorders requires taking into account the particularities of these patients. In conclusion, diagnosis and treatment of sleep disorders should become part of routine clinical practice and cease to be anecdotal (as it is today) in patients with TBI. In addition, it is necessary to continue carrying out research that reveals the best therapeutic approach to these patients.
Collapse
|
11
|
Paredes I, Navarro B, Lagares A. Sleep disorders in traumatic brain injury. Neurocirugia (Astur) 2020; 32:S1130-1473(20)30124-X. [PMID: 33189564 DOI: 10.1016/j.neucir.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022]
Abstract
The purpose of the review is to collect the most relevant current literature on the mechanisms of normal sleep and sleep disorders associated with traumatic brain injury (TBI), to discuss the most frequent conditions and the evidence on their possible treatments and future research. Sleep disorders are extremely prevalent after TBI (30-84%). Insomnia and circadian rhythm disorders are the most frequent disorders among the population that has suffered mild TBI, while hypersomnolence disorders are more frequent in populations that have suffered moderate and severe TBI. The syndrome of obstructive sleep apnea and restless leg syndrome are also very frequent in these patients; and patients exposed to multiple TBIs (war veterans) are especially susceptible to sleep disorders. The treatment of these disorders requires taking into account the particularities of these patients. In conclusion, diagnosis and treatment of sleep disorders should become part of routine clinical practice and cease to be anecdotal (as it is today) in patients with TBI. In addition, it is necessary to continue carrying out research that reveals the best therapeutic approach to these patients.
Collapse
Affiliation(s)
- Igor Paredes
- Servicio de Neurocirugía, Hospital Universitario 12 de Octubre, Madrid, España.
| | - Blanca Navarro
- Servicio de Neurocirugía, Neuropsicología Clínica, Hospital Universitario 12 de Octubre, Madrid, España
| | - Alfonso Lagares
- Servicio de Neurocirugía, Hospital Universitario 12 de Octubre, Madrid, España
| |
Collapse
|
12
|
Lammers GJ, Bassetti CL, Dolenc-Groselj L, Jennum PJ, Kallweit U, Khatami R, Lecendreux M, Manconi M, Mayer G, Partinen M, Plazzi G, Reading PJ, Santamaria J, Sonka K, Dauvilliers Y. Diagnosis of central disorders of hypersomnolence: A reappraisal by European experts. Sleep Med Rev 2020; 52:101306. [DOI: 10.1016/j.smrv.2020.101306] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/22/2023]
|
13
|
Northeast RC, Vyazovskiy VV, Bechtold DA. Eat, sleep, repeat: the role of the circadian system in balancing sleep-wake control with metabolic need. CURRENT OPINION IN PHYSIOLOGY 2020; 15:183-191. [PMID: 32617440 PMCID: PMC7323618 DOI: 10.1016/j.cophys.2020.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Feeding and sleep are behaviours fundamental to survival, and as such are subject to powerful homeostatic control. Of course, these are mutually exclusive behaviours, and therefore require coordinated temporal organisation to ensure that both energy demands and sleep need are met. Under optimal conditions, foraging/feeding and sleep can be simply partitioned to appropriate phases of the circadian cycle so that they are in suitable alignment with the external environment. However, under conditions of negative energy balance, increased foraging activity must be balanced against sleep requirements and energy conservation. In mammals and many other species, neural circuits that regulate sleep and energy balance are intimately and reciprocally linked. Here, we examine this circuitry, discuss how homeostatic regulation and temporal patterning of sleep are modulated by altered food availability, and describe the role of circadian system in adaptation to metabolic stress.
Collapse
Affiliation(s)
- Rebecca C Northeast
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
14
|
Bolin K, Niska P, Pirhonen L, Wasling P, Landtblom A. The cost utility of pitolisant as narcolepsy treatment. Acta Neurol Scand 2020; 141:301-310. [PMID: 31838740 DOI: 10.1111/ane.13202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The cost-effectiveness of available pharmacological treatments for narcolepsy is largely unknown. Available pharmacological treatments are associated with tolerability, abuse, and adherence issues. Pitolisant is the first inverse agonist of the histamine H3 receptor to be prescribed for the treatment of narcolepsy with and without cataplexy. Studies suggest that pitolisant is both as effective as previously introduced drugs and is associated with fewer adverse effects. The objective in this study was to estimate the cost-effectiveness of pitolisant as monotherapy, and pitolisant as an adjunctive treatment to modafinil, compared with standard treatment. MATERIALS & METHODS Calculations were performed using a Markov model with a 50-year time horizon. Healthcare utilization and quality-adjusted life years (QALYs) for each treatment alternative were calculated assuming no treatment effect on survival. Probabilistic sensitivity analyses were performed for treatment effectiveness and healthcare cost parameters. RESULTS The cost per additional quality-adjusted life year was estimated at SEK 356 337 (10 SEK ≈ 1 Euro) for pitolisant monotherapy, and at SEK 491 128 for pitolisant as an adjunctive treatment, as compared to standard treatment. The cost-effectiveness measure was demonstrated to be particularly sensitive to the assumptions made concerning indirect effects on total healthcare utilization and the pitolisant treatment cost. CONCLUSIONS The incremental cost-effectiveness ratios were below the unofficial willingness-to-pay threshold at SEK 500 000. The estimated costs per additional QALY obtained here are likely to overestimate the true cost-effectiveness ratio since significant potential indirect effects-pertaining both to labor-market and household-related productivity-of treatment are not taken into account.
Collapse
Affiliation(s)
- Kristian Bolin
- Department of Economics and Centre for Health Economics University of Gothenburg Gothenburg Sweden
| | | | - Laura Pirhonen
- Department of Economics and Centre for Health Economics University of Gothenburg Gothenburg Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at Gothenburg University Gothenburg Sweden
| | - Anne‐Marie Landtblom
- Department of Neuroscience/Neurology University of Uppsala Uppsala Sweden
- Department of Clinical and Experimental Medicine IKE, Neurology University of Linköping Linköping Sweden
| |
Collapse
|
15
|
Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol 2019; 15:519-539. [DOI: 10.1038/s41582-019-0226-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
|
16
|
The neurophysiological basis of excessive daytime sleepiness: suggestions of an altered state of consciousness. Sleep Breath 2019; 24:15-23. [PMID: 31140116 DOI: 10.1007/s11325-019-01865-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Excessive daytime sleepiness (EDS) is characterized by difficulty staying awake during daytime, though additional features may be present. EDS is a significant problem for clinical and non-clinical populations, being associated with a range of negative outcomes that also represent a burden for society. Extreme EDS is associated with sleep disorders, most notably the central hypersomnias such as narcolepsy, Kleine-Levin syndrome, and idiopathic hypersomnia (IH). Although investigation of these conditions indicates that EDS results from diminished sleep quality, the underlying cause for this impairment remains uncertain. One possibility could be that previous research has been too narrow in scope with insufficient attention paid to non-sleep-related aspects. Here, we offer a broader perspective in which findings concerning the impact of EDS on cortical functioning are interpreted in relation to current understanding about the neural basis of consciousness. Alterations in the spatial distribution of cortical activity, in particular reduced connectivity of frontal cortex, suggest that EDS is associated with an altered state of consciousness.
Collapse
|
17
|
Antidepressants for the treatment of narcolepsy: A prospective study of 148 patients in northern China. J Clin Neurosci 2019; 63:27-31. [DOI: 10.1016/j.jocn.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/26/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
|
18
|
Nepovimova E, Janockova J, Misik J, Kubik S, Stuchlik A, Vales K, Korabecny J, Mezeiova E, Dolezal R, Soukup O, Kobrlova T, Pham NL, Nguyen TD, Konecny J, Kuca K. Orexin supplementation in narcolepsy treatment: A review. Med Res Rev 2018; 39:961-975. [PMID: 30426515 DOI: 10.1002/med.21550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Narcolepsy is a rare, chronic neurological disease characterized by excessive daytime sleepiness, cataplexy, vivid hallucinations, and sleep paralysis. Narcolepsy occurs in approximately 1 of 3000 people, affecting mainly adolescents aged 15 to 30 years. Recently, people with narcolepsy were shown to exhibit extensive orexin/hypocretin neuronal loss. The orexin system regulates sleep/wake control via complex interactions with monoaminergic, cholinergic and GABA-ergic neuronal systems. Currently, no cure for narcolepsy exists, but some symptoms can be controlled with medication (eg, stimulants, antidepressants, etc). Orexin supplementation represents a more sophisticated way to treat narcolepsy because it addresses the underlying cause of the disease and not just the symptoms. Research on orexin supplementation in the treatment of sleep disorders has strongly increased over the past two decades. This review focuses on a brief description of narcolepsy, the mechanisms by which the orexin system regulates sleep/wake cycles, and finally, possible therapeutic options based on orexin supplementation in animal models and patients with narcolepsy.
Collapse
Affiliation(s)
- Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Misik
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Stepan Kubik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - Ales Stuchlik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ngoc Lam Pham
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Thuy Duong Nguyen
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Sturzenegger C, Baumann CR, Lammers GJ, Kallweit U, van der Zande WLM, Bassetti CL. Swiss Narcolepsy Scale. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18794175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Gerd J Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Sleep Wake Center SEIN Heemstede, Heemstede, The Netherlands
| | - Ulf Kallweit
- Department of Neurology, Bern University Hospital, Switzerland
| | | | - Claudio L Bassetti
- Department of Neurology, University Hospital, Zurich, Switzerland
- Department of Neurology, Bern University Hospital, Switzerland
| |
Collapse
|
20
|
Polysomnographic findings in craniopharyngioma patients. Sleep Breath 2017; 21:975-982. [DOI: 10.1007/s11325-017-1574-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/28/2017] [Accepted: 09/16/2017] [Indexed: 11/26/2022]
|
21
|
Heidmann B, Gatfield J, Roch C, Treiber A, Tortoioli S, Brotschi C, Williams JT, Bolli MH, Abele S, Sifferlen T, Jenck F, Boss C. Discovery of Highly Potent Dual Orexin Receptor Antagonists via a Scaffold-Hopping Approach. ChemMedChem 2016; 11:2132-2146. [DOI: 10.1002/cmdc.201600175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/18/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Bibia Heidmann
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - John Gatfield
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - Catherine Roch
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - Alexander Treiber
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - Simone Tortoioli
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - Christine Brotschi
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - Jodi T. Williams
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - Martin H. Bolli
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - Stefan Abele
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - Thierry Sifferlen
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - François Jenck
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| | - Christoph Boss
- Actelion Pharmaceuticals Ltd.; Drug Discovery and Preclinical Research & Development; Gewerbestrasse 16 4123 Allschwil Switzerland
| |
Collapse
|
22
|
Sun H, Palcza J, Card D, Gipson A, Rosenberg R, Kryger M, Lines C, Wagner JA, Troyer MD. Effects of Suvorexant, an Orexin Receptor Antagonist, on Respiration during Sleep In Patients with Obstructive Sleep Apnea. J Clin Sleep Med 2016; 12:9-17. [PMID: 26194728 PMCID: PMC4702197 DOI: 10.5664/jcsm.5382] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/05/2015] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To investigate the respiratory effects of suvorexant, an orexin receptor antagonist for treating insomnia, in patients with obstructive sleep apnea (OSA). METHODS This was a randomized, double-blind, placebo-controlled, 2-period (4 days per period), crossover, sleep laboratory study. Twenty-six patients aged 18-65 years with mild (apnea-hypopnea index [AHI] ≥ 5 and < 15) to moderate (AHI ≥ 15 and < 30) OSA were randomized to receive suvorexant 40 mg or placebo in period-1 and then crossed over to the other treatment in period-2. Breathing during sleep was measured by AHI (primary endpoint) and oxygen saturation assessed by pulse oximetry (SpO2, secondary endpoint). The study was powered to rule out a mean increase in AHI between suvorexant and placebo of 5 or greater on Day 4. RESULTS There was a small increase in mean AHI (2.66) in OSA patients after multiple doses of suvorexant relative to placebo, with the upper 90% CI bound slightly exceeding 5.00 (0.22, 5.09). No increase in mean AHI was observed after a single dose of suvorexant versus placebo (mean difference = -0.47 [-3.20, 2.26]), and there was no treatment effect on mean SpO2 during total sleep time after single or multiple doses (Day 1: mean difference = -0.04 [-0.49, 0.42]; Day 4: mean difference = -0.06 [-0.45, 0.33]). There was inter- and intra-individual variability in suvorexant respiratory effects. CONCLUSIONS Suvorexant 40 mg, twice the 20 mg maximum recommended dose for treating insomnia in the USA and Japan, does not appear to have clinically important respiratory effects during sleep in patients with mild to moderate OSA as assessed by mean AHI and SpO2. Due to inter- and intra-individual variability in respiratory effects, suvorexant should be used with caution in patients with compromised respiratory function, and at the lowest effective dose. CLINICAL TRIAL REGISTRATION clinicaltrials.gov, NCT01300455.
Collapse
Affiliation(s)
- Hong Sun
- Merck & Co., Inc., Kenilworth, NJ
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shiga Y, Kanaya Y, Kono R, Takeshima S, Shimoe Y, Kuriyama M. [Posterior reversible encephalopathy syndrome of the midbrain and hypothalamus - a case report of uremic encephalopathy presenting with hypersomnia]. Rinsho Shinkeigaku 2015; 56:43-47. [PMID: 26640128 DOI: 10.5692/clinicalneurol.cn-000806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the case of a 73-year-old woman presenting with hypersomnia and loss of appetite. She suffered from diabetic nephropathy without receiving dialysis, in addition to hypertension, which was well controlled without marked fluctuation. There were no objective neurological findings. Her laboratory findings showed renal failure with 3.7 mg/dl of serum creatinine and decreased serum sodium and potassium. Brain magnetic resonance imaging (MRI) showed posterior reversible encephalopathy syndrome (PRES) with vasogenic edema, which was distributed in the dorsal midbrain, medial thalamus, and hypothalamus. After we addressed the electrolyte imbalance and dehydration, her symptoms and MRI findings gradually improved, but faint high signals on MRI were still present 3 months later. Orexin in the cerebrospinal fluid was decreased on admission, but improved 6 months later. We diagnosed uremic encephalopathy with atypical form PRES showing functional disturbance of the hypothalamus.
Collapse
Affiliation(s)
- Yuji Shiga
- Department of Neurology, Brain Attack Center Ota Memorial Hospital
| | | | | | | | | | | |
Collapse
|
24
|
Demeestere D, Libert C, Vandenbroucke RE. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 2015; 50:1-13. [PMID: 26116435 DOI: 10.1016/j.bbi.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022] Open
Abstract
The choroid plexus (CP) comprises an epithelial monolayer that forms an important physical, enzymatic and immunologic barrier, called the blood-cerebrospinal fluid barrier (BCSFB). It is a highly vascularized organ located in the brain ventricles that is key in maintaining brain homeostasis as it produces cerebrospinal fluid (CSF) and has other important secretory functions. Furthermore, the CP-CSF interface plays a putative role in neurogenesis and has been implicated in neuropsychiatric diseases such as the neurodevelopmental disorders schizophrenia and autism. A role for this CNS border was also implicated in sleep disturbances and chronic and/or severe stress, which are risk factors for the development of neuropsychiatric conditions. Understanding the mechanisms by which disturbance of the homeostasis at the CP-CSF interface is involved in these different chronic low-grade inflammatory diseases can give new insights into therapeutic strategies. Hence, this review discusses the different roles that have been suggested so far for the CP in these neuropsychiatric disorders, with special attention to potential therapeutic applications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
25
|
Liu Y, Zhang J, Lam V, Ho CKW, Zhou J, Li SX, Lam SP, Yu MWM, Tang X, Wing YK. Altered Sleep Stage Transitions of REM Sleep: A Novel and Stable Biomarker of Narcolepsy. J Clin Sleep Med 2015; 11:885-94. [PMID: 25979093 DOI: 10.5664/jcsm.4940] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/16/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To determine the diagnostic values, longitudinal stability, and HLA association of the sleep stage transitions in narcolepsy. METHODS To compare the baseline differences in the sleep stage transition to REM sleep among 35 patients with type 1 narcolepsy, 39 patients with type 2 narcolepsy, 26 unaffected relatives, and 159 non-narcoleptic sleep patient controls, followed by a reassessment at a mean duration of 37.4 months. RESULTS The highest prevalence of altered transition from stage non-N2/N3 to stage R in multiple sleep latency test (MSLT) and nocturnal polysomnography (NPSG) was found in patients with type 1 narcolepsy (92.0% and 57.1%), followed by patients with type 2 narcolepsy (69.4% and 12.8%), unaffected relatives (46.2% and 0%), and controls (39.3% and 1.3%). Individual sleep variables had varied sensitivity and specificity in diagnosing narcolepsy. By incorporating a combination of sleep variables, the decision tree analysis improved the sensitivity to 94.3% and 82.1% and enhanced specificity to 82.4% and 83% for the diagnosis of type 1 and type 2 narcolepsy, respectively. There was a significant association of DBQ1*0602 with the altered sleep stage transition (OR = 16.0, 95% CI: 1.7-149.8, p = 0.015). The persistence of the altered sleep stage transition in both MSLT and NPSG was high for both type 1 (90.5% and 64.7%) and type 2 narcolepsy (92.3% and 100%), respectively. CONCLUSION Altered sleep stage transition is a significant and stable marker of narcolepsy, which suggests a vulnerable wake-sleep dysregulation trait in narcolepsy. Altered sleep stage transition has a significant diagnostic value in the differential diagnosis of hypersomnias, especially when combined with other diagnostic sleep variables in decision tree analysis.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jihui Zhang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Venny Lam
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Crover Kwok Wah Ho
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Junying Zhou
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shirley Xin Li
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Siu Ping Lam
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mandy Wai Man Yu
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiangdong Tang
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun-Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
26
|
Uemura N, McCrea J, Sun H, Donikyan M, Zammit G, Liu R, Louridas B, Marsilio S, Lines C, Troyer MD, Wagner J. Effects of the orexin receptor antagonist suvorexant on respiration during sleep in healthy subjects. J Clin Pharmacol 2015; 55:1093-100. [PMID: 25903940 DOI: 10.1002/jcph.523] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/15/2015] [Indexed: 11/09/2022]
Abstract
Suvorexant is an orexin receptor antagonist for treating insomnia. The maximum approved dose in the United States and Japan is 20 mg. We evaluated suvorexant effects on respiration during sleep in a randomized, double-blind, 3-period crossover study of healthy adult men (n = 8) and women (n = 4) ≤ 50 years old who received single-dose suvorexant 40 mg, 150 mg, and placebo. Respiration during sleep was measured by oxygen saturation (SpO2 , primary end point) and the Apnea Hypopnea Index (AHI). The study was powered to detect a reduction greater than 5% in SpO2 . There was no effect of suvorexant on mean SpO2 during sleep. The mean (90%CI) treatment differences versus placebo were -0.3 (-1.2-0.6) for 40 mg and 0.0 (-0.9-0.9) for 150 mg. There were no dose-related trends in individual SpO2 values. Mean SpO2 was >96% for all treatments during total sleep time and during both non-REM and REM sleep. There was no effect of either suvorexant dose on AHI. The mean (90%CI) treatment differences versus placebo were 0.8 (-0.7-2.3) for 40 mg and -0.2 (-1.7-1.3) for 150 mg. Suvorexant was generally well tolerated; there were no serious adverse experiences or discontinuations. These data from healthy subjects suggest that suvorexant lacks clinically important respiratory effects during sleep at doses greater than the maximum recommended dose for treating insomnia.
Collapse
Affiliation(s)
| | | | - Hong Sun
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Rong Liu
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | |
Collapse
|
27
|
Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015; 20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023]
Abstract
The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost.
Collapse
|
28
|
Goodrick S. Orexin or hypocretin? Lancet Neurol 2015; 14:249. [DOI: 10.1016/s1474-4422(15)70032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Effects of suvorexant, an orexin receptor antagonist, on breathing during sleep in patients with chronic obstructive pulmonary disease. Respir Med 2015; 109:416-26. [PMID: 25661282 DOI: 10.1016/j.rmed.2014.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/16/2014] [Accepted: 12/25/2014] [Indexed: 11/20/2022]
Abstract
OBJECTIVES There is a general concern that hypnotic medications in patients with respiratory disorders have the potential to decrease respiratory effort and blunt the arousal response to hypoxemia which may lead to sleep breathing disorders. We investigated whether suvorexant, an orexin receptor antagonist approved for treatment of insomnia at a maximum daily dose of 20 mg in the US, causes sleep breathing disorders in patients with chronic obstructive pulmonary disease (COPD). DESIGN This was a randomized, double-blind, placebo-controlled, 2-period, cross-over, study performed in 9 sleep laboratories/clinical research units in the United States. The participants were 25 COPD patients aged 39-72 y with mild-to-moderate airflow limitation based on GOLD spirometry criteria. In each period, patients received suvorexant (40 mg in <65 y-olds; 30 mg in ≥65 y-olds) or placebo for four consecutive nights. Respiratory function during sleep was measured by oxygen saturation using pulse oximetry (SpO2, primary endpoint) and Apnea Hypopnea Index (AHI, secondary endpoint). The study was powered to rule out a difference between treatments of -2 percentage points in SpO2 on Day 4. RESULTS There was no treatment effect following single and multiple doses of suvorexant on mean SpO2 during total sleep time (Day 1: suvorexant = 93.14%, placebo = 93.24%, difference = -0.10 [90% CI: -0.50, 0.31]; Day 4: suvorexant = 93.38%, placebo = 92.99%, difference = 0.39 [90% CI: -0.12, 0.91]). There was no clinically meaningful increase in mean AHI by suvorexant compared with placebo on Day 1 (difference = 0.72 [90% CI: -0.60, 2.04]) or Day 4 (difference = 2.05 [90% CI: 0.33, 3.77]). CONCLUSIONS These data do not suggest an overt respiratory depressant effect with 30-40 mg daily doses of suvorexant, up to twice the maximum recommended dose for treating insomnia in the US, in patients with mild-to-moderate COPD. Trial registration Clinicaltrials.gov identifier: NCT01293006.
Collapse
|
30
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
31
|
Wu H, Zhuang J, Stone WS, Zhang L, Zhao Z, Wang Z, Yang Y, Li X, Zhao X, Zhao Z. Symptoms and occurrences of narcolepsy: a retrospective study of 162 patients during a 10-year period in Eastern China. Sleep Med 2014; 15:607-13. [PMID: 24767723 DOI: 10.1016/j.sleep.2013.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 12/13/2022]
|
32
|
Seo JG, Kang K, Park SP, Lee HW. Kleine-Levin syndrome-like symptoms in a middle-aged female with cognitive dysfunction. Sleep Biol Rhythms 2014. [DOI: 10.1111/sbr.12060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jong-Geun Seo
- Department of Neurology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Kyunghun Kang
- Department of Neurology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Sung-Pa Park
- Department of Neurology; School of Medicine; Kyungpook National University; Daegu Korea
| | - Ho-Won Lee
- Department of Neurology; School of Medicine; Kyungpook National University; Daegu Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Korea
| |
Collapse
|
33
|
Kasanuki K, Iseki E, Kondo D, Fujishiro H, Minegishi M, Sato K, Katsuse O, Hino H, Kosaka K, Arai H. Neuropathological investigation of hypocretin expression in brains of dementia with Lewy bodies. Neurosci Lett 2014; 569:68-73. [PMID: 24704327 DOI: 10.1016/j.neulet.2014.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/21/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
Hypocretin (Hcrt) is a neuropeptide synthesized in the lateral hypothalamus (LHT) that plays a key role in maintaining arousal state. In Parkinson's disease (PD), a narcolepsy-like syndrome is commonly seen, and a previous study showed substantial Hcrt neuronal loss in accordance with PD severity. In the present study, we quantitatively examined Hcrt immunoreactivity and α-synuclein and tau pathologies in the LHT and locus coeruleus (LC) in dementia with Lewy bodies (DLB) (n=15), Alzheimer's disease (AD) (n=14), and controls (n=7). In the LHT, substantial Hcrt-positive neurons were detected in controls. In contrast, in DLB and AD, the numbers of both total neurons and Hcrt-positive neurons were significantly reduced. The reduction of the latter was significantly severer in DLB than in AD. In the LC of controls, many Hcrt-positive axonal terminals were found. In contrast, the amount of Hcrt immunoreactivity was significantly reduced both in DLB and AD. In DLB, some Lewy body (LB)-bearing neurons were detected in the LHT, but the Hcrt-positive neurons did not have any LBs. Meanwhile, some tau-positive neurofibrillary tangle (NFT)-bearing neurons were detected in the LHT, and Hcrt-positive neurons occasionally contained NFTs. We observed a significant negative correlation between the number of Hcrt-positive neurons in the LHT and the neurofibrillary stage (r=-0.67, p=0.0067), whereas no significant correlation was found between the number of Hcrt-positive neurons and the Lewy stage (r=-0.47, p=0.077). This is the first report clarifying the substantial loss of Hcrt neurons in the LHT and of Hcrt axonal terminals in the LC in DLB and the correlation between the severity of Hcrt neuronal loss and progression of neurofibrillary pathology.
Collapse
Affiliation(s)
- Koji Kasanuki
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan; Department of Psychiatry, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Eizo Iseki
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan; Department of Psychiatry, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daizo Kondo
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan; Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hiroshige Fujishiro
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Michiko Minegishi
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Kiyoshi Sato
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, 3-3-20 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Omi Katsuse
- Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hiroaki Hino
- Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kenji Kosaka
- Department of Psychiatry, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Heii Arai
- Department of Psychiatry, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
34
|
Portelius E, Soininen H, Andreasson U, Zetterberg H, Persson R, Karlsson G, Blennow K, Herukka SK, Mattsson N. Exploring Alzheimer Molecular Pathology in Down's Syndrome Cerebrospinal Fluid. NEURODEGENER DIS 2014; 14:98-106. [PMID: 24992945 DOI: 10.1159/000358800] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Affiliation(s)
- Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Dauvilliers Y, Bassetti C, Lammers GJ, Arnulf I, Mayer G, Rodenbeck A, Lehert P, Ding CL, Lecomte JM, Schwartz JC. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol 2013; 12:1068-75. [PMID: 24107292 DOI: 10.1016/s1474-4422(13)70225-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yves Dauvilliers
- Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, University of Montpellier 1, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nardone R, Höller Y, Brigo F, Tezzon F, Golaszewski S, Trinka E. Transcranial magnetic stimulation and sleep disorders: pathophysiologic insights. Sleep Med 2013; 14:1047-58. [PMID: 24051115 DOI: 10.1016/j.sleep.2013.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/28/2013] [Accepted: 04/30/2013] [Indexed: 01/15/2023]
Abstract
The neural mechanisms underlying the development of the most common intrinsic sleep disorders are not completely known. Therefore, there is a great need for noninvasive tools which can be used to better understand the pathophysiology of these diseases. Transcranial magnetic stimulation (TMS) offers a method to noninvasively investigate the functional integrity of the motor cortex and its corticospinal projections in neurologic and psychiatric diseases. To date, TMS studies have revealed cortical and corticospinal dysfunction in several sleep disorders, with cortical hyperexcitability being a characteristic feature in some disorders (i.e., the restless legs syndrome) and cortical hypoexcitability being a well-established finding in others (i.e., obstructive sleep apnea syndrome narcolepsy). Several research groups also have applied TMS to evaluate the effects of pharmacologic agents, such as dopaminergic agent or wake-promoting substances. Our review will focus on the mechanisms underlying the generation of abnormal TMS measures in the different types of sleep disorders, the contribution of TMS in enhancing the understanding of their pathophysiology, and the potential diagnostic utility of TMS techniques. We also briefly discussed the possible future implications for improving therapeutic approaches.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Franz Tappeiner Hospital, Merano, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Krystal AD, Richelson E, Roth T. Review of the histamine system and the clinical effects of H1 antagonists: Basis for a new model for understanding the effects of insomnia medications. Sleep Med Rev 2013; 17:263-72. [DOI: 10.1016/j.smrv.2012.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022]
|
39
|
Poryazova R, Mensen A, Bislimi F, Huegli G, Baumann CR, Khatami R. Time perception in narcolepsy in comparison to patients with Parkinson's disease and healthy controls - an exploratory study. J Sleep Res 2013; 22:625-33. [PMID: 23879404 DOI: 10.1111/jsr.12069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/08/2013] [Indexed: 11/26/2022]
Abstract
The striatum and the prefrontal cortex play an important role in cognitive time processing, and time perception depends on sustained attention. Narcolepsy patients are unable to maintain sustained attention, due probably to deficient hypocretin signalling. Impaired time perception has been found in Parkinson's disease (PD) and attributed to a dysfunctional dopaminergic striatal pacemaker. We aimed to assess time perception in patients with narcolepsy and PD and to compare the outcome to healthy control participants. Seventeen narcolepsy patients, 12 PD patients and 15 healthy controls performed a short time production task, where they had to produce an interval of 1, 2 or 5 s. The accuracy of time production differed significantly according to task target duration, and there was a trend towards a group difference with narcolepsy patients tending to overproduce all target durations. Absolute variability was significantly different between groups, with narcolepsy patients showing higher absolute variability in comparison to controls and PD patients. The analysis of the temporal course of time estimation showed more pronounced overproduction of each target duration at the end of each trial in narcolepsy patients, whereas performance was more or less stable in controls and PD patients. Overproduction and higher variability of all time durations in narcolepsy indicate impaired short interval timing in the seconds range, while the scalar property of timing was preserved. The time-course of accuracy and variability of time production within sessions indicate an attention-related mechanism of impaired interval timing.
Collapse
|
40
|
Tolerability, pharmacokinetics, and pharmacodynamics of single-dose almorexant, an orexin receptor antagonist, in healthy elderly subjects. J Clin Psychopharmacol 2013; 33:363-70. [PMID: 23609389 DOI: 10.1097/jcp.0b013e31828f5a7a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sleep disorders are common in the elderly population. Orexin receptor antagonism has been proposed as a new sleep-enabling approach to treat insomnia. The tolerability, pharmacokinetics, and pharmacodynamics of ascending single doses of almorexant, a dual orexin receptor antagonist, were investigated in healthy elderly male and female subjects. In this double-blind, placebo- and active-controlled study, each dose (100, 200, and 400 mg) was investigated in a separate group of 12 subjects (almorexant, placebo, and zolpidem 10 mg in an 8:2:2 ratio). Morning doses of almorexant were well tolerated. As expected for sleep-enabling compounds, somnolence and fatigue were frequently reported. Other adverse events included headache and nausea. Muscular weakness was reported at a higher incidence only with the highest almorexant dose. The pharmacokinetic profile of almorexant was characterized by a median time to the maximum concentration of 1.5 hours, quick disposition with a distribution half-life of 1.6 hours, and rapidly decreasing concentrations to approximately 20% of the maximum concentration over 8 hours, with a terminal half-life of 32 hours. Objective pharmacodynamic measures showed decreases in saccadic peak velocity and adaptive tracking performance and increases in body sway with the 400-mg dose of almorexant. Subjective assessments revealed a dose-dependent decrease in alertness. Almorexant had no effects on mood, calmness, subjective internal and external perception, and feeling high. These findings provide a solid basis to study the effects of almorexant in elderly patients with insomnia.
Collapse
|
41
|
Jennum P, Frandsen R, Knudsen S. Characteristics of rapid eye movement sleep behavior disorder in narcolepsy. Sleep Biol Rhythms 2013. [DOI: 10.1111/j.1479-8425.2012.00556.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Jarrin DC, McGrath JJ, Drake CL. Beyond sleep duration: distinct sleep dimensions are associated with obesity in children and adolescents. Int J Obes (Lond) 2013; 37:552-8. [PMID: 23419602 PMCID: PMC4956466 DOI: 10.1038/ijo.2013.4] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Short sleep duration is recognized as a significant risk factor in childhood obesity; however, the question as to how sleep contributes to the development of obesity remains largely unknown. The majority of pediatric studies have relied on sleep duration as the exclusive measure of sleep; this insular approach may be misleading given that sleep is a dynamic multidimensional construct beyond sleep duration, including sleep disturbances and patterns. Although these sleep dimensions partly overlap, it is necessary to determine their independent relation with obesity, which in turn, may inform a more comprehensive understanding of putative pathophysiological mechanisms linking sleep and obesity. The aim of the present study was to investigate whether sleep dimensions including sleep duration, disturbances, and patterns were individually associated with obesity, independent of multiple covariates. The second objective was to examine whether sleep disturbances and patterns were independently associated with obesity, after adjusting for sleep duration. METHODS Participants included 240 healthy children and adolescents (Mage=12.60, s.d.=1.98; 45.8% females). Anthropometric measures included measured waist and hip circumference, body mass index Z-score, and percent body fat. Subjective sleep measures included sleep duration, sleep disturbances, sleep quality, and sleep patterns from youth- and parental report. RESULTS Youth with larger adiposity and body composition measures reported poorer sleep quality (β avg=-0.14, P<0.01), more sleep disturbances (β avg=0.13, P<0.05), and showed a delayed sleep phase pattern (β avg=0.15, P<0.05), independent of age, sex, pubertal status, physical activity, screen time, socioeconomic status, and sleep duration. Shorter sleep duration was significantly associated with obesity; however, this link was attenuated after adjustment of covariates. CONCLUSIONS The results suggest that sleep measures beyond duration may more precisely capture influences that drive the negative association between sleep and obesity, and thus, yield more robust associations. As such, future studies are needed to better understand how distinct sleep dimensions confer risk for childhood obesity.
Collapse
Affiliation(s)
- D C Jarrin
- Pediatric Public Health Psychology Laboratory, Department of Psychology, Concordia University, Montréal, Quebec, Canada
| | | | | |
Collapse
|
43
|
Sun H, Kennedy WP, Wilbraham D, Lewis N, Calder N, Li X, Ma J, Yee KL, Ermlich S, Mangin E, Lines C, Rosen L, Chodakewitz J, Murphy GM. Effects of suvorexant, an orexin receptor antagonist, on sleep parameters as measured by polysomnography in healthy men. Sleep 2013; 36:259-67. [PMID: 23372274 PMCID: PMC3542986 DOI: 10.5665/sleep.2386] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Suvorexant (MK-4305) is an orexin receptor antagonist being developed for the treatment of insomnia. This report describes the effects of nighttime administration of suvorexant on polysomnography (PSG) sleep parameters in healthy young men. DESIGN Randomized, double-blind, placebo-controlled, 4-period crossover PSG study, followed by an additional 5(th) period to assess pharmacokinetics. SETTING Sleep laboratory. PARTICIPANTS Healthy young men between 18 and 45 years of age (22 enrolled, 19 completed). INTERVENTIONS Periods 1-4: suvorexant (10 mg, 50 mg, or 100 mg) or placebo 1 h before nighttime PSG recording. Period 5: suvorexant 10 mg, 50 mg, or 100 mg. MEASUREMENTS AND RESULTS In Periods 1-4, overnight sleep parameters were recorded by PSG and next-morning residual effects were assessed by psychomotor performance tests and subjective assessments. Statistically significant sleep-promoting effects were observed with all doses of suvorexant compared to placebo. Suvorexant 50 mg and 100 mg significantly decreased latency to persistent sleep and wake after sleep onset time, and increased sleep efficiency. Suvorexant 10 mg significantly decreased wake after sleep onset time. There were no statistically significant effects of suvorexant on EEG frequency bands including delta (slow wave) activity based on power spectral analysis. Suvorexant was well tolerated. There was no evidence of next-day residual effects for suvorexant 10 mg. Suvorexant 50 mg statistically significantly reduced subjective alertness, and suvorexant 100 mg significantly increased reaction time and reduced subjective alertness. There were no statistically significant effects of any suvorexant dose on digit symbol substitution test performance. In Period 5, plasma samples of suvorexant were collected for pharmacokinetic evaluation. The median T(max) was 3 hours and apparent terminal t(½) was 9-13 hours. CONCLUSIONS In healthy young men without sleep disorders, suvorexant promoted sleep with some evidence of residual effects at the highest doses.
Collapse
Affiliation(s)
- Hong Sun
- Merck Sharp – Dohme Corp., Whitehouse Station, NJ
| | | | | | - Nicole Lewis
- Merck Sharp – Dohme Corp., Whitehouse Station, NJ
| | | | - Xiaodong Li
- Merck Sharp – Dohme Corp., Whitehouse Station, NJ
| | - Junshui Ma
- Merck Sharp – Dohme Corp., Whitehouse Station, NJ
| | - Ka Lai Yee
- Merck Sharp – Dohme Corp., Whitehouse Station, NJ
| | | | - Eric Mangin
- Merck Sharp – Dohme Corp., Whitehouse Station, NJ
| | | | - Laura Rosen
- Merck Sharp – Dohme Corp., Whitehouse Station, NJ
| | | | | |
Collapse
|
44
|
Girardin M, Ouellet SG, Gauvreau D, Moore JC, Hughes G, Devine PN, O’Shea PD, Campeau LC. Convergent Kilogram-Scale Synthesis of Dual Orexin Receptor Antagonist. Org Process Res Dev 2012. [DOI: 10.1021/op3002678] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mélina Girardin
- Global Process
Chemistry, Merck Frosst Center for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Québec, Canada H9H
3L1
| | - Stéphane G. Ouellet
- Global Process
Chemistry, Merck Frosst Center for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Québec, Canada H9H
3L1
| | - Danny Gauvreau
- Global Process
Chemistry, Merck Frosst Center for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Québec, Canada H9H
3L1
| | - Jeffrey C. Moore
- Global Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway,
New Jersey 07065, United States
| | - Greg Hughes
- Global Process
Chemistry, Merck Frosst Center for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Québec, Canada H9H
3L1
- Global Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway,
New Jersey 07065, United States
| | - Paul N. Devine
- Global Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway,
New Jersey 07065, United States
| | - Paul D. O’Shea
- Global Process
Chemistry, Merck Frosst Center for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Québec, Canada H9H
3L1
- Global Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway,
New Jersey 07065, United States
| | - Louis-Charles Campeau
- Global Process
Chemistry, Merck Frosst Center for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Québec, Canada H9H
3L1
- Global Process Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway,
New Jersey 07065, United States
| |
Collapse
|
45
|
|
46
|
|
47
|
Hoever P, Dorffner G, Beneš H, Penzel T, Danker-Hopfe H, Barbanoj MJ, Pillar G, Saletu B, Polo O, Kunz D, Zeitlhofer J, Berg S, Partinen M, Bassetti CL, Högl B, Ebrahim IO, Holsboer-Trachsler E, Bengtsson H, Peker Y, Hemmeter UM, Chiossi E, Hajak G, Dingemanse J. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther 2012; 91:975-85. [PMID: 22549286 PMCID: PMC3370822 DOI: 10.1038/clpt.2011.370] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The orexin system is a key regulator of sleep and wakefulness. In a multicenter, double-blind, randomized, placebo-controlled, two-way crossover study, 161 primary insomnia patients received either the dual orexin receptor antagonist almorexant, at 400, 200, 100, or 50 mg in consecutive stages, or placebo on treatment nights at 1-week intervals. The primary end point was sleep efficiency (SE) measured by polysomnography; secondary end points were objective latency to persistent sleep (LPS), wake after sleep onset (WASO), safety, and tolerability. Dose-dependent almorexant effects were observed on SE, LPS, and WASO. SE improved significantly after almorexant 400 mg vs. placebo (mean treatment effect 14.4%; P < 0.001). LPS (–18 min (P = 0.02)) and WASO (–54 min (P < 0.001)) decreased significantly at 400 mg vs. placebo. Adverse-event incidence was dose-related. Almorexant consistently and dose-dependently improved sleep variables. The orexin system may offer a new treatment approach for primary insomnia.
Collapse
Affiliation(s)
- P Hoever
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tribl GG, Wetter TC, Schredl M. Dreaming under antidepressants: a systematic review on evidence in depressive patients and healthy volunteers. Sleep Med Rev 2012; 17:133-42. [PMID: 22800769 DOI: 10.1016/j.smrv.2012.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 11/30/2022]
Abstract
Sleep related symptoms of depression include sleep fragmentation, early morning awakening, decreased rapid eye movement (REM) sleep latency, increased REM density, and more negative dream content. Most tricyclic antidepressants (ADs) increase total sleep time and decrease wake time after sleep onset, while many selective serotonin reuptake inhibitors (SSRIs) have an opposite effect. However, almost all ADs prolong REM sleep latency and reduce the amount of REM sleep. Case reports and research data indicate a strong effect of ADs on dream recall and dream content. We performed a systematic review (1950 to August 2010) about ADs impact on dreaming in depressive patients and healthy volunteers. Twenty-one clinical studies and 25 case reports were eligible for review and document a clear AD effect on dreaming. The major finding, both in depressed patients and in healthy volunteers, is a decrease of dream recall frequency (DRF) under ADs. This is a rather consistent effect in tricyclic ADs and phenelzine, less consistently documented also for SSRIs/serotonin norepinephrine reuptake inhibitors (SNRIs). Tricyclic ADs induce more positive dream emotions. Withdrawal from tricyclic ADs and from the monoamine oxidase inhibitors phenelzine and tranylcypromine may cause nightmares. Intake and even more withdrawal of SSRIs/SNRIs seem to intensify dreaming, which may be experienced in different ways; a potential to cause nightmares has to be taken into account. Though there are clear-cut pharmacological effects of ADs on DRF and dream content, publications have been surprisingly scarce during the past 60 years. There is evidence of a gap in neuropsychopharmacological research. AD effects on dreams should be recognized and may be used in treatment.
Collapse
|
49
|
WIENECKE MIRIAM, WERTH ESTHER, PORYAZOVA ROSITSA, BAUMANN-VOGEL HEIDE, BASSETTI CLAUDIOL, WELLER MICHAEL, WALDVOGEL DANIEL, STORCH ALEXANDER, BAUMANN CHRISTIANR. Progressive dopamine and hypocretin deficiencies in Parkinson’s disease: is there an impact on sleep and wakefulness? J Sleep Res 2012; 21:710-7. [DOI: 10.1111/j.1365-2869.2012.01027.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
The comorbidity of insomnia, chronic pain, and depression: dopamine as a putative mechanism. Sleep Med Rev 2012; 17:173-83. [PMID: 22748562 DOI: 10.1016/j.smrv.2012.03.003] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 02/04/2023]
Abstract
Epidemiological, cross-sectional, and prospective studies suggest that insomnia, chronic pain, and depression frequently co-occur and are mutually interacting conditions. However, the mechanisms underlying these comorbid disorders have yet to be elucidated. Overlapping mechanisms in the central nervous system suggest a common neurobiological substrate(s) may underlie the development and interplay of these disorders. We propose that the mesolimbic dopamine system is an underappreciated and attractive venue for the examination of neurobiological processes involved in the interactions, development, exacerbation, and maintenance of this symptom complex. In the present article, studies from multiple disciplines are reviewed to highlight the role of altered dopaminergic function in the promotion of arousal, pain sensitivity, and mood disturbance. We argue that studies aiming to elucidate common factors accounting for the comorbidity of insomnia, chronic pain, and depression should evaluate functioning within the mesolimbic dopaminergic system and its effect on common processes known to be dysregulated in all three disorders.
Collapse
|