1
|
Abdo L, Batista-Silva LR, Bonamino MH. Cost-effective strategies for CAR-T cell therapy manufacturing. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200980. [PMID: 40291594 PMCID: PMC12022644 DOI: 10.1016/j.omton.2025.200980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
CAR-T cell therapy has revolutionized cancer treatment, with approvals for conditions like acute B-leukemia, large B cell lymphoma (LBCL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and multiple myeloma. However, its high costs limit accessibility. Key factors driving these costs include the need for personalized, autologous treatments, transportation to specialized facilities, reliance on viral vectors requiring advanced laboratories, and lengthy cell expansion processes. To address these challenges, alternative strategies aim to simplify and reduce production complexity. Non-viral vectors, such as Sleeping Beauty, piggyBac, and CRISPR, delivered via nanoparticles or electroporation, present promising solutions. These methods could streamline manufacturing, eliminate the need for viral vectors, and reduce associated costs. Furthermore, shortening cell expansion periods and optimizing protocols could significantly accelerate production. An emerging approach involves using genetically edited T cells from healthy donors to create universal CAR-T products capable of treating multiple patients. Finally, decentralized point-of-care (POC) manufacturing of CAR-T cells minimize logistical expenses, eliminating the need for complex infrastructure, and enabling localized production closer to patients. This innovative strategy holds potential for broadening access and reducing costs, representing a step toward democratizing CAR-T therapy. Combined, these advances could make this groundbreaking treatment more feasible for healthcare systems worldwide.
Collapse
Affiliation(s)
- Luiza Abdo
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
| | - Leonardo Ribeiro Batista-Silva
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
| | - Martín Hernán Bonamino
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
2
|
Pujades-Rodríguez M, Jedrzejczyk A, Zhou J, Pilipczuk O, Tarancón T. High-Dose Steroids, Treatment Escalation, and Healthcare Burden in Myasthenia Gravis: A US Claims-Based Cohort Study. Neurol Ther 2025:10.1007/s40120-025-00714-0. [PMID: 40304847 DOI: 10.1007/s40120-025-00714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/04/2025] [Indexed: 05/02/2025] Open
Abstract
INTRODUCTION Myasthenia gravis (MG) is a rare neuromuscular autoimmune disease, characterized by chronic, fluctuating muscle weakness and fatigability. Despite established therapies, many patients have inadequately controlled MG. We describe treatment escalation patterns and outcomes for patients with MG between 2010 and 2018. METHODS We conducted a retrospective cohort analysis of medical and pharmacy claims data. Patients aged ≥ 18 years at MG diagnosis were included from two US Merative™ MarketScan® databases. MG treatment escalation was defined as an increase of the administered prednisolone-equivalent corticosteroid dose, use of add-on treatments, or treatment switches. RESULTS The cohort included 4925 adults with newly diagnosed MG (1102 aged 18-49 and 3823 aged ≥ 50 at first MG diagnosis) from January 1, 2010 to December 31, 2018. Median follow-up was 30.0 months (18-49 group) and 27.5 months (≥ 50 group). Overall, 71.5% (3521/4925) of patients had ≥ 1 MG treatment escalation; escalation with high-dose corticosteroids was the most common type (64.8% [18-49 group] and 58.5% [≥ 50 group]). In the first year post-diagnosis, median (range) maximal daily prednisolone-equivalent corticosteroid dose was 40.0 (20.0-75.0) mg/day (18-49 group) and 40.0 (20.0-70.0) mg/day (≥ 50 group). Treatment breaks and de-escalation led to rescue treatment or treatment re-escalation in most patients. Exacerbations occurred in 26.3% (n = 290; 18-49 group) and 21.6% (n = 825; ≥ 50 group). Healthcare resource utilization (HCRU) and costs were highest in Year 1, with mean MG-related costs per patient between $24,982 (≥ 50 group) and $33,023 (18-49 group). CONCLUSION The study findings highlight that MG is inadequately controlled in a substantial proportion of patients despite conventional treatment and high reliance on corticosteroids. Earlier treatment with targeted therapies and improved safety profiles may reduce patient burden, HCRU, and costs.
Collapse
|
3
|
Yan J, Choi K, Fu P, Yang M, Lin J, Gui M, Li Y, Bu B, Li Z. The real-world impact of corticosteroid-associated adverse events in myasthenia gravis: A patient-reported survey analysis. Cell Immunol 2025; 411-412:104956. [PMID: 40306132 DOI: 10.1016/j.cellimm.2025.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Corticosteroids are crucial for managing acute exacerbation symptoms and preventing relapses in myasthenia gravis (MG) patients. METHODS Between April 15-30, 2024, 2368 online self - report questionnaires were distributed. Eventually, 444 MG patients who had received corticosteroid therapy completed the survey. RESULTS Self-reported adverse events (AEs) were observed in 97.5 % of the respondents. Among them, 72.5 % (322 patients) reported experiencing more than four AEs. The quality of life (QOL) of patients with MG was significantly impacted, with average MG-QOL scores of 18.07 ± 12.03. Patients with a cumulative dosage exceeding 20 g experienced the highest incidence of various AEs compared to those with lower cumulative dosages (5-20 g and less than 5 g). Additionally, a longer duration of corticosteroid exposure was associated with a higher reported incidence of AEs. Cox risk regression modeling revealed that a longer disease course, a history of myasthenic crisis, and the average daily dose of steroids (exceeding 5 mg/d), were independent predictors of corticosteroid-associated AEs. The study revealed in a single MG center, the awareness of these AEs was low among Chinese patients. CONCLUSION This study systematically assessed the incidence and risk factors of corticosteroid-related AEs in Chinese MG patients. The study found that the occurrence of AEs was associated with the cumulative dosage and duration of corticosteroid use. Additionally, long disease duration, a history of myasthenic crises, and an average daily dosage exceeding 5 mg/d are identified as risk factors for corticosteroid-related AEs in patients with MG.
Collapse
Affiliation(s)
- Jinyi Yan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Kalam Choi
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Peicai Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Mengcui Gui
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yue Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
4
|
Mougiakakos D, Meyer EH, Schett G. CAR T cells in autoimmunity: game changer or stepping stone? Blood 2025; 145:1841-1849. [PMID: 39700499 DOI: 10.1182/blood.2024025413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
ABSTRACT The advent of chimeric antigen receptor (CAR) T cells has revolutionized the treatment landscape for hematologic malignancies, and emerging evidence suggests their potential in autoimmune diseases (AIDs). This article evaluates the early successes and future implications of B-cell-targeting CAR T-cell therapy in AIDs. Initial applications, particularly in refractory systemic lupus erythematosus, have demonstrated significant and durable clinical remissions, with accompanying evaluation of the immune system suggesting a so-called "reset" of innate inflammation and adaptive autoimmunity. This has generated widespread interest in expanding this therapeutic approach. CAR T cells offer unique advantages over other treatment modalities, including very deep B-cell depletion and unique therapeutic activity within inflamed tissues and associated lymphoid structures. However, the field must address key concerns, including long-term toxicity, particularly the risk of secondary malignancies, and future accessibility given the higher prevalence of AIDs compared with malignancies. Technological advances in cell therapy, such as next-generation CAR T cells, allogeneic off-the-shelf products, and alternative cell types, such as regulatory CAR T cells, are being explored in AIDs to improve efficacy and safety. In addition, bispecific antibodies are emerging as potential alternatives or complements to CAR T cells, potentially offering comparable efficacy without the need for complex logistics, lymphodepletion, and the risk of insertional mutagenesis. As the field evolves, cellular therapists will play a critical role in the multidisciplinary teams managing these complex cases. The transformative potential of CAR T cells in AIDs is undeniable, but careful consideration of safety, efficacy, and implementation is essential as this novel therapeutic approach moves forward.
Collapse
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto von Guericke University, Magdeburg, Germany
| | - Everett H Meyer
- Cellular Immune Tolerance Program, Blood and Marrow Transplantation and Cellular Therapy Division, Stanford School of Medicine, Stanford University, Stanford, CA
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University, Erlangen, Germany
| |
Collapse
|
5
|
Hsieh WC, Hsu TS, Wu KW, Lai MZ. Therapeutic application of regulatory T cell in osteoarthritis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00083-0. [PMID: 40300967 DOI: 10.1016/j.jmii.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Regulatory T cells (Tregs) are the specific T cell population that suppress inflammatory immunity. Independent of their inhibitory activities, Tregs exhibit unique capacity to repair tissue damage. Rapid progresses are made in the processing and engineering of Tregs for clinical applications. Tregs have been used in the treatment of autoimmune diseases, transplantation rejection and graft-versus-host disease. Osteoarthritis is one of the major diseases that affect at least 600 million people worldwide. Osteoarthritis is characterized by physical erosion of cartilage, accompanied with chronic and low-grade inflammation. Tregs possess abilities to increase osteoclast differentiation and bone resorption, repair bone physical damage, and increase bone mass. Tregs are therefore candidate therapeutics for osteoarthritis for both inflammation resolution and tissue repairing. In this review, we will summarize the recent development in using Tregs in immunotherapy, and the potential of using Tregs in osteoarthritis.
Collapse
Affiliation(s)
- Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Tzu-Sheng Hsu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| | - Kuan-Wen Wu
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ming-Zong Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Liang Z, Xie H, Wu D. Immune mediated inflammatory diseases: moving from targeted biologic therapy, stem cell therapy to targeted cell therapy. Front Immunol 2025; 16:1520063. [PMID: 40260258 PMCID: PMC12009864 DOI: 10.3389/fimmu.2025.1520063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/13/2025] [Indexed: 04/23/2025] Open
Abstract
Despite the advancements in targeted biologic therapy for immune-mediated inflammatory diseases (IMIDs), significant challenges persist, including challenges in drug maintenance, primary and secondary non-responses, and adverse effects. Recent data have strengthened the evidence supporting stem cell therapy as an experimental salvage therapy into a standard treatment option. Recent preclinical and clinical studies suggested that chimeric antigen receptor T cell (CAR-T) therapy, which depleting tissue and bone marrow B cells, may lead to improvement, even inducing long-lasting remissions for patients with IMIDs. In this review, we address the unmet needs of targeted biologic therapy, delineate the critical differences between stem cell transplantation and CAR-T therapy, evaluate the current status of CAR-T therapy for IMIDs and explore its potential and existing limitations.
Collapse
Affiliation(s)
- Zhenguo Liang
- Department of Rheumatology and Immunology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hui Xie
- Department of Clinical Research and Development, Antengene Corporation, Shanghai, China
| | - Dongze Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Vonberg FW, Malik I, O'Reilly M, Hyare H, Carr AS, Roddie C. Neurotoxic complications of chimeric antigen receptor (CAR) T-cell therapy. J Neurol Neurosurg Psychiatry 2025:jnnp-2024-333924. [PMID: 40185628 DOI: 10.1136/jnnp-2024-333924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionised the treatment of haematological malignancies and has demonstrated efficacy in early trials for solid tumours, neurological and rheumatological autoimmune diseases. However, CAR-T is complicated in some patients by neurotoxicity syndromes including immune-effector cell-associated neurotoxicity syndrome, and the more recently described movement and neurocognitive treatment-emergent adverse events, and tumour inflammation-associated neurotoxicity. These neurotoxic syndromes remain poorly understood and are associated with significant morbidity and mortality. A multidisciplinary approach, including neurologists, haematologists and oncologists, is critical for the diagnosis and management of CAR-T neurotoxicity. This approach will be of increasing importance as the use of CAR-T expands, its applications increase and as novel neurotoxic syndromes emerge.
Collapse
Affiliation(s)
- Frederick W Vonberg
- National Hospital for Neurology and Neurosurgery, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Imran Malik
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Maeve O'Reilly
- Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Aisling S Carr
- UCL Queen Square Institute of Neurology, London, UK
- Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Claire Roddie
- Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| |
Collapse
|
8
|
Ton Nu QC, Deka G, Park PH. CD8 + T cell-based immunotherapy: Promising frontier in human diseases. Biochem Pharmacol 2025; 237:116909. [PMID: 40179991 DOI: 10.1016/j.bcp.2025.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
The abundant cell components of the adaptive immune system called T lymphocytes (T cells) play important roles in mediating immune responses to eliminate the invaders and create the memory of the germs to form a new immunity for the next encounter. Among them, cytotoxic T cells expressing cell-surface CD8 are the most critical effector cells that directly eradicate the target infected cells by recognizing antigens presented by major histocompatibility complex class I molecules to protect our body from pathological threats. In the continuous evolution of immunotherapy, various CD8+ T cell-based therapeutic strategies have been developed based on the role and molecular concept of CD8+ T cells. The emergence of such remarkable therapies provides promising hope for multiple human disease treatments such as autoimmunity, infectious disease, cancer, and other non-infectious diseases. In this review, we aim to discuss the current knowledge on the utilization of CD8+ T cell-based immunotherapy for the treatment of various diseases, the molecular basis involved, and its limitations. Additionally, we summarize the recent advances in the use of CD8+ T cell-based immunotherapy and provide a comprehensive overview of CD8+ T cells, including their structure, underlying mechanism of function, and markers associated with CD8+ T cell exhaustion. Building upon these foundations, we delineate the advancement of CD8+ T cell-based immunotherapies with fundamental operating principles followed by research studies, and challenges, as well as illustrate human diseases involved in this development.
Collapse
Affiliation(s)
- Quynh Chau Ton Nu
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Gitima Deka
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea; Research institute of cell culture, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
9
|
Liao Q, Xu J. Safe CAR-T: shedding light on CAR-related T-cell malignancies. EMBO Mol Med 2025; 17:589-593. [PMID: 40021932 PMCID: PMC11982530 DOI: 10.1038/s44321-025-00205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
In this Comment, J. Xu & Q. Liao propose safer genetic engineering strategies for CAR-T cells, and underscore the necessity of introducing more sensitive and reliable safety evaluation indicators, such as T cell receptor (TCR) diversity and integration site analysis.
Collapse
Affiliation(s)
- Qibin Liao
- Department of Oncology and Bio-therapeutic Center, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, 518112, Shenzhen, China
| | - Jianqing Xu
- Clinical Center of Biotherapy, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Institute of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
- Clinical Center of Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, 361015, Xiamen, China.
| |
Collapse
|
10
|
Huang Y, Wang H. Tonic signaling in CAR-T therapy: the lever long enough to move the planet. Front Med 2025:10.1007/s11684-025-1130-x. [PMID: 40117019 DOI: 10.1007/s11684-025-1130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/16/2024] [Indexed: 03/23/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable efficacy in treating hematological malignancies and is expanding into other indications such as autoimmune diseases, fibrosis, aging and viral infection. However, clinical challenges persist in treating solid tumors, including physical barriers, tumor heterogeneity, poor in vivo persistence, and T-cell exhaustion, all of which hinder therapeutic efficacy. This review focuses on the critical role of tonic signaling in CAR-T therapy. Tonic signaling is a low-level constitutive signaling occurring in both natural and engineered antigen receptors without antigen stimulation. It plays a pivotal role in regulating immune cell homeostasis, exhaustion, persistence, and effector functions. The "Peak Theory" suggests an optimal level of tonic signaling for CAR-T function: while weak tonic signaling may result in poor proliferation and persistence, excessively strong signaling can cause T cell exhaustion. This review also summarizes the recent progress in mechanisms underlying the tonic signaling and strategies to fine-tune the CAR tonic signaling. By understanding and precisely modulating tonic signaling, the efficacy of CAR-T therapies can be further optimized, offering new avenues for treatment across a broader spectrum of diseases. These findings have implications beyond CAR-T cells, potentially impacting other engineered immune cell therapies such as CAR-NK and CAR-M.
Collapse
Affiliation(s)
- Yuwei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
11
|
Ji X, Sun Y, Xie Y, Gao J, Zhang J. Advance in chimeric antigen receptor T therapy in autoimmune diseases. Front Immunol 2025; 16:1533254. [PMID: 40103816 PMCID: PMC11913860 DOI: 10.3389/fimmu.2025.1533254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Autoimmune diseases are a group of diseases in which the body's immune system misrecognizes its own antigens resulting in an abnormal immune response, which can lead to pathological damage to or abnormal functioning of its own tissues. Current treatments are mainly hormones and broad-spectrum immunosuppressants, but these can lead to a decline in the patient's immunity. Chimeric antigen receptor T (CAR-T) Cell therapy has emerged, and now the structure of CAR has changed from first generation to fourth generation of CAR. The significant achievement of CAR-T therapy to B-cell leukemia has also inspired the treatment of autoimmune diseases, and by investigating the mechanisms of different autoimmune diseases, different designs of CAR-T can be used to specifically treat autoimmune diseases. In this review, we will discuss the therapeutic strategies of CAR-T cells in different autoimmune diseases and the limitations of the treatment.
Collapse
Affiliation(s)
- Xiaolan Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Yunfan Sun
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuyang Xie
- The First Clinical Medicine School, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jianling Gao
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| |
Collapse
|
12
|
Segovia MF, Landoni D, Defranchi Y, Calderón Jofré R, Flores Olivares CA, Keppeke GD. A new therapeutic pathway in autoimmune diseases: chimeric antigen receptor T cells (CAR-T) targeting specific cell subtypes or antigen-specific B lymphocytes—a brief review. EXPLORATION OF IMMUNOLOGY 2025; 5. [DOI: 10.37349/ei.2025.1003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 05/04/2025]
Abstract
In hematological malignancies, autologous immunotherapy with T lymphocytes expressing a chimeric antigen receptor (CAR-T) has been successfully applied. CAR enhances the immuno-cellular effector system directly against cells expressing target antigens. The objective here was to discuss the prospects of applying CAR-T and its variants in autoimmune diseases (AIDs) to deplete pathogenic autoantibodies by eliminating B lymphocytes and plasma cells. B cells play a crucial role in the pathogenesis of AID through the production of autoantibodies, cytokine dysregulation, antigen presentation, and regulatory dysfunction. In AID with numerous autoreactive clones against various autoantigens, such as systemic lupus erythematosus, rheumatoid arthritis, vasculitis, myositis, and systemic sclerosis, CAR-T targeting CD19/CD20 and B-cell maturation antigen (BCMA) have shown success in preclinical and clinical studies, representing an innovative option for refractory patients when standard treatments fail. The suppression of B lymphocytes reactive against specific antigens using cytolytic T cells carrying a chimeric autoantibody receptor (CAAR-T) offers a promising approach for managing various AIDs, especially those with characterized pathogenic autoantibodies, such as pemphigus vulgaris, myasthenia gravis, and anti-NMDAR autoimmune encephalitis. CAAR-T allows the elimination of autoreactive B lymphocytes without compromising the general functionality of the immune system, minimizing common side effects in general immunosuppressive therapies, including immunobiologicals and CAR-T. In vitro, preclinical, and clinical (phase 1) studies have demonstrated the efficacy and specificity of CAR-T and CAAR-T in several AIDs; however, extensive clinical trials (phase 3) are required to assess their safety and clinical applicability. These advances promise to enhance precision medicine in the management of AIDs, offering personalized treatments for individual patients.
Collapse
Affiliation(s)
- María Fernanda Segovia
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Diana Landoni
- Escuela de Graduados, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay; Laboratorio de Análisis Clínicos (LAC), Montevideo 11600, Uruguay; Disciplina de Reumatologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Yohana Defranchi
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; Laboratorio de Biología Molecular y Celular del Cáncer (CáncerLab), Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Rodrigo Calderón Jofré
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Carlos A. Flores Olivares
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; Facultad de Medicina Veterinaria, Universidad del Alba, La Serena 1700000, Chile
| | - Gerson D. Keppeke
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; Disciplina de Reumatologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| |
Collapse
|
13
|
Gerischer L, Doksani P, Hoffmann S, Meisel A. New and Emerging Biological Therapies for Myasthenia Gravis: A Focussed Review for Clinical Decision-Making. BioDrugs 2025; 39:185-213. [PMID: 39869260 PMCID: PMC11906560 DOI: 10.1007/s40259-024-00701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 01/28/2025]
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease characterised by exertion-induced muscle weakness that can lead to potentially life-threatening myasthenic crises. Detectable antibodies are directed against specific postsynaptic structures of the neuromuscular junction. MG is a chronic condition that can be improved through therapies, but to date, not cured. Standard treatment has been unchanged for decades and includes symptomatic treatment with acetylcholine-esterase inhibitors and disease-modifying treatment with steroids, steroid-sparing immunosuppressants and thymectomy. Overall, a relevant proportion of patients does not achieve a satisfactory clinical improvement under standard treatment. Additionally, long-term therapy with steroids can cause significant side effects and latency to clinical improvement with standard steroid-sparing immunosuppressants and after thymectomy can take months to years. In recent years, treatment of MG has changed fundamentally due to improved evidence from phase 3 trials and the regulatory approval of complement inhibitors and FcRn inhibitors as add-on treatment options. This provides new optimism for substantially more patients reaching minimal manifestation status and has led to a shift in treatment strategy with more targeted therapies being employed early in the course of the disease, especially in patients with high disease activity. In this focussed review, we provide an overview of the diagnosis, classification and standard treatment of MG, followed by data from randomised controlled trials on the modern drugs already available for therapy and those still in the final stages of clinical development. In the second part, we provide an overview of real-world data for already approved therapies and outline how the availability of new biologicals is changing both clinical decision-making and patient journey.
Collapse
Affiliation(s)
- Lea Gerischer
- Department of Neurology, Neuroscience Clinical Research Center (NCRC) and Integrated Myasthenia Gravis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Charitéplatz 1, Germany
| | - Paolo Doksani
- Department of Neurology, Neuroscience Clinical Research Center (NCRC) and Integrated Myasthenia Gravis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Charitéplatz 1, Germany
| | - Sarah Hoffmann
- Department of Neurology, Neuroscience Clinical Research Center (NCRC) and Integrated Myasthenia Gravis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Charitéplatz 1, Germany
| | - Andreas Meisel
- Department of Neurology, Neuroscience Clinical Research Center (NCRC) and Integrated Myasthenia Gravis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Charitéplatz 1, Germany.
| |
Collapse
|
14
|
Wobma H, Chang JC, Prockop SE. Releasing our model T - chimeric antigen receptor (CAR) T-cells for autoimmune indications. Curr Opin Rheumatol 2025; 37:128-135. [PMID: 39470062 DOI: 10.1097/bor.0000000000001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW This review provides an update on the rapidly growing field of engineered cellular therapies for autoimmune disorders, primarily focusing on clinical experience and correlative studies with chimeric antigen receptor (CAR) T-cells. RECENT FINDINGS To date, two case series describing treatment with CAR T-cell therapy for systemic lupus erythematosus (SLE) suggest that drug-free remission can be sustained in patients with previously treatment-refractory disease. The outcomes of these studies are similar, despite the use of different CAR constructs and lymphodepletion regimens. Although it is not yet clear whether the patients described have truly been cured, the majority of remissions have remained durable up to last follow-up at 1-2 years from treatment. Meanwhile, mechanistic studies are providing a window into how transient B-cell depletion mediates lasting benefit. With the encouraging data in SLE, CAR T-cells and other novel B-cell-depleting agents (e.g. bispecific T-cell engagers) are now being evaluated as treatment for other autoimmune conditions, with the goal of durable response. SUMMARY Recent reports highlight cellular therapies as a promising strategy for patients with treatment-refractory autoimmune conditions; however, there is still limited experience, and better insight into this therapeutic approach is expected to emerge rapidly.
Collapse
Affiliation(s)
| | | | - Susan E Prockop
- Division of Hematology-Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Caël B, Bôle-Richard E, Garnache Ottou F, Aubin F. Chimeric antigen receptor-modified T-cell therapy: Recent updates and challenges in autoimmune diseases. J Allergy Clin Immunol 2025; 155:688-700. [PMID: 39675682 DOI: 10.1016/j.jaci.2024.12.1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy (CAR-T) has revolutionized the treatment of hematologic malignancies, demonstrating significant clinical efficacy and leading to US Food and Drug Administration approval of several CAR T-cell-based products. This success has prompted exploration of CAR-T in other disease areas, including autoimmune diseases (AIDs). CAR-T targeting B cells has been shown to provide clinical and biological improvements in patients with refractory AIDs. The aim of this review is to discuss promising strategies involving CAR-T in AIDs, such as those targeting B cells and T cells, and to explore new approaches targeting fibroblasts or plasmacytoid dendritic cells. Despite these advances, the application of CAR-T in AIDs faces several unique challenges. The quality and functionality of T cells in patients with AIDs may be compromised as a result of previous treatments and the underlying inflammatory state, affecting the generation and efficacy of CAR-T. In addition, achieving adequate tissue biodistribution and persistence of CAR T cells in affected tissues remains a major challenge. Finally, the high costs associated with T-cell production pose economic problems, particularly in the context of chronic diseases, which are far more numerous than the hematologic diseases for which CAR-Ts have been granted marketing authorization to date. If the indications for CAR-T increase significantly, production costs will have to drop drastically in order to obtain reliable economic models.
Collapse
Affiliation(s)
- Blandine Caël
- Université Marie et Louis Pasteur, INSERM, EFS BFC, UMR1098, Besançon, France; Centre Hospitalier Universitaire (CHU) Besançon, Laboratoire Biologie Médicale, Autoimmunité/Allergologie, Besançon, France.
| | - Elodie Bôle-Richard
- Université Marie et Louis Pasteur, INSERM, EFS BFC, UMR1098, Besançon, France; Franche-Comte' Innov, Bionoveo, Besançon, France
| | | | - François Aubin
- Université Marie et Louis Pasteur, INSERM, EFS BFC, UMR1098, Besançon, France; Service de Dermatologie, CHU Besançon, Besançon, France
| |
Collapse
|
16
|
Binks SNM, Morse IM, Ashraghi M, Vincent A, Waters P, Leite MI. Myasthenia gravis in 2025: five new things and four hopes for the future. J Neurol 2025; 272:226. [PMID: 39987373 PMCID: PMC11846739 DOI: 10.1007/s00415-025-12922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/24/2025]
Abstract
The last 10 years has brought transformative developments in the effective treatment of myasthenia gravis (MG). Beginning with the randomized trial of thymectomy in myasthenia gravis that demonstrated efficacy of thymectomy in nonthymomatous MG, several new treatment approaches have completed successful clinical trials and regulatory launch. These modalities, including B cell depletion, complement inhibition, and blockade of the neonatal Fc receptor, are now in use, offering prospects of sustained remission and neuromuscular protection in what is a long-term disease. In this review, we update our clinico-immunological review of 2016 with these important advances, examine their role in treatment algorithms, and focus attention on key issues of biomarkers for prognostication and the growing cohort of older patients, both those with long-term disease, and late-onset MG ('LOMG'). We close by expressing our four hopes for the next 5-10 years: improvements in laboratory medicine to facilitate rapid diagnosis, effective strategies for neuromuscular protection, more research into and better understanding of pathophysiology and treatment response in older individuals, and the potentially transformative role of therapies aimed at delivering a durable response such as chimeric antigen receptor (CAR) T cells. Our postscript summarizes some emerging themes in the field of serological and online biomarkers, which may develop greater stature in the next epoch.
Collapse
Affiliation(s)
- S N M Binks
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurology, John Radcliffe Hospital, Oxford, UK
| | - I M Morse
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mohammad Ashraghi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - A Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
17
|
Perico L, Casiraghi F, Benigni A, Remuzzi G. Is there a place for engineered immune cell therapies in autoimmune diseases? Trends Mol Med 2025:S1471-4914(25)00011-5. [PMID: 39984382 DOI: 10.1016/j.molmed.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
The ability to engineer immune cells yielded a transformative era in oncology. Early clinical trials demonstrated the efficacy of chimeric antigen receptor (CAR) T cells in resetting the immune system, motivating the expansion of this treatment beyond cancer, including autoimmune conditions. In this review, we discuss the current state of CAR T cell research in autoimmune diseases, examining the main challenges that limit widespread adoption of this therapy, such as complex isolation protocols, stringent immunosuppression, risk of secondary malignancies, and variable efficacy. We also review the studies addressing these limitations by development of off-the-shelf allogeneic CAR T cells, tunable safety systems, and antigen-specific therapies, which hold the potential to improve safety and accessibility of this treatment in clinical practice.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| | | | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
18
|
Segal Y, Soltys J, Clarkson BDS, Howe CL, Irani SR, Pittock SJ. Toward curing neurological autoimmune disorders: Biomarkers, immunological mechanisms, and therapeutic targets. Neuron 2025; 113:345-379. [PMID: 39809275 DOI: 10.1016/j.neuron.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Autoimmune neurology is a rapidly expanding field driven by the discovery of neuroglial autoantibodies and encompassing a myriad of conditions affecting every level of the nervous system. Traditionally, autoantibodies targeting intracellular antigens are considered markers of T cell-mediated cytotoxicity, while those targeting extracellular antigens are viewed as pathogenic drivers of disease. However, recent advances highlight complex interactions between these immune mechanisms, suggesting a continuum of immunopathogenesis. The breakdown of immune tolerance, central to these conditions, is affected by modifiable and non-modifiable risk factors such as genetic predisposition, infections, and malignancy. While significant therapeutic advancements have revolutionized treatment of certain diseases, such as neuromyelitis optica, our understanding of many others, particularly T cell-mediated conditions, remains limited, with fewer treatment options available. Future research should focus on improving effector function modeling and deepening our understanding of the factors influencing immune tolerance, with the goal of providing novel treatment options and improving patient care.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - John Soltys
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin D S Clarkson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Division of Experimental Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sarosh R Irani
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA; Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Huang Q, Zhu X, Zhang Y. Advances in engineered T cell immunotherapy for autoimmune and other non-oncological diseases. Biomark Res 2025; 13:23. [PMID: 39901288 PMCID: PMC11792665 DOI: 10.1186/s40364-025-00736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Adoptive immunotherapy using engineered T cells expressing chimeric antigen receptors has shown remarkable success in treating patients with hematological malignancies. However, realizing broader therapeutic applications of engineered T cells in other diseases requires further exploration in clinical investigations. In this review, we highlight recent advances in the engineering of T cells in non-oncology areas, including autoimmune and inflammatory diseases, infections, fibrosis, hemophilia, and aging. Chimeric antigen receptor immunotherapy has shown good outcomes in non-oncology areas, but many challenges remain in improving its safety and efficacy and and expanding its application to the treatment of non-oncological diseases.
Collapse
Affiliation(s)
- Qiaolin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
20
|
Mougiakakos D, Sengupta R, Gold R, Schroers R, Haghikia A, Lorente M, Pendleton M, Register A, Heesen C, Kröger N, Schett G, Mackensen A, Podoll A, Gutman J, Furie R, Bayer R, Distler JHW, Dietrich S, Krönke G, Bullinger L, Walker K. Successful generation of fully human, second generation, anti-CD19 CAR T cells for clinical use in patients with diverse autoimmune disorders. Cytotherapy 2025; 27:236-246. [PMID: 39530971 DOI: 10.1016/j.jcyt.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND B-cell targeting chimeric antigen receptor (CAR) T-cell therapies, which lead to profound B-cell depletion, have been well-established in hematology-oncology. This deep B-cell depletion mechanism has prompted the exploration of their use in B-cell driven autoimmune diseases. We herein report on the manufacturing of KYV-101, a fully human anti-CD19 CAR T-cell therapy, derived from patients who were treated across a spectrum of autoimmune diseases. METHODS KYV-101 was manufactured from peripheral blood-derived mononuclear cells of 20 patients across seven autoimmune disease types (neurological autoimmune diseases, n = 13; rheumatological autoimmune diseases, n = 7). Patients ranged from 18 to 75 years of age. Duration of disease ranged from <1 to 23 years since diagnosis. Patients were heavily pretreated, and most were refractory to prior immunosuppressive treatments. Apheresis was collected across nine sites, cryopreserved, and shipped to the manufacturing facility. Healthy donor apheresis samples were collected for manufacturing comparison. Manufacturing was performed using the CliniMACS Prodigy system. Cells were enriched for CD4+/CD8+ T cells, transduced with a third generation lentiviral vector encoding the CAR, expanded in vitro, and harvested. Percent cell viability, T-cell purity, cellular expansion, and transduction efficiency were assessed. Activity was assessed using cytokine release assays for KYV-101 CAR T cells co-cultured with different CD19+/- target cell lines. RESULTS KYV-101 was successfully manufactured for 100% of patients. Transduced cell populations were highly viable, with expansion ranging from 11 to 66 fold at Day 8, and were comparable across disease types. Healthy donor-derived controls displayed similar expansion ranges. High CAR expression and transduction rates were observed, ranging between 37 and 77% with low variation in transgene copy number (two to four per cell). Cell viability of the final KYV-101 drug product ranged from 87 to 97%. KYV-101 displayed robust CD19-dependent and effector dose-related release of the pro-inflammatory cytokine IFN-γ. CONCLUSIONS KYV-101 manufacturing yielded a CAR T-cell product with high viability and consistent composition and functionality, regardless of disease indication, pre-treatment, and heterogeneity of the incoming material. Cryopreservation of the apheresis and final drug product enabled widespread distribution. These results support the robustness of the manufacturing process for the fully human KYV-101 anti-CD19 CAR T-cell therapy drug product for patients across diverse autoimmune disease types.
Collapse
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Ralf Gold
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | - Roland Schroers
- Department of Hematology and Oncology, Ruhr University Bochum, Bochum, Germany
| | - Aiden Haghikia
- Department of Neurology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Mario Lorente
- Kyverna Therapeutics, Inc, Emeryville, California, USA
| | | | - Ames Register
- Kyverna Therapeutics, Inc, Emeryville, California, USA
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis and Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolaus Kröger
- Department for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Amber Podoll
- Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan Gutman
- Division of Hematology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard Furie
- Division of Rheumatology, Northwell Health, Great Neck, New York, USA
| | - Ruthee Bayer
- Department of Hematology/Oncology, Northwell Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York, USA
| | - Jörg H W Distler
- Department of Rheumatology and Hiller Research Center, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Immunology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Walker
- Kyverna Therapeutics, Inc, Emeryville, California, USA
| |
Collapse
|
21
|
Kitte R, Serfling R, Blache U, Seitz C, Schrader S, Köhl U, Fricke S, Bär C, Tretbar US. Optimal Chimeric Antigen Receptor (CAR)-mRNA for Transient CAR T Cell Generation. Int J Mol Sci 2025; 26:965. [PMID: 39940734 PMCID: PMC11818003 DOI: 10.3390/ijms26030965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) are becoming increasingly important in the treatment of hematologic malignancies and are also intensively being investigated for other diseases such as autoimmune disorders and HIV. Current CAR T cell therapies predominantly use viral transduction methods which, despite their efficacy, raise safety concerns related to genomic integration and potentially associated malignancies as well as labor- and cost-intensive manufacturing. Therefore, non-viral gene transfer methods, especially mRNA-based approaches, have attracted research interest due to their transient modification and enhanced safety profile. In this study, the optimization of CAR-mRNA for T cell applications is investigated, focusing on the impact of mRNA modifications, in vitro transcription protocols, and purification techniques on the translation efficiency and immunogenicity of mRNA. Furthermore, the refined CAR-mRNA was used to generate transient CAR T cells from acute myeloid leukemia patient samples, demonstrating efficacy in vitro and proof-of-concept for clinically relevant settings. These results highlight the potential of optimized mRNA to produce transient and safe CAR T cells.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Reni Kitte
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Robert Serfling
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
| | - Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| | - Claudius Seitz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Selina Schrader
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.S.); (S.S.)
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
- Medicine Campus MEDiC, Technical University of Dresden, Klinikum Chemnitz gGmbH, 09116 Chemnitz, Germany
| | - Christian Bär
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany;
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - U. Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (R.K.); (R.S.); (U.B.); (U.K.); (S.F.)
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Berry CT, Frazee CS, Herman PJ, Chen S, Chen A, Kuo Y, Ellebrecht CT. Current advancements in cellular immunotherapy for autoimmune disease. Semin Immunopathol 2025; 47:7. [PMID: 39821376 PMCID: PMC11739237 DOI: 10.1007/s00281-024-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
The management of autoimmune diseases is currently limited by therapies that largely suppress the immune system, often resulting in partial and temporary remissions. Cellular immunotherapies offer a targeted approach by redirecting immune cells to correct the underlying autoimmunity. This review explores the latest advances in cellular immunotherapies for autoimmune diseases, focusing on various strategies, such as the use of chimeric antigen receptor (CAR) T cells, chimeric auto-antibody receptor (CAAR) T cells, regulatory T cells (Tregs), and tolerogenic dendritic cells (TolDCs). We review recent preclinical studies and results from clinical trials that demonstrate the potential for these therapies to either deplete autoreactive cells or promote immune tolerance through broad or selective targeting of immune cell populations. Key challenges such as ensuring specificity, preventing off-target effects, and improving the longevity of therapeutic effects are discussed. The evolving landscape of cellular immunotherapies holds promise for more durable treatment responses and increased specificity for autoimmune disease treatment.
Collapse
Affiliation(s)
- Corbett T Berry
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caitlin S Frazee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Herman
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sisi Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvonne Kuo
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Bril V, Gilhus NE. Aging and infectious diseases in myasthenia gravis. J Neurol Sci 2025; 468:123314. [PMID: 39671879 DOI: 10.1016/j.jns.2024.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 12/15/2024]
Abstract
Over the past 120 years, mortality associated with myasthenia gravis (MG) has steadily decreased while the incidence of MG has increased. While mortality due to MG has been ≤5 % for at least the past 25 years, the prevalence of MG has increased. This increase in prevalence of MG may be due, in part, to improvements in diagnostics but also to an aging global population and immunosenescence as the largest increases in MG prevalence have been in patients ≥65 years old. In fact, a "very late-onset" subtype of MG has been proposed for patients diagnosed at or after age 65 years. These patients are predominantly anti-AChR antibody positive and thymoma negative. Preferred therapeutic options differ based on age at MG onset. Immunosenescence may play a role not only in MG etiology but also in the increased susceptibility of MG patients to infection. Immunosuppressive effects of MG therapies can also increase vulnerability to infection. Despite the improvements in MG treatment, mortality in MG patients remains higher than in the non-MG population. This is partly due to increased vulnerability to infection but also due to infection acting as a precipitating factor for MG exacerbation or crisis. The increased infection risk inherent with MG and the increased risk resulting from some therapies calls for increased diligence in monitoring and treating infections in MG patients.
Collapse
Affiliation(s)
- Vera Bril
- Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
He Y, Johnston APR, Pouton CW. Therapeutic applications of cell engineering using mRNA technology. Trends Biotechnol 2025; 43:83-97. [PMID: 39153909 DOI: 10.1016/j.tibtech.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
Engineering and reprogramming cells has significant therapeutic potential to treat a wide range of diseases, by replacing missing or defective proteins, to provide transcription factors (TFs) to reprogram cell phenotypes, or to provide enzymes such as RNA-guided Cas9 derivatives for CRISPR-based cell engineering. While viral vector-mediated gene transfer has played an important role in this field, the use of mRNA avoids safety concerns associated with the integration of DNA into the host cell genome, making mRNA particularly attractive for in vivo applications. Widespread application of mRNA for cell engineering is limited by its instability in the biological environment and challenges involved in the delivery of mRNA to its target site. In this review, we examine challenges that must be overcome to develop effective therapeutics.
Collapse
Affiliation(s)
- Yujia He
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Zeng L, Li Y, Xiang W, Xiao W, Long Z, Sun L. Advances in chimeric antigen receptor T cell therapy for autoimmune and autoinflammatory diseases and their complications. J Autoimmun 2025; 150:103350. [PMID: 39700677 DOI: 10.1016/j.jaut.2024.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cells are genetically engineered T cells expressing transmembrane chimeric antigen receptors with specific targeting abilities. As an emerging immunotherapy, the use of CAR-T cells has made significant breakthroughs in cancer treatment, particularly for hematological malignancies. The success of CAR-T cell therapy in blood cancers highlights its potential for other conditions in which the clearance of pathological cells is therapeutic, such as liver diseases, infectious diseases, heart failure, and diabetes. Given the limitations of current therapies for autoimmune diseases, researchers have actively explored the potential therapeutic value of CAR-T cells and their derivatives in the field of autoimmune diseases. This review focuses on the research progress and current challenges of CAR-T cells in autoimmune diseases with the aim of providing a theoretical basis for the precise treatment of autoimmune diseases. In the future, CAR-T cells may present new therapeutic modalities and ultimately provide hope for patients with autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Inflammation/therapy
- Inflammation/immunology
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde City, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde City, China.
| | - Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Ismail FS, Gallus M, Meuth SG, Okada H, Hartung HP, Melzer N. Current and Future Roles of Chimeric Antigen Receptor T-Cell Therapy in Neurology: A Review. JAMA Neurol 2025; 82:93-103. [PMID: 39585688 DOI: 10.1001/jamaneurol.2024.3818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Importance Advancements in molecular engineering have facilitated the creation of engineered T cells that express synthetic receptors, termed chimeric antigen receptors (CARs). This is promising not only in cancer treatment but also in addressing a spectrum of other conditions. This review provides a comprehensive overview of the current approaches and future potential of CAR T-cell therapy in the field of neurology, particularly for primary brain tumors and autoimmune neurological disorders. Observations CAR T-cell therapy for glioblastoma is promising; however, first-in-human trials did not yield significant success or showed only limited success in a subset of patients. To date, the efficacy of CAR T-cell therapies has been demonstrated in animal models of multiple sclerosis, but larger human studies to corroborate the efficacy remain pending. CAR T cells showed efficacy in treatment of patients with relapsed or refractory aquaporin 4-immunoglobulin G-seropositive neuromyelitis optica spectrum disorders. Further studies with larger patient populations are needed to confirm these results. Success was reported also for treatment of cases with generalized myasthenia gravis using CAR T cells. Chimeric autoantibody receptor T cells, representing a modified form of CAR T cells directed against autoreactive B cells secreting autoantibodies, were used to selectively target autoreactive anti-N-methyl-d-aspartate B cells under in vitro and in vivo conditions, providing the basis for human studies and application to other types of autoimmune encephalitis associated with neuronal or glial antibodies. Conclusions and Relevance CAR T cells herald a new era in the therapeutic landscape of neurological disorders. While their application in solid tumors, such as glioblastoma, has not universally yielded robust success, emerging innovative strategies show promise, and there is optimism for their effectiveness in certain autoimmune neurological disorders.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Alekseeva TM, Isabekova PS, Kondratova EI, Abdulina LU. [New pathogenic treatments for myasthenia gravis]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:31-38. [PMID: 39930674 DOI: 10.17116/jnevro202512501131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by the production of specific autoantibodies to various components of the neuromuscular synapse, leading to muscle weakness and disabling fatigue. Treatment of MG aims to stop the symptoms and inhibit the triggers of the autoimmune process. For a long time, MG treatment included anticholinesterase agents and nonspecific immunosuppressive and immunomodulatory therapies used alone or in combinations: glucocorticosteroids, cytostatics, plasmapheresis, and intravenous immunoglobulin. Despite the fact that the above drugs are widely used in the treatment of MG, they can cause unacceptable side effects with long-term use and also are not consistent in induction of remission. The search for new effective and safe therapies for MG, especially refractory types that do not respond to standard therapy, is an urgent task. Due to advances in biotechnology and the emergence of new types of drugs, monoclonal antibodies or fusion proteins, targeted MG immunotherapy has been developed for specific pathogenetic targets. The presented review describes targeted MG therapies that are already approved In Russia and other countries, as well as those at different stages of development. Most targeted agents have some advantages over traditional immunosuppressive therapy: rapid onset of action, long-term remission, and minimal side effects. Currently, eculizumab and ravulizumab are approved In Russia.
Collapse
Affiliation(s)
- T M Alekseeva
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - P S Isabekova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - E I Kondratova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - L U Abdulina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
28
|
Papadaki GF, Li Y, Monos DS, Bhoj VG. Cars pick up another passenger: Organ transplantation. Hum Immunol 2025; 86:111180. [PMID: 39591915 DOI: 10.1016/j.humimm.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
With over 30,000 patients having received CAR T cells as a treatment for malignancy, our experience in oncology has facilitated numerous efforts to adapt the CAR therapeutic platform for diseases and conditions beyond cancer. Recognition of their efficacy, where traditional small molecule or biologic therapies fail, has spurred multiple efforts leveraging CAR T cells for immune modulation in the setting of organ/tissue transplantation. In the present review, we discuss CAR T cell approaches that are currently under development, to target both humoral and cellular alloimmunity. These include CAR T platforms repurposed from oncology and autoimmune diseases, as well as ones designed specifically to target alloimmunity in transplant. We also present important challenges and application considerations that will need to be addressed before we can expect successful clinical translation. Finally, we highlight a few of the exciting advances currently in development that are likely to pave a smoother path to translating CAR T cell therapies into transplant patients.
Collapse
MESH Headings
- Humans
- Organ Transplantation
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Animals
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Neoplasms/therapy
- Neoplasms/immunology
Collapse
Affiliation(s)
- Georgia F Papadaki
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang Li
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dimitri S Monos
- Department of Pathology & Laboratory Medicine, Immunogenetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vijay G Bhoj
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Rampotas A, Richter J, Isenberg D, Roddie C. CAR-T cell therapy embarks on autoimmune disease. Bone Marrow Transplant 2025; 60:6-9. [PMID: 39379698 PMCID: PMC11726457 DOI: 10.1038/s41409-024-02429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Affiliation(s)
| | - Johanna Richter
- Department for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Isenberg
- Centre for Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London, UK
| | - Claire Roddie
- University College London Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Tang HY, Cao YZ, Zhou YW, Ma YS, Jiang H, Zhang H, Jiang L, Yang QX, Tang XM, Yang C, Liu XY, Liu FX, Liu JB, Fu D, Wang YF, Yu H. The power and the promise of CAR-mediated cell immunotherapy for clinical application in pancreatic cancer. J Adv Res 2025; 67:253-267. [PMID: 38244773 PMCID: PMC11725162 DOI: 10.1016/j.jare.2024.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pancreatic cancer, referred to as the "monarch of malignancies," is a neoplastic growth mostly arising from the epithelial cells of the pancreatic duct and acinar cells. This particular neoplasm has a highly unfavorable prognosis due to its marked malignancy, inconspicuous initial manifestation, challenging early detection, rapid advancement, and limited survival duration. Cellular immunotherapy is the ex vivo culture and expansion of immune effector cells, granting them the capacity to selectively target malignant cells using specialized techniques. Subsequently, these modified cells are reintroduced into the patient's organism with the purpose of eradicating tumor cells and providing therapeutic intervention for cancer. PRESENT SITUATION Presently, the primary cellular therapeutic modalities employed in the treatment of pancreatic cancer encompass CAR T-cell therapy, TCR T-cell therapy, NK-cell therapy, and CAR NK-cell therapy. AIM OF REVIEW This review provides a concise overview of the mechanisms and primary targets associated with various cell therapies. Additionally, we will explore the prospective outlook of cell therapy in the context of treating pancreatic cancer.
Collapse
Affiliation(s)
- Hao-Yu Tang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China; Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yi-Zhi Cao
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yi-Wei Zhou
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yu-Shui Ma
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, Shanghai, China
| | - Hong Jiang
- Department of Thoracic Surgery, The 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, Shanghai, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China
| | - Lin Jiang
- Department of Anesthesiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Xiao-Mei Tang
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Fu-Xing Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China.
| | - Da Fu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China.
| | - Yun-Feng Wang
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
31
|
Hu G, Zhao X, Wang Y, Zhu X, Sun Z, Yu X, Wang J, Liu Q, Zhang J, Zhang Y, Yang J, Chang T, Ruan Z, Lv J, Gao F. Advances in B Cell Targeting for Treating Muscle-Specific Tyrosine Kinase-Associated Myasthenia Gravis. Immunotargets Ther 2024; 13:707-720. [PMID: 39678139 PMCID: PMC11646387 DOI: 10.2147/itt.s492062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Myasthenia gravis (MG) is a typical autoimmune disease of the nervous system. It is characterized by skeletal muscle weakness and fatigue due to impaired neuromuscular junction transmission mediated by IgG autoantibodies. Muscle-specific receptor tyrosine kinase-associated MG (MuSK-MG), a rare and severe subtype of MG, is distinguished by the presence of anti-MuSK antibodies; it responds poorly to traditional therapies. Recent research on MuSK-MG treatment has focused on specific targeted therapies. Since B cells play a critical pathogenic role in producing autoantibodies and inflammatory mediators, they are often considered the preferred target for treating MuSK-MG. Currently, various B cell-targeted drugs have been developed to treat MuSK-MG; they have shown good therapeutic effects. This review explores the evolving landscape of B cell-targeted therapies in MuSK-MG, focusing on their mechanisms, efficacy, and safety, and the current limitations associated with their use. We discuss current B cell-targeted therapies aimed at depleting or modulating B cells via both direct and indirect approaches. Furthermore, we focus on novel and promising strategies such as Chimeric Autoantibody Receptor T cell therapy, which explicitly targets MuSK-specific B cells without compromising general humoral immunity. Finally, this review provides an outlook on the potential benefits and limitations of B cell-targeted therapy in developing new therapies for MuSK-MG. We conclude by discussing future research efforts needed to optimize these therapies, expand treatment options, and improve long-term outcomes in MuSK-MG management.
Collapse
Affiliation(s)
- Guanlian Hu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yiren Wang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoyan Zhu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhan Sun
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaoxiao Yu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jiahui Wang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Qian Liu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Junhong Yang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ting Chang
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zhe Ruan
- Department of Neurology, Second Affiliated Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
32
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Bulliard Y, Freeborn R, Uyeda MJ, Humes D, Bjordahl R, de Vries D, Roncarolo MG. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024; 15:1509956. [PMID: 39697333 PMCID: PMC11653210 DOI: 10.3389/fimmu.2024.1509956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission. Notably, we highlight the emergence of CD19-targeted CAR T cell therapies, and their ability to drive sustained remission in B cell-mediated autoimmune diseases, suggesting a possible paradigm shift. Further, we discuss the therapeutic potential of Type 1 and FOXP3+ Treg and CAR-Treg cells, which aim to achieve localized immune modulation by targeting their activity to specific tissues or cell types, thereby minimizing the risk of generalized immunosuppression. By examining the latest advances in this rapidly evolving field, we underscore the potential of these innovative cell therapies to address the unmet need for long-term remission and potential tolerance induction in individuals with autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Yannick Bulliard
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Robert Freeborn
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Molly Javier Uyeda
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Daryl Humes
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Ryan Bjordahl
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - David de Vries
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Maria Grazia Roncarolo
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
34
|
Shang S, Zhao C, Lin J. Therapeutic potentials of adoptive cell therapy in immune-mediated neuropathy. J Autoimmun 2024; 149:103305. [PMID: 39265193 DOI: 10.1016/j.jaut.2024.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/06/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Immune-mediated neuropathy (IMN) is a group of heterogenous neuropathies caused by intricate autoimmune responses. For now, known mechanisms of different IMN subtypes involve the production of autoantibodies, complement activation, enhanced inflammation and subsequent axonal/demyelinating nerve damages. Recent therapeutic studies mainly focus on specific antibodies and small molecule inhibitors previously approved in rheumatoid diseases. Initial strategies based on the pathophysiologic features of IMN should be explored. Adoptive cell therapy (ACT) refers to the emerging immunotherapies in which circulating immunocytes are collected from peripheral blood and modified with killing and immunomodulatory capacities. It consists of chimeric antigen receptor-T cell therapy, T cell receptor-engineered T cell, CAR-Natural killer cell therapy, and others. In the last decade, ACT has demonstrated extraordinary potentials in treating cancers, infectious diseases and autoimmune diseases. Versatile combinations of targets, chimeric domains and effector cells greatly empower ACT to treat complicated immune disorders. In this review, we summarized the advances of ACT and envisioned suitable strategies for different IMN subtypes.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Siqi Shang
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China.
| |
Collapse
|
35
|
Greco R, Alexander T, Yakoub-Agha I, Farge D. In response to the letter by Howard JF and colleagues (eclinm-D-24-00922). EClinicalMedicine 2024; 78:102917. [PMID: 39640931 PMCID: PMC11617733 DOI: 10.1016/j.eclinm.2024.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Tobias Alexander
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Ibrahim Yakoub-Agha
- CHU de Lille, Univ Lille, INSERM U1286, Infinite, 59000, Lille, France
- Chair of the Practice Harmonization and Guidelines Committee of EBMT, Barcelona, Spain
| | - Dominique Farge
- Internal Medicine Unit (04): CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies auto-immunes Systémiques Rares d’Ile-de-France, AP-HP, St-Louis Hospital Paris-Cite University France and Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Zulfiqar F, Shahzad M, Amin MK, Vyas A, Sarfraz Z, Zainab A, Qasim H, Kaur D, Khavandgar N, Lutfi F, Hematti P, McGuirk JP, Mushtaq MU. Outcomes with chimeric antigen receptor T-cell therapy in Rheumatological disorders: A systematic review. Transpl Immunol 2024; 87:102137. [PMID: 39442586 DOI: 10.1016/j.trim.2024.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Chimeric antigen receptor T cell (CAR-T) therapy is an emerging form of immunotherapy that has recently gained recognition for treating hematological malignancies. This successful utilization of CAR-T therapy has attracted interest in its application in refractory rheumatological diseases. Here, we will review the use of CAR-T therapy in rheumatological diseases. METHODS Per PRISMA guidelines, a comprehensive literature search was performed on PubMed, Cochrane, and ClinicalTrials.gov using keywords for 'CAR-T cell therapy' and 'Rheumatological diseases' from inception to December 9, 2023. After screening 2977 articles, six studies reporting outcomes of CAR-T cell therapies in patients with underlying autoimmune /rheumatological diseases. Descriptive analysis was performed to represent demographics and clinical outcomes. RESULTS A total of 101 adult patients from six studies were included in this systematic review. The median age of the participants was 50.8 years (IQR: 14.875), with ages ranging from 18 to 83 years. The included studies comprised 2 case reports, 1 case series, one observational study, and two clinical trials. The studies were conducted globally, including USA, Germany, and China. The underlying rheumatologic conditions were systemic lupus erythematosus (17.8 %), rheumatoid arthritis (23.8 %), myasthenia gravis (13.8 %), neuromyelitis optica (11.9 %), and others (32.7 %). The target of CAR-T therapy included CD-19 in four studies and B cell maturation antigen (BCMA) in two studies. All the patients were on prior therapy, including glucocorticoids and disease-modifying antirheumatic drugs. Follow-up ranged from a month to 1.5 years. Most of the studies reported improvement in the symptoms and decline in serological biomarkers of the underlying disease. The notable outcomes in the included studies were a 100 % response rate in five out of six studies. Grade 1 and 2 cytokine release syndrome (CRS) was observed in five studies. Only one study reported Grade 3 or higher CRS. 2 patients (1.98 %) developed neurotoxicity among the adverse effects. CONCLUSION CAR-T cell therapy is a paradigm shift in managing rheumatologic diseases, with symptomatic improvement and biochemical control of these diseases. Although preliminary evidence indicates promising results, long-term follow-up and prospective clinical trials are needed to establish optimal timing and assess the safety and efficacy of CAR-T immunotherapy.
Collapse
Affiliation(s)
- Fizza Zulfiqar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Moazzam Shahzad
- Division of Hematology and Oncology, Moffitt Cancer Center, University of South Florida, Tampa, Florida, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Muhammad Kashif Amin
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Abhinav Vyas
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Zouina Sarfraz
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Anika Zainab
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Hana Qasim
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Dania Kaur
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Naghmeh Khavandgar
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Forat Lutfi
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Peiman Hematti
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Florida, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Joseph P McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States
| | - Muhammad Umair Mushtaq
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States; Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, Kansas City, Kansas, United States.
| |
Collapse
|
37
|
Howard JF, Manzi SM, Miljkovic MD, Vu T, Mozaffar T. In response to: "Innovative cellular therapies for autoimmune diseases: expert-based position statement and clinical practice recommendations from the EBMT practice harmonization and guidelines committee" by Greco et al. EClinicalMedicine 2024; 78:102918. [PMID: 39640933 PMCID: PMC11617738 DOI: 10.1016/j.eclinm.2024.102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/04/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- James F. Howard
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan M. Manzi
- Allegheny Health Network, Lupus Center of Excellence, Pittsburgh, PA, USA
| | | | - Tuan Vu
- University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
38
|
Cai J, Chen S, Liu Z, Li H, Wang P, Yang F, Li Y, Chen K, Sun M, Qiu M. RNA technology and nanocarriers empowering in vivo chimeric antigen receptor therapy. Immunology 2024; 173:634-653. [PMID: 39340367 DOI: 10.1111/imm.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The remarkable success of mRNA-based coronavirus 2019 (COVID-19) vaccines has propelled the advancement of nanomedicine, specifically in the realm of RNA technology and nanomaterial delivery systems. Notably, significant strides have been made in the development of RNA-based in vivo chimeric antigen receptor (CAR) therapy. In comparison to the conventional ex vivo CAR therapy, in vivo CAR therapy offers several benefits including simplified preparation, reduced costs, broad applicability and decreased potential for carcinogenic effects. This review summarises the RNA-based CAR constructs in in vivo CAR therapy, discusses the current applications of in vivo delivery vectors and outlines the immune cells edited with CAR molecules. We aim for the conveyed messages to contribute towards the advancement of in vivo CAR application.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Shaoyi Chen
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Zheng Liu
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Haoran Li
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Peiyu Wang
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Fan Yang
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yun Li
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
| | - Kezhong Chen
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| | - Ming Sun
- Department of Oncology Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, People's Republic of China
| | - Mantang Qiu
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, People's Republic of China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, People's Republic of China
| |
Collapse
|
39
|
Fu Y, Feng C, Qin S, Xing Z, Liu C, Liu Z, Yu H. Breaking barriers: advancing cellular therapies in autoimmune disease management. Front Immunol 2024; 15:1503099. [PMID: 39676874 PMCID: PMC11638217 DOI: 10.3389/fimmu.2024.1503099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Autoimmune diseases occur due to a dysregulation within the immune system, leading to an aberrant assault on the organism's own tissues. The pathogenesis of these conditions is multifactorial, encompassing intricate interplays among genetic predispositions, environmental determinants, and hormonal fluctuations. The spectrum of autoimmune diseases is broad, impacting a multitude of organ systems, with notable examples such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), psoriasis, and vitiligo. Despite substantial progress in therapeutic interventions over recent years, a definitive cure for autoimmune diseases has yet to be realized, with existing modalities largely providing palliative care. Cellular therapy is considered the fourth pillar in the management of oncological disorders subsequent to surgical resection, radiotherapy, and chemotherapy. Cellular therapies have shown potential in augmenting immune competence and eliminating of targeted neoplastic cells in a spectrum of cancers. As targeting specific molecules on the surface of autoreactive B and T cells, such as CD19, BCMA, CD20, and CTLA-4, cellular therapies are emerging as promising approaches for the treatment of autoimmune diseases. This review delineates the advancements in the application of cellular therapies applied recently for autoimmune diseases and proposes considerations for the advancement of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yanhong Fu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Chunjing Feng
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Jiangxi Engineering Research Center for Stem Cell, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, Jiangxi, China
| | - Shan Qin
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Jinnan Hospital, Faculty of Medicine, Tianjin Jinnan Hospital, Tianjin University, Tianjin, China
| | - Chong Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Hongjian Yu
- Jinnan Hospital, Faculty of Medicine, Tianjin Jinnan Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
40
|
Wickel J, Schnetzke U, Sayer-Klink A, Rinke J, Borie D, Dudziak D, Hochhaus A, Heger L, Geis C. Anti-CD19 CAR-T cells are effective in severe idiopathic Lambert-Eaton myasthenic syndrome. Cell Rep Med 2024; 5:101794. [PMID: 39447569 PMCID: PMC11604532 DOI: 10.1016/j.xcrm.2024.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Lambert-Eaton myasthenic syndrome (LEMS) is an autoantibody-mediated disease of the neuromuscular junction characterized by muscular weakness. Autoantibodies to presynaptic P/Q-type voltage-gated calcium channels (VGCCs) induce defective neuromuscular function. In severe cases, current immunosuppressive and immunomodulatory treatment strategies are often insufficient. First reports show beneficial effects of anti-CD19 chimeric antigen receptor (CAR)-T cell therapy in patients with autoantibody-mediated myasthenia gravis. We report a patient with isolated idiopathic LEMS treated with autologous anti-CD19-CAR-T cells. In this patient, CAR-T infusion leads to expansion of predominantly CD4+ CAR-T cells with a terminally differentiated effector memory cells re-expressing CD45RA (TEMRA)-like phenotype indicating cytotoxic capabilities and subsequent B cell depletion. VGCC antibody titers decrease, resulting in a clinical improvement of LEMS symptoms, e.g., 8-fold increase in walking distance. The patient does not show relevant side effects except for cytokine release syndrome grade 2 and intermittent neutropenia suggesting that anti-CD19 CAR-T cell therapy may be a treatment option in patients with LEMS.
Collapse
Affiliation(s)
- Jonathan Wickel
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Ulf Schnetzke
- Klinik für Innere Medizin II, Hematology/Oncology, Jena University Hospital, Jena, Germany; Comprehensive Cancer Center Central Germany, Campus Jena, Jena, Germany
| | - Anne Sayer-Klink
- Institute for Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Jenny Rinke
- Klinik für Innere Medizin II, Hematology/Oncology, Jena University Hospital, Jena, Germany
| | | | - Diana Dudziak
- Comprehensive Cancer Center Central Germany, Campus Jena, Jena, Germany; Institute of Immunology, Jena University Hospital, Jena, Germany; Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Hematology/Oncology, Jena University Hospital, Jena, Germany; Comprehensive Cancer Center Central Germany, Campus Jena, Jena, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
41
|
Liu J, Zhao Y, Zhao H. Chimeric antigen receptor T-cell therapy in autoimmune diseases. Front Immunol 2024; 15:1492552. [PMID: 39628482 PMCID: PMC11611814 DOI: 10.3389/fimmu.2024.1492552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
The administration of T cells that have been modified to carry chimeric antigen receptors (CARs) aimed at B cells has been an effective strategy in treating B cell malignancies. This breakthrough has spurred the creation of CAR T cells intended to specifically reduce or alter the faulty immune responses associated with autoimmune disorders. Early positive outcomes from clinical trials involving CAR T cells that target the B cell protein CD19 in patients suffering from autoimmune diseases driven by B cells have been reported. Additional strategies are being developed to broaden the use of CAR T cell therapy and enhance its safety in autoimmune conditions. These include employing chimeric autoantireceptors (CAAR) to specifically eliminate B cells that are reactive to autoantigens, and using regulatory T cells (Tregs) engineered to carry antigen-specific CARs for precise immune modulation. This discussion emphasizes key factors such as choosing the right target cell groups, designing CAR constructs, defining tolerable side effects, and achieving a lasting immune modification, all of which are critical for safely integrating CAR T cell therapy in treating autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Regulatory/immunology
- B-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Autoantigens/immunology
- Antigens, CD19/immunology
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zhao
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
42
|
Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther 2024; 9:322. [PMID: 39543114 PMCID: PMC11564800 DOI: 10.1038/s41392-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
In the last decade, messenger ribonucleic acid (mRNA)-based drugs have gained great interest in both immunotherapy and non-immunogenic applications. This surge in interest can be largely attributed to the demonstration of distinct advantages offered by various mRNA molecules, alongside the rapid advancements in nucleic acid delivery systems. It is noteworthy that the immunogenicity of mRNA drugs presents a double-edged sword. In the context of immunotherapy, extra supplementation of adjuvant is generally required for induction of robust immune responses. Conversely, in non-immunotherapeutic scenarios, immune activation is unwanted considering the host tolerability and high expression demand for mRNA-encoded functional proteins. Herein, mainly focused on the linear non-replicating mRNA, we overview the preclinical and clinical progress and prospects of mRNA medicines encompassing vaccines and other therapeutics. We also highlight the importance of focusing on the host-specific variations, including age, gender, pathological condition, and concurrent medication of individual patient, for maximized efficacy and safety upon mRNA administration. Furthermore, we deliberate on the potential challenges that mRNA drugs may encounter in the realm of disease treatment, the current endeavors of improvement, as well as the application prospects for future advancements. Overall, this review aims to present a comprehensive understanding of mRNA-based therapies while illuminating the prospective development and clinical application of mRNA drugs.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, P. R. China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, P. R. China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
43
|
Chen Z, Shu J, Hu Y, Mei H. Synergistic integration of mRNA-LNP with CAR-engineered immune cells: Pioneering progress in immunotherapy. Mol Ther 2024; 32:3772-3792. [PMID: 39295145 PMCID: PMC11573621 DOI: 10.1016/j.ymthe.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has emerged as a revolutionary approach in the treatment of malignancies. Despite its remarkable successes, this field continues to grapple with challenges such as scalability, safety concerns, limited therapeutic effect, in vivo persistence, and the need for precise control over CAR expression. In the post-pandemic era of COVID-19 vaccine immunization, the application of messenger RNA (mRNA) encapsulated within lipid nanoparticles (LNPs) has recently garnered significant attention as a potential solution to address these challenges. This review delves into the dynamic landscape of mRNA-LNP technology and its potential implications for CAR-engineered immune cell-based immunotherapy.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
44
|
Yang Y, Cheng K, Xu G. Novel approaches to primary membranous nephropathy: Beyond the KDIGO guidelines. Eur J Pharmacol 2024; 982:176928. [PMID: 39182551 DOI: 10.1016/j.ejphar.2024.176928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Primary membranous nephropathy (PMN) is an immune-mediated glomerular disease. Rituximab (RTX) is recommended as a first-line immunosuppressive therapy and shows high clinical efficacy, but the optimal doses remain controversial. Approximately 20%-40% of PMN patients experience RTX resistance and failure. Reduced bioavailability, RTX internalization and attack, anti-RTX antibody production, autoreactive B-cell reservoirs and chronic and irreversible renal damage may contribute to this problem. Therefore, new treatment modalities are needed to compensate for this deficit. New interventions and new dose combinations are being proposed. Multiple drug combination therapies show comparable clinical efficacy to conventional treatments by blocking the production of disease-causing antibodies in multiple directions, and can reduce single-agent doses without increasing adverse effects. New therapies that directly target B cells, plasma cells, and antibody production have shown encouraging results. In addition, new techniques for sweeping antibodies and chimeric antigen receptor T-cell therapy also may be promising strategies for PMN. Immunoadsorption could be used as an auxiliary choice for severe cases. This article explores new treatments for PMN and highlights possible mechanisms for potential new technologies that offer new ideas for treatment.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, PR China
| | - Kaiqi Cheng
- The Third Hospital of Nanchang, Nanchang, PR China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China.
| |
Collapse
|
45
|
He T, Chen K, Zhou Q, Cai H, Yang H. Immune repertoire profiling in myasthenia gravis. Immunol Cell Biol 2024; 102:891-906. [PMID: 39396830 DOI: 10.1111/imcb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Myasthenia gravis (MG) is the most frequent immune-mediated neurological disorder, characterized by fluctuating muscle weakness. Specific recognition of self-antigens by T-cell receptors (TCRs) and B-cell receptors (BCRs), coupled with T-B cell interactions, activates B cells to produce autoantibodies, which are critical for the initiation and perpetuation of MG. The immune repertoire comprises all functionally diverse T and B cells at a specific time point in an individual, reflecting the essence of immune selectivity. By sequencing the nucleotide sequences of TCRs and BCRs, it is possible to track individual T- and B-cell clones. This review delves into the generation of autoreactive TCRs and BCRs in MG and comprehensively examines the applications of immune repertoire sequencing in understanding disease pathogenesis, developing diagnostic and prognostic markers and informing targeted therapies. We also discuss the current limitations and future potential of this approach.
Collapse
MESH Headings
- Myasthenia Gravis/immunology
- Humans
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- B-Lymphocytes/immunology
- Autoantibodies/immunology
- Animals
- Autoantigens/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Chung JB, Brudno JN, Borie D, Kochenderfer JN. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat Rev Immunol 2024; 24:830-845. [PMID: 38831163 DOI: 10.1038/s41577-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Infusion of T cells engineered to express chimeric antigen receptors (CARs) that target B cells has proven to be a successful treatment for B cell malignancies. This success inspired the development of CAR T cells to selectively deplete or modulate the aberrant immune responses that underlie autoimmune disease. Promising results are emerging from clinical trials of CAR T cells targeting the B cell protein CD19 in patients with B cell-driven autoimmune diseases. Further approaches are being designed to extend the application and improve safety of CAR T cell therapy in the setting of autoimmunity, including the use of chimeric autoantibody receptors to selectively deplete autoantigen-specific B cells and the use of regulatory T cells engineered to express antigen-specific CARs for targeted immune modulation. Here, we highlight important considerations, such as optimal target cell populations, CAR construct design, acceptable toxicities and potential for lasting immune reset, that will inform the eventual safe adoption of CAR T cell therapy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
| | - Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Attarian S. New treatment strategies in Myasthenia gravis. Rev Neurol (Paris) 2024; 180:971-981. [PMID: 39379218 DOI: 10.1016/j.neurol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder characterized by muscle weakness and fatigue. The disease is primarily caused by antibodies targeting acetylcholine receptors (AChR) and muscle-specific kinase (MuSK) proteins at the neuromuscular junction. Traditional treatments for MG, such as acetylcholinesterase inhibitors, corticosteroids, and immunosuppressants, have shown efficacy but are often associated with significant long-term side effects and variable patient response rates. Notably, approximately 15% of patients exhibit inadequate responses to these standard therapies. Recent advancements in molecular therapies, including monoclonal antibodies, B cell-depleting agents, complement inhibitors, Fc receptor antagonists, and chimeric antigen receptor (CAR) T cell-based therapies, have introduced promising alternatives for MG treatment. These novel therapeutic approaches offer potential improvements in targeting specific immune pathways involved in MG pathogenesis. This review highlights the progress and challenges in developing and implementing these molecular therapies. It discusses their mechanisms, efficacy, and the potential for personalized medicine in managing MG. The integration of new molecular therapies into clinical practice could significantly transform the treatment landscape of MG, offering more effective and tailored therapeutic options for patients who do not respond adequately to traditional treatments. These innovations underscore the importance of ongoing research and clinical trials to optimize therapeutic strategies and improve the quality of life for individuals with MG.
Collapse
Affiliation(s)
- S Attarian
- Referral center for Neuromuscular disorders, Timone Hospital University, AIX-Marseille Université, Marseille, France; Filnemus, ERN NMD, Marseille, France.
| |
Collapse
|
48
|
English EP, Swingler RN, Patwa S, Tosun M, Howard JF, Miljković MD, Jewell CM. Engineering CAR-T therapies for autoimmune disease and beyond. Sci Transl Med 2024; 16:eado2084. [PMID: 39475572 DOI: 10.1126/scitranslmed.ado2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 12/13/2024]
Abstract
Chimeric antigen receptor-T cell (CAR-T) therapy has transformed the management of refractory hematological malignancies. Now that targeting pathogenic cells of interest with antigen-directed cytotoxic T lymphocytes is possible, the field is expanding the reach of CAR-T therapy beyond oncology. Recently, breakthrough progress has been made in the application of CAR-T technology to autoimmune diseases, exploiting the same validated targets that were used by pioneering CAR-T therapies in hematology. Here, we discuss recent advances and outcomes that are paving the way for extension to new therapeutic areas, including autoimmunity.
Collapse
Affiliation(s)
| | | | - Simran Patwa
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - Mehmet Tosun
- Cartesian Therapeutics, Gaithersburg, MD 20878, USA
| | - James F Howard
- University of North Carolina, Chapel Hill, NC 27514, USA
| | | | | |
Collapse
|
49
|
Wang SY, An WH, Wang ZS, Wang WL, Zhang B, Xu KL, Guo SL, Gao M, Li B, Huang L, Tian HH, Guo WY, Wang HR. Incidentally cured psoriasis in a patient with refractory/relapsed diffuse large B-cell lymphoma receiving CD19 CAR-T cell therapy: a case report. Front Immunol 2024; 15:1418768. [PMID: 39534606 PMCID: PMC11555394 DOI: 10.3389/fimmu.2024.1418768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is a new treatment for cancers, but reports on curing immune-related skin diseases are limited. We report a case of successful CAR-T-cell therapy in a patient with refractory/relapsed diffuse large B-cell lymphoma (R/R DLBCL) who was incidentally cured of chronic generalized plaque psoriasis. The patient, a 65-year-old male who had a known history of psoriasis for 45 years, did not receive immunotherapy for psoriasis during this period. Imaging, molecular biology and immunology diagnostics confirmed DLBCL. After several weeks of standard-dose R-CHOP chemotherapy, the patient achieved partial remission, but according to CT, the patient relapsed, and there was no significant improvement in her psoriasis symptoms. Subsequently, the patient was enrolled in the CD19 CAR-T-cell therapy group. Four weeks after CAR-T-cell infusion, the patient's abdominal pain disappeared, and there was a significant improvement in overall skin lesions. One year later, follow-up results indicated complete remission of R/R DLBCL (confirmed by PET-CT), with only minimal residual psoriatic skin lesions limited to the patient's neck. The results of using CAR-T-cell therapy to achieve an incidental cure for psoriasis highlight the potential for exploring cell-based therapies for complex autoinflammatory skin diseases.
Collapse
Affiliation(s)
- Song-yun Wang
- Department of Hematology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Wan-hua An
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Ze-song Wang
- Central Laboratory, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Wan-li Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Bin Zhang
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Kai-lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Shu-li Guo
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Ming Gao
- Department of Dermatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Bo Li
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Lei Huang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Huan-huan Tian
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Wen-yi Guo
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hui-rui Wang
- Department of Hematology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
50
|
Mougiakakos D. Allogeneic CAR T cells for autoimmune diseases: a glimpse into the future. Signal Transduct Target Ther 2024; 9:276. [PMID: 39379353 PMCID: PMC11461869 DOI: 10.1038/s41392-024-01998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|