1
|
Wiesman AI, Madge V, Fon EA, Dagher A, Collins DL, Baillet S. Associations between neuromelanin depletion and cortical rhythmic activity in Parkinson's disease. Brain 2025; 148:875-885. [PMID: 39282945 PMCID: PMC11884654 DOI: 10.1093/brain/awae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Parkinson's disease (PD) is marked by the death of neuromelanin-rich dopaminergic and noradrenergic cells in the substantia nigra (SN) and the locus coeruleus (LC), respectively, resulting in motor and cognitive impairments. Although SN dopamine dysfunction has clear neurophysiological effects, the association of reduced LC norepinephrine signalling with brain activity in PD remains to be established. We used neuromelanin-sensitive T1-weighted MRI (PD, n = 58; healthy control, n = 27) and task-free magnetoencephalography (PD, n = 58; healthy control, n = 65) to identify neuropathophysiological factors related to the degeneration of the LC and SN in patients with PD. We found pathological increases in rhythmic alpha-band (8-12 Hz) activity in patients with decreased LC neuromelanin, which were more strongly associated in patients with worse attentional impairments. This negative alpha-band-LC neuromelanin relationship is strongest in fronto-motor cortices, where alpha-band activity is inversely related to attention scores. Using neurochemical co-localization analyses with normative atlases of neurotransmitter transporters, we also show that this effect is more pronounced in regions with high densities of norepinephrine transporters. These observations support a noradrenergic association between LC integrity and alpha-band activity. Our data also show that rhythmic beta-band (15-29 Hz) activity in the left somatomotor cortex decreases with lower levels of SN neuromelanin; the same regions where beta activity reflects axial motor symptoms. Together, our findings clarify the association of well-documented alterations of rhythmic neurophysiology in PD with cortical and subcortical neurochemical systems. Specifically, attention-related alpha-band activity is related to dysfunction of the noradrenergic system, and beta activity with relevance to motor impairments reflects dopaminergic dysfunction.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Victoria Madge
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
2
|
Semenova EI, Rudenok MM, Rybolovlev IN, Shulskaya MV, Lukashevich MV, Partevian SA, Budko AI, Nesterov MS, Abaimov DA, Slominsky PA, Shadrina MI, Alieva AK. Effects of Age and MPTP-Induced Parkinson's Disease on the Expression of Genes Associated with the Regulation of the Sleep-Wake Cycle in Mice. Int J Mol Sci 2024; 25:7721. [PMID: 39062963 PMCID: PMC11276692 DOI: 10.3390/ijms25147721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a long prodromal period, during which patients often have sleep disturbances. The histaminergic system and circadian rhythms play an important role in the regulation of the sleep-wake cycle. Changes in the functioning of these systems may be involved in the pathogenesis of early stages of PD and may be age-dependent. Here, we have analyzed changes in the expression of genes associated with the regulation of the sleep-wake cycle (Hnmt, Hrh1, Hrh3, Per1, Per2, and Chrm3) in the substantia nigra (SN) and striatum of normal male mice of different ages, as well as in young and adult male mice with an MPTP-induced model of the early symptomatic stage (ESS) of PD. Age-dependent expression analysis in normal mouse brain tissue revealed changes in Hrh3, Per1, Per2, and Chrm3 genes in adult mice relative to young mice. When gene expression was examined in mice with the MPTP-induced model of the ESS of PD, changes in the expression of all studied genes were found only in the SN of adult mice with the ESS model of PD. These data suggest that age is a significant factor influencing changes in the expression of genes associated with sleep-wake cycle regulation in the development of PD.
Collapse
Affiliation(s)
- Ekaterina I. Semenova
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Margarita M. Rudenok
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Ivan N. Rybolovlev
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Marina V. Shulskaya
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria V. Lukashevich
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Suzanna A. Partevian
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Alexander I. Budko
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maxim S. Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, 119435 Krasnogorsk, Russia;
| | - Denis A. Abaimov
- Research Center of Neurology, Volokolamskoye Shosse 80, 125367 Moscow, Russia;
| | - Petr A. Slominsky
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria I. Shadrina
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Anelya Kh. Alieva
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| |
Collapse
|
3
|
Zare I, Choi D, Zhang J, Yaraki MT, Ghaee A, Nasab SZ, Taheri-Ledari R, Maleki A, Rahi A, Fan K, Lee J. Modulating the catalytic activities of nanozymes for molecular sensing. NANO TODAY 2024; 56:102276. [DOI: 10.1016/j.nantod.2024.102276] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Zhong W, Yang Q, Wang F, Lin X, Chen Z, Xue J, Zhao W, Liu X, Rao B, Zhang J. Cell-specific localization of β-synuclein in the mouse retina. Brain Struct Funct 2024; 229:1279-1298. [PMID: 38703218 DOI: 10.1007/s00429-024-02799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
β-synuclein, a member of the synuclein family, is frequently co-expressed with α-synuclein in the neural system, where it serves to inhibit abnormal aggregation of α-synuclein in neurodegenerative diseases. Beyond its role in pathological conditions, β-synuclein plays various functions independently of α-synuclein. In our investigation, we discovered a broader expression of β-synuclein in the mouse retina compared to α-synuclein. This widespread pattern implies its potential significance in the retina. Through detailed examination via light- and electron-microscopic immunocytochemistry, we identified β-synuclein expression from the inner segment (IS) and outer segment (OS) of photoreceptor cells to the ganglion cell layer (GCL). Our findings unveiled unique features, including β-synuclein immunoreactive IS and OS of cones, higher expression in cone pedicles than in rod spherules, absence in horizontal cells, limited expression in cone bipolar dendrites and somas, higher expression in cone bipolar terminals, presence in most amacrine cells, and expression in almost majority of somas in GCL with an absence in intrinsically photosensitive retinal ganglion cell (ipRGCs) processes. Notably, all cholinergic amacrine cells express high β- but not α-synuclein, while dopaminergic amacrine cells express α-synuclein exclusively. These distinctive expression patterns offer valuable insights for further exploration into the functions of β-synuclein and its potential role in synuclein pathology within the retina.
Collapse
Affiliation(s)
- Wenhui Zhong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Qingwen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fenglan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhongqun Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jing Xue
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenna Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoqing Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Bilin Rao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jun Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Laboratory of Retinal Physiology and Disease, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
5
|
Wiesman AI, da Silva Castanheira J, Fon EA, Baillet S. Alterations of Cortical Structure and Neurophysiology in Parkinson's Disease Are Aligned with Neurochemical Systems. Ann Neurol 2024; 95:802-816. [PMID: 38146745 PMCID: PMC11023768 DOI: 10.1002/ana.26871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) affects the structural integrity and neurophysiological signaling of the cortex. These alterations are related to the motor and cognitive symptoms of the disease. How these changes are related to the neurochemical systems of the cortex is unknown. METHODS We used T1-weighted magnetic resonance imaging (MRI) and magnetoencephalography (MEG) to measure cortical thickness and task-free neurophysiological activity in patients with idiopathic PD (nMEG = 79, nMRI = 65) and matched healthy controls (nMEG = 65, nMRI = 37). Using linear mixed-effects models, we examined the topographical alignment of cortical structural and neurophysiological alterations in PD with cortical atlases of 19 neurotransmitter receptor and transporter densities. RESULTS We found that neurophysiological alterations in PD occur primarily in brain regions rich in acetylcholinergic, serotonergic, and glutamatergic systems, with protective implications for cognitive and psychiatric symptoms. In contrast, cortical thinning occurs preferentially in regions rich in noradrenergic systems, and the strength of this alignment relates to motor deficits. INTERPRETATION This study shows that the spatial organization of neurophysiological and structural alterations in PD is relevant for nonmotor and motor impairments. The data also advance the identification of the neurochemical systems implicated. The approach uses novel nested atlas modeling methodology that is transferrable to research in other neurological and neuropsychiatric diseases and syndromes. ANN NEUROL 2024;95:802-816.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Edward A. Fon
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
6
|
Lemos IDS, Torres CA, Alano CG, Matiola RT, de Figueiredo Seldenreich R, Padilha APZ, De Pieri E, Effting PS, Machado-De-Ávila RA, Réus GZ, Leipnitz G, Streck EL. Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease. Neurochem Res 2024; 49:758-770. [PMID: 38104040 DOI: 10.1007/s11064-023-04072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2',7'-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.
Collapse
Affiliation(s)
- Isabela da Silva Lemos
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Antunes Torres
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Giassi Alano
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rafaela Tezza Matiola
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rejane de Figueiredo Seldenreich
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Alex Paulo Zeferino Padilha
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ellen De Pieri
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Pauline Souza Effting
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ricardo Andrez Machado-De-Ávila
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Gislaine Zilli Réus
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Emilio Luiz Streck
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
7
|
Citro S, Lazzaro GD, Cimmino AT, Giuffrè GM, Marra C, Calabresi P. A multiple hits hypothesis for memory dysfunction in Parkinson disease. Nat Rev Neurol 2024; 20:50-61. [PMID: 38052985 DOI: 10.1038/s41582-023-00905-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Cognitive disorders are increasingly recognized in Parkinson disease (PD), even in early disease stages, and memory is one of the most affected cognitive domains. Classically, hippocampal cholinergic system dysfunction was associated with memory disorders, whereas nigrostriatal dopaminergic system impairment was considered responsible for executive deficits. Evidence from PD studies now supports involvement of the amygdala, which modulates emotional attribution to experiences. Here, we propose a tripartite model including the hippocampus, striatum and amygdala as key structures for cognitive disorders in PD. First, the anatomo-functional relationships of these structures are explored and experimental evidence supporting their role in cognitive dysfunction in PD is summarized. We then discuss the potential role of α-synuclein, a pathological hallmark of PD, in the tripartite memory system as a key mechanism in the pathogenesis of memory disorders in the disease.
Collapse
Affiliation(s)
- Salvatore Citro
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Di Lazzaro
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angelo Tiziano Cimmino
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Guido Maria Giuffrè
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Camillo Marra
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
8
|
Chaudhary R, Singh R. Therapeutic Viewpoint on Rat Models of Locomotion Abnormalities and Neurobiological Indicators in Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:488-503. [PMID: 37202886 DOI: 10.2174/1871527322666230518111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Locomotion problems in Parkinson's syndrome are still a research and treatment difficulty. With the recent introduction of brain stimulation or neuromodulation equipment that is sufficient to monitor activity in the brain using electrodes placed on the scalp, new locomotion investigations in patients having the capacity to move freely have sprung up. OBJECTIVE This study aimed to find rat models and locomotion-connected neuronal indicators and use them all over a closed-loop system to enhance the future and present treatment options available for Parkinson's disease. METHODS Various publications on locomotor abnormalities, Parkinson's disease, animal models, and other topics have been searched using several search engines, such as Google Scholar, Web of Science, Research Gate, and PubMed. RESULTS Based on the literature, we can conclude that animal models are used for further investigating the locomotion connectivity deficiencies of many biological measuring devices and attempting to address unanswered concerns from clinical and non-clinical research. However, translational validity is required for rat models to contribute to the improvement of upcoming neurostimulation-based medicines. This review discusses the most successful methods for modelling Parkinson's locomotion in rats. CONCLUSION This review article has examined how scientific clinical experiments lead to localised central nervous system injuries in rats, as well as how the associated motor deficits and connection oscillations reflect this. This evolutionary process of therapeutic interventions may help to improve locomotion- based treatment and management of Parkinson's syndrome in the upcoming years.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
9
|
van Wamelen DJ, Leta V, Chaudhuri KR, Jenner P. Future Directions for Developing Non-dopaminergic Strategies for the Treatment of Parkinson's Disease. Curr Neuropharmacol 2024; 22:1606-1620. [PMID: 37526188 PMCID: PMC11284721 DOI: 10.2174/1570159x21666230731110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 08/02/2023] Open
Abstract
The symptomatic treatment of Parkinson's disease (PD) has been dominated by the use of dopaminergic medication, but significant unmet need remains, much of which is related to non-motor symptoms and the involvement of non-dopaminergic transmitter systems. As such, little has changed in the past decades that has led to milestone advances in therapy and significantly improved treatment paradigms and patient outcomes, particularly in relation to symptoms unresponsive to levodopa. This review has looked at how pharmacological approaches to treatment are likely to develop in the near and distant future and will focus on two areas: 1) novel non-dopaminergic pharmacological strategies to control motor symptoms; and 2) novel non-dopaminergic approaches for the treatment of non-motor symptoms. The overall objective of this review is to use a 'crystal ball' approach to the future of drug discovery in PD and move away from the more traditional dopamine-based treatments. Here, we discuss promising non-dopaminergic and 'dirty drugs' that have the potential to become new key players in the field of Parkinson's disease treatment.
Collapse
Affiliation(s)
- Daniel J. van Wamelen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valentina Leta
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - K. Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Peter Jenner
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Madiha S, Batool Z, Shahzad S, Tabassum S, Liaquat L, Afzal A, Sadir S, Sajid I, Mehdi BJ, Ahmad S, Haider S. Naringenin, a Functional Food Component, Improves Motor and Non-Motor Symptoms in Animal Model of Parkinsonism Induced by Rotenone. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:654-661. [PMID: 37796415 DOI: 10.1007/s11130-023-01103-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 10/06/2023]
Abstract
Parkinson's disease (PD) and other age-related neurodegenerative ailments have a strong link to oxidative stress. Bioflavonoid naringenin has antioxidant properties. The effects of pre- and post-naringenin supplementation on a rotenone-induced PD model were examined in this work. Naringenin (50 mg/kg, p.o.) was administered to rats for two weeks before the administration of rotenone in the pre-treatment phase. In contrast, rotenone (1.5 mg/kg, s.c.) was administered for eight days before naringenin (50 mg/kg, p.o.) was supplemented for two weeks in the post-treatment phase. During behavioral investigation, the motor and non-motor signs of PD were observed. Additionally, estimation of neurochemical and biochemical parameters was also carried out. Compared to controls, rotenone treatment substantially increased oxidative stress, altered neurotransmitters, and caused motor and non-motor impairments. Rotenone-induced motor and non-motor impairments were considerably reduced by naringenin supplementation. The supplementation also increased antioxidant enzyme activities and restored the changes in neurotransmitter levels. The findings of this work strongly imply that daily consumption of flavonoids such as naringenin may have a therapeutic potential to combat PD.
Collapse
Affiliation(s)
- Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Sidrah Shahzad
- Pakistan Navy Medical Training School and College, PNS Shifa, Karachi, Pakistan
| | - Saiqa Tabassum
- Department of Biosciences, Shaheed Zuifiqar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Laraib Liaquat
- Multidisciplinary Research Lab, Bahria University Health Sciences Campus, Bahria University, Karachi, Pakistan
| | - Asia Afzal
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sadia Sadir
- Department of Biosciences, Shaheed Zuifiqar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Irfan Sajid
- Department of Biochemistry, Federal Urdu University of Arts, Sciences & Technology, Karachi, Pakistan
| | - Bushra Jabeen Mehdi
- Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi, Pakistan
| | - Saara Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
11
|
Mizutani Y, Ohdake R, Tatebe H, Higashi A, Shima S, Ueda A, Ito M, Tokuda T, Watanabe H. Associations of Alzheimer's-related plasma biomarkers with cognitive decline in Parkinson's disease. J Neurol 2023; 270:5461-5474. [PMID: 37480401 PMCID: PMC10576723 DOI: 10.1007/s00415-023-11875-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is associated with cognitive decline through multiple mechanisms, including Alzheimer's disease (AD) pathology and cortical Lewy body involvement. However, its underlying mechanisms remain unclear. Recently, AD-related plasma biomarkers have emerged as potential tools for predicting abnormal pathological protein accumulation. We aimed to investigate the association between AD-related plasma biomarkers and cognitive decline in PD patients. METHODS Plasma biomarkers were measured in 70 PD patients (49 with nondemented Parkinson's disease (PDND) and 21 with Parkinson's disease dementia (PDD)) and 38 healthy controls (HCs) using a single-molecule array. The study evaluated (1) the correlation between plasma biomarkers and clinical parameters, (2) receiver operating characteristic curves and areas under the curve to evaluate the discrimination capacity of plasma biomarkers among groups, and (3) a generalized linear model to analyze associations with Addenbrooke's Cognitive Examination-Revised and Montreal Cognitive Assessment-Japanese version scores. RESULTS Plasma glial fibrillary acidic protein significantly correlated with cognitive function tests, including all subdomains, with a notable increase in the PDD group compared with the HC and PDND groups, while plasma neurofilament light chain captured both cognitive decline and disease severity in the PDND and PDD groups. Plasma beta-amyloid 42/40 and pholphorylated-tau181 indicated AD pathology in the PDD group, but plasma beta-amyloid 42/40 was increased in the PDND group compared with HCs and decreased in the PDD group compared with the PDND group. CONCLUSIONS AD-related plasma biomarkers may predict cognitive decline in PD and uncover underlying mechanisms suggesting astrocytic pathologies related to cognitive decline in PD.
Collapse
Affiliation(s)
- Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Atsuhiro Higashi
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakugo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
12
|
Lockhart T, Frames C, Olson M, Moon SH, Peterson D, Lieberman A. Effects of protective step training on proactive and reactive motor adaptations in Parkinson's disease patients. Front Neurol 2023; 14:1211441. [PMID: 37965161 PMCID: PMC10642212 DOI: 10.3389/fneur.2023.1211441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The aim of this study was to investigate to what extent PD affects the ability to walk, respond to balance perturbations in a single training session, and produce acute short-term effects to improve compensatory reactions and control of unperturbed walking stability. Understanding the mechanism of compensation and neuroplasticity to unexpected step perturbation training during walking and static stance can inform treatment of PD by helping to design effective training regimens that remediate fall risk. Current rehabilitation therapies are inadequate at reducing falls in people with Parkinson's disease (PD). While pharmacologic and surgical treatments have proved largely ineffective in treating postural instability and gait dysfunction in people with PD, studies have demonstrated that therapy specifically focusing on posture, gait, and balance may significantly improve these factors and reduce falls. The primary goal of this study was to assess the effectiveness of a novel and promising intervention therapy (protective step training - i.e., PST) to improve balance and reduce falls in people with PD. A secondary goal was to understand the effects of PST on proactive and reactive feedback responses during stance and gait tasks. Multiple-baseline, repeated measures analyses were performed on the multitude of proactive and reactive performance measures to assess the effects of PST on gait and postural stability parameters. In general, the results indicate that participants with PD were able to use experiences with perturbation training to integrate and adapt feedforward and feedback behaviors to reduce falls. The ability of the participants with PD to adapt to changes in task demands suggests that individuals with PD could benefit from the protective step training to facilitate balance control during rehabilitation.
Collapse
Affiliation(s)
- Thurmon Lockhart
- Locomotion Research Laboratory, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Chris Frames
- Locomotion Research Laboratory, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Muhammad Ali Movement Disorders Clinic, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Markey Olson
- Locomotion Research Laboratory, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Muhammad Ali Movement Disorders Clinic, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Seong H. Moon
- Locomotion Research Laboratory, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Dan Peterson
- Gait and Balance Dysfunction Laboratory, College of Health Solutions, Arizona State University, Tempe, AZ, United States
- Department of Veteran’s Affairs, Phoenix, AZ, United States
| | - Abraham Lieberman
- Muhammad Ali Movement Disorders Clinic, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
13
|
Kato I, Ogawa Y, Yakushiji F, Ogura J, Kobayashi M, Shindo N, Ichikawa S, Maenaka K, Sakaitani M. Beneficial effects of a new neuroprotective compound in neuronal cells and MPTP-administered mouse model of Parkinson's disease. Chem Commun (Camb) 2023; 59:12306-12309. [PMID: 37753573 DOI: 10.1039/d3cc03069e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A new compound, a derivative of 3,4,5-trimethoxy-N-phenyl benzamide bearing an 8''-methylimidazopyridine moiety, is found to demonstrate neuroprotective effects by preventing cell death caused by oxidative stress. The compound possesses high solubility and metabolic stability, and inhibits MPTP-induced effects in vivo, indicating high potential as a therapeutic drug for Parkinson's disease.
Collapse
Affiliation(s)
- Izumi Kato
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Yudai Ogawa
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Fumika Yakushiji
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Jiro Ogura
- Department of Pharmacy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata-shi, Yamagata 990-9585, Japan
| | - Masaki Kobayashi
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Naoya Shindo
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Ichikawa
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo 060-0812, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Sakaitani
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
14
|
Khan AF, Adewale Q, Lin SJ, Baumeister TR, Zeighami Y, Carbonell F, Palomero-Gallagher N, Iturria-Medina Y. Patient-specific models link neurotransmitter receptor mechanisms with motor and visuospatial axes of Parkinson's disease. Nat Commun 2023; 14:6009. [PMID: 37752107 PMCID: PMC10522603 DOI: 10.1038/s41467-023-41677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease involves multiple neurotransmitter systems beyond the classical dopaminergic circuit, but their influence on structural and functional alterations is not well understood. Here, we use patient-specific causal brain modeling to identify latent neurotransmitter receptor-mediated mechanisms contributing to Parkinson's disease progression. Combining the spatial distribution of 15 receptors from post-mortem autoradiography with 6 neuroimaging-derived pathological factors, we detect a diverse set of receptors influencing gray matter atrophy, functional activity dysregulation, microstructural degeneration, and dendrite and dopaminergic transporter loss. Inter-individual variability in receptor mechanisms correlates with symptom severity along two distinct axes, representing motor and psychomotor symptoms with large GABAergic and glutamatergic contributions, and cholinergically-dominant visuospatial, psychiatric and memory dysfunction. Our work demonstrates that receptor architecture helps explain multi-factorial brain re-organization, and suggests that distinct, co-existing receptor-mediated processes underlie Parkinson's disease.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Sue-Jin Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Yashar Zeighami
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
15
|
Chancey JH, Kellendonk C, Javitch JA, Lovinger DM. Dopaminergic D2 receptor modulation of striatal cholinergic interneurons contributes to sequence learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554807. [PMID: 37693570 PMCID: PMC10491092 DOI: 10.1101/2023.08.28.554807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Learning action sequences is necessary for normal daily activities. Medium spiny neurons (MSNs) in the dorsal striatum (dStr) encode action sequences through changes in firing at the start and/or stop of action sequences or sustained changes in firing throughout the sequence. Acetylcholine (ACh), released from cholinergic interneurons (ChIs), regulates striatal function by modulating MSN and interneuron excitability, dopamine and glutamate release, and synaptic plasticity. Cholinergic neurons in dStr pause their tonic firing during the performance of learned action sequences. Activation of dopamine type-2 receptors (D2Rs) on ChIs is one mechanism of ChI pausing. In this study we show that deleting D2Rs from ChIs by crossing D2-floxed with ChAT-Cre mice (D2Flox-ChATCre), which inhibits dopamine-mediated ChI pausing and leads to deficits in an operant action sequence task and lower breakpoints in a progressive ratio task. These data suggest that D2Flox-ChATCre mice have reduced motivation to work for sucrose reward, but show no generalized motor skill deficits. D2Flox-ChATCre mice perform similarly to controls in a simple reversal learning task, indicating normal behavioral flexibility, a cognitive function associated with ChIs. In vivo electrophysiological recordings show that D2Flox-ChatCre mice have deficits in sequence encoding, with fewer dStr MSNs encoding entire action sequences compared to controls. Thus, ChI D2R deletion appears to impair a neural substrate of action chunking. Virally replacing D2Rs in dStr ChIs in adult mice improves action sequence learning, but not the lower breakpoints, further suggesting that D2Rs on ChIs in the dStr are critical for sequence learning, but not for driving the motivational aspects of the task.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| | - Christoph Kellendonk
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| |
Collapse
|
16
|
Fallon SJ, Plant O, Tabi YA, Manohar SG, Husain M. Effects of cholinesterase inhibition on attention and working memory in Lewy body dementias. Brain Commun 2023; 5:fcad207. [PMID: 37545547 PMCID: PMC10404008 DOI: 10.1093/braincomms/fcad207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Cholinesterase inhibitors are frequently used to treat cognitive symptoms in Lewy body dementias (Parkinson's disease dementia and dementia with Lewy bodies). However, the selectivity of their effects remains unclear. In a novel rivastigmine withdrawal design, Parkinson's disease dementia and dementia with Lewy bodies patients were tested twice: once when taking rivastigmine as usual and once when they had missed one dose. In each session, they performed a suite of tasks (sustained attention, simple short-term recall, distractor resistance and manipulating the focus of attention) that allowed us to investigate the cognitive mechanisms through which rivastigmine affects attentional control. Consistent with previous literature, rivastigmine withdrawal significantly impaired attentional efficacy (quicker response latencies without a change in accuracy). However, it had no effects on cognitive control as assessed by the ability to withhold a response (inhibitory control). Worse short-term memory performance was also observed when patients were OFF rivastigmine, but these effects were delay and load independent, likely due to impaired visual attention. In contrast to previous studies that have examined the effects of dopamine withdrawal, cognitively complex tasks requiring control over the contents of working memory (ignoring, updating or shifting the focus of attention) were not significantly impaired by rivastigmine withdrawal. Cumulatively, these data support that the conclusion that cholinesterase inhibition has relatively specific and circumscribed-rather than global-effects on attention that may also affect performance on simple short-term memory tasks, but not when cognitive control over working memory is required. The results also indicate that the withdrawal of a single dose of rivastigmine is sufficient to reveal these impairments, demonstrating that cholinergic withdrawal can be an informative clinical as well as an investigative tool.
Collapse
Affiliation(s)
- Sean James Fallon
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- School of Psychology, University of Plymouth, Plymouth PL4 8AA, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Younes A Tabi
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
17
|
Becchi S, Chieng B, Bradfield LA, Capellán R, Leung BK, Balleine BW. Cognitive effects of thalamostriatal degeneration are ameliorated by normalizing striatal cholinergic activity. SCIENCE ADVANCES 2023; 9:eade8247. [PMID: 37352346 PMCID: PMC10289650 DOI: 10.1126/sciadv.ade8247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/19/2023] [Indexed: 06/25/2023]
Abstract
The loss of neurons in parafascicular thalamus (Pf) and their inputs to dorsomedial striatum (DMS) in Lewy body disease (LBD) and Parkinson's disease dementia (PDD) have been linked to the effects of neuroinflammation. We found that, in rats, these inputs were necessary for both the function of striatal cholinergic interneurons (CINs) and the flexible encoding of the action-outcome (AO) associations necessary for goal-directed action, producing a burst-pause pattern of CIN firing but only during the remapping elicited by a shift in AO contingency. Neuroinflammation in the Pf abolished these changes in CIN activity and goal-directed control after the shift in contingency. However, both effects were rescued by either the peripheral or the intra-DMS administration of selegiline, a monoamine oxidase B inhibitor that we found also enhances adenosine triphosphatase activity in CINs. These findings suggest a potential treatment for the cognitive deficits associated with neuroinflammation affecting the function of the Pf and related structures.
Collapse
Affiliation(s)
- Serena Becchi
- School of Psychology, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Billy Chieng
- School of Psychology, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Laura A. Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Roberto Capellán
- School of Psychology, Department of Psychobiology, National University for Distance Learning, Madrid, Spain
| | - Beatrice K. Leung
- School of Psychology, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Bernard W. Balleine
- School of Psychology, Faculty of Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
18
|
Wiesman AI, da Silva Castanheira J, Fon EA, Baillet S. Structural and neurophysiological alterations in Parkinson's disease are aligned with cortical neurochemical systems. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.04.23288137. [PMID: 37066346 PMCID: PMC10104211 DOI: 10.1101/2023.04.04.23288137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Parkinson's disease (PD) affects cortical structures and neurophysiology. How these deviations from normative variants relate to the neurochemical systems of the cortex in a manner corresponding to motor and cognitive symptoms is unknown. We measured cortical thickness and spectral neurophysiological alterations from structural magnetic resonance imaging and task-free magnetoencephalography in patients with idiopathic PD (NMEG = 79; NMRI = 65), contrasted with similar data from matched healthy controls (NMEG = 65; NMRI = 37). Using linear mixed-effects models and cortical atlases of 19 neurochemical systems, we found that the structural and neurophysiological alterations of PD align with several receptor and transporter systems (acetylcholine, serotonin, glutamate, and noradrenaline) albeit with different implications for motor and non-motor symptoms. Some neurophysiological alignments are protective of cognitive functions: the alignment of broadband power increases with acetylcholinergic systems is related to better attention function. However, neurochemical alignment with structural and other neurophysiological alterations is associated with motor and psychiatric impairments, respectively. Collectively, the present data advance understanding of the association between the nature of neurophysiological and structural cortical alterations in PD and the symptoms that are characteristic of the disease. They also demonstrate the value of a new nested atlas modeling approach to advance research on neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Edward A. Fon
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
19
|
Sánchez-Sáez X, Ortuño-Lizarán I, Sánchez-Castillo C, Lax P, Cuenca N. Starburst amacrine cells, involved in visual motion perception, loose their synaptic input from dopaminergic amacrine cells and degenerate in Parkinson's disease patients. Transl Neurodegener 2023; 12:17. [PMID: 37013599 PMCID: PMC10071607 DOI: 10.1186/s40035-023-00348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The main clinical symptoms characteristic of Parkinson's disease (PD) are bradykinesia, tremor, and other motor deficits. However, non-motor symptoms, such as visual disturbances, can be identified at early stages of the disease. One of these symptoms is the impairment of visual motion perception. Hence, we sought to determine if the starburst amacrine cells, which are the main cellular type involved in motion direction selectivity, are degenerated in PD and if the dopaminergic system is related to this degeneration. METHODS Human eyes from control (n = 10) and PD (n = 9) donors were available for this study. Using immunohistochemistry and confocal microscopy, we quantified starburst amacrine cell density (choline acetyltransferase [ChAT]-positive cells) and the relationship between these cells and dopaminergic amacrine cells (tyrosine hydroxylase-positive cells and vesicular monoamine transporter-2-positive presynapses) in cross-sections and wholemount retinas. RESULTS First, we found two different ChAT amacrine populations in the human retina that presented different ChAT immunoreactivity intensity and different expression of calcium-binding proteins. Both populations are affected in PD and their density is reduced compared to controls. Also, we report, for the first time, synaptic contacts between dopaminergic amacrine cells and ChAT-positive cells in the human retina. We found that, in PD retinas, there is a reduction of the dopaminergic synaptic contacts into ChAT cells. CONCLUSIONS Taken together, this work indicates degeneration of starburst amacrine cells in PD related to dopaminergic degeneration and that dopaminergic amacrine cells could modulate the function of starburst amacrine cells. Since motion perception circuitries are affected in PD, their assessment using visual tests could provide new insights into the diagnosis of PD.
Collapse
Grants
- FEDER-PID 2019-106230RB-I00 Ministerio de Ciencia e Innovación
- FEDER-PID 2019-106230RB-I00 Ministerio de Ciencia e Innovación
- FPU16/04114 Ministerio de Universidades
- RETICS-FEDER RD16/0008/0016 Instituto de Salud Carlos III
- IDIFEDER/2017/064 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- PROMETEO/2021/024 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- PROMETEO/2021/024 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- APOSTD/2020/245 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- 2019/00286/001 Es Retina Asturias
- 2019/00286/001 Es Retina Asturias
Collapse
Affiliation(s)
- Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain.
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain.
- Ramón Margalef Institute, University of Alicante, San Vicente del Raspeig, Spain.
| |
Collapse
|
20
|
Tosserams A, Bloem BR, Ehgoetz Martens KA, Helmich RC, Kessels RPC, Shine JM, Taylor NL, Wainstein G, Lewis SJG, Nonnekes J. Modulating arousal to overcome gait impairments in Parkinson's disease: how the noradrenergic system may act as a double-edged sword. Transl Neurodegener 2023; 12:15. [PMID: 36967402 PMCID: PMC10040128 DOI: 10.1186/s40035-023-00347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
In stressful or anxiety-provoking situations, most people with Parkinson's disease (PD) experience a general worsening of motor symptoms, including their gait impairments. However, a proportion of patients actually report benefits from experiencing-or even purposely inducing-stressful or high-arousal situations. Using data from a large-scale international survey study among 4324 people with PD and gait impairments within the online Fox Insight (USA) and ParkinsonNEXT (NL) cohorts, we demonstrate that individuals with PD deploy an array of mental state alteration strategies to cope with their gait impairment. Crucially, these strategies differ along an axis of arousal-some act to heighten, whereas others diminish, overall sympathetic tone. Together, our observations suggest that arousal may act as a double-edged sword for gait control in PD. We propose a theoretical, neurobiological framework to explain why heightened arousal can have detrimental effects on the occurrence and severity of gait impairments in some individuals, while alleviating them in others. Specifically, we postulate that this seemingly contradictory phenomenon is explained by the inherent features of the ascending arousal system: namely, that arousal is related to task performance by an inverted u-shaped curve (the so-called Yerkes and Dodson relationship). We propose that the noradrenergic locus coeruleus plays an important role in modulating PD symptom severity and expression, by regulating arousal and by mediating network-level functional integration across the brain. The ability of the locus coeruleus to facilitate dynamic 'cross-talk' between distinct, otherwise largely segregated brain regions may facilitate the necessary cerebral compensation for gait impairments in PD. In the presence of suboptimal arousal, compensatory networks may be too segregated to allow for adequate compensation. Conversely, with supraoptimal arousal, increased cross-talk between competing inputs of these complementary networks may emerge and become dysfunctional. Because the locus coeruleus degenerates with disease progression, finetuning of this delicate balance becomes increasingly difficult, heightening the need for mental strategies to self-modulate arousal and facilitate shifting from a sub- or supraoptimal state of arousal to improve gait performance. Recognition of this underlying mechanism emphasises the importance of PD-specific rehabilitation strategies to alleviate gait disability.
Collapse
Affiliation(s)
- Anouk Tosserams
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Rick C Helmich
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Vincent Van Gogh Institute for Psychiatry, Venray, The Netherlands
- Klimmendaal Rehabilitation Center, Arnhem, The Netherlands
| | - James M Shine
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Centre for Complex Systems, The University of Sydney, Camperdown, NSW, Australia
| | - Natasha L Taylor
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Gabriel Wainstein
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Simon J G Lewis
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Jorik Nonnekes
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Huang SY, Su ZY, Han YY, Liu L, Shang YJ, Mai ZF, Zeng ZW, Li CH. Cordycepin improved the cognitive function through regulating adenosine A 2A receptors in MPTP induced Parkinson's disease mice model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154649. [PMID: 36634379 DOI: 10.1016/j.phymed.2023.154649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Parkinson's disease (PD), the most common neurodegenerative disorder, primarily affects dopaminergic neurons in the substantia nigra (SN). In addition to severe motor dysfunction, PD patients appear apparent cognitive impairments in the late stage. Cognitive dysfunction is accompanied by synaptic transmission damage in the hippocampus. Cordycepin has been reported to alleviate cognitive impairments in neurodegenerative diseases. PURPOSE The study aimed to estimate the protection roles of cordycepin on cognitive dysfunction in PD model and explore the potential mechanisms. METHODS 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to establish the PD model in vivo and in vitro experiments. In the in vivo experiments, the C57BL / 6 mice were intraperitoneally injected with MPTP and intragastric administration with cordycepin. Open field test (OFT) was used to estimate the exercise ability. Spontaneous alternation behavioral (SAB) and morris water maze (MWM) tests were used to evaluate the learning and memory abilities. The hippocampal slices from C57BL / 6 and Kunming mice in the in vitro experiments were used to record field excitatory postsynaptic potential (fEPSP) by electrophysiological methods. Western blotting was used to examine the level of tyrosine hydroxylase (TH) in the in vivo experiments and the levels of adenosine A1 and A2A receptors (A1R and A2AR) in the in vitro experiments, respectively. The drugs of MPTP, cordycepin, DPCPX and SCH58261 were perfused through dissolving in artificial cerebrospinal fluid. RESULTS Cordycepin could significantly reduce the impairments on motor, exploration, spatial learning and memory induce by MPTP. MPTP reduced the amplitude of LTP in hippocampal CA1 area but cordycepin could improve LTP amplitudes. Cordycepin at dosage of 20 mg/kg also increased the TH level in SN. In the in vitro experiments, MPTP inhibited synaptic transmission in hippocampal Schaffer-CA1 pathway with a dose-dependent relationship, while cordycepin could reverse the inhibition of synaptic transmission. Furthermore, the roles of cordycepin on synaptic transmission could been attenuated in the presence of the antagonists of A1R and A2AR, DPCPX and SCH58261, respectively. Interestingly, the level of A2AR rather than A1R in hippocampus was significantly decreased in the cordycepin group as compared to the control. CONCLUSION The present study has showed that cordycepin could improve cognitive function in the PD model induced by MPTP through regulating the adenosine A2A receptors. These findings were helpful to provide a new strategy for the dementia caused by Parkinson's disease.
Collapse
Affiliation(s)
- Shu-Yi Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zong-Ying Su
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zi-Fan Mai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhi-Wei Zeng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
22
|
Schümann F, Schmitt O, Wree A, Hawlitschka A. Distribution of Cleaved SNAP-25 in the Rat Brain, following Unilateral Injection of Botulinum Neurotoxin-A into the Striatum. Int J Mol Sci 2023; 24:1685. [PMID: 36675200 PMCID: PMC9865012 DOI: 10.3390/ijms24021685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
In Parkinson's disease, hypercholinism in the striatum occurs, with the consequence of disturbed motor functions. Direct application of Botulinum neurotoxin-A in the striatum of hemi-Parkinsonian rats might be a promising anticholinergic therapeutic option. Here, we aimed to determine the spread of intrastriatally injected BoNT-A in the brain as well as the duration of its action based on the distribution of cleaved SNAP-25. Rats were injected with 1 ng of BoNT-A into the right striatum and the brains were examined at different times up to one year after treatment. In brain sections immunohistochemically stained for BoNT-A, cleaved SNAP-25 area-specific densitometric analyses were performed. Increased immunoreactivity for cleaved SNAP-25 was found in brain regions other than the unilaterally injected striatum. Most cleaved SNAP-25-ir was found in widespread areas ipsilateral to the BoNT-A injection, in some regions, however, immunoreactivity was also measured in the contralateral hemisphere. There was a linear relationship between the distance of a special area from the injected striatum and the time until its maximum averaged immunoreactivity was reached. Moreover, we observed a positive relationship for the area-specific distance from the injected striatum and its maximum immunoreactivity as well as for the connection density with the striatum and its maximum immunoreactivity. The results speak for a bidirectional axonal transport of BoNT-A after its application into the striatum to its widespread connected parts of the brain. Even one year after BoNT-A injection, cleaved SNAP-25 could still be detected.
Collapse
Affiliation(s)
- Friederike Schümann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
- Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| |
Collapse
|
23
|
Combined EEG and immersive virtual reality unveil dopaminergic modulation of error monitoring in Parkinson's Disease. NPJ Parkinsons Dis 2023; 9:3. [PMID: 36639384 PMCID: PMC9839679 DOI: 10.1038/s41531-022-00441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Detecting errors in your own and others' actions is associated with discrepancies between intended and expected outcomes. The processing of salient events is associated with dopamine release, the balance of which is altered in Parkinson's disease (PD). Errors in observed actions trigger various electrocortical indices (e.g. mid-frontal theta, error-related delta, and error positivity [oPe]). However, the impact of dopamine depletion to observed errors in the same individual remains unclear. Healthy controls (HCs) and PD patients observed ecological reach-to-grasp-a-glass actions performed by a virtual arm from a first-person perspective. PD patients were tested under their dopaminergic medication (on-condition) and after dopaminergic withdrawal (off-condition). Analyses of oPe, delta, and theta-power increases indicate that while the formers were elicited after incorrect vs. correct actions in all groups, the latter were observed in on-condition but altered in off-condition PD. Therefore, different EEG error signatures may index the activity of distinct mechanisms, and error-related theta power is selectively modulated by dopamine depletion. Our findings may facilitate discovering dopamine-related biomarkers for error-monitoring dysfunctions that may have crucial theoretical and clinical implications.
Collapse
|
24
|
Yang YC, Hsu JP. Nanopore-Based Detection of Trace Concentrations of Multivalent Ions When Impurity Ions Are Present. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11022-11032. [PMID: 36044592 DOI: 10.1021/acs.langmuir.2c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The feasibility of detecting a trace concentration of multivalent ions based on the ionic current rectification (ICR) of a nanopore when impurity ions might present is assessed. Adopting a bullet-shaped nanopore surface modified with tannic acid as an example, the detection of trace concentrations of Cu2+ (target ion) when Fe3+ (impurity) is present with K+ as background ions under various conditions is simulated. In particular, the influence of the reaction order of the association of target ions and tannic acid on the nanopore performance is examined. We show that the lower the background concentration the better the detection performance. For the examined background concentrations of 1, 10, 100, and 1000 mM, the optimal detection ranges are [0.5, 1000 μM] and [1, 1000 nM] for Cu2+ and Fe3+, respectively. The detection limits, 0.5 μM for Cu2+ and 1 nM for Fe3+, are lower than those that can be obtained from conventional instruments, suggesting the potential of applying the present nanopore-based approach. In addition, we also consider the presence of multiple ions, which can occur, for example, in detecting Cu2+ (target ion) when Fe3+ (impurity) might present or vice versa with K+ as background ions. The competitive adsorption of these three kinds of ions can yield complicated ICR behaviors.
Collapse
Affiliation(s)
- Yung-Chi Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
25
|
Hvingelby VS, Glud AN, Sørensen JCH, Tai Y, Andersen ASM, Johnsen E, Moro E, Pavese N. Interventions to improve gait in Parkinson's disease: a systematic review of randomized controlled trials and network meta-analysis. J Neurol 2022; 269:4068-4079. [PMID: 35378605 DOI: 10.1007/s00415-022-11091-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Disabling gait symptoms, especially freezing of gait (FoG), represents a milestone in the progression of Parkinson's disease (PD). This systematic review and network meta-analysis assessed and ranked interventions according to their effectiveness in treating gait symptoms in people with PD across four different groups of gait measures. METHODS A systematic search was carried out across PubMed, EMBASE, PubMed Central (PMC), and Cochrane Central Library from January 2000 to April 2021. All interventions, or combinations, were included. The primary outcome was changes in objective gait measures, before and after intervention. Outcome measures in the included studies were stratified into four different types of gait outcome measures; dynamic gait, fitness, balance, and freezing of gait. For the statistical analysis, five direct head-to-head comparisons of interventions, as well as indirect comparisons were performed. Corresponding forest plots ranking the interventions were generated. RESULTS The search returned 6288 articles. From these, 148 articles could be included. Of the four different groups of measurement, three were consistent, meaning that there was agreement between direct and indirect evidence. The groups with consistent evidence were dynamic gait, fitness, and freezing of gait. For dynamic gait measures, treatments with the largest observed effect were Aquatic Therapy with dual task exercising (SMD 1.99 [- 1.00; 4.98]) and strength and balance training (SMD 1.95 [- 0.20; 4.11]). For measures of fitness, treatments with the largest observed effects were aquatic therapy (SMD 3.41 [2.11; 4.71] and high-frequency repetitive transcranial magnetic stimulation (SMD 2.51 [1.48; 3.55]). For FoG measures, none of the included interventions yielded significant results. CONCLUSION Some interventions can ameliorate gait impairment in people with PD. No recommendations on a superior intervention can be made. None of the studied interventions proved to be efficacious in the treatment of FoG. PROSPERO (registration ID CRD42021264076).
Collapse
Affiliation(s)
- Victor Schwartz Hvingelby
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark. .,Department of Nuclear Medicine, PET Centre Aarhus University Hospital, Aarhus, Denmark.
| | - Andreas Nørgaard Glud
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.,Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Christian Hedemann Sørensen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.,Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Yen Tai
- Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | | | - Erik Johnsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire of Grenoble, Grenoble Alpes University, Grenoble, France.,Grenoble Institute of Neuroscience, Grenoble, France
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle Upon Tyne, UK.,Department of Nuclear Medicine, PET Centre Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Królicka E, Kieć-Kononowicz K, Łażewska D. Chalcones as Potential Ligands for the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2022; 15:ph15070847. [PMID: 35890146 PMCID: PMC9317344 DOI: 10.3390/ph15070847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022] Open
Abstract
Along with the increase in life expectancy, a significant increase of people suffering from neurodegenerative diseases (ND) has been noticed. The second most common ND, after Alzheimer’s disease, is Parkinson’s disease (PD), which manifests itself with a number of motor and non-motor symptoms that hinder the patient’s life. Current therapies can only alleviate those symptoms and slow down the progression of the disease, but not effectively cure it. So now, in addition to understanding the mechanism and causes of PD, it is also important to find a powerful way of treatment. It has been proved that in the etiology and course of PD, the essential roles are played by dopamine (DA) (an important neurotransmitter), enzymes regulating its level (e.g., COMT, MAO), and oxidative stress leading to neuroinflammation. Chalcones, due to their “simple” structure and valuable biological properties are considered as promising candidates for treatment of ND, also including PD. Here, we provide a comprehensive review of chalcones and related structures as potential new therapeutics for cure and prevention of PD. For this purpose, three databases (Pubmed, Scopus and Web of Science) were searched to collect articles published during the last 5 years (January 2018–February 2022). Chalcones have been described as promising enzyme inhibitors (MAO B, COMT, AChE), α-synuclein imaging probes, showing anti-neuroinflammatory activity (inhibition of iNOS or activation of Nrf2 signaling), as well as antagonists of adenosine A1 and/or A2A receptors. This review focused on the structure–activity relationships of these compounds to determine how a particular substituent or its position in the chalcone ring(s) (ring A and/or B) affects biological activity.
Collapse
|
27
|
Effect of 3D Synthetic Microscaffold Nichoid on the Morphology of Cultured Hippocampal Neurons and Astrocytes. Cells 2022; 11:cells11132008. [PMID: 35805092 PMCID: PMC9265925 DOI: 10.3390/cells11132008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
The human brain is the most complex organ in biology. This complexity is due to the number and the intricate connections of brain cells and has so far limited the development of in vitro models for basic and applied brain research. We decided to create a new, reliable, and cost-effective in vitro system based on the Nichoid, a 3D microscaffold microfabricated by two-photon laser polymerization technology. We investigated whether these 3D microscaffold devices can create an environment allowing the manipulation, monitoring, and functional assessment of a mixed population of brain cells in vitro. With this aim, we set up a new model of hippocampal neurons and astrocytes co-cultured in the Nichoid microscaffold to generate brain micro-tissues of 30 μm thickness. After 21 days in culture, we morphologically characterized the 3D spatial organization of the hippocampal astrocytes and neurons within the microscaffold, and we compared our observations to those made using the classical 2D co-culture system. We found that the co-cultured cells colonized the entire volume of the 3D devices. Using confocal microscopy, we observed that within this period the different cell types had become well-differentiated. This was further elaborated with the use of drebrin, PSD-95, and synaptophysin antibodies that labeled the majority of neurons, both in the 2D as well as in the 3D co-cultures. Using scanning electron microscopy, we found that neurons in the 3D co-culture displayed a significantly larger amount of dendritic protrusions compared to neurons in the 2D co-culture. This latter observation indicates that neurons growing in a 3D environment may be more prone to form connections than those co-cultured in a 2D condition. Our results show that the Nichoid can be used as a 3D device to investigate the structure and morphology of neurons and astrocytes in vitro. In the future, this model can be used as a tool to study brain cell interactions in the discovery of important mechanisms governing neuronal plasticity and to determine the factors that form the basis of different human brain diseases. This system may potentially be further used for drug screening in the context of various brain diseases.
Collapse
|
28
|
Shen H, Shi H, Feng B, Ding C, Yu S. A versatile biomimetic multienzyme cascade nanoplatform based on boronic acid-modified metal-organic framework for colorimetric biosensing. J Mater Chem B 2022; 10:3444-3451. [PMID: 35394481 DOI: 10.1039/d2tb00158f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of bio- and chemo-catalysts for sequential cascades has received considerable attention in analytical fields because of the regulable catalytic efficiency and selectivity under various physiological conditions. In this paper, a versatile multienzyme cascade nanoplatform with excellent activity for biosensing is demonstrated by combining metal-organic framework (MOF)-based nanozyme with natural enzymes. A boronic acid-modified MOF, MIL-100(Fe)-BA, was obtained via a microwave-assisted metal-ligand-fragment co-assembly strategy. On the one hand, MIL-100(Fe)-BA could serve as a nanozyme with dual oxidase/peroxidase bioactivity to detect glutathione and ascorbic acid with a detection limit of 0.12 μM and 0.09 μM, respectively. On the other hand, the hierarchically porous MIL-100(Fe)-BA possesses adequate recognition sites for immobilizing enzymes with acceptable protein leakage, enabling it to act like a scaffold for the fixation of a single enzyme (sarcosine oxidase) or bi-enzymes (acetylcholinesterase/choline oxidase) and guide a multienzyme cascade reaction system with high efficiency. The cascade nanoplatform has merits of both artificial nanozymes and natural enzymes, providing satisfactory sarcosine/acetylcholine sensing ability with detection limits of 0.26 μM and 1.18 μM. The developed catalytic system not only expands the application of nanozymes in tandem enzymatic bio-catalysis, but provides a facile and efficient multienzyme cascade nanoplatform for biosensing and other applications.
Collapse
Affiliation(s)
- Hao Shen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Haimei Shi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Bin Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuanfan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
29
|
Sheibani V, Rajizadeh MA, Bejeshk MA, Haghparast E, Nozari M, Esmaeili-Mahani S, Nezhadi A. The effects of neurosteroid allopregnanolone on synaptic dysfunction in the hippocampus in experimental parkinsonism rats: An electrophysiological and molecular study. Neuropeptides 2022; 92:102229. [PMID: 35158223 DOI: 10.1016/j.npep.2022.102229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
The dopaminergic system is a powerful candidate targeted for changes of synaptic plasticity in the hippocampus. Higher incidence of Parkinson's disease (PD) in men than women indicates the influence of sex hormones on the PD development. Previous studies have shown that neurodegenerative diseases such as PD are related to the decline of Allopregnanolon (Allo), a metabolite of progesterone; it is also well known that learning and memory are influenced by oscillations in steroidal hormones. Although abnormalities in hippocampal plasticity have been observed in the toxic models of PD, effects of Allo on hippocampal LTP and hippocampal synaptic protein levels, which play an important role in maintaining the integrity of neural connections, have never been analyzed thus far. Experimental groups subjected to the long-term potentiation (LTP) were studied in the CA1 area of the hippocampus. In addition, the levels of hippocampal postsynaptic density protein 95 (PSD-95), neurexin-1 (Nrxn1) and neuroligin (Nlgn) as synaptic molecular components were determined by immunoblotting. Although dopamine denervation did not alter basal synaptic transmission and pair-pulse facilitation of field excitatory postsynaptic potentials (fEPSPs), the induction and maintenance of LTP were impaired in the CA1 region. In addition, the levels of PSD-95, Nrxn1 and Nlgn were significantly decreased in the hippocampus of 6-OHDA-treated animals. Such abnormalities in synaptic electrophysiological aspects and protein levels were abolished by the treatment with Allo. These findings showed that partial dopamine depletion led to unusual synaptic plasticity in the CA1 as well as the decrease in synaptic proteins in the hippocampus. Our results demonstrated that Allo ameliorated these deficits and preserved pre- and post-synaptic proteins. Therefore, Allo may be an effective factor in maintaining synaptic integrity in the mesolimbic pathway.
Collapse
Affiliation(s)
- Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Haghparast
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Akram Nezhadi
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Zhang M, Cui X, Li N. Smartphone-based mobile biosensors for the point-of-care testing of human metabolites. Mater Today Bio 2022; 14:100254. [PMID: 35469257 PMCID: PMC9034388 DOI: 10.1016/j.mtbio.2022.100254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Rapid, accurate, portable and quantitative profiling of metabolic biomarkers is of great importance for disease diagnosis and prognosis. The recent development in the optical and electric biosensors based on the smartphone is promising for profiling of metabolites with advantages of rapid, reliability, accuracy, low-cost and multi-analytes analysis capability. In this review, we introduced the optical biosensing platforms including colorimetric, fluorescent and chemiluminescent sensing, and electrochemical biosensing platforms including wired and wireless communication. Challenges and future perspectives desired for reliable, accurate, cost-effective, and multi-functions smartphone-based biosensing systems were also discussed. We envision that such smartphone-based biosensing platforms will allow daily and comprehensive metabolites monitoring in the future, thus unlocking the potential to transform clinical diagnostics into non-clinical self-testing. We also believed that this progress report will encourage future research to develop advanced, integrated and multi-functional smartphone-based Point-of-Care testing (POCT) biosensors for the monitoring and diagnosis as well as personalized treatments of a spectrum of metabolic-disorder related diseases.
Collapse
|
31
|
Phasic Dopamine Changes and Hebbian Mechanisms during Probabilistic Reversal Learning in Striatal Circuits: A Computational Study. Int J Mol Sci 2022; 23:ijms23073452. [PMID: 35408811 PMCID: PMC8998230 DOI: 10.3390/ijms23073452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/22/2022] Open
Abstract
Cognitive flexibility is essential to modify our behavior in a non-stationary environment and is often explored by reversal learning tasks. The basal ganglia (BG) dopaminergic system, under a top-down control of the pre-frontal cortex, is known to be involved in flexible action selection through reinforcement learning. However, how adaptive dopamine changes regulate this process and learning mechanisms for training the striatal synapses remain open questions. The current study uses a neurocomputational model of the BG, based on dopamine-dependent direct (Go) and indirect (NoGo) pathways, to investigate reinforcement learning in a probabilistic environment through a task that associates different stimuli to different actions. Here, we investigated: the efficacy of several versions of the Hebb rule, based on covariance between pre- and post-synaptic neurons, as well as the required control in phasic dopamine changes crucial to achieving a proper reversal learning. Furthermore, an original mechanism for modulating the phasic dopamine changes is proposed, assuming that the expected reward probability is coded by the activity of the winner Go neuron before a reward/punishment takes place. Simulations show that this original formulation for an automatic phasic dopamine control allows the achievement of a good flexible reversal even in difficult conditions. The current outcomes may contribute to understanding the mechanisms for active control of dopamine changes during flexible behavior. In perspective, it may be applied in neuropsychiatric or neurological disorders, such as Parkinson’s or schizophrenia, in which reinforcement learning is impaired.
Collapse
|
32
|
Xu Z, Ni Y, Han H, Wei H, Liu L, Zhang S, Huang H, Xu W. A hybrid ambipolar synaptic transistor emulating multiplexed neurotransmission for motivation control and experience-dependent learning. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Neuroprotective Effects of the DPP4 Inhibitor Vildagliptin in In Vivo and In Vitro Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042388. [PMID: 35216503 PMCID: PMC8877991 DOI: 10.3390/ijms23042388] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Restoration of nigrostriatal dopamine neurons has been proposed as a potential therapeutic strategy for PD. Because currently used PD therapeutics only help relieve motor symptoms and do not treat the cause of the disease, highly effective drugs are needed. Vildagliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor, is an anti-diabetic drug with various pharmacological properties including neuroprotective effects. However, the detailed effects of vildagliptin against PD are not fully understood. We investigated the effects of vildagliptin on PD and its underlying molecular mechanisms using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model and a 1-methyl-4-phenylpyridium (MPP+)-induced cytotoxicity model. Vildagliptin (50 mg/kg) administration significantly attenuated MPTP-induced motor deficits as evidenced by rotarod, pole, and nest building tests. Immunohistochemistry and Western blot analysis revealed that vildagliptin increased tyrosine hydroxylase-positive cells in the SNpc and striatum, which was reduced by MPTP treatment. Furthermore, vildagliptin activated MPTP-decreased PI3k/Akt and mitigated MPTP-increased ERK and JNK signaling pathways in the striatum. Consistent with signaling transduction in the mouse striatum, vildagliptin reversed MPP+-induced dephosphorylation of PI3K/Akt and phosphorylation of ERK and JNK in SH-SY5Y cells. Moreover, vildagliptin attenuated MPP+-induced conversion of LC3B-II in SH-SY5Y cells, suggesting its role in autophagy inhibition. Taken together, these findings indicate that vildagliptin has protective effects against MPTP-induced motor dysfunction by inhibiting dopaminergic neuronal apoptosis, which is associated with regulation of PI3k/Akt, ERK, and JNK signaling transduction. Our findings suggest vildagliptin as a promising repurposing drug to treat PD.
Collapse
|
34
|
Jannath KA, Akhtar MH, Gurudatt NG, Park DS, Kim KB, Shim YB. Catalytic SrMoO 4 nanoparticles and conducting polymer composite sensor for monitoring of K +-induced dopamine release from neuronal cells. J Mater Chem B 2022; 10:728-736. [PMID: 35019925 DOI: 10.1039/d1tb02295d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Octahedral SrMoO4 nanoparticles (NPs) with a high degree of crystallinity and controlled size (250-350 nm) were synthesized for the first time by employing a facile hydrothermal method. The prepared NPs were composited with a carboxyl group bearing conducting polymer (2,2:5,2-terthiophene-3-(p-benzoic acid, TBA)) to attain a stable sensor probe (pTBA/SrMoO4) which was analyzed using various surface analysis methods. The catalytic performance of the composite electrode was explored as an oxidation catalyst for biological molecules through anchoring on the conducting polymer layer, which functioned as a matrix to enhance the stability and selectivity of the sensor probe. The pTBA/SrMoO4 coated on glassy carbon displayed excellent electrocatalytic performance for the oxidation of some biologically important molecules, including dopamine (DA) in neuronal cells. The sensor immobilized with the catalyst showed an excellent response for DA with a dynamic range between 0.2 and 500 μM and a detection limit of 5 nM. The proposed sensor demonstrates the detection of trace DA released from PC12 cells under K+ stimulation, followed by inhibition of the release of exogenic DA by a Ca2+ channel blocker (nifedipine). The developed method provides an interesting way to monitor the effect of extracellular substances on living cells and the drug potency test.
Collapse
Affiliation(s)
- Khatun A Jannath
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Mahmood Hassan Akhtar
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea.,Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea.
| | - N G Gurudatt
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea.,Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea.
| | - Deog-Su Park
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea.
| | - Yoon-Bo Shim
- Institute of Biophysio Sensor Technology, Pusan National University, Busan, 46241, Republic of Korea.,Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
35
|
Orso B, Arnaldi D, Peira E, Famá F, Giorgetti L, Girtler N, Brugnolo A, Mattioli P, Biassoni E, Donniaquio A, Massa F, Bauckneht M, Miceli A, Morbelli S, Nobili F, Pardini M. The Role of Monoaminergic Tones and Brain Metabolism in Cognition in De Novo Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1945-1955. [PMID: 35811536 DOI: 10.3233/jpd-223308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cognitive impairment is frequent in Parkinson's disease (PD) and several neurotransmitter changes have been reported since the time of diagnosis, although seldom investigated altogether in the same patient cohort. OBJECTIVE Our aim was to evaluate the association between neurotransmitter impairment, brain metabolism, and cognition in a cohort of de novo, drug-naïve PD patients. METHODS We retrospectively selected 95 consecutive drug-naïve PD patients (mean age 71.89±7.53) undergoing at the time of diagnosis a brain [18F]FDG-PET as a marker of brain glucose metabolism and proxy measure of neurodegeneration, [123I]FP-CIT-SPECT as a marker and dopaminergic deafferentation in the striatum and frontal cortex, as well as a marker of serotonergic deafferentation in the thalamus, and quantitative electroencephalography (qEEG) as an indirect measure of cholinergic deafferentation. Patients also underwent a complete neuropsychological battery. RESULTS Positive correlations were observed between (i) executive functions and left cerebellar cortex metabolism, (ii) prefrontal dopaminergic tone and working memory (r = 0.304, p = 0.003), (iii) qEEG slowing in the posterior leads and both memory (r = 0.299, p = 0.004) and visuo-spatial functions (r = 0.357, p < 0.001). CONCLUSIONS In subjects with PD, the impact of regional metabolism and diffuse projection systems degeneration differs across cognitive domains. These findings suggest possible tailored approaches to the treatment of cognitive deficits in PD.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Enrico Peira
- Istituto nazionale di Fisica Nucleare (IN FN), Genoa section, Genoa, Italy
| | - Francesco Famá
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | | | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Erica Biassoni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Andrea Donniaquio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Alberto Miceli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
36
|
Stockbridge MD. Better language through chemistry: Augmenting speech-language therapy with pharmacotherapy in the treatment of aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:261-272. [PMID: 35078604 PMCID: PMC11289691 DOI: 10.1016/b978-0-12-823384-9.00013-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Speech and language therapy is the standard treatment of aphasia. However, many individuals have barriers in seeking this measure of extensive rehabilitation treatment. Investigating ways to augment therapy is key to improving poststroke language outcomes for all patients with aphasia, and pharmacotherapies provide one such potential solution. Although no medications are currently approved for the treatment of aphasia by the United States Food and Drug Administration, numerous candidate mechanisms for pharmaceutical manipulation continue to be identified based on our evolving understanding of the neurometabolic experience of stroke recovery across molecular, cellular, and functional levels of inquiry. This chapter will review evidence for catecholaminergic, glutamatergic, cholinergic, and serotonergic drug therapies and discuss future directions for both candidate drug selection and pharmacotherapy practice in people with aphasia.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
37
|
Winek K, Soreq H, Meisel A. Regulators of cholinergic signaling in disorders of the central nervous system. J Neurochem 2021; 158:1425-1438. [PMID: 33638173 PMCID: PMC8518971 DOI: 10.1111/jnc.15332] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Andreas Meisel
- Department of Neurology with Experimental NeurologyCenter for Stroke Research BerlinNeuroCure Clinical Research CenterCharité‐Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
38
|
Fregoso DR, Hadian Y, Gallegos AC, Degovics D, Maaga J, Keogh CE, Kletenik I, Gareau MG, Isseroff RR. Skin-brain axis signaling mediates behavioral changes after skin wounding. Brain Behav Immun Health 2021; 15:100279. [PMID: 34589779 PMCID: PMC8474598 DOI: 10.1016/j.bbih.2021.100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
Patients with chronic wounds often have associated cognitive dysfunction and depression with an as yet unknown mechanism for this association. To address the possible causality of skin wounding inducing these changes, behavior and cognitive functions of female C57BL/6 mice with an excisional skin wound were compared to unwounded animals. At six days post wounding, animals exhibited anxiety-like behaviors, impaired recognition memory, and impaired coping behavior. Wounded animals also had concomitant increased hippocampal expression of Tnfa, the pattern recognition receptor (PRR) Nod2, the glucocorticoid receptors GR/Nr3c1 and Nr3c2. Prefrontal cortex serotonin and dopamine turnover were increased on day six post-wounding. In contrast to the central nervous system (CNS) findings, day six post -wounding serum catecholamines did not differ between wounded and unwounded animals, nor did levels of the stress hormone corticosterone, TNFα, or TGFβ. Serum IL6 levels were, however elevated in the wounded animals. These findings provide evidence of skin-to-brain signaling, mediated either by elevated serum IL6 or a direct neuronal signaling from the periphery to the CNS, independent of systemic mediators. Wounding in the periphery is associated with an altered expression of inflammatory mediators and PRR genes in the hippocampus, which may be responsible for the observed behavioral deficits.
Collapse
Affiliation(s)
- Daniel R. Fregoso
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Yasmin Hadian
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Anthony C. Gallegos
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Doniz Degovics
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - John Maaga
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| | - Ciara E. Keogh
- University of California, School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, Davis, United States
| | - Isaiah Kletenik
- Harvard Medical School, Department of Neurology, And Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, Department of Neurology, United States
| | - Melanie G. Gareau
- University of California, School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, Davis, United States
| | - R. Rivkah Isseroff
- University of California, School of Medicine, Department of Dermatology, Davis, United States
| |
Collapse
|
39
|
Romoli M, Sen A, Parnetti L, Calabresi P, Costa C. Amyloid-β: a potential link between epilepsy and cognitive decline. Nat Rev Neurol 2021; 17:469-485. [PMID: 34117482 DOI: 10.1038/s41582-021-00505-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
People with epilepsy - in particular, late-onset epilepsy of unknown aetiology - have an elevated risk of dementia, and seizures have been detected in the early stages of Alzheimer disease (AD), supporting the concept of an epileptic AD prodrome. However, the relationship between epilepsy and cognitive decline remains controversial, with substantial uncertainties about whether epilepsy drives cognitive decline or vice versa, and whether shared pathways underlie both conditions. Here, we review evidence that amyloid-β (Aβ) forms part of a shared pathway between epilepsy and cognitive decline, particularly in the context of AD. People with epilepsy show an increased burden of Aβ pathology in the brain, and Aβ-mediated epileptogenic alterations have been demonstrated in experimental studies, with evidence suggesting that Aβ pathology might already be pro-epileptogenic at the soluble stage, long before plaque deposition. We discuss the hypothesis that Aβ mediates - or is at least a major determinant of - a continuum spanning epilepsy and cognitive decline. Serial cognitive testing and assessment of Aβ levels might be worthwhile to stratify the risk of developing dementia in people with late-onset epilepsy. If seizures are a clinical harbinger of dementia, people with late-onset epilepsy could be an ideal group in which to implement preventive or therapeutic strategies to slow cognitive decline.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.,Neurology and Stroke Unit, "Maurizio Bufalini" Hospital, Cesena, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore, Bologna, Italy
| | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Lucilla Parnetti
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Neurologia, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.
| |
Collapse
|
40
|
Amalric M, Pattij T, Sotiropoulos I, Silva JM, Sousa N, Ztaou S, Chiamulera C, Wahlberg LU, Emerich DF, Paolone G. Where Dopaminergic and Cholinergic Systems Interact: A Gateway for Tuning Neurodegenerative Disorders. Front Behav Neurosci 2021; 15:661973. [PMID: 34366802 PMCID: PMC8340002 DOI: 10.3389/fnbeh.2021.661973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Historically, many investigations into neurodegenerative diseases have focused on alterations in specific neuronal populations such as, for example, the loss of midbrain dopaminergic neurons in Parkinson's disease (PD) and loss of cholinergic transmission in Alzheimer's disease (AD). However, it has become increasingly clear that mammalian brain activities, from executive and motor functioning to memory and emotional responses, are strictly regulated by the integrity of multiple interdependent neuronal circuits. Among subcortical structures, the dopaminergic nigrostriatal and mesolimbic pathways as well as cholinergic innervation from basal forebrain and brainstem, play pivotal roles in orchestrating cognitive and non-cognitive symptoms in PD and AD. Understanding the functional interactions of these circuits and the consequent neurological changes that occur during degeneration provides new opportunities to understand the fundamental inter-workings of the human brain as well as develop new potential treatments for patients with dysfunctional neuronal circuits. Here, excerpted from a session of the European Behavioral Pharmacology Society meeting (Braga, Portugal, August 2019), we provide an update on our recent work in behavioral and cellular neuroscience that primarily focuses on interactions between cholinergic and dopaminergic systems in PD models, as well as stress in AD. These brief discussions include descriptions of (1) striatal cholinergic interneurons (CINs) and PD, (2) dopaminergic and cholinergic modulation of impulse control, and (3) the use of an implantable cell-based system for drug delivery directly the into brain and (4) the mechanisms through which day life stress, a risk factor for AD, damage protein and RNA homeostasis leading to AD neuronal malfunction.
Collapse
Affiliation(s)
- Marianne Amalric
- Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France
| | - Tommy Pattij
- Amsterdam Neuroscience, Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Joana M. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Samira Ztaou
- Centre National de la Recherche Scientifique (CNRS), UMR 7291, Laboratoire de Neurosciences Cognitives, Aix-Marseille University (AMU), Marseille, France
- Department of Molecular Therapeutics, New York State Psychiatric Institute, Department of Psychiatry, Columbia University, New York, NY, United States
| | - Cristiano Chiamulera
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | | | | | - Giovanna Paolone
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| |
Collapse
|
41
|
Tzvi E, Bey R, Nitschke M, Brüggemann N, Classen J, Münte TF, Krämer UM, Rumpf JJ. Motor Sequence Learning Deficits in Idiopathic Parkinson's Disease Are Associated With Increased Substantia Nigra Activity. Front Aging Neurosci 2021; 13:685168. [PMID: 34194317 PMCID: PMC8236713 DOI: 10.3389/fnagi.2021.685168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
Previous studies have shown that persons with Parkinson’s disease (pwPD) share specific deficits in learning new sequential movements, but the neural substrates of this impairment remain unclear. In addition, the degree to which striatal dopaminergic denervation in PD affects the cortico-striato-thalamo-cerebellar motor learning network remains unknown. We aimed to answer these questions using fMRI in 16 pwPD and 16 healthy age-matched control subjects while they performed an implicit motor sequence learning task. While learning was absent in both pwPD and controls assessed with reaction time differences between sequential and random trials, larger error-rates during the latter suggest that at least some of the complex sequence was encoded. Moreover, we found that while healthy controls could improve general task performance indexed by decreased reaction times across both sequence and random blocks, pwPD could not, suggesting disease-specific deficits in learning of stimulus-response associations. Using fMRI, we found that this effect in pwPD was correlated with decreased activity in the hippocampus over time. Importantly, activity in the substantia nigra (SN) and adjacent bilateral midbrain was specifically increased during sequence learning in pwPD compared to healthy controls, and significantly correlated with sequence-specific learning deficits. As increased SN activity was also associated (on trend) with higher doses of dopaminergic medication as well as disease duration, the results suggest that learning deficits in PD are associated with disease progression, indexing an increased drive to recruit dopaminergic neurons in the SN, however, unsuccessfully. Finally, there were no differences between pwPD and controls in task modulation of the cortico-striato-thalamo-cerebellar network. However, a restricted nigral-striatal model showed that negative modulation of SN to putamen connection was larger in pwPD compared to controls during random trials, while no differences between the groups were found during sequence learning. We speculate that learning-specific SN recruitment leads to a relative increase in SN- > putamen connectivity, which returns to a pathological reduced state when no learning takes place.
Collapse
Affiliation(s)
- Elinor Tzvi
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Richard Bey
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | | | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
42
|
Conceição NR, Gobbi LTB, Nóbrega-Sousa P, Orcioli-Silva D, Beretta VS, Lirani-Silva E, Okano AH, Vitório R. Aerobic Exercise Combined With Transcranial Direct Current Stimulation Over the Prefrontal Cortex in Parkinson Disease: Effects on Cortical Activity, Gait, and Cognition. Neurorehabil Neural Repair 2021; 35:717-728. [PMID: 34047235 DOI: 10.1177/15459683211019344] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since people with Parkinson disease (PD) rely on limited prefrontal executive resources for the control of gait, interventions targeting the prefrontal cortex (PFC) may help in managing PD-related gait impairments. Transcranial direct current stimulation (tDCS) can be used to modulate PFC excitability and improve prefrontal cognitive functions and gait. OBJECTIVE We investigated the effects of adding anodal tDCS applied over the PFC to a session of aerobic exercise on gait, cognition, and PFC activity while walking in people with PD. METHODS A total of 20 people with PD participated in this randomized, double-blinded, sham-controlled crossover study. Participants attended two 30-minute sessions of aerobic exercise (cycling at moderate intensity) combined with different tDCS conditions (active- or sham-tDCS), 1 week apart. The order of sessions was counterbalanced across the sample. Anodal tDCS (2 mA for 20 minutes [active-tDCS] or 10 s [sham-tDCS]) targeted the PFC in the most affected hemisphere. Spatiotemporal gait parameters, cognitive functions, and PFC activity while walking were assessed before and immediately after each session. RESULTS Compared with the pre-assessment, participants decreased step time variability (effect size: -0.4), shortened simple and choice reaction times (effect sizes: -0.73 and -0.57, respectively), and increased PFC activity in the stimulated hemisphere while walking (effect size: 0.54) only after aerobic exercise + active-tDCS. CONCLUSION The addition of anodal tDCS over the PFC to a session of aerobic exercise led to immediate positive effects on gait variability, processing speed, and executive control of walking in people with PD.
Collapse
Affiliation(s)
- Núbia Ribeiro Conceição
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Priscila Nóbrega-Sousa
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Diego Orcioli-Silva
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Victor Spiandor Beretta
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil
| | - Ellen Lirani-Silva
- Oregon Health and Science University, Department of Neurology, Portland, OR, USA
| | - Alexandre Hideki Okano
- Federal University of ABC (UFABC), Center for Mathematics, Computation and Cognition, São Bernardo do Campo, SP, Brazil
| | - Rodrigo Vitório
- São Paulo State University (UNESP), Institute of Biosciences, Graduate Program in Movement Sciences, Rio Claro, SP, Brazil.,Oregon Health and Science University, Department of Neurology, Portland, OR, USA
| |
Collapse
|
43
|
Fiorilli G, Quinzi F, Buonsenso A, Casazza G, Manni L, Parisi A, Di Costanzo A, Calcagno G, Soligo M, di Cagno A. A Single Session of Whole-Body Electromyostimulation Increases Muscle Strength, Endurance and proNGF in Early Parkinson Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5499. [PMID: 34065571 PMCID: PMC8161270 DOI: 10.3390/ijerph18105499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) patients lead a sedentary lifestyle, being unable or unwilling to exercise conventionally, due to physical and mental limitations. The aim of this study was to assess the acute effects of a single session of whole-body electromyostimulation (WB-EMS) on the physical performances and serum levels of the neurotrophic factors in PD patients. Ten subjects (aged 72.60 ± 6.82) underwent 20 min of physical activity with superimposed WB-EMS and, after four weeks, the same protocol with no WB-EMS. WB-EMS was conducted with intermittent stimulation, with 4 s WB-EMS/4 s rest, at 85 Hz, 350 μs. A physical fitness assessment and blood samples collection, to evaluate neurotrophic factors' levels (BDNF, FGF21, proNGF, mNGF), were collected before and after the intervention. The RM-ANOVA showed significant improvements in sit-to-stand (p < 0.01), arm curl (p < 0.01), handgrip (p < 0.01) and soda pop test (p < 0.01) after the WB-EMS intervention. Higher proNFG serum levels were observed in the WB-EMS condition compared to the no WB-EMS after 60 min post-intervention (p = 0.0163). The effect of WB-EMS confirmed the electrostimulation ability to modulate the proNGF quantity. The positive impact of the WB-EMS protocol on physical functioning, and eye-hand coordination, makes this intervention a promising strategy to improve motor and non-motor symptoms in PD patients.
Collapse
Affiliation(s)
- Giovanni Fiorilli
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Federico Quinzi
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, 00197 Rome, Italy; (F.Q.); (A.P.); (A.d.C.)
| | - Andrea Buonsenso
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Giusy Casazza
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Luigi Manni
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy; (L.M.); (M.S.)
| | - Attilio Parisi
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, 00197 Rome, Italy; (F.Q.); (A.P.); (A.d.C.)
| | - Alfonso Di Costanzo
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (G.F.); (A.B.); (G.C.); (A.D.C.)
| | - Marzia Soligo
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy; (L.M.); (M.S.)
| | - Alessandra di Cagno
- Department of Motor, Human and Health Sciences, University of Rome “Foro Italico”, 00197 Rome, Italy; (F.Q.); (A.P.); (A.d.C.)
| |
Collapse
|
44
|
Smart K, Naganawa M, Baldassarri SR, Nabulsi N, Ropchan J, Najafzadeh S, Gao H, Navarro A, Barth V, Esterlis I, Cosgrove KP, Huang Y, Carson RE, Hillmer AT. PET Imaging Estimates of Regional Acetylcholine Concentration Variation in Living Human Brain. Cereb Cortex 2021; 31:2787-2798. [PMID: 33442731 PMCID: PMC8355478 DOI: 10.1093/cercor/bhaa387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) has distinct functional roles in striatum compared with cortex, and imbalance between these systems may contribute to neuropsychiatric disease. Preclinical studies indicate markedly higher ACh concentrations in the striatum. The goal of this work was to leverage positron emission tomography (PET) imaging estimates of drug occupancy at cholinergic receptors to explore ACh variation across the human brain, because these measures can be influenced by competition with endogenous neurotransmitter. PET scans were analyzed from healthy human volunteers (n = 4) and nonhuman primates (n = 2) scanned with the M1-selective radiotracer [11C]LSN3172176 in the presence of muscarinic antagonist scopolamine, and human volunteers (n = 10) scanned with the α4β2* nicotinic ligand (-)-[18F]flubatine during nicotine challenge. In all cases, occupancy estimates within striatal regions were consistently lower (M1/scopolamine human scans, 31 ± 3.4% occupancy in striatum, 43 ± 2.9% in extrastriatal regions, p = 0.0094; nonhuman primate scans, 42 ± 26% vs. 69 ± 28%, p < 0.0001; α4β2*/nicotine scans, 67 ± 15% vs. 74 ± 16%, p = 0.0065), indicating higher striatal ACh concentration. Subject-level measures of these concentration differences were estimated, and whole-brain images of regional ACh concentration gradients were generated. These results constitute the first in vivo estimates of regional variation in ACh concentration in the living brain and offer a novel experimental method to assess potential ACh imbalances in clinical populations.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mika Naganawa
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephen R Baldassarri
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nabeel Nabulsi
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jim Ropchan
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hong Gao
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kelly P Cosgrove
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Yiyun Huang
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
45
|
Abdik E, Çakır T. Systematic investigation of mouse models of Parkinson's disease by transcriptome mapping on a brain-specific genome-scale metabolic network. Mol Omics 2021; 17:492-502. [PMID: 34370801 DOI: 10.1039/d0mo00135j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genome-scale metabolic networks enable systemic investigation of metabolic alterations caused by diseases by providing interpretation of omics data. Although Mus musculus (mouse) is one of the most commonly used model organisms for neurodegenerative diseases, a brain-specific metabolic network model of mice has not yet been reconstructed. Here we reconstructed the first brain-specific metabolic network model of mice, iBrain674-Mm, by a homology-based approach, which consisted of 992 reactions controlled by 674 genes and distributed over 48 pathways. We validated the newly reconstructed network model by showing that it predicts healthy resting-state metabolic phenotypes of mouse brain compatible with the literature. We later used iBrain674-Mm to interpret various experimental mouse models of Parkinson's Disease (PD) at the transcriptome level. To this end, we applied a constraint-based modelling based biomarker prediction method called TIMBR (Transcriptionally Inferred Metabolic Biomarker Response) to predict altered metabolite production from transcriptomic data. Systemic analysis of seven different PD mouse models by TIMBR showed that the neuronal levels of glutamate, lactate, creatine phosphate, neuronal acetylcholine, bilirubin and formate increased in most of the PD mouse models, whereas the levels of melatonin, epinephrine, astrocytic formate and astrocytic bilirubin decreased. Although most of the predictions were consistent with the literature, there were some inconsistencies among different PD mouse models, signifying that there is no perfect experimental model to reflect PD metabolism. The newly reconstructed brain-specific genome-scale metabolic network model of mice can make important contributions to the interpretation and development of experimental mouse models of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| | | |
Collapse
|
46
|
Pezzetta R, Wokke ME, Aglioti SM, Ridderinkhof KR. Doing it Wrong: A Systematic Review on Electrocortical and Behavioral Correlates of Error Monitoring in Patients with Neurological Disorders. Neuroscience 2021; 486:103-125. [PMID: 33516775 DOI: 10.1016/j.neuroscience.2021.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Detecting errors in one's own and other's actions is a crucial ability for learning and adapting behavior to everchanging, highly volatile environments. Studies in healthy people demonstrate that monitoring errors in one's own and others' actions are underpinned by specific neural systems that are dysfunctional in a variety of neurological disorders. In this review, we first briefly discuss the main findings concerning error detection and error awareness in healthy subjects, the current theoretical models, and the tasks usually applied to investigate these processes. Then, we report a systematic search for evidence of dysfunctional error monitoring among neurological populations (basal ganglia, neurodegenerative, white-matter diseases and acquired brain injury). In particular, we examine electrophysiological and behavioral evidence for specific alterations of error processing in neurological disorders. Error-related negativity (ERN) amplitude were reduced in most (although not all) neurological patient groups, whereas Positivity Error (Pe) amplitude appeared not to be affected in most patient groups. Also theta activity was reduced in some neurological groups, but consistent evidence on the oscillatory activity has not been provided thus far. Behaviorally, we did not observe relevant patterns of pronounced dysfunctional (post-) error processing. Finally, we discuss limitations of the existing literature, conclusive points, open questions and new possible methodological approaches for clinical studies.
Collapse
Affiliation(s)
- R Pezzetta
- IRCCS San Camillo Hospital, Venice, Italy.
| | - M E Wokke
- Programs in Psychology and Biology, The Graduate Center of the City University of New York, New York, NY, USA; Department of Psychology, The University of Cambridge, Cambridge, UK
| | - S M Aglioti
- Sapienza University of Rome and CNLS@Sapienza at Istituto Italiano di Tecnologia, Via Regina Elena 295, 00161 Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - K R Ridderinkhof
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018, WS, Amsterdam, The Netherlands; Amsterdam Brain & Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Multimodal investigation of dopamine D 2/D 3 receptors, default mode network suppression, and cognitive control in cocaine-use disorder. Neuropsychopharmacology 2021; 46:316-324. [PMID: 33007778 PMCID: PMC7852666 DOI: 10.1038/s41386-020-00874-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Stimulant-use disorders have been associated with lower availability of dopamine type-2 receptors (D2R) and greater availability of type-3 receptors (D3R). Links between D2R levels, cognitive performance, and suppression of the default mode network (DMN) during executive functioning have been observed in healthy and addicted populations; however, there is limited evidence regarding a potential role of elevated D3R in influencing cognitive control processes in groups with and without addictions. Sixteen individuals with cocaine-use disorder (CUD) and 16 healthy comparison (HC) participants completed [11C]-(+)-PHNO PET imaging of D2R and D3R availability and fMRI during a Stroop task of cognitive control. Independent component analysis was performed on fMRI data to assess DMN suppression during Stroop performance. In HC individuals, lower D2R-related binding in the dorsal putamen was associated with improved task performance and greater DMN suppression. By comparison, in individuals with CUD, greater D3R-related binding in the substantia nigra was associated with improved performance and greater DMN suppression. Exploratory moderated-mediation analyses indicated that DMN suppression was associated with Stroop performance indirectly through D2R in HC and D3R in CUD participants, and these indirect effects were different between groups. To our knowledge, this is the first evidence of a dissociative and potentially beneficial role of elevated D3R availability in executive functioning in cocaine-use disorder.
Collapse
|
48
|
Arruda HS, Neri-Numa IA, Kido LA, Maróstica Júnior MR, Pastore GM. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
49
|
Lauretani F, Longobucco Y, Ferrari Pellegrini F, De Iorio AM, Fazio C, Federici R, Gallini E, La Porta U, Ravazzoni G, Roberti MF, Salvi M, Zucchini I, Pelà G, Maggio M. Comprehensive Model for Physical and Cognitive Frailty: Current Organization and Unmet Needs. Front Psychol 2020; 11:569629. [PMID: 33324282 PMCID: PMC7725681 DOI: 10.3389/fpsyg.2020.569629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by the decline and deterioration of functional cells and results in a wide variety of molecular damages and reduced physical and mental capacity. The knowledge on aging process is important because life expectancy is expected to rise until 2050. Aging cannot be considered a homogeneous process and includes different trajectories characterized by states of fitness, frailty, and disability. Frailty is a dynamic condition put between a normal functional state and disability, with reduced capacity to cope with stressors. This geriatric syndrome affects physical, neuropsychological, and social domains and is driven by emotional and spiritual components. Sarcopenia is considered one of the determinants and the biological substrates of physical frailty. Physical and cognitive frailty are separately approached during daily clinical practice. The concept of motoric cognitive syndrome has partially changed this scenario, opening interesting windows toward future approaches. Thus, the purpose of this manuscript is to provide an excursus on current clinical practice, enforced by aneddoctical cases. The analysis of the current state of the art seems to support the urgent need of comprehensive organizational model incorporating physical and cognitive spheres in the same umbrella.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Yari Longobucco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Aurelio Maria De Iorio
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy
| | - Chiara Fazio
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy
| | - Raffaele Federici
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy
| | - Elena Gallini
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy
| | - Umberto La Porta
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy
| | - Giulia Ravazzoni
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy
| | - Maria Federica Roberti
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy
| | - Marco Salvi
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy
| | - Irene Zucchini
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy
| | - Giovanna Pelà
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Maggio
- Geriatric Clinic Unit, Medical Geriatric Rehabilitative Department, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
50
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|