1
|
Prajapati JL, Dhurandhar Y, Singh AP, Gupta DK, Baghel VS, Kushwaha U, Namdeo KP. Redox chemical delivery system: an innovative strategy for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 2025:1-18. [PMID: 40188375 DOI: 10.1080/17425247.2025.2489558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/03/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
INTRODUCTION It is anticipated that the prevalence of illnesses affecting the central nervous system (CNS) will rise significantly due to longer lifespans and changing demography. Age-related decline in brain function and neuronal death are features of neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, which provide formidable treatment challenges. Because most therapeutic drugs cannot across the blood-brain barrier (BBB) to reach the brain, there are still few treatment alternatives available despite a great deal of research. AREAS COVERED This study explores the role of redox chemical delivery systems in CNS drug delivery and addresses challenges associated with neurodegenerative disease (ND). Redox Chemical Delivery System offers a promising approach to enhancing leveraging redox reactions that facilitate the transport of therapeutic agents across the BBB. Through the optimization of medication delivery pathways to the brain, this technology has the potential to greatly improve the treatment of ND. EXPERT OPINION As our understanding of the biological underpinnings of ND deepens, the potential for effective interventions increases. Refining drug delivery strategies, such as RCDS, is essential for advancing CNS therapies from research to clinical practice. These advancements could transform the management of ND, improving both treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
| | - Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - As Pee Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Deepak Kumar Gupta
- Department of Pharmaceutics, IQ City Institute of Pharmaceutical Sciences, Durgapur, India
| | | | - Umesh Kushwaha
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | |
Collapse
|
2
|
Benatar M, McDermott C, Turner MR, van Eijk RPA. Rethinking phase 2 trials in amyotrophic lateral sclerosis. Brain 2025; 148:1106-1111. [PMID: 39657109 PMCID: PMC11969460 DOI: 10.1093/brain/awae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
There is a long history in amyotrophic lateral sclerosis (ALS) of promoting therapies based on phase 2 data, which then fail in phase 3 trials. Experience suggests that studies of 6 months in duration are too short, especially with function-based outcome measures. Multiplicity poses a serious threat to data interpretation, and strategies to impute missing data may not be appropriate for ALS where progression is always expected. Emerging surrogate markers of clinical benefit such as reduction of neurofilament light chain levels may be better suited to phase 2 go/no-go decisions. Over-interpretation of phase 2 data, and overly optimistic communication of exploratory analyses must be avoided to ensure optimal prioritization for the investment needed for definitive phase 3 trials and to minimize the harm of false hope for people living with ALS. Delivering on advances in understanding of the neurobiology of ALS requires urgent attention to phase 2 design and implementation.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- ALS Center, University of Miami, Miami, FL 33136, USA
| | - Christopher McDermott
- Division of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S11 9EJ, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| |
Collapse
|
3
|
Boll MC, Alcaraz-Zubeldia M, Rios C, González-Esquivel D, Montes S. A phase 2, double-blind, placebo-controlled trial of a valproate/lithium combination in ALS patients. Neurologia 2025; 40:32-40. [PMID: 36049647 DOI: 10.1016/j.nrleng.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Few treatments are currently available for amyotrophic lateral sclerosis (ALS). A combination of lithium carbonate and valproic acid (VPA-Li) was shown to inhibit motor neuron death and delay disease progression. METHODS Outpatients with a typical ALS presentation were enrolled in a randomized, placebo-controlled trial to assess the efficacy of orally administered VPA-Li. Changes in a functional scale score (ALSFRS-R) and survival rate were chosen as primary outcome variables. Secondary outcome variables included BMI, respiratory monitoring, quality of life, and a global impression of the treatment. RESULTS Out of 42 patients enrolled, 20 individuals receiving VPA-Li and 18 on placebo treatment were included in the final analysis. Forty-five percent of patients receiving VPA-Li completed the trial, whereas only 22.22% of patients in the placebo group attended the final visit 18 months later (P = 0.09). Major changes in the ALSFRS-R score were observed, including a decrease of 1.195 points/month in the placebo group (95% CI: 0.7869-1.6031) and of 0.5085 under VPA-Li treatment (95% CI: 0.2288-0.7882) between months 6 and 14. Adverse events included bad mouth taste, constipation, and anorexia. Survival rate, body weight, and quality of life were positive outcomes by the end of the trial despite a high sample reduction, especially in the placebo group. The inclusion of 212 subjects in each group would confirm these differences. CONCLUSIONS Combined VPA-Li treatment associated with slower ALS progression and better secondary outcomes. This dual treatment overcame the futility threshold and merits further investigation in ALS.
Collapse
Affiliation(s)
- M-C Boll
- Clinical Research Laboratory, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| | - M Alcaraz-Zubeldia
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| | - C Rios
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| | - D González-Esquivel
- Division of Pharmacology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| | - S Montes
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Tlalpan, México.
| |
Collapse
|
4
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
5
|
Arnold FJ, Putka AF, Raychaudhuri U, Hsu S, Bedlack RS, Bennett CL, La Spada AR. Revisiting Glutamate Excitotoxicity in Amyotrophic Lateral Sclerosis and Age-Related Neurodegeneration. Int J Mol Sci 2024; 25:5587. [PMID: 38891774 PMCID: PMC11171854 DOI: 10.3390/ijms25115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.
Collapse
Affiliation(s)
- Frederick J. Arnold
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Alexandra F. Putka
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Urmimala Raychaudhuri
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Solomon Hsu
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Richard S. Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
| | - Craig L. Bennett
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
| | - Albert R. La Spada
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; (A.F.P.)
- Department of Neurology, University of California Irvine, Irvine, CA 92617, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92617, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Tarot P, Lasbleiz C, Liévens JC. NRF2 signaling cascade in amyotrophic lateral sclerosis: bridging the gap between promise and reality. Neural Regen Res 2024; 19:1006-1012. [PMID: 37862202 PMCID: PMC10749620 DOI: 10.4103/1673-5374.385283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis is a very disabling disease due to the degeneration of motor neurons. Symptoms include muscle weakness and atrophy, spasticity, and progressive paralysis. Currently, there is no treatment to reverse damage to motor neurons and cure amyotrophic lateral sclerosis. The only two treatments actually approved, riluzole and edaravone, have shown mitigated beneficial effects. The difficulty to find a cure lies in the complexity and multifaceted pattern of amyotrophic lateral sclerosis pathogenesis. Among mechanisms, abnormal RNA metabolism, nucleocytoplasmic transport defects, accumulation of unfolded protein, and mitochondrial dysfunction would in fine induce oxidative damage and vice versa. A potent therapeutic strategy will be to find molecules that break this vicious circle. Sharpening the nuclear factor erythroid-2 related factor 2 signaling may fulfill this objective since nuclear factor erythroid-2 related factor 2 has a multitarget profile controlling antioxidant defense, mitochondrial functioning, and inflammation. We here discuss the interest of developing nuclear factor erythroid-2 related factor 2-based therapy in regard to the pathophysiological mechanisms and we provide a general overview of the attempted clinical assays in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Pauline Tarot
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | |
Collapse
|
7
|
Harvey C, Weinreich M, Lee JA, Shaw AC, Ferraiuolo L, Mortiboys H, Zhang S, Hop PJ, Zwamborn RA, van Eijk K, Julian TH, Moll T, Iacoangeli A, Al Khleifat A, Quinn JP, Pfaff AL, Kõks S, Poulton J, Battle SL, Arking DE, Snyder MP, Veldink JH, Kenna KP, Shaw PJ, Cooper-Knock J. Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis. Heliyon 2024; 10:e24975. [PMID: 38317984 PMCID: PMC10839612 DOI: 10.1016/j.heliyon.2024.e24975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∼50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS.
Collapse
Affiliation(s)
- Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Marcel Weinreich
- Clinical Neurobiology, German Cancer Research Center and University Hospital Heidelberg, Germany
| | - James A.K. Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Allan C. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Paul J. Hop
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ramona A.J. Zwamborn
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristel van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas H. Julian
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Alfredo Iacoangeli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - Ahmad Al Khleifat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, Liverpool, UK
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Stephanie L. Battle
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael P. Snyder
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Project MinE ALS Sequencing Consortium
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Clinical Neurobiology, German Cancer Research Center and University Hospital Heidelberg, Germany
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, Liverpool, UK
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan H. Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kevin P. Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Shefner JM, Jacobsen B, Kupfer S, Malik FI, Meng L, Wei J, Wolff AA, Rudnicki SA. Relationship between quantitative strength and functional outcomes in the phase 2 FORTITUDE-ALS trial. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:162-169. [PMID: 37641579 DOI: 10.1080/21678421.2023.2252468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE To assess the relationship among measurements of strength, function, and quality of life in an amyotrophic lateral sclerosis (ALS) clinical trial. METHODS In the FORTITUDE-ALS clinical trial (NCT03160898), 456 participants in the full-analysis set were treated with either reldesemtiv or placebo for 12 weeks; this post hoc analysis included all participants regardless of treatment assignments. Assessments included slow vital capacity (SVC), the ALS Functional Rating Scale-Revised (ALSFRS-R), and the 5-item ALS Assessment Questionnaire (ALSAQ-5). Muscle strength was measured quantitatively with hand-held dynamometry, and grip strength with a dedicated dynamometer. The relationship between strength and ALSFRS-R fine and gross motor domain scores, or responses to ALSAQ-5 questions on hand function and walking, was assessed with Spearman's rank correlation. The relationship between mean upper- or lower-extremity muscle strength and specific ALSFRS-R domains was modeled using principal-components analysis. RESULTS Upper-extremity muscle strength and hand grip were highly correlated with ALSFRS-R fine motor scores and the ALSAQ-5 hand function question. Similarly, lower-extremity strength correlated well with ALSFRS-R gross motor domain and the ALSAQ-5 walking question. For SVC, correlation was poor with the ALSFRS-R respiratory domain, but stronger with the total score, potentially reflecting the insensitivity of the respiratory questions in the scale. Upper- and lower-extremity strength were both strong predictors of ALSFRS-R domain scores. CONCLUSIONS In this analysis of data from an ALS clinical trial, muscle strength quantified by dynamometry was strongly correlated with functional capacity. These results suggest that muscle strength directly relates to specific functions of importance to people with ALS.
Collapse
Affiliation(s)
- Jeremy M Shefner
- Barrow Neurological Institute, University of Arizona, and Creighton University, Phoenix, AZ, USA and
| | - Bill Jacobsen
- Barrow Neurological Institute, University of Arizona, and Creighton University, Phoenix, AZ, USA and
| | - Stuart Kupfer
- Cytokinetics, Incorporated, South San Francisco, CA, USA
| | - Fady I Malik
- Cytokinetics, Incorporated, South San Francisco, CA, USA
| | - Lisa Meng
- Cytokinetics, Incorporated, South San Francisco, CA, USA
| | - Jenny Wei
- Cytokinetics, Incorporated, South San Francisco, CA, USA
| | - Andrew A Wolff
- Cytokinetics, Incorporated, South San Francisco, CA, USA
| | | |
Collapse
|
9
|
Shefner JM, Bunte T, Kittle G, Genge A, van den Berg LH. Harmonized standard operating procedures for administering the ALS functional rating scale-revised. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:26-33. [PMID: 37728307 DOI: 10.1080/21678421.2023.2260832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
The ALS Functional Rating Scale-Revised is the most commonly used primary outcome measure in current ALS clinical trials. While rigorous training and certification is generally recognized as critical to reliable performance, differences have existed between training in the two groups responsible for most training in ALS outcome measures. We present a harmonized standard operating procedure which is intended to further reduce response variability by the use of identical training in North America and Europe.
Collapse
Affiliation(s)
- Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Tommy Bunte
- Department of Neurology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands, and
| | - Gale Kittle
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Angela Genge
- Department of Neurology, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Leonard H van den Berg
- Department of Neurology, Universitair Medisch Centrum Utrecht, Utrecht, Netherlands, and
| |
Collapse
|
10
|
Sunildutt N, Ahmed F, Chethikkattuveli Salih AR, Lim JH, Choi KH. Integrating Transcriptomic and Structural Insights: Revealing Drug Repurposing Opportunities for Sporadic ALS. ACS OMEGA 2024; 9:3793-3806. [PMID: 38284068 PMCID: PMC10809234 DOI: 10.1021/acsomega.3c07296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating neurodegenerative disorder characterized by the loss of upper and lower motor neurons, resulting in debilitating muscle weakness and atrophy. Currently, there are no effective treatments available for ALS, posing significant challenges in managing the disease that affects approximately two individuals per 100,000 people annually. To address the urgent need for effective ALS treatments, we conducted a drug repurposing study using a combination of bioinformatics tools and molecular docking techniques. We analyzed sporadic ALS-related genes from the GEO database and identified key signaling pathways involved in sporadic ALS pathogenesis through pathway analysis using DAVID. Subsequently, we utilized the Clue Connectivity Map to identify potential drug candidates and performed molecular docking using AutoDock Vina to evaluate the binding affinity of short-listed drugs to key sporadic ALS-related genes. Our study identified Cefaclor, Diphenidol, Flubendazole, Fluticasone, Lestaurtinib, Nadolol, Phenamil, Temozolomide, and Tolterodine as potential drug candidates for repurposing in sporadic ALS treatment. Notably, Lestaurtinib demonstrated high binding affinity toward multiple proteins, suggesting its potential as a broad-spectrum therapeutic agent for sporadic ALS. Additionally, docking analysis revealed NOS3 as the gene that interacts with all the short-listed drugs, suggesting its possible involvement in the mechanisms underlying the therapeutic potential of these drugs in sporadic ALS. Overall, our study provides a systematic framework for identifying potential drug candidates for sporadic ALS therapy and highlights the potential of drug repurposing as a promising strategy for discovering new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| | - Faheem Ahmed
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| | - Abdul Rahim Chethikkattuveli Salih
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
- Terasaki
Institute for Biomedical InnovationLos Angeles21100, United States
| | - Jong Hwan Lim
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| | - Kyung Hyun Choi
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| |
Collapse
|
11
|
Rezvykh A, Shteinberg D, Bronovitsky E, Ustyugov A, Funikov S. Animal Models of FUS-Proteinopathy: A Systematic Review. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S34-S56. [PMID: 38621743 DOI: 10.1134/s0006297924140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 04/17/2024]
Abstract
Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.
Collapse
Affiliation(s)
- Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daniil Shteinberg
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | | | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Cusack RP, Sulaiman I, Gauvreau GM. Refashioning dexpramipexole: A new horizon in eosinophilic asthma? J Allergy Clin Immunol 2023; 152:1092-1094. [PMID: 37769877 DOI: 10.1016/j.jaci.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Ruth P Cusack
- Department of Respiratory Medicine, Galway University Hospitals, Galway, Ireland
| | - Ibrahim Sulaiman
- Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Cave Hill, Barbados
| | - Gail M Gauvreau
- Faculty of Health Sciences, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
13
|
Siddiqui S, Wenzel SE, Bozik ME, Archibald DG, Dworetzky SI, Mather JL, Killingsworth R, Ghearing N, Schwartz JT, Ochkur SI, Jacobsen EA, Busse WW, Panettieri RA, Prussin C. Safety and Efficacy of Dexpramipexole in Eosinophilic Asthma (EXHALE): A randomized controlled trial. J Allergy Clin Immunol 2023; 152:1121-1130.e10. [PMID: 37277072 DOI: 10.1016/j.jaci.2023.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 05/01/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND There is a need for new and effective oral asthma therapies. Dexpramipexole, an oral eosinophil-lowering drug, has not previously been studied in asthma. OBJECTIVE We sought to evaluate the safety and efficacy of dexpramipexole in lowering blood and airway eosinophilia in subjects with eosinophilic asthma. METHODS We performed a randomized, double-blind, placebo-controlled proof-of-concept trial in adults with inadequately controlled moderate to severe asthma and blood absolute eosinophil count (AEC) greater than or equal to 300/μL. Subjects were randomly assigned (1:1:1:1) to dexpramipexole 37.5, 75, or 150 mg BID (twice-daily) or placebo. The primary end point was the relative change in AEC from baseline to week 12. Prebronchodilator FEV1 week-12 change from baseline was a key secondary end point. Nasal eosinophil peroxidase was an exploratory end point. RESULTS A total of 103 subjects were randomly assigned to dexpramipexole 37.5 mg BID (N = 22), 75 mg BID (N = 26), 150 mg BID (N = 28), or placebo (N = 27). Dexpramipexole significantly reduced placebo-corrected AEC week-12 ratio to baseline, in both the 150-mg BID (ratio, 0.23; 95% CI, 0.12-0.43; P < .0001) and the 75-mg BID (ratio, 0.34; 95% CI, 0.18-0.65; P = .0014) dose groups, corresponding to 77% and 66% reductions, respectively. Dexpramipexole reduced the exploratory end point of nasal eosinophil peroxidase week-12 ratio to baseline in the 150-mg BID (median, 0.11; P = .020) and the 75-mg BID (median, 0.17; P = .021) groups. Placebo-corrected FEV1 increases were observed starting at week 4 (nonsignificant). Dexpramipexole displayed a favorable safety profile. CONCLUSIONS Dexpramipexole demonstrated effective eosinophil lowering and was well tolerated. Additional larger clinical trials are needed to understand the clinical efficacy of dexpramipexole in asthma.
Collapse
Affiliation(s)
- Salman Siddiqui
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Sally E Wenzel
- University of Pittsburgh School of Public Health, Environmental & Occupational Health, Pittsburgh, Pa
| | | | | | | | | | | | - Natasha Ghearing
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Justin T Schwartz
- Division of Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sergei I Ochkur
- Division of Allergy, Asthma and Clinical Immunology, Scottsdale, Ariz; Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Scottsdale, Ariz; Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of New Jersey, New Brunswick, NJ
| | | |
Collapse
|
14
|
Sanchez JE, Noor S, Sun MS, Zimmerly J, Pasmay A, Sanchez JJ, Vanderwall AG, Haynes MK, Sklar LA, Escalona PR, Milligan ED. The FDA-approved compound, pramipexole and the clinical-stage investigational drug, dexpramipexole, reverse chronic allodynia from sciatic nerve damage in mice, and alter IL-1β and IL-10 expression from immune cell culture. Neurosci Lett 2023; 814:137419. [PMID: 37558176 PMCID: PMC10552878 DOI: 10.1016/j.neulet.2023.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
During the onset of neuropathic pain from a variety of etiologies, nociceptors become hypersensitized, releasing neurotransmitters and other factors from centrally-projecting nerve terminals within the dorsal spinal cord. Consequently, glial cells (astrocytes and microglia) in the spinal cord are activated and mediate the release of proinflammatory cytokines that act to enhance pain transmission and sensitize mechanical non-nociceptive fibers which ultimately results in light touch hypersensitivity, clinically observed as allodynia. Pramipexole, a D2/D3 preferring agonist, is FDA-approved for the treatment of Parkinson's disease and demonstrates efficacy in animal models of inflammatory pain. The clinical-stage investigational drug, R(+) enantiomer of pramipexole, dexpramipexole, is virtually devoid of D2/D3 agonist actions and is efficacious in animal models of inflammatory and neuropathic pain. The current experiments focus on the application of a mouse model of sciatic nerve neuropathy, chronic constriction injury (CCI), that leads to allodynia and is previously characterized to generate spinal glial activation with consequent release IL-1β. We hypothesized that both pramipexole and dexpramipexole reverse CCI-induced chronic neuropathy in mice, and in human monocyte cell culture studies (THP-1 cells), pramipexole prevents IL-1β production. Additionally, we hypothesized that in rat primary splenocyte culture, dexpramixole increases mRNA for the anti-inflammatory and pleiotropic cytokine, interleukin-10 (IL-10). Results show that following intravenous pramipexole or dexpramipexole, a profound decrease in allodynia was observed by 1 hr, with allodynia returning 24 hr post-injection. Pramipexole significantly blunted IL-1β protein production from stimulated human monocytes and dexpramipexole induced elevated IL-10 mRNA expression from rat splenocytes. The data support that clinically-approved compounds like pramipexole and dexpramipexole support their application as anti-inflammatory agents to mitigate chronic neuropathy, and provide a blueprint for future, multifaceted approaches for opioid-independent neuropathic pain treatment.
Collapse
Affiliation(s)
- J E Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - S Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M S Sun
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - J Zimmerly
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - A Pasmay
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - J J Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - A G Vanderwall
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M K Haynes
- Center for Molecular Discovery (CMD) Innovation, Discovery and Training Complex (IDTC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - L A Sklar
- Center for Molecular Discovery (CMD) Innovation, Discovery and Training Complex (IDTC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - P R Escalona
- Department of Psychiatry, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; New Mexico VA Health Care System, Albuquerque NM 87108, USA
| | - E D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
15
|
Keifer OP, Gutierrez J, Butt MT, Cramer SD, Bartus R, Tansey M, Deaver D, Betourne A, Boulis NM. Spinal cord and brain concentrations of riluzole after oral and intrathecal administration: A potential new treatment route for amyotrophic lateral sclerosis. PLoS One 2023; 18:e0277718. [PMID: 37607205 PMCID: PMC10443869 DOI: 10.1371/journal.pone.0277718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Riluzole is the only treatment known to improve survival in patients with Amyotrophic Lateral Sclerosis (ALS). However, oral riluzole efficacy is modest at best, further it is known to have large inter-individual variability of serum concentration and clearance, is formulated as an oral drug in a patient population plagued with dysphagia, and has known systemic side-effects like asthenia (limiting patient compliance) and elevated liver enzymes. In this context, we postulated that continuous intrathecal (IT) infusion of low doses of riluzole could provide consistent elevations of the drug spinal cord (SC) concentrations at or above those achieved with oral dosing, without increasing the risk for adverse events associated with systemic drug exposure or off-target side effects in the brain. We developed a formulation of riluzole for IT delivery and conducted our studies in purpose-bred hound dogs. Our non-GLP studies revealed that IT infusion alone was able to increase SC concentrations above those provided by oral administration, without increasing plasma concentrations. We then conducted two GLP studies that combined IT infusion with oral administration at human equivalent dose, to evaluate SC and brain concentrations of riluzole along with assessments of safety and tolerability. In the 6-week study, the highest IT dose (0.2 mg/hr) was well tolerated by the animals and increased SC concentrations above those achieved with oral riluzole alone, without increasing brain concentrations. In the 6-month study, the highest dose tested (0.4 mg/hr) was not tolerated and yielded SC significantly above those achieved in all previous studies. Our data show the feasibility and safety profile of continuous IT riluzole delivery to the spinal cord, without concurrent elevated liver enzymes, and minimal brain concentrations creating another potential therapeutic route of delivery to be used in isolation or in combination with other therapeutics."
Collapse
Affiliation(s)
- Orion P. Keifer
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Juanmarco Gutierrez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Mark T. Butt
- Tox Path Specialists, LLC (a StageBio Company), Frederick, MD, United States of America
| | - Sarah D. Cramer
- Tox Path Specialists, LLC (a StageBio Company), Frederick, MD, United States of America
| | - Raymond Bartus
- RTBioconsultants, San Diego, CA, United States of America
| | - Malu Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Daniel Deaver
- Deaver Non-Clinical Drug Development Consulting, LLC, Franklin, MA, United States of America
| | | | - Nicholas M. Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
16
|
Bjornevik K, Cortese M, Furtado JD, Paganoni S, Schwarzschild MA, Cudkowicz ME, Ascherio A. Association of Polyunsaturated Fatty Acids and Clinical Progression in Patients With ALS: Post Hoc Analysis of the EMPOWER Trial. Neurology 2023; 101:e690-e698. [PMID: 37344230 PMCID: PMC10437021 DOI: 10.1212/wnl.0000000000207485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/18/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Polyunsaturated fatty acids (PUFAs) have neuroprotective and anti-inflammatory effects and could be beneficial in amyotrophic lateral sclerosis (ALS). Higher dietary intake and plasma levels of PUFAs, in particular alpha-linolenic acid (ALA), have been associated with a lower risk of ALS in large epidemiologic cohort studies, but data on disease progression in patients with ALS are sparse. We examined whether plasma levels of ALA and other PUFAs contributed to predicting survival time and functional decline in patients with ALS. METHODS We conducted a study among participants in the EMPOWER clinical trial who had plasma samples collected at the time of randomization that were available for fatty acid analyses. Plasma fatty acids were measured using gas chromatography. We used Cox proportional hazards models and linear regression to evaluate the association of individual fatty acids with risk of death and joint rank test score of functional decline and survival. RESULTS Fatty acid analyses were conducted in 449 participants. The mean (SD) age of these participants at baseline was 57.5 (10.7) years, and 293 (65.3%) were men; 126 (28.1%) died during follow-up. Higher ALA levels were associated with lower risk of death (age-adjusted and sex-adjusted hazard ratio comparing highest vs lowest quartile 0.50, 95% CI 0.29-0.86, p-trend = 0.041) and higher joint rank test score (difference in score according to 1 SD increase 10.7, 95% CI 0.2-21.1, p = 0.045), consistent with a slower functional decline. The estimates remained similar in analyses adjusted for body mass index, race/ethnicity, symptom duration, site of onset, riluzole use, family history of ALS, predicted upright slow vital capacity, and treatment group. Higher levels of the n-3 fatty acid eicosapentaenoic acid and the n-6 fatty acid linoleic acid were associated with a lower risk of death during follow-up. DISCUSSION Higher levels of ALA were associated with longer survival and slower functional decline in patients with ALS. These results suggest that ALA may have a favorable effect on disease progression in patients with ALS.
Collapse
Affiliation(s)
- Kjetil Bjornevik
- From the Department of Nutrition (K.B., M.C., J.D.F., A.A.), and Department of Epidemiology (K.B., A.A.), Harvard T.H. Chan School of Public Health, Boston; Epidemiology (J.D.F.), Biogen, Cambridge; Department of Physical Medicine and Rehabilitation (S.P.), Spaulding Rehabilitation Hospital and Healey Center for ALS, Massachusetts General Hospital; Harvard Medical School (S.P., M.A.S.); Department of Neurology (M.A.S.), Massachusetts General Hospital; Sean M Healey & AMG Center for ALS (M.E.C.), Mass General Hospital, Harvard Medical School; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | - Marianna Cortese
- From the Department of Nutrition (K.B., M.C., J.D.F., A.A.), and Department of Epidemiology (K.B., A.A.), Harvard T.H. Chan School of Public Health, Boston; Epidemiology (J.D.F.), Biogen, Cambridge; Department of Physical Medicine and Rehabilitation (S.P.), Spaulding Rehabilitation Hospital and Healey Center for ALS, Massachusetts General Hospital; Harvard Medical School (S.P., M.A.S.); Department of Neurology (M.A.S.), Massachusetts General Hospital; Sean M Healey & AMG Center for ALS (M.E.C.), Mass General Hospital, Harvard Medical School; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jeremy D Furtado
- From the Department of Nutrition (K.B., M.C., J.D.F., A.A.), and Department of Epidemiology (K.B., A.A.), Harvard T.H. Chan School of Public Health, Boston; Epidemiology (J.D.F.), Biogen, Cambridge; Department of Physical Medicine and Rehabilitation (S.P.), Spaulding Rehabilitation Hospital and Healey Center for ALS, Massachusetts General Hospital; Harvard Medical School (S.P., M.A.S.); Department of Neurology (M.A.S.), Massachusetts General Hospital; Sean M Healey & AMG Center for ALS (M.E.C.), Mass General Hospital, Harvard Medical School; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Sabrina Paganoni
- From the Department of Nutrition (K.B., M.C., J.D.F., A.A.), and Department of Epidemiology (K.B., A.A.), Harvard T.H. Chan School of Public Health, Boston; Epidemiology (J.D.F.), Biogen, Cambridge; Department of Physical Medicine and Rehabilitation (S.P.), Spaulding Rehabilitation Hospital and Healey Center for ALS, Massachusetts General Hospital; Harvard Medical School (S.P., M.A.S.); Department of Neurology (M.A.S.), Massachusetts General Hospital; Sean M Healey & AMG Center for ALS (M.E.C.), Mass General Hospital, Harvard Medical School; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Michael A Schwarzschild
- From the Department of Nutrition (K.B., M.C., J.D.F., A.A.), and Department of Epidemiology (K.B., A.A.), Harvard T.H. Chan School of Public Health, Boston; Epidemiology (J.D.F.), Biogen, Cambridge; Department of Physical Medicine and Rehabilitation (S.P.), Spaulding Rehabilitation Hospital and Healey Center for ALS, Massachusetts General Hospital; Harvard Medical School (S.P., M.A.S.); Department of Neurology (M.A.S.), Massachusetts General Hospital; Sean M Healey & AMG Center for ALS (M.E.C.), Mass General Hospital, Harvard Medical School; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Merit E Cudkowicz
- From the Department of Nutrition (K.B., M.C., J.D.F., A.A.), and Department of Epidemiology (K.B., A.A.), Harvard T.H. Chan School of Public Health, Boston; Epidemiology (J.D.F.), Biogen, Cambridge; Department of Physical Medicine and Rehabilitation (S.P.), Spaulding Rehabilitation Hospital and Healey Center for ALS, Massachusetts General Hospital; Harvard Medical School (S.P., M.A.S.); Department of Neurology (M.A.S.), Massachusetts General Hospital; Sean M Healey & AMG Center for ALS (M.E.C.), Mass General Hospital, Harvard Medical School; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Alberto Ascherio
- From the Department of Nutrition (K.B., M.C., J.D.F., A.A.), and Department of Epidemiology (K.B., A.A.), Harvard T.H. Chan School of Public Health, Boston; Epidemiology (J.D.F.), Biogen, Cambridge; Department of Physical Medicine and Rehabilitation (S.P.), Spaulding Rehabilitation Hospital and Healey Center for ALS, Massachusetts General Hospital; Harvard Medical School (S.P., M.A.S.); Department of Neurology (M.A.S.), Massachusetts General Hospital; Sean M Healey & AMG Center for ALS (M.E.C.), Mass General Hospital, Harvard Medical School; and Channing Division of Network Medicine (A.A.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Mead RJ, Shan N, Reiser HJ, Marshall F, Shaw PJ. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov 2023; 22:185-212. [PMID: 36543887 PMCID: PMC9768794 DOI: 10.1038/s41573-022-00612-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease caused by degeneration of motor neurons. As with all major neurodegenerative disorders, development of disease-modifying therapies has proven challenging for multiple reasons. Nevertheless, ALS is one of the few neurodegenerative diseases for which disease-modifying therapies are approved. Significant discoveries and advances have been made in ALS preclinical models, genetics, pathology, biomarkers, imaging and clinical readouts over the last 10-15 years. At the same time, novel therapeutic paradigms are being applied in areas of high unmet medical need, including neurodegenerative disorders. These developments have evolved our knowledge base, allowing identification of targeted candidate therapies for ALS with diverse mechanisms of action. In this Review, we discuss how this advanced knowledge, aligned with new approaches, can enable effective translation of therapeutic agents from preclinical studies through to clinical benefit for patients with ALS. We anticipate that this approach in ALS will also positively impact the field of drug discovery for neurodegenerative disorders more broadly.
Collapse
Affiliation(s)
- Richard J Mead
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK
| | - Ning Shan
- Aclipse Therapeutics, Radnor, PA, US
| | | | - Fiona Marshall
- MSD UK Discovery Centre, Merck, Sharp and Dohme (UK) Limited, London, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK.
| |
Collapse
|
18
|
Bedlack R, Barkhaus PE, Barnes B, Beauchamp M, Bertorini T, Bromberg MB, Carter GT, Chaudry V, Cudkowicz M, Jackson C, Levitsky G, Lund I, McDermott C, Novella S, Olby N, Ostrow L, Pattee GL, Heiman-Patterson T, Ratner D, Salmon K, Steves S, Terrelonge M, Wicks P, Wills AM. ALSUntangled #63: ketogenic diets. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:159-163. [PMID: 34645313 DOI: 10.1080/21678421.2021.1990346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 01/26/2023]
Abstract
ALSUntangled reviews alternative and off label treatments with a goal of helping patients make more informed decisions about them. Here we review ketogenic diets. We shows that these have plausible mechanisms, including augmenting cellular energy balance and reducing excitotoxicity, neuroinflammation and oxidative stress. We review a mouse model study, anecdotal reports and trials in ALS and other diseases. We conclude that there is yet not enough data to recommend ketogenic diets for patients with ALS, especially in light of the many side effects these can have.
Collapse
Affiliation(s)
- Richard Bedlack
- Neurology Department, Duke University, Durham, NC, United States
| | - Paul E Barkhaus
- Neurology Department, Froedtert & the Medical College of Wisconsin, Kenosha, WI, United States
| | - Benjamin Barnes
- Neurology Department, Augusta University Medical College of Georgia, Augusta, GA, United States
| | | | - Tulio Bertorini
- Neurology Department, The University of Tennessee Health Science Center VolShop Memphis, Memphis, TN, United States
| | - Mark B Bromberg
- Neurology Department, University of Utah Health Hospitals and Clinics, Salt Lake City, UT, United States
| | - Gregory T Carter
- St Lukes Rehabilitation Hospital, Physical Medicine and Rehabilitation, Chesterfield, MO, United States
| | - Vinay Chaudry
- Neurology Department, University of North Carolina School of Medicine Neuroscience Center, Chapel Hill, NC, United States
| | - Merit Cudkowicz
- Neurology Department, Mass General Brigham Inc., Boston, MA, United States
| | - Ce Jackson
- Neurology Department, The University of Texas Health Science Center at San Antonio - Greehey Academic and Research Campus, San Antonio, TX, United States
| | | | - Isaac Lund
- Green Hope High School, Cary, NC, United States
| | - Christopher McDermott
- The University of Sheffield Institute for Translational Neuroscience, Sheffield, United Kingdom
| | - Steven Novella
- Neurology Department, Yale University, New Haven, CT, United States
| | - Natasha Olby
- Neurology Department, North Carolina State University, Raleigh, NC, United States
| | - Lyle Ostrow
- Neurology Department, Johns Hopkins University, Baltimore, MD, United States
| | - Gary L Pattee
- Neurology Department, University of Nebraska Medical Center College of Medicine, Omaha, NE, United States
| | | | - Dylan Ratner
- Longmeadow High School, Longmeadow, MA, United States
| | - Kristiana Salmon
- Neurology Department, McGill Centre for Research in Neuroscience, Montreal, Canada
| | - Susan Steves
- Nutrition Department, Duke University, Durham, NC, United States
| | - Mark Terrelonge
- Neurology Department, University of California San Francisco, San Francisco, CA, United States
| | | | - Anne-Marie Wills
- Neurology Department, Mass General Brigham Inc., Boston, MA, United States
| |
Collapse
|
19
|
Ito D, Morimoto S, Takahashi S, Okada K, Nakahara J, Okano H. Maiden voyage: induced pluripotent stem cell-based drug screening for amyotrophic lateral sclerosis. Brain 2023; 146:13-19. [PMID: 36004509 DOI: 10.1093/brain/awac306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023] Open
Abstract
Using patient-derived induced pluripotent stem cells, neurodegenerative disease phenotypes have been recapitulated and their pathogenesis analysed leading to significant progress in drug screening. In amyotrophic lateral sclerosis, high-throughput screening using induced pluripotent stem cells-derived motor neurons has identified candidate drugs. Owing to induced pluripotent stem cell-based drug evaluation/screening, three compounds, retigabine, ropinirole and bosutinib, have progressed to clinical trials. Retigabine blocks hyperexcitability and improves survival in amyotrophic lateral sclerosis patient-derived motor neurons. In a randomized clinical trial (n = 65), treatment with retigabine reduced neuronal excitability after 8 weeks. Ropinirole, identified in a high-throughput screening, attenuates pathological phenotypes in patient-derived motor neurons. In a trial limited by a small sample size (n = 20), ropinirole was tolerable and had clinical benefits on function and survival. A phase 1 study of bosutinib has reported safety and tolerability for 12 weeks. Thus, these clinical trials show safety and positive effects and confirm the reliability of stem cell-based drug discovery. This novel strategy leads to reduced costs and time when compared to animal testing and opens new avenues for therapy in intractable diseases.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Neurology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Kensuke Okada
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
20
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
21
|
Dhasmana S, Dhasmana A, Kotnala S, Mangtani V, Narula AS, Haque S, Jaggi M, Yallapu MM, Chauhan SC. Boosting Mitochondrial Potential: An Imperative Therapeutic Intervention in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:1117-1138. [PMID: 36111770 PMCID: PMC10286590 DOI: 10.2174/1570159x20666220915092703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a progressive and terminal neurodegenerative disorder. Mitochondrial dysfunction, imbalance of cellular bioenergetics, electron chain transportation and calcium homeostasis are deeply associated with the progression of this disease. Impaired mitochondrial functions are crucial in rapid neurodegeneration. The mitochondria of ALS patients are associated with deregulated Ca2+ homeostasis and elevated levels of reactive oxygen species (ROS), leading to oxidative stress. Overload of mitochondrial calcium and ROS production leads to glutamatereceptor mediated neurotoxicity. This implies mitochondria are an attractive therapeutic target. OBJECTIVE The aim of this review is to brief the latest developments in the understanding of mitochondrial pathogenesis in ALS and emphasize the restorative capacity of therapeutic candidates. RESULTS In ALS, mitochondrial dysfunction is a well-known phenomenon. Various therapies targeted towards mitochondrial dysfunction aim at decreasing ROS generation, increasing mitochondrial biogenesis, and inhibiting apoptotic pathways. Some of the therapies briefed in this review may be categorized as synthetic, natural compounds, genetic materials, and cellular therapies. CONCLUSION The overarching goals of mitochondrial therapies in ALS are to benefit ALS patients by slowing down the disease progression and prolonging overall survival. Despite various therapeutic approaches, there are many hurdles in the development of a successful therapy due to the multifaceted nature of mitochondrial dysfunction and ALS progression. Intensive research is required to precisely elucidate the molecular pathways involved in the progression of mitochondrial dysfunctions that ultimately lead to ALS. Because of the multifactorial nature of ALS, a combination therapy approach may hold the key to cure and treat ALS in the future.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sudhir Kotnala
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Varsha Mangtani
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
| | - Acharan S. Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, North Carolina, NC 27516, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Meena Jaggi
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
22
|
Soares P, Silva C, Chavarria D, Silva FSG, Oliveira PJ, Borges F. Drug discovery and amyotrophic lateral sclerosis: Emerging challenges and therapeutic opportunities. Ageing Res Rev 2023; 83:101790. [PMID: 36402404 DOI: 10.1016/j.arr.2022.101790] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons (MNs) leading to paralysis and, ultimately, death by respiratory failure 3-5 years after diagnosis. Edaravone and Riluzole, the only drugs currently approved for ALS treatment, only provide mild symptomatic relief to patients. Extraordinary progress in understanding the biology of ALS provided new grounds for drug discovery. Over the last two decades, mitochondria and oxidative stress (OS), iron metabolism and ferroptosis, and the major regulators of hypoxia and inflammation - HIF and NF-κB - emerged as promising targets for ALS therapeutic intervention. In this review, we focused our attention on these targets to outline and discuss current advances in ALS drug development. Based on the challenges and the roadblocks, we believe that the rational design of multi-target ligands able to modulate the complex network of events behind the disease can provide effective therapies in a foreseeable future.
Collapse
Affiliation(s)
- Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Catia Silva
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filomena S G Silva
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
23
|
Guarin DL, Taati B, Abrahao A, Zinman L, Yunusova Y. Video-Based Facial Movement Analysis in the Assessment of Bulbar Amyotrophic Lateral Sclerosis: Clinical Validation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:4667-4678. [PMID: 36367528 PMCID: PMC9940890 DOI: 10.1044/2022_jslhr-22-00072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 06/03/2023]
Abstract
PURPOSE Facial movement analysis during facial gestures and speech provides clinically useful information for assessing bulbar amyotrophic lateral sclerosis (ALS). However, current kinematic methods have limited clinical application due to the equipment costs. Recent advancements in consumer-grade hardware and machine/deep learning made it possible to estimate facial movements from videos. This study aimed to establish the clinical validity of a video-based facial analysis for disease staging classification and estimation of clinical scores. METHOD Fifteen individuals with ALS and 11 controls participated in this study. Participants with ALS were stratified into early and late bulbar ALS groups based on their speaking rate. Participants were recorded with a three-dimensional (3D) camera (color + depth) while repeating a simple sentence 10 times. The lips and jaw movements were estimated, and features related to sentence duration and facial movements were used to train a machine learning model for multiclass classification and to predict the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) bulbar subscore and speaking rate. RESULTS The classification model successfully separated healthy controls, the early ALS group, and the late ALS group with an overall accuracy of 96.1%. Video-based features demonstrated a high ability to estimate the speaking rate (adjusted R 2 = .82) and a moderate ability to predict the ALSFRS-R bulbar subscore (adjusted R 2 = .55). CONCLUSIONS The proposed approach based on a 3D camera and machine learning algorithms represents an easy-to-use and inexpensive system that can be included as part of a clinical assessment of bulbar ALS to integrate facial movement analysis with other clinical data seamlessly.
Collapse
Affiliation(s)
- Diego L. Guarin
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
| | - Babak Taati
- KITE–Toronto Rehabilitation Institute, University Health Network, Ontario, Canada
- Department of Computer Science, University of Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Agessandro Abrahao
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada
| | - Lorne Zinman
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Cognitive Neurology, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
| | - Yana Yunusova
- KITE–Toronto Rehabilitation Institute, University Health Network, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Speech-Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Ontario, Canada
| |
Collapse
|
24
|
Shefner JM, Bedlack R, Andrews JA, Berry JD, Bowser R, Brown R, Glass JD, Maragakis NJ, Miller TM, Rothstein JD, Cudkowicz ME. Amyotrophic Lateral Sclerosis Clinical Trials and Interpretation of Functional End Points and Fluid Biomarkers: A Review. JAMA Neurol 2022; 79:1312-1318. [PMID: 36251310 DOI: 10.1001/jamaneurol.2022.3282] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Importance Clinical trial activity in amyotrophic lateral sclerosis (ALS) is dramatically increasing; as a result, trial modifications have been introduced to improve efficiency, outcome measures have been reassessed, and considerable discussion about the level of data necessary to advance a drug to approval has occurred. This review discusses what recent pivotal studies can teach the community about these topics. Observations By restricting inclusion and exclusion criteria, recent trials have enrolled populations distinct from previous studies. This has led to efficacy signals being observed in studies that are smaller and shorter than was thought feasible previously. However, such trials raise questions about generalizability of results. Small trials with equivocal clinical results also raise questions about the data necessary to lead to regulatory approval. The ALS Functional Rating Scale-Revised remains the most commonly used primary outcome measure; this review discusses innovations in its use. Blood neurofilament levels can predict prognosis in ALS and may be a sensitive indicator of biologic effect; current knowledge does not yet support its use as a primary outcome. Conclusions and Relevance It is now possible to use specific inclusion criteria to recruit a homogeneous patient population progressing at a specific rate; this will likely impact trials in the future. Generalizability of results on limited populations remains a concern. Although clinical outcomes remain the most appropriate primary outcome measures, fluid markers reflecting biologically important processes will assume more importance as more is learned about the association between such markers and clinical end points. The benefit of use of analytic strategies, such as responder analyses, is still uncertain.
Collapse
Affiliation(s)
| | | | - Jinsy A Andrews
- The Neurological Institute, Columbia University, New York, New York
| | - James D Berry
- Healey & AMG Center ALS, Massachusetts General Hospital, Boston
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gevaert P, Han JK, Smith SG, Sousa AR, Howarth PH, Yancey SW, Chan R, Bachert C. The roles of eosinophils and interleukin-5 in the pathophysiology of chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2022; 12:1413-1423. [PMID: 35243803 PMCID: PMC9790271 DOI: 10.1002/alr.22994] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 12/30/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is generally associated with eosinophilic tissue infiltration linked to type 2 inflammation and characterized by elevated levels of interleukin (IL)-5 and other type 2 inflammatory mediators. Although distinct and overlapping contributions of eosinophils and IL-5 to CRSwNP pathology are still being explored, they are both known to play an important role in NP inflammation. Eosinophils secrete numerous type 2 inflammatory mediators including granule proteins, enzymes, cytokines, chemokines, growth factors, lipids, and oxidative products. IL-5 is critical for the differentiation, migration, activation, and survival of eosinophils but is also implicated in the biological functions of mast cells, basophils, innate lymphoid cells, B cells, and epithelial cells. Results from clinical trials of therapeutics that target type 2 inflammatory mediators (including but not limited to anti-IL-5, anti-immunoglobulin-E, and anti-IL-4/13) may provide further evidence of how eosinophils and IL-5 contribute to CRSwNP. Finally, the association between eosinophilia/elevated IL-5 and greater rates of NP recurrence after endoscopic sinus surgery (ESS) suggests that these mediators may have utility as biomarkers of NP recurrence in diagnosing and assessing the severity of CRSwNP. This review provides an overview of eosinophil and IL-5 biology and explores the literature regarding the role of these mediators in CRSwNP pathogenesis and NP recurrence following ESS. Based on current published evidence, we suggest that although eosinophils play a key role in CRSwNP pathophysiology, IL-5, a cytokine that activates these cells, also represents a pertinent and effective treatment target in patients with CRSwNP.
Collapse
Affiliation(s)
- Philippe Gevaert
- Upper Airway Research LaboratoryDepartment of OtorhinolaryngologyGhent University HospitalGhentBelgium
| | | | - Steven G. Smith
- Respiratory Medical Franchise, GSKResearch Triangle ParkNorth CarolinaUSA
| | - Ana R. Sousa
- Clinical Sciences, Respiratory, GSKBrentfordMiddlesexUK
| | - Peter H. Howarth
- Clinical and Experimental SciencesFaculty of Medicine, University of Southampton and NIHR Respiratory Biomedical Research UnitSouthampton General HospitalSouthamptonUK,Global Respiratory Franchise, GSKBrentfordMiddlesexUK
| | - Steven W. Yancey
- Respiratory Medical Franchise, GSKResearch Triangle ParkNorth CarolinaUSA
| | - Robert Chan
- Clinical Sciences, Respiratory, GSKBrentfordMiddlesexUK
| | - Claus Bachert
- Upper Airway Research LaboratoryDepartment of OtorhinolaryngologyGhent University HospitalGhentBelgium,Division of ENT DiseasesCLINTECKarolinska InstituteStockholmSweden
| |
Collapse
|
26
|
Levin LA, Patrick C, Choudry NB, Sharif NA, Goldberg JL. Neuroprotection in neurodegenerations of the brain and eye: Lessons from the past and directions for the future. Front Neurol 2022; 13:964197. [PMID: 36034312 PMCID: PMC9412944 DOI: 10.3389/fneur.2022.964197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Neurological and ophthalmological neurodegenerative diseases in large part share underlying biology and pathophysiology. Despite extensive preclinical research on neuroprotection that in many cases bridges and unifies both fields, only a handful of neuroprotective therapies have succeeded clinically in either. Main body Understanding the commonalities among brain and neuroretinal neurodegenerations can help develop innovative ways to improve translational success in neuroprotection research and emerging therapies. To do this, analysis of why translational research in neuroprotection fails necessitates addressing roadblocks at basic research and clinical trial levels. These include optimizing translational approaches with respect to biomarkers, therapeutic targets, treatments, animal models, and regulatory pathways. Conclusion The common features of neurological and ophthalmological neurodegenerations are useful for outlining a path forward that should increase the likelihood of translational success in neuroprotective therapies.
Collapse
Affiliation(s)
- Leonard A. Levin
- Departments of Ophthalmology and Visual Sciences, Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Nozhat B. Choudry
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| | - Najam A. Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| | - Jeffrey L. Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
27
|
Dexpramipexole Attenuates White Matter Injury to Facilitate Locomotion and Motor Coordination Recovery via Reducing Ferroptosis after Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6160701. [PMID: 35965685 PMCID: PMC9371846 DOI: 10.1155/2022/6160701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
Abstract
Deciphering the factors causing damage to white matter fiber bundles and exploring new strategies to alleviate white matter injury (WMI) is a promising treatment to improve neurological impairments after intracerebral hemorrhage (ICH). Ferroptosis usually occurs at perihematomal region and contributes to neuronal death due to reactive oxygen species (ROS) production. Dexpramipexole (DPX) easily crosses the blood brain barrier (BBB) and exerts antioxidative properties by reducing ROS production, while the role of DPX in ferroptosis after ICH remains elusive. Here, our results indicated that ferroptosis played a significant role in WMI resulting from iron and ROS accumulation around hematoma. Further evidence demonstrated that the administration of DPX decreased iron and ROS deposition to inhibit ferroptosis at perihematomal site. With the inhibition of ferroptosis, WMI was alleviated at perihematomal site, thereafter promoting locomotion and motor coordination recovery in mice after ICH. Subsequently, the results showcased that the expression of glutathione peroxidase 4 (GPX4) and ferroptosis suppressing protein 1 (FSP1) was upregulated with the administration of DPX. Collectively, the present study uncovers the underlying mechanism and elucidates the therapeutic effect of DPX on ICH, and even in other central nervous system (CNS) diseases with the presence of ferroptosis.
Collapse
|
28
|
Schoenfeld DA, Ramchandani R, Finkelstein DM. Designing a longitudinal clinical trial based on a composite endpoint: Sample size, monitoring, and adaptation. Stat Med 2022; 41:4745-4755. [PMID: 35818331 DOI: 10.1002/sim.9416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022]
Abstract
Longitudinal clinical trials are often designed to compare treatments on the basis of multiple outcomes. For example in the case of cardiac trials, the outcomes of interest include mortality as well as cardiac events and hospitalization. For a COVID-19 trial, the outcomes of interest include mortality, time on ventilator, and time in hospital. Earlier work by these authors proposed a non-parametric test based on a composite of multiple endpoints referred to as the Finkelstein-Schoenfeld (FS) test (Finkelstein and Schoenfeld. Stat Med. 1999;18(11):1341-1354.). More recently, an estimate of the treatment comparison based on multiple endpoints (related to the FS test) was proposed (Pocock et al. Eur Heart J. 2011;33(2):176-182.). This estimate, which summarized the ratio of the number of patients who fared better vs worse on the experimental arm was coined the win ratio. The aim of this article is to provide guidance in the design of a trial that will use the FS test or the win ratio. The issues that will be considered are the sample size, sequential monitoring, and adaptive designs.
Collapse
Affiliation(s)
- David A Schoenfeld
- Massachusetts General Hospital Biostatistics Unit, Boston, Massachusetts, USA.,Harvard University, Cambridge, Massachusetts, USA
| | - Ritesh Ramchandani
- Massachusetts General Hospital Biostatistics Unit, Boston, Massachusetts, USA
| | - Dianne M Finkelstein
- Massachusetts General Hospital Biostatistics Unit, Boston, Massachusetts, USA.,Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Fournier CN. Considerations for Amyotrophic Lateral Sclerosis (ALS) Clinical Trial Design. Neurotherapeutics 2022; 19:1180-1192. [PMID: 35819713 PMCID: PMC9275386 DOI: 10.1007/s13311-022-01271-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Thoughtful clinical trial design is critical for efficient therapeutic development, particularly in the field of amyotrophic lateral sclerosis (ALS), where trials often aim to detect modest treatment effects among a population with heterogeneous disease progression. Appropriate outcome measure selection is necessary for trials to provide decisive and informative results. Investigators must consider the outcome measure's reliability, responsiveness to detect change when change has actually occurred, clinical relevance, and psychometric performance. ALS clinical trials can also be performed more efficiently by utilizing statistical enrichment techniques. Innovations in ALS prediction models allow for selection of participants with less heterogeneity in disease progression rates without requiring a lead-in period, or participants can be stratified according to predicted progression. Statistical enrichment can reduce the needed sample size and improve study power, but investigators must find a balance between optimizing statistical efficiency and retaining generalizability of study findings to the broader ALS population. Additional progress is still needed for biomarker development and validation to confirm target engagement in ALS treatment trials. Selection of an appropriate biofluid biomarker depends on the treatment mechanism of interest, and biomarker studies should be incorporated into early phase trials. Inclusion of patients with ALS as advisors and advocates can strengthen clinical trial design and study retention, but more engagement efforts are needed to improve diversity and equity in ALS research studies. Another challenge for ALS therapeutic development is identifying ways to respect patient autonomy and improve access to experimental treatment, something that is strongly desired by many patients with ALS and ALS advocacy organizations. Expanded access programs that run concurrently to well-designed and adequately powered randomized controlled trials may provide an opportunity to broaden access to promising therapeutics without compromising scientific integrity or rushing regulatory approval of therapies without adequate proof of efficacy.
Collapse
Affiliation(s)
- Christina N Fournier
- Department of Neurology, Emory University, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| |
Collapse
|
30
|
Su WM, Gu XJ, Duan QQ, Jiang Z, Gao X, Shang HF, Chen YP. Genetic factors for survival in amyotrophic lateral sclerosis: an integrated approach combining a systematic review, pairwise and network meta-analysis. BMC Med 2022; 20:209. [PMID: 35754054 PMCID: PMC9235235 DOI: 10.1186/s12916-022-02411-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The time of survival in patients with amyotrophic lateral sclerosis (ALS) varies greatly, and the genetic factors that contribute to the survival of ALS are not well studied. There is a lack of a comprehensive study to elucidate the role of genetic factors in the survival of ALS. METHODS The published studies were systematically searched and obtained from PubMed, EMBASE, and the Cochrane Library without any language restrictions from inception to Oct 27, 2021. A network meta-analysis for ALS causative/risk genes and a systematic review and pairwise meta-analysis for other genetic modifiers were conducted. The PROSPERO registration number: CRD42022311646. RESULTS A total of 29,764 potentially relevant references were identified, and 71 papers were eligible for analysis based on pre-decided criteria, including 35 articles in network meta-analysis for 9 ALS causative/risk genes, 17 articles in pairwise meta-analysis for four genetic modifiers, and 19 articles described in the systematic review. Variants in three genes, including ATXN2 (HR: 3.6), C9orf72 (HR: 1.6), and FUS (HR:1.8), were associated with short survival of ALS, but such association was not identified in SOD1, TARDBP, TBK1, NEK1, UBQLN2, and CCNF. In addition, UNC13A rs12608932 CC genotype and ZNF521B rs2275294 C allele also caused a shorter survival of ALS; however, APOE ε4 allele and KIFAP3 rs1541160 did not be found to have any effect on the survival of ALS. CONCLUSIONS Our study summarized and contrasted evidence for prognostic genetic factors in ALS and would help to understand ALS pathogenesis and guide clinical trials and drug development.
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xia Gao
- Department of Geriatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Lab of Neurodegenerative Disorders, Institute of Inflammation and Immunology (III), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Cudkowicz ME, Shefner JM. Regulatory Approval in ALS; When Is a Single Study Enough? Ann Neurol 2022; 91:737-739. [PMID: 35478359 DOI: 10.1002/ana.26371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Merit E Cudkowicz
- Sean M. Healey & AMG Centers for ALS Mass General Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
32
|
Bassani D, Pavan M, Federico S, Spalluto G, Sturlese M, Moro S. The Multifaceted Role of GPCRs in Amyotrophic Lateral Sclerosis: A New Therapeutic Perspective? Int J Mol Sci 2022; 23:4504. [PMID: 35562894 PMCID: PMC9106011 DOI: 10.3390/ijms23094504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor neurons, which causes a progressive loss of movement ability, usually leading to death within 2 to 5 years from the diagnosis. Much effort has been put into research for an effective therapy for its eradication, but still, no cure is available. The only two drugs approved for this pathology, Riluzole and Edaravone, are onlyable to slow down the inevitable disease progression. As assessed in the literature, drug targets such as protein kinases have already been extensively examined as potential drug targets for ALS, with some molecules already in clinical trials. Here, we focus on the involvement of another very important and studied class of biological entities, G protein-coupled receptors (GPCRs), in the onset and progression of ALS. This workaimsto give an overview of what has been already discovered on the topic, providing useful information and insights that can be used by scientists all around the world who are putting efforts into the fight against this very important neurodegenerating disease.
Collapse
Affiliation(s)
- Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| |
Collapse
|
33
|
Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, Tateishi H, Tateishi T, Otsuka M, Fujita M, Başak AN. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:2400. [PMID: 35269543 PMCID: PMC8910198 DOI: 10.3390/ijms23052400] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hilal Sever
- Ministry of Health, Istanbul Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul 34098, Turkey;
| | - Firdevs Ocak
- Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alaaddin Keykubat University, Alanya 07425, Turkey;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (KUTTAM-NDAL), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
34
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
35
|
Tarantino N, Canfora I, Camerino GM, Pierno S. Therapeutic Targets in Amyotrophic Lateral Sclerosis: Focus on Ion Channels and Skeletal Muscle. Cells 2022; 11:cells11030415. [PMID: 35159225 PMCID: PMC8834084 DOI: 10.3390/cells11030415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a neurodegenerative disease caused by progressive loss of motor neurons, which severely compromises skeletal muscle function. Evidence shows that muscle may act as a molecular powerhouse, whose final signals generate in patients a progressive loss of voluntary muscle function and weakness leading to paralysis. This pathology is the result of a complex cascade of events that involves a crosstalk among motor neurons, glia, and muscles, and evolves through the action of converging toxic mechanisms. In fact, mitochondrial dysfunction, which leads to oxidative stress, is one of the mechanisms causing cell death. It is a common denominator for the two existing forms of the disease: sporadic and familial. Other factors include excitotoxicity, inflammation, and protein aggregation. Currently, there are limited cures. The only approved drug for therapy is riluzole, that modestly prolongs survival, with edaravone now waiting for new clinical trial aimed to clarify its efficacy. Thus, there is a need of effective treatments to reverse the damage in this devastating pathology. Many drugs have been already tested in clinical trials and are currently under investigation. This review summarizes the already tested drugs aimed at restoring muscle-nerve cross-talk and on new treatment options targeting this tissue.
Collapse
|
36
|
van Eijk RP, Roes KC, de Greef‐van der Sandt I, van den Berg LH, Lu Y. Functional loss and mortality in randomized clinical trials for amyotrophic lateral sclerosis: to combine, or not to combine – that is the estimand. Clin Pharmacol Ther 2022; 111:817-825. [PMID: 35076930 PMCID: PMC8940672 DOI: 10.1002/cpt.2533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/15/2022] [Indexed: 11/07/2022]
Abstract
Amyotrophic lateral sclerosis is a rapidly progressive disease leading to death in, on average, 3–5 years after first symptom onset. Consequently, there are frequently a non‐negligible number of patients who die during the course of a clinical trial. This introduces bias in end points such as daily functioning, muscle strength, and quality of life. In this paper, we outline how the choice of strategy to handle death affects the interpretation of the trial results. We provide a general overview of the considerations, positioned in the estimand framework, and discuss the possibility that not every strategy provides a clinically relevant answer in each setting. The relevance of a strategy changes as a function of the intended trial duration, hypothesized treatment effect, and population included. It is important to consider this trade‐off at the design stage of a clinical trial, as this will clarify the exact research question that is being answered, and better guide the planning, design, and analysis of the study.
Collapse
Affiliation(s)
- Ruben P.A. van Eijk
- Department of Biomedical Data Science and Center for Innovative Study Design School of Medicine Stanford University Stanford United States
- Department of Neurology UMC Utrecht Brain Centre University Medical Centre Utrecht Utrecht the Netherlands
| | - Kit C.B. Roes
- Department of Health Evidence Radboud Medical Centre Nijmegen Section Biostatistics the Netherlands
| | | | - Leonard H. van den Berg
- Department of Neurology UMC Utrecht Brain Centre University Medical Centre Utrecht Utrecht the Netherlands
| | - Ying Lu
- Department of Biomedical Data Science and Center for Innovative Study Design School of Medicine Stanford University Stanford United States
| |
Collapse
|
37
|
Bakers JNE, de Jongh AD, Bunte TM, Kendall L, Han SS, Epstein N, Lavrov A, Beelen A, Visser-Meily JMA, van den Berg LH, van Eijk RPA. Using the ALSFRS-R in multicentre clinical trials for amyotrophic lateral sclerosis: potential limitations in current standard operating procedures. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:500-507. [PMID: 34949141 DOI: 10.1080/21678421.2021.2016838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objective: Uniform data collection is fundamental for multicentre clinical trials. We aim to determine the variability, between ALS trial centers, in the prevalence of unexpected or implausible improvements in the revised ALS functional rating scale (ALSFRS-R) score, and its associations with individual patient and item characteristics.Methods: We used data from two multicentre studies to estimate the prevalence of an unexpected increase or implausible improvement in the ALSFRS-R score, defined as an increase of 5 points or more between two consecutive, monthly visits. For each patient with a 5-point or more increase, we evaluated the individual contribution of each ALSFRS-R item.Results: Longitudinal ALSFRS-R scores, originating from 114 trial centers enrolling a total of 1,240 patients, were analyzed. A 5-point or more increase in ALSFRS-R total score was found in 151 (12.2%) patients, with prevalence per study center ranging from 0% to 83%. Bulbar onset, faster disease progression at enrollment, and a lower ALSFRS-R score at baseline were associated with a sudden 5-point or more increase in the ALSFRS-R total score. ALSFRS-R items 2 (saliva), 9 (stairs), 10 (dyspnea), and 11 (orthopnea) were the primary drivers when a 5-point or more increase occurred.Conclusions: Sudden 5-point or more increases in ALSFRS-R total scores between two consecutive visits are relatively common. These sudden increases were not found to occur with equal frequency in trial centers; which underscores the need for amending existing standard operating procedures toward a universal version and monitoring of data quality during the study, in multicentre research.
Collapse
Affiliation(s)
- Jaap N E Bakers
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands.,Centre of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Centre, University Medical Centre Utrecht, and De Hoogstraat Rehabilitation, Utrecht, the Netherlands.,Department of Rehabilitation, Physical Therapy Science & Sports, UMC Utrecht Brain Centre, University Medical Centre Utrecht, the Netherlands
| | - Adriaan D de Jongh
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Tommy M Bunte
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Steve S Han
- Neurosciences, Takeda Pharmaceuticals, Cambridge, USA
| | - Noam Epstein
- Discovery Medicine, GlaxoSmithKline R&D, Upper Providence, USA
| | - Arseniy Lavrov
- Clinical Development, Novartis Gene Therapies, Cambridge, UK, and
| | - Anita Beelen
- Centre of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Centre, University Medical Centre Utrecht, and De Hoogstraat Rehabilitation, Utrecht, the Netherlands.,Department of Rehabilitation, Physical Therapy Science & Sports, UMC Utrecht Brain Centre, University Medical Centre Utrecht, the Netherlands
| | - Johanna M A Visser-Meily
- Centre of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Centre, University Medical Centre Utrecht, and De Hoogstraat Rehabilitation, Utrecht, the Netherlands.,Department of Rehabilitation, Physical Therapy Science & Sports, UMC Utrecht Brain Centre, University Medical Centre Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands.,Biostatistics & Research Support, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
38
|
Su WM, Cheng YF, Jiang Z, Duan QQ, Yang TM, Shang HF, Chen YP. Predictors of survival in patients with amyotrophic lateral sclerosis: A large meta-analysis. EBioMedicine 2021; 74:103732. [PMID: 34864363 PMCID: PMC8646173 DOI: 10.1016/j.ebiom.2021.103732] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
Background The survival time of amyotrophic lateral sclerosis (ALS) is greatly variable and protective or risk effects of the potential survival predictors are controversial. Thus, we aim to undertake a comprehensive meta-analysis of studies investigating non-genetic prognostic and survival factors in patients with ALS. Methods A search of relevant literature from PubMed, Embase, Cochrane library and other citations from 1st January 1966 to 1st December 020 was conducted. Random-effects models were conducted to pool the multivariable or adjusted hazard ratios (HR) by Stata MP 16.0. PROSPERO registration number: CRD42021256923. Findings A total of 5717 reports were identified, with 115 studies meeting pre-designed inclusion criteria involving 55,169 ALS patients. Five dimensions, including demographic, environmental or lifestyle, clinical manifestations, biochemical index, therapeutic factors or comorbidities were investigated. Twenty-five prediction factors, including twenty non-intervenable and five intervenable factors, were associated with ALS survival. Among them, NFL (HR:3.70, 6.80, in serum and CSF, respectively), FTD (HR:2.98), ALSFRS-R change (HR:2.37), respiratory subtype (HR:2.20), executive dysfunction (HR:2.10) and age of onset (HR:1.03) were superior predictors for poor prognosis, but pLMN or pUMN (HR:0.32), baseline ALSFRS-R score (HR:0.95), duration (HR:0.96), diagnostic delay (HR:0.97) were superior predictors for a good prognosis. Our results did not support the involvement of gender, education level, diabetes, hypertension, NIV, gastrostomy, and statins in ALS survival. Interpretation Our study provided a comprehensive and quantitative index for assessing the prognosis for ALS patients, and the identified non-intervenable or intervenable factors will facilitate the development of treatment strategies for ALS. Funding This study was supported by the National Natural Science Fund of China (Grant No. 81971188), the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Grant No. 2019HXFH046), and the Science and Technology Bureau Fund of Sichuan Province (No. 2019YFS0216).
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang-Fan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian-Mi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yong-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
39
|
Accessing Investigational Products Outside of a Trial: Considerations for Neuromuscular Providers. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Purpose of Review
People with fatal neuromuscular diseases such as ALS want to access investigational products. Trials are our preferred pathway for this, but most people with these diseases will not be able to participate due to restrictive inclusion criteria, travel burdens, or design features they will not accept. This leaves FDA Expanded Access Programs (EAPs), the Right To Try (RTT) pathway, and self-purchase of alternative and off-label treatments (AOTs).
Recent Findings
A recent survey highlighted physician barriers to the above pathways, including lack of knowledge and concerns about time burdens and risks. Emerging resources are highlighted that can mitigate some of these concerns.
Summary
With the information in this chapter, we hope that neuromuscular clinicians will feel more knowledgeable and confident in supporting patient request for investigational products.
Collapse
|
40
|
Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2021; 22:11847. [PMID: 34769277 PMCID: PMC8584731 DOI: 10.3390/ijms222111847] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
As the population ages, the incidence of neurodegenerative diseases is increasing. Due to intensive research, important steps in the elucidation of pathogenetic cascades have been made and significantly implicated mitochondrial dysfunction and oxidative stress. However, the available treatment in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis is mainly symptomatic, providing minor benefits and, at most, slowing down the progression of the disease. Although in preclinical setting, drugs targeting mitochondrial dysfunction and oxidative stress yielded encouraging results, clinical trials failed or had inconclusive results. It is likely that by the time of clinical diagnosis, the pathogenetic cascades are full-blown and significant numbers of neurons have already degenerated, making it impossible for mitochondria-targeted or antioxidant molecules to stop or reverse the process. Until further research will provide more efficient molecules, a healthy lifestyle, with plenty of dietary antioxidants and avoidance of exogenous oxidants may postpone the onset of neurodegeneration, while familial cases may benefit from genetic testing and aggressive therapy started in the preclinical stage.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
41
|
Wong C, Stavrou M, Elliott E, Gregory JM, Leigh N, Pinto AA, Williams TL, Chataway J, Swingler R, Parmar MKB, Stallard N, Weir CJ, Parker RA, Chaouch A, Hamdalla H, Ealing J, Gorrie G, Morrison I, Duncan C, Connelly P, Carod-Artal FJ, Davenport R, Reitboeck PG, Radunovic A, Srinivasan V, Preston J, Mehta AR, Leighton D, Glasmacher S, Beswick E, Williamson J, Stenson A, Weaver C, Newton J, Lyle D, Dakin R, Macleod M, Pal S, Chandran S. Clinical trials in amyotrophic lateral sclerosis: a systematic review and perspective. Brain Commun 2021; 3:fcab242. [PMID: 34901853 PMCID: PMC8659356 DOI: 10.1093/braincomms/fcab242] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive and devastating neurodegenerative disease. Despite decades of clinical trials, effective disease-modifying drugs remain scarce. To understand the challenges of trial design and delivery, we performed a systematic review of Phase II, Phase II/III and Phase III amyotrophic lateral sclerosis clinical drug trials on trial registries and PubMed between 2008 and 2019. We identified 125 trials, investigating 76 drugs and recruiting more than 15 000 people with amyotrophic lateral sclerosis. About 90% of trials used traditional fixed designs. The limitations in understanding of disease biology, outcome measures, resources and barriers to trial participation in a rapidly progressive, disabling and heterogenous disease hindered timely and definitive evaluation of drugs in two-arm trials. Innovative trial designs, especially adaptive platform trials may offer significant efficiency gains to this end. We propose a flexible and scalable multi-arm, multi-stage trial platform where opportunities to participate in a clinical trial can become the default for people with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Charis Wong
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Maria Stavrou
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Elizabeth Elliott
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jenna M Gregory
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Ashwin A Pinto
- Neurology Department, Wessex Neurosciences Centre, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Timothy L Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1B 5EH, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, W1T 7DN, UK
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Robert Swingler
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Mahesh K B Parmar
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Nigel Stallard
- Statistics and Epidemiology, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, Level 2, NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK
| | - Richard A Parker
- Edinburgh Clinical Trials Unit, Usher Institute, Level 2, NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK
| | - Amina Chaouch
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - Hisham Hamdalla
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - John Ealing
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - George Gorrie
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, G51 4TF, UK
| | - Ian Morrison
- Department of Neurology, NHS Tayside, Dundee, DD2 1UB, UK
| | - Callum Duncan
- Department of Neurology, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZN, UK
| | - Peter Connelly
- NHS Research Scotland Neuroprogressive Disorders and Dementia Network, Ninewells Hospital, Dundee, DD1 9SY, UK
| | | | - Richard Davenport
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Department of Clinical Neurosciences, NHS Lothian, Edinburgh, EH16 4SA, UK
| | - Pablo Garcia Reitboeck
- Atkinson Morley Regional Neurosciences Centre, St. George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | | | | | - Jenny Preston
- Department of Neurology, NHS Ayrshire & Arran, KA12 8SS, UK
| | - Arpan R Mehta
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Danielle Leighton
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Stella Glasmacher
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Emily Beswick
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jill Williamson
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Amy Stenson
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Christine Weaver
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Judith Newton
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Dawn Lyle
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Rachel Dakin
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Malcolm Macleod
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
42
|
van Eijk RPA, Beelen A, Kruitwagen ET, Murray D, Radakovic R, Hobson E, Knox L, Helleman J, Burke T, Rubio Pérez MÁ, Reviers E, Genge A, Steyn FJ, Ngo S, Eaglesham J, Roes KCB, van den Berg LH, Hardiman O, McDermott CJ. A Road Map for Remote Digital Health Technology for Motor Neuron Disease. J Med Internet Res 2021; 23:e28766. [PMID: 34550089 PMCID: PMC8495582 DOI: 10.2196/28766] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/05/2022] Open
Abstract
Despite recent and potent technological advances, the real-world implementation of remote digital health technology in the care and monitoring of patients with motor neuron disease has not yet been realized. Digital health technology may increase the accessibility to and personalization of care, whereas remote biosensors could optimize the collection of vital clinical parameters, irrespective of patients’ ability to visit the clinic. To facilitate the wide-scale adoption of digital health care technology and to align current initiatives, we outline a road map that will identify clinically relevant digital parameters; mediate the development of benefit-to-burden criteria for innovative technology; and direct the validation, harmonization, and adoption of digital health care technology in real-world settings. We define two key end products of the road map: (1) a set of reliable digital parameters to capture data collected under free-living conditions that reflect patient-centric measures and facilitate clinical decision making and (2) an integrated, open-source system that provides personalized feedback to patients, health care providers, clinical researchers, and caregivers and is linked to a flexible and adaptable platform that integrates patient data in real time. Given the ever-changing care needs of patients and the relentless progression rate of motor neuron disease, the adoption of digital health care technology will significantly benefit the delivery of care and accelerate the development of effective treatments.
Collapse
Affiliation(s)
- Ruben P A van Eijk
- UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, Netherlands.,Biostatistics & Research Support, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Anita Beelen
- Department of Rehabilitation, University Medical Centre Utrecht, Utrecht, Netherlands.,Center of Excellence for Rehabilitation Medicine, University Medical Centre Utrecht and De Hoogstraat Rehabilitation, Utrecht, Netherlands
| | - Esther T Kruitwagen
- Department of Rehabilitation, University Medical Centre Utrecht, Utrecht, Netherlands.,Center of Excellence for Rehabilitation Medicine, University Medical Centre Utrecht and De Hoogstraat Rehabilitation, Utrecht, Netherlands
| | - Deirdre Murray
- Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland.,Department of Physiotherapy, Beaumont Hospital, Dublin, Ireland
| | - Ratko Radakovic
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, United Kingdom.,Norfolk and Norwich University Hospital, Norwich, United Kingdom.,Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Esther Hobson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscien, University of Sheffield, Sheffield, United Kingdom
| | - Liam Knox
- Department of Neuroscience, Sheffield Institute for Translational Neuroscien, University of Sheffield, Sheffield, United Kingdom
| | - Jochem Helleman
- Department of Rehabilitation, University Medical Centre Utrecht, Utrecht, Netherlands.,Center of Excellence for Rehabilitation Medicine, University Medical Centre Utrecht and De Hoogstraat Rehabilitation, Utrecht, Netherlands
| | - Tom Burke
- Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland.,Department of Psychology, Beaumont Hospital, Dublin, Ireland
| | | | - Evy Reviers
- European Organization for Professionals and Patients with ALS (EUpALS), Leuven, Belgium
| | - Angela Genge
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Frederik J Steyn
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia.,The Royal Brisbane and Women's Hospital, Herston, Australia.,Wesley Medical Research, the Wesley Hospital, Auchenflower, Australia
| | - Shyuan Ngo
- The Royal Brisbane and Women's Hospital, Herston, Australia.,Wesley Medical Research, the Wesley Hospital, Auchenflower, Australia.,Centre for Clinical Research, University of Queensland, Brisbane, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - John Eaglesham
- Advanced Digital Innovation (UK) Ltd, Salts Mill, United Kingdom
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud Medical Centre Nijmegen, Nijmegen, Netherlands
| | | | - Orla Hardiman
- Department of Neurology, National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Christopher J McDermott
- Department of Neuroscience, Sheffield Institute for Translational Neuroscien, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
43
|
Witzel S, Frauhammer F, Steinacker P, Devos D, Pradat PF, Meininger V, Halbgebauer S, Oeckl P, Schuster J, Anders S, Dorst J, Otto M, Ludolph AC. Neurofilament light and heterogeneity of disease progression in amyotrophic lateral sclerosis: development and validation of a prediction model to improve interventional trials. Transl Neurodegener 2021; 10:31. [PMID: 34433481 PMCID: PMC8390195 DOI: 10.1186/s40035-021-00257-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Interventional trials in amyotrophic lateral sclerosis (ALS) suffer from the heterogeneity of the disease as it considerably reduces statistical power. We asked if blood neurofilament light chains (NfL) could be used to anticipate disease progression and increase trial power. Methods In 125 patients with ALS from three independent prospective studies—one observational study and two interventional trials—we developed and externally validated a multivariate linear model for predicting disease progression, measured by the monthly decrease of the ALS Functional Rating Scale Revised (ALSFRS-R) score. We trained the prediction model in the observational study and tested the predictive value of the following parameters assessed at diagnosis: NfL levels, sex, age, site of onset, body mass index, disease duration, ALSFRS-R score, and monthly ALSFRS-R score decrease since disease onset. We then applied the resulting model in the other two study cohorts to assess the actual utility for interventional trials. We analyzed the impact on trial power in mixed-effects models and compared the performance of the NfL model with two currently used predictive approaches, which anticipate disease progression using the ALSFRS-R decrease during a three-month observational period (lead-in) or since disease onset (ΔFRS). Results Among the parameters provided, the NfL levels (P < 0.001) and the interaction with site of onset (P < 0.01) contributed significantly to the prediction, forming a robust NfL prediction model (R = 0.67). Model application in the trial cohorts confirmed its applicability and revealed superiority over lead-in and ΔFRS-based approaches. The NfL model improved statistical power by 61% and 22% (95% confidence intervals: 54%–66%, 7%–29%). Conclusion The use of the NfL-based prediction model to compensate for clinical heterogeneity in ALS could significantly increase the trial power. NCT00868166, registered March
23, 2009; NCT02306590, registered December 2, 2014. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00257-y.
Collapse
Affiliation(s)
- Simon Witzel
- Department of Neurology, University of Ulm, Ulm, Germany.
| | - Felix Frauhammer
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | | | - David Devos
- Department of Medical Pharmacology, Expert center for Parkinson, CHU-Lille, Lille Neuroscience and Cognition, Inserm, UMR-S1172, LICEND, NS-Park Network, University of Lille, Lille, France
| | | | - Vincent Meininger
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Simon Anders
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Johannes Dorst
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Site Ulm, Ulm, Germany
| |
Collapse
|
44
|
van Eijk RPA, Nikolakopoulos S, Roes KCB, Kendall L, Han SS, Lavrov A, Epstein N, Kliest T, de Jongh AD, Westeneng HJ, Al-Chalabi A, Van Damme P, Hardiman O, Shaw PJ, McDermott CJ, Eijkemans MJC, van den Berg LH. Challenging the Established Order: Innovating Clinical Trials for Amyotrophic Lateral Sclerosis. Neurology 2021; 97:528-536. [PMID: 34315786 PMCID: PMC8456357 DOI: 10.1212/wnl.0000000000012545] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
Development of effective treatments for amyotrophic lateral sclerosis (ALS) has been hampered by disease heterogeneity, a limited understanding of underlying pathophysiology, and methodologic design challenges. We have evaluated 2 major themes in the design of pivotal, phase 3 clinical trials for ALS—(1) patient selection and (2) analytical strategy—and discussed potential solutions with the European Medicines Agency. Several design considerations were assessed using data from 5 placebo-controlled clinical trials (n = 988), 4 population-based cohorts (n = 5,100), and 2,436 placebo-allocated patients from the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database. The validity of each proposed design modification was confirmed by means of simulation and illustrated for a hypothetical setting. Compared to classical trial design, the proposed design modifications reduce the sample size by 30.5% and placebo exposure time by 35.4%. By making use of prognostic survival models, one creates a potential to include a larger proportion of the population and maximize generalizability. We propose a flexible design framework that naturally adapts the trial duration when inaccurate assumptions are made at the design stage, such as enrollment or survival rate. In case of futility, the follow-up time is shortened and patient exposure to ineffective treatments or placebo is minimized. For diseases such as ALS, optimizing the use of resources, widening eligibility criteria, and minimizing exposure to futile treatments and placebo is critical to the development of effective treatments. Our proposed design modifications could circumvent important pitfalls and may serve as a blueprint for future clinical trials in this population.
Collapse
Affiliation(s)
- Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands. .,Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stavros Nikolakopoulos
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud Medical Centre Nijmegen, the Netherlands
| | | | - Steve S Han
- Neurosciences, Takeda Pharmaceuticals, Cambridge, USA.,Discovery Medicine, GlaxoSmithKline R&D, Upper Providence, USA
| | - Arseniy Lavrov
- Clinical Development, Novartis Gene Therapies, London, UK.,Clinical Translational Medicine, Future Pipeline Discovery, GlaxoSmithKline R&D, Middlesex, UK
| | - Noam Epstein
- Discovery Medicine, GlaxoSmithKline R&D, Upper Providence, USA
| | - Tessa Kliest
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adriaan D de Jongh
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ammar Al-Chalabi
- King's College London, London, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute Centre, Department of Basic and Clinical Neuroscience, UK.,Department of Neurology, King's College Hospital, London, UK
| | - Philip Van Damme
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven and Center for Brain & Disease Research, VIB, Leuven Brain Institute, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Orla Hardiman
- Department of Neurology, National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Pamela J Shaw
- Department of Neuroscience, University of Sheffield, Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - Christopher J McDermott
- Department of Neuroscience, University of Sheffield, Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - Marinus J C Eijkemans
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
45
|
Coppi E, Buonvicino D, Ranieri G, Cherchi F, Venturini M, Pugliese AM, Chiarugi A. Dexpramipexole Enhances K + Currents and Inhibits Cell Excitability in the Rat Hippocampus In Vitro. Mol Neurobiol 2021; 58:2955-2962. [PMID: 33566318 DOI: 10.1007/s12035-021-02300-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Dexpramipexole (DEX) has been described as the first-in-class F1Fo ATP synthase activator able to boost mitochondrial bioenergetics and provide neuroprotection in experimental models of ischemic brain injury. Although DEX failed in a phase III trial in patients with amyotrophic lateral sclerosis, it showed favorable safety and tolerability profiles. Recently, DEX emerged as a Nav1.8 Na+ channel and transient outward K+ (IA) conductance blocker, revealing therefore an unexpected, pleiotypic pharmacodynamic profile. In this study, we performed electrophysiological experiments in vitro aimed to better characterize the impact of DEX on voltage-dependent currents and synaptic transmission in the hippocampus. By means of patch-clamp recordings on isolated hippocampal neurons, we found that DEX increases outward K+ currents evoked by a voltage ramp protocol. This effect is prevented by the non-selective voltage-dependent K+ channel (Kv) blocker TEA and by the selective small-conductance Ca2+-activated K+ (SK) channel blocker apamin. In keeping with this, extracellular field recordings from rat hippocampal slices also demonstrated that the compound inhibits synaptic transmission and CA1 neuron excitability. Overall, these data further our understanding on the pharmacodynamics of DEX and disclose an additional mechanism that could underlie its neuroprotective properties. Also, they identify DEX as a lead to develop new modulators of K+ conductances.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Saygin D, Oddis CV, Moghadam-Kia S, Rockette-Wagner B, Neiman N, Koontz D, Aggarwal R. Hand-held dynamometry for assessment of muscle strength in patients with inflammatory myopathies. Rheumatology (Oxford) 2021; 60:2146-2156. [PMID: 33026081 DOI: 10.1093/rheumatology/keaa419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Muscle weakness in idiopathic inflammatory myopathies (IIMs) is conventionally assessed using manual muscle testing (MMT). However, more objective tools must be developed to accurately and reliably quantify muscle strength in myositis patients. Hand-held dynamometry (HHD) is a quantitative, portable device with reported reliability in neuromuscular disorders. Our aim was to assess the reliability, validity and responsiveness of HHD in myositis. METHODS Myositis patients [DM, necrotizing myopathy (NM), PM and anti-synthetase syndrome] evaluated at the University of Pittsburgh myositis centre were prospectively enrolled. Each patient was assessed at 0, 3 and 6 months for validated outcome measures of myositis disease activity and physical function. At each visit, muscle strength was assessed using both MMT and HHD (Micro FET2, Hoggan Health Industries, Draper, UT, USA). The reliability, validity and responsiveness of the HHD was assessed using standard statistical methods. RESULTS Fifty IIM patients (60% female; mean age 51.6 years; 6 PM, 9 NM, 24 DM and 11 anti-synthetase syndrome) were enrolled. HHD showed strong test-retest intrarater reliability (r = 0.96) and interrater reliability (r = 0.98). HHD correlated significantly with the MMT score (r = 0.48, P = 0.0006) and myositis disease activity and functional measures. Longitudinal analysis showed a significant and strong association between the HHD and MMT as well as 2016 ACR/EULAR myositis response criteria (r = 0.8, P < 0.0001) demonstrating responsiveness. The mean effect size and standardized response mean of HHD was large: 0.95 and 1.03, respectively. MMT had a high ceiling effect compared with HHD. CONCLUSION HHD demonstrated strong reliability, construct validity and responsiveness in myositis patients. External validation studies are required to confirm these findings.
Collapse
Affiliation(s)
| | - Chester V Oddis
- Division of Rheumatology and Clinical Immunology, Department of Medicine
| | | | - Bonny Rockette-Wagner
- Department of Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nicole Neiman
- Division of Rheumatology and Clinical Immunology, Department of Medicine
| | - Diane Koontz
- Division of Rheumatology and Clinical Immunology, Department of Medicine
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology, Department of Medicine
| |
Collapse
|
47
|
Bella ED, Bersano E, Antonini G, Borghero G, Capasso M, Caponnetto C, Chiò A, Corbo M, Filosto M, Giannini F, Spataro R, Lunetta C, Mandrioli J, Messina S, Monsurrò MR, Mora G, Riva N, Rizzi R, Siciliano G, Silani V, Simone I, Sorarù G, Tugnoli V, Verriello L, Volanti P, Furlan R, Nolan JM, Abgueguen E, Tramacere I, Lauria G. The unfolded protein response in amyotrophic later sclerosis: results of a phase 2 trial. Brain 2021; 144:2635-2647. [PMID: 33905493 PMCID: PMC8557337 DOI: 10.1093/brain/awab167] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Strong evidence suggests that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) through an altered regulation of proteostasis. Robust preclinical findings demonstrated that guanabenz selectively inhibits ER stress-induced eIF2α-phosphatase allowing misfolded protein clearance, reduces neuronal death and prolongs survival in in vitro and in vivo models. Its efficacy and safety in ALS patients are unknown. To address these issues, we conducted a multicentre, randomised, double-blind trial, with futility design. ALS patients with onset of symptoms within the previous 18 months were randomly assigned to receive in a 1:1:1:1 ratio guanabenz 64 mg, 32 mg, 16 mg or placebo daily for 6 months as add-on therapy to riluzole. The purpose of the placebo group blinding was safety but not efficacy. The primary outcome was the proportion of patients progressing to higher stages of disease in 6 months as measured by the ALS Milano-Torino staging compared to a historical cohort of 200 ALS patients. The secondary outcomes were the rate of decline in ALSFRS-R total score, slow vital capacity change, time to death, tracheotomy or permanent ventilation and serum light neurofilament level at 6 months. The primary analysis of efficacy was performed by intention-to-treat. Guanabenz 64 mg and 32 mg arms, both alone and combined, reached the primary hypothesis of non-futility with proportions of patients who progressed to higher stage of disease at 6 months significantly lower than that expected under the hypothesis of non-futility and significantly lower difference in the median rate of change of the ALSFRS-R total score. This effect was driven by patients with bulbar onset, none of whom (0/18) progressed to a higher stage of disease at 6 months compared with those in guanabenz 16 mg (4/8; 50%), historical cohort alone (21/49; 43%; p = 0.001) or plus placebo (25/60; 42%; p = 0.001). The proportion of patients who experienced at least one adverse event was higher in any guanabenz arm than in the placebo arm, with higher dosing arms having significantly higher proportion of drug-related side effects and the 64 mg arm significantly higher drop-out rate. The number of serious adverse events did not significantly differ between guanabenz arms and placebo. Our findings indicate that a larger trial with a molecule targeting the UPR pathway without the alpha-2 adrenergic related side-effect profile of guanabenz is warranted.
Collapse
Affiliation(s)
- Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Enrica Bersano
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Giovanni Antonini
- NESMOS Department, Neuromuscolar Disease Unit, Sant'Andrea Hospital and University of Rome "Sapienza", Rome, Italy
| | | | | | | | - Adriano Chiò
- ALS Centre "Rita Levi Montalcini", Department of Neuroscience, University of Turin, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Massimo Corbo
- Department of Neurorehabilitaton, Casa Cura Policlinico, Milan, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili Brescia and NeMO-Brescia Clinical Centre for Neuromuscular Diseases, Brescia, Italy
| | - Fabio Giannini
- Department of Medical and Surgery Sciences and Neurosciences, University of Siena, Italy
| | | | | | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Sonia Messina
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine and University of Messina, AOU Policlinico "G. Martino", Messina, Italy.,NEuroMuscular Omnicentre of Messina, University Hospital "G. Martino", Messina, Italy
| | | | | | - Nilo Riva
- Department of Neurology IRCCS "San Raffaele" Hospital, Milan, Italy
| | - Romana Rizzi
- Neurology Unit, Department of Neuro-Motor Diseases, Azienda Unità Sanitaria Locale, IRCCS of Reggio Emilia, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Centre and Centre for Neurotechnology and Brain Therapeutics, University of Milan, Milan, Italy
| | - Isabella Simone
- Department of Neurology and Psychiatry, University of Bari, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padua, Italy
| | - Valeria Tugnoli
- Department of Neuroscience and Rehabilitation, Division of Neurology, University Hospital of Ferrara, Ferrara, Italy
| | - Lorenzo Verriello
- Neurology Unit, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Paolo Volanti
- Intensive Neurorehabilitation Unit, ICS Maugeri IRCCS, Mistretta, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - John M Nolan
- Drew University, Caspersen School of Graduate Studies, Madison, NJ, USA
| | | | - Irene Tramacere
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| |
Collapse
|
48
|
Lessons learned from targeting eosinophils in human disease. Semin Immunopathol 2021; 43:459-475. [PMID: 33891135 DOI: 10.1007/s00281-021-00849-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Eosinophils are a minor subset of the granulocyte lineage distinguished by their unique morphology, phenotype, cytoplasmic contents, and function. Evolutionarily, these are ancient cells whose existence has been conserved within vertebrates for millions of years, suggesting that their contribution to innate immunity and other pathologic and homeostatic responses are important to the host. Knowledge regarding the role of eosinophils in health and disease took a leap forward in 2004 with the creation of mouse strains deficient in eosinophils. This advance was paralleled in humans using pharmacology, namely, with the development of drugs capable of selectively reducing and sometimes even eliminating human eosinophils in those receiving these agents. As a result, a more definitive picture of what eosinophils do, and do not do, is emerging. This review will summarize recent advances in our understanding of the role of eosinophils in human disease by focusing mainly on data from clinical studies with anti-eosinophil therapies, even though the first of such agents, mepolizumab, was only approved in the USA in November 2015. Information regarding both efficacy and safety will be highlighted, and where relevant, intriguing data from animal models will also be mentioned, especially if there are conflicting effects seen in humans.
Collapse
|
49
|
Harley J, Clarke BE, Patani R. The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS. Antioxidants (Basel) 2021; 10:antiox10040552. [PMID: 33918215 PMCID: PMC8066094 DOI: 10.3390/antiox10040552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Jasmine Harley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence: (B.E.C.); (R.P.)
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Hospital for Neurology and Neurosurgery, University College London NHS, London WC1N 3BG, UK
- Correspondence: (B.E.C.); (R.P.)
| |
Collapse
|
50
|
Shin YE, Liu D, Sang H, Ferguson TA, Song PXK. A binary hidden Markov model on spatial network for amyotrophic lateral sclerosis disease spreading pattern analysis. Stat Med 2021; 40:3035-3052. [PMID: 33763884 DOI: 10.1002/sim.8956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/05/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurological disease that starts at a focal point and gradually spreads to other parts of the nervous system. One of the main clinical symptoms of ALS is muscle weakness. To study spreading patterns of muscle weakness, we analyze spatiotemporal binary muscle strength data, which indicates whether observed muscle strengths are impaired or healthy. We propose a hidden Markov model-based approach that assumes the observed disease status depends on two latent disease states. The model enables us to estimate the incidence rate of ALS disease and the probability of disease state transition. Specifically, the latter is modeled by a logistic autoregression in that the spatial network of susceptible muscles follows a Markov process. The proposed model is flexible to allow both historical muscle conditions and their spatial relationships to be included in the analysis. To estimate the model parameters, we provide an iterative algorithm to maximize sparse-penalized likelihood with bias correction, and use the Viterbi algorithm to label hidden disease states. We apply the proposed approach to analyze the ALS patients' data from EMPOWER Study.
Collapse
Affiliation(s)
- Yei Eun Shin
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Dawei Liu
- Global Analytics and Data Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Huiyan Sang
- Department of Statistics, Texas A&M University, College Station, Texas, USA
| | - Toby A Ferguson
- Neurology Research and Early Clinical Development, Biogen, Cambridge, Massachusetts, USA
| | - Peter X K Song
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|