1
|
Abasi M, Kianmehr A, Variji A, Sangali P, Mahrooz A. microRNAs as molecular tools for brain health: Neuroprotective potential in neurodegenerative disorders. Neuroscience 2025; 574:83-103. [PMID: 40210196 DOI: 10.1016/j.neuroscience.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/09/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
As research on microRNAs (miRNAs) advances, it is becoming increasingly clear that these small molecules play crucial roles in the central nervous system (CNS). They are involved in various essential neuronal functions, with specific miRNAs preferentially expressed in different cell types within the nervous system. Notably, certain miRNAs are found at higher levels in the brain and spinal cord compared to other tissues, suggesting they may have specialized functions in the CNS. miRNAs associated with long-term neurodegenerative changes could serve as valuable tools for early treatment decisions and disease monitoring. The significance of miRNAs such as miR-320, miR-146 and miR-29 in the early diagnosis of neurodegenerative disorders becomes evident, especially considering that many neurological and physical symptoms manifest only after substantial degeneration of specific neurons. Interestingly, serum miRNA levels such as miR-92 and miR-486 may correlate with various MRI parameters in multiple sclerosis. Targeting miRNAs using antisense strategies, such as antisense miR-146 and miR-485, may provide advantages over targeting mRNAs, as a single anti-miRNA can regulate multiple disease-related genes. In the future, anti-miRNA-based therapeutic approaches could be integrated into the clinical management of neurological diseases. Certain miRNAs, including miR-223, miR-106, miR-181, and miR-146, contribute to the pathogenesis of various neurodegenerative diseases and thus warrant greater attention. This knowledge could pave the way for the identification of new diagnostic, prognostic, and theranostic biomarkers, and potentially guiding the development of RNA-based therapeutic strategies. This review highlights recent research on the roles of miRNAs in the nervous system, particularly their protective functions in neurodegenerative disorders.
Collapse
Affiliation(s)
- Mozhgan Abasi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Athena Variji
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Suvarna V, Deshmukh K, Murahari M. miRNA and antisense oligonucleotide-based α-synuclein targeting as disease-modifying therapeutics in Parkinson's disease. Front Pharmacol 2022; 13:1034072. [PMID: 36506536 PMCID: PMC9728483 DOI: 10.3389/fphar.2022.1034072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is the synaptic protein majorly involved in neuronal dysfunction and death and it is well known for the last two decades as a hallmark of Parkinson's disease. Alpha-synuclein is involved in neurodegeneration mediated through various neurotoxic pathways, majorly including autophagy or lysosomal dysregulation, mitochondrial disruption, synaptic dysfunction, and oxidative stress. Moreover, the alpha-synuclein aggregation has been associated with the development of several neurodegenerative conditions such as various forms of Parkinson's disease. The recent discovery in oligonucleotide chemistry has developed potential alpha-synuclein targeting molecules for the treatment of neurodegenerative diseases. The present review article focuses on recent advances in the applications of oligonucleotides acting via alpha-synuclein targeting mechanisms and their implication in combating Parkinson's disease. Moreover, the article emphasizes the potential of miRNAs, and antisense oligonucleotides and the challenges associated with their use in the therapeutical management of Parkinson's disease.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kajal Deshmukh
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India,*Correspondence: Manikanta Murahari,
| |
Collapse
|
3
|
Magnetofection In Vivo by Nanomagnetic Carriers Systemically Administered into the Bloodstream. Pharmaceutics 2021; 13:pharmaceutics13111927. [PMID: 34834342 PMCID: PMC8619128 DOI: 10.3390/pharmaceutics13111927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Nanoparticle-based technologies are rapidly expanding into many areas of biomedicine and molecular science. The unique ability of magnetic nanoparticles to respond to the magnetic field makes them especially attractive for a number of in vivo applications including magnetofection. The magnetofection principle consists of the accumulation and retention of magnetic nanoparticles carrying nucleic acids in the area of magnetic field application. The method is highly promising as a clinically efficient tool for gene delivery in vivo. However, the data on in vivo magnetofection are often only descriptive or poorly studied, insufficiently systematized, and sometimes even contradictory. Therefore, the aim of the review was to systematize and analyze the data that influence the in vivo magnetofection processes after the systemic injection of magnetic nanostructures. The main emphasis is placed on the structure and coating of the nanomagnetic vectors. The present problems and future trends of the method development are also considered.
Collapse
|
4
|
Nikfar M, Razizadeh M, Paul R, Zhou Y, Liu Y. Numerical simulation of intracellular drug delivery via rapid squeezing. BIOMICROFLUIDICS 2021; 15:044102. [PMID: 34367404 PMCID: PMC8331209 DOI: 10.1063/5.0059165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Intracellular drug delivery by rapid squeezing is one of the most recent and simple cell membrane disruption-mediated drug encapsulation approaches. In this method, cell membranes are perforated in a microfluidic setup due to rapid cell deformation during squeezing through constricted channels. While squeezing-based drug loading has been successful in loading drug molecules into various cell types, such as immune cells, cancer cells, and other primary cells, there is so far no comprehensive understanding of the pore opening mechanism on the cell membrane and the systematic analysis on how different channel geometries and squeezing speed influence drug loading. This article aims to develop a three-dimensional computational model to study the intracellular delivery for compound cells squeezing through microfluidic channels. The Lattice Boltzmann method, as the flow solver, integrated with a spring-connected network via frictional coupling, is employed to capture compound capsule dynamics over fast squeezing. The pore size is proportional to the local areal strain of triangular patches on the compound cell through mathematical correlations derived from molecular dynamics and coarse-grained molecular dynamics simulations. We quantify the drug concentration inside the cell cytoplasm by introducing a new mathematical model for passive diffusion after squeezing. Compared to the existing models, the proposed model does not have any empirical parameters that depend on operating conditions and device geometry. Since the compound cell model is new, it is validated by simulating a nucleated cell under a simple shear flow at different capillary numbers and comparing the results with other numerical models reported in literature. The cell deformation during squeezing is also compared with the pattern found from our compound cell squeezing experiment. Afterward, compound cell squeezing is modeled for different cell squeezing velocities, constriction lengths, and constriction widths. We reported the instantaneous cell center velocity, variations of axial and vertical cell dimensions, cell porosity, and normalized drug concentration to shed light on the underlying physics in fast squeezing-based drug delivery. Consistent with experimental findings in the literature, the numerical results confirm that constriction width reduction, constriction length enlargement, and average cell velocity promote intracellular drug delivery. The results show that the existence of the nucleus increases cell porosity and loaded drug concentration after squeezing. Given geometrical parameters and cell average velocity, the maximum porosity is achieved at three different locations: constriction entrance, constriction middle part, and outside the constriction. Our numerical results provide reasonable justifications for experimental findings on the influences of constriction geometry and cell velocity on the performance of cell-squeezing delivery. We expect this model can help design and optimize squeezing-based cargo delivery.
Collapse
Affiliation(s)
- Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yaling Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
Sizikov AA, Kharlamova MV, Nikitin MP, Nikitin PI, Kolychev EL. Nonviral Locally Injected Magnetic Vectors for In Vivo Gene Delivery: A Review of Studies on Magnetofection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1078. [PMID: 33922066 PMCID: PMC8143545 DOI: 10.3390/nano11051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Magnetic nanoparticles have been widely used in nanobiomedicine for diagnostics and the treatment of diseases, and as carriers for various drugs. The unique magnetic properties of "magnetic" drugs allow their delivery in a targeted tumor or tissue upon application of a magnetic field. The approach of combining magnetic drug targeting and gene delivery is called magnetofection, and it is very promising. This method is simple and efficient for the delivery of genetic material to cells using magnetic nanoparticles controlled by an external magnetic field. However, magnetofection in vivo has been studied insufficiently both for local and systemic routes of magnetic vector injection, and the relevant data available in the literature are often merely descriptive and contradictory. In this review, we collected and systematized the data on the efficiency of the local injections of magnetic nanoparticles that carry genetic information upon application of external magnetic fields. We also investigated the efficiency of magnetofection in vivo, depending on the structure and coverage of magnetic vectors. The perspectives of the development of the method were also considered.
Collapse
Affiliation(s)
- Artem A. Sizikov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Marianna V. Kharlamova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 117942 Moscow, Russia
| | - Eugene L. Kolychev
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| |
Collapse
|
6
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Sen M, Bassetto M, Poulhes F, Zelphati O, Ueffing M, Arango-Gonzalez B. Efficient Ocular Delivery of VCP siRNA via Reverse Magnetofection in RHO P23H Rodent Retina Explants. Pharmaceutics 2021; 13:pharmaceutics13020225. [PMID: 33562020 PMCID: PMC7914601 DOI: 10.3390/pharmaceutics13020225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The use of synthetic RNA for research purposes as well as RNA-based therapy and vaccination has gained increasing importance. Given the anatomical seclusion of the eye, small interfering RNA (siRNA)-induced gene silencing bears great potential for targeted reduction of pathological gene expression that may allow rational treatment of chronic eye diseases in the future. However, there is yet an unmet need for techniques providing safe and efficient siRNA delivery to the retina. We used magnetic nanoparticles (MNPs) and magnetic force (Reverse Magnetofection) to deliver siRNA/MNP complexes into retinal explant tissue, targeting valosin-containing protein (VCP) previously established as a potential therapeutic target for autosomal dominant retinitis pigmentosa (adRP). Safe and efficient delivery of VCP siRNA was achieved into all retinal cell layers of retinal explants from the RHO P23H rat, a rodent model for adRP. No toxicity or microglial activation was observed. VCP silencing led to a significant decrease of retinal degeneration. Reverse Magnetofection thus offers an effective method to deliver siRNA into retinal tissue. Used in combination with retinal organotypic explants, it can provide an efficient and reliable preclinical test platform of RNA-based therapy approaches for ocular diseases.
Collapse
Affiliation(s)
- Merve Sen
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany;
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Marco Bassetto
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (O.Z.)
| | - Florent Poulhes
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (O.Z.)
| | - Olivier Zelphati
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (O.Z.)
| | - Marius Ueffing
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany;
- Correspondence: (M.U.); (B.A.-G.)
| | - Blanca Arango-Gonzalez
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany;
- Correspondence: (M.U.); (B.A.-G.)
| |
Collapse
|
8
|
Singh S, Chawla H, Chandra A, Garg S. Magnetic hybrid nanoparticles for drug delivery. MAGNETIC NANOPARTICLE-BASED HYBRID MATERIALS 2021:319-342. [DOI: 10.1016/b978-0-12-823688-8.00034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, Fehse B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020; 258:120282. [PMID: 32798742 DOI: 10.1016/j.biomaterials.2020.120282] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
10
|
Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 2020; 156:188-213. [PMID: 32610061 PMCID: PMC8559718 DOI: 10.1016/j.addr.2020.06.020] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023]
Abstract
Inorganic nanoparticles provide multipurpose platforms for a broad range of delivery applications. Intrinsic nanoscopic properties provide access to unique magnetic and optical properties. Equally importantly, the structural and functional diversity of gold, silica, iron oxide, and lanthanide-based nanocarriers provide unrivalled control of nanostructural properties for effective transport of therapeutic cargos, overcoming biobarriers on the cellular and organismal level. Taken together, inorganic nanoparticles provide a key addition to the arsenal of delivery vectors for fighting disease and improving human health.
Collapse
Affiliation(s)
- David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
11
|
Titze-de-Almeida SS, Soto-Sánchez C, Fernandez E, Koprich JB, Brotchie JM, Titze-de-Almeida R. The Promise and Challenges of Developing miRNA-Based Therapeutics for Parkinson's Disease. Cells 2020; 9:cells9040841. [PMID: 32244357 PMCID: PMC7226753 DOI: 10.3390/cells9040841] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small double-stranded RNAs that exert a fine-tuning sequence-specific regulation of cell transcriptome. While one unique miRNA regulates hundreds of mRNAs, each mRNA molecule is commonly regulated by various miRNAs that bind to complementary sequences at 3’-untranslated regions for triggering the mechanism of RNA interference. Unfortunately, dysregulated miRNAs play critical roles in many disorders, including Parkinson’s disease (PD), the second most prevalent neurodegenerative disease in the world. Treatment of this slowly, progressive, and yet incurable pathology challenges neurologists. In addition to L-DOPA that restores dopaminergic transmission and ameliorate motor signs (i.e., bradykinesia, rigidity, tremors), patients commonly receive medication for mood disorders and autonomic dysfunctions. However, the effectiveness of L-DOPA declines over time, and the L-DOPA-induced dyskinesias commonly appear and become highly disabling. The discovery of more effective therapies capable of slowing disease progression –a neuroprotective agent–remains a critical need in PD. The present review focus on miRNAs as promising drug targets for PD, examining their role in underlying mechanisms of the disease, the strategies for controlling aberrant expressions, and, finally, the current technologies for translating these small molecules from bench to clinics.
Collapse
Affiliation(s)
- Simoneide S. Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, FAV, University of Brasilia, Brasília 70910-900, Brazil;
| | - Cristina Soto-Sánchez
- Neuroprosthetics and Visual Rehabilitation Research Unit, Bioengineering Institute, Miguel Hernández University, 03202 Alicante, Spain; (C.S.-S.); (E.F.)
| | - Eduardo Fernandez
- Neuroprosthetics and Visual Rehabilitation Research Unit, Bioengineering Institute, Miguel Hernández University, 03202 Alicante, Spain; (C.S.-S.); (E.F.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine—CIBER-BBN, 28029 Madrid, Spain
| | - James B. Koprich
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada; (J.B.K.); (J.M.B.)
| | - Jonathan M. Brotchie
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada; (J.B.K.); (J.M.B.)
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, FAV, University of Brasilia, Brasília 70910-900, Brazil;
- Correspondence: ; Tel.: +55-61-3107-7222
| |
Collapse
|
12
|
Leng Q, Chen L, Lv Y. RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA. Am J Cancer Res 2020; 10:3190-3205. [PMID: 32194862 PMCID: PMC7053199 DOI: 10.7150/thno.42640] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Globally, more than 1.5 million patients undergo bone graft surgeries annually, and the development of biomaterial scaffolds that mimic natural bone for bone grafting remains a tremendous challenge. In recent decades, due to the improved understanding of the mechanisms of bone remodeling and the rapid development of gene therapy, RNA (including messenger RNA (mRNA), microRNA (miRNA), and short interfering RNA (siRNA)) has attracted increased attention as a new tool for bone tissue engineering due to its unique nature and great potential to cure bone defects. Different types of RNA play roles via a variety of mechanisms in bone-related cells in vivo as well as after synthesis in vitro. In addition, RNAs are delivered to injured sites by loading into scaffolds or systemic administration after combination with vectors for bone tissue engineering. However, the challenge of effectively and stably delivering RNA into local tissue remains to be solved. This review describes the mechanisms of the three types of RNAs and the application of the relevant types of RNA delivery vectors and scaffolds in bone regeneration. The improvements in their development are also discussed.
Collapse
|
13
|
Magnetic nanocarriers: Emerging tool for the effective targeted treatment of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Gao J, Xia B, Li S, Huang L, Ma T, Shi X, Luo K, Yang Y, Zhao L, Zhang H, Luo B, Huang J. Magnetic Field Promotes Migration of Schwann Cells with Chondroitinase ABC (ChABC)-Loaded Superparamagnetic Nanoparticles Across Astrocyte Boundary in vitro. Int J Nanomedicine 2020; 15:315-332. [PMID: 32021182 PMCID: PMC6980842 DOI: 10.2147/ijn.s227328] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The clinical outcome of spinal cord injury is usually poor due to the lack of axonal regeneration and glia scar formation. As one of the most classical supporting cells in neural regeneration, Schwann cells (SCs) provide bioactive substrates for axonal migration and release molecules that regulate axonal growth. However, the effect of SC transplantation is limited by their poor migration capacity in the astrocyte-rich central nervous system. METHODS In this study, we first magnetofected SCs with chondroitinase ABC-polyethylenimine functionalized superparamagnetic iron oxide nanoparticles (ChABC/PEI-SPIONs) to induce overexpression of ChABC for the removal of chondroitin sulfate proteoglycans. These are inhibitory factors and forming a dense scar that acts as a barrier to the regenerating axons. In vitro, we observed the migration of SCs in the region of astrocytes after the application of a stable external magnetic field. RESULTS We found that magnetofection with ChABC/PEI-SPIONs significantly up-regulated the expression of ChABC in SCs. Under the driven effect of the directional magnetic field (MF), the migration of magnetofected SCs was enhanced in the direction of the magnetic force. The number of SCs with ChABC/PEI-SPIONs migrated and the distance of migration into the astrocyte region was significantly increased. The number of SCs with ChABC/PEI-SPIONs that migrated into the astrocyte region was 11.6- and 4.6-fold higher than those observed for the intact control and non-MF groups, respectively. Furthermore, it was found that SCs with ChABC/PEI-SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. CONCLUSION The mobility of the SCs with ChABC/PEI-SPIONs was enhanced along the axis of MF, holding the potential to promote nerve regeneration by providing a bioactive microenvironment and relieving glial obstruction to axonal regeneration in the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Liangliang Huang
- Department of Orthopaedics, The General Hospital of Central Theater Command of People’s Liberation Army, Wuhan, People’s Republic of China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xiaowei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Kai Luo
- Department of Orthopaedics, The 985th Hospital of the PLA Joint Logistics Support Force, Taiyuan, People’s Republic of China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Laihe Zhao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hao Zhang
- Department of Spinal Surgery, People’s Hospital of Longhua District, Shenzhen, People’s Republic of China
| | - Beier Luo
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
15
|
Nuzhina JV, Shtil AA, Prilepskii AY, Vinogradov VV. Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
17
|
Song W, Gregory DA, Al-Janabi H, Muthana M, Cai Z, Zhao X. Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells. Int J Pharm 2019; 555:322-336. [PMID: 30448314 DOI: 10.1016/j.ijpharm.2018.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
The lack of efficient and cost-effective methods for gene delivery has significantly hindered the applications of gene therapy. In this paper, a simple one step and cost effective salting-out method has been explored to fabricate silk-PEI nanoparticles (SPPs) and magnetic-silk/PEI core-shell nanoparticles (MSPPs) for targeted delivery of c-myc antisense oligodeoxynucleotides (ODNs) into MDA-MB-231 breast cancer cells. The size and zeta potential of the particles were controlled by adjusting the amount of silk fibroin in particle synthesis. Lower surface charges and reduced cytotoxicity were achieved for MSPPs compared with PEI coated magnetic nanoparticles (MPPs). Both SPPs and MSPPs were capable of delivering the ODNs into MDA-MB-231 cells and significantly inhibited the cell growth. Through magnetofection, high ODN uptake efficiencies (over 70%) were achieved within 20 min using MSPPs as carriers, exhibiting a significantly enhanced uptake effect compared to the same carriers via non-magnetofection. Both SPPs and MSPPs exhibited a significantly higher inhibition effect against MDA-MB-231 breast cancer cells compared to human dermal fibroblast (HDF) cells. Targeted ODN delivery was achieved using MSPPs with the help of a magnet, making them promising candidates for targeted gene therapy applications.
Collapse
Affiliation(s)
- Wenxing Song
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - David A Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Haider Al-Janabi
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK
| | - Zhiqiang Cai
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
18
|
Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 2019; 138:302-325. [PMID: 30639256 PMCID: PMC7115878 DOI: 10.1016/j.addr.2019.01.005] [Citation(s) in RCA: 636] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
Many different iron oxide nanoparticles have been evaluated over the years, for a wide variety of biomedical applications. We here summarize the synthesis, surface functionalization and characterization of iron oxide nanoparticles, as well as their (pre-) clinical use in diagnostic, therapeutic and theranostic settings. Diagnostic applications include liver, lymph node, inflammation and vascular imaging, employing mostly magnetic resonance imaging but recently also magnetic particle imaging. Therapeutic applications encompass iron supplementation in anemia and advanced cancer treatments, such as modulation of macrophage polarization, magnetic fluid hyperthermia and magnetic drug targeting. Because of their properties, iron oxide nanoparticles are particularly useful for theranostic purposes. Examples of such setups, in which diagnosis and therapy are intimately combined and in which iron oxide nanoparticles are used, are image-guided drug delivery, image-guided and microbubble-mediated opening of the blood-brain barrier, and theranostic tissue engineering. Together, these directions highlight the versatility and the broad applicability of iron oxide nanoparticles, and indicate the integration in future medical practice of multiple iron oxide nanoparticle-based materials.
Collapse
Affiliation(s)
- Seyed Mohammadali Dadfar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Karolin Roemhild
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Natascha I Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany; Leibniz Institute for Interactive Materials - DWI, RWTH Aachen University, Aachen, Germany
| | - Saskia von Stillfried
- Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
19
|
Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HES. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine 2018; 13:5637-5655. [PMID: 30288038 PMCID: PMC6161712 DOI: 10.2147/ijn.s153758] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering (TE) is an interdisciplinary field integrating engineering, material science and medical biology that aims to develop biological substitutes to repair, replace, retain, or enhance tissue and organ-level functions. Current TE methods face obstacles including a lack of appropriate biomaterials, ineffective cell growth and a lack of techniques for capturing appropriate physiological architectures as well as unstable and insufficient production of growth factors to stimulate cell communication and proper response. In addition, the inability to control cellular functions and their various properties (biological, mechanical, electrochemical and others) and issues of biomolecular detection and biosensors, all add to the current limitations in this field. Nanoparticles are at the forefront of nanotechnology and their distinctive size-dependent properties have shown promise in overcoming many of the obstacles faced by TE today. Despite tremendous progress in the use of nanoparticles over the last 2 decades, the full potential of the applications of nanoparticles in solving TE problems has yet to be realized. This review presents an overview of the diverse applications of various types of nanoparticles in TE applications and challenges that need to be overcome for nanotechnology to reach its full potential.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar,
| | - Mahboob Morshed
- School of Life Sciences, Independent University, Bangladesh (IUB), Dhaka, Bangladesh
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
20
|
Keller AA, Scheiding B, Breitling R, Licht A, Hemmerich P, Lorkowski S, Reissmann S. Transduction and transfection of difficult-to-transfect cells: Systematic attempts for the transfection of protozoa Leishmania. J Cell Biochem 2018; 120:14-27. [PMID: 30216507 DOI: 10.1002/jcb.27463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
Cell-penetrating peptides (CPPs) are used to internalize different cargoes, including DNA, into live mammalian and plant cells. Despite many cells being easily transfected with this approach, other cells are rather "difficult" or "hard to transfect," including protist cells of the genus Leishmania. Based on our previous results in successfully internalizing proteins into Leishmania tarentolae cells, we used single CPPs and three different DNA-binding proteins to form protein-like complexes with plasmids covered with CPPs. We attempted magnetofection, electroporation, and transfection using a number of commercially available detergents. While complex formation with negatively charged DNA required substantially higher amounts of CPPs than those necessary for mostly neutral proteins, the cytotoxicity of the required amounts of CPPs and auxiliaries was thoroughly studied. We found that Leishmania cells were indeed susceptible to high concentrations of some CPPs and auxiliaries, although in a different manner compared with that for mammalian cells. The lack of successful transfections implies the necessity to accept certain general limitations regarding DNA internalization into difficult-to-transfect cells. Only electroporation allowed reproducible internalization of large and rigid plasmid DNA molecules through electrically disturbed extended membrane areas, known as permeable membrane macrodomains.
Collapse
Affiliation(s)
- Andrea-Anneliese Keller
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Nutritional Sciences and Abbe Centre of Photonics, Jena, Germany
| | - Berith Scheiding
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Nutritional Sciences and Abbe Centre of Photonics, Jena, Germany
| | | | | | - Peter Hemmerich
- Leibniz Institute for Aging Research, Fritz Lipmann Institute, Jena, Germany
| | - Stefan Lorkowski
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Nutritional Sciences and Abbe Centre of Photonics, Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Leipzig, Germany
| | - Siegmund Reissmann
- Friedrich Schiller University, Faculty of Biological Sciences, Institute of Biochemistry and Biophysics, Jena, Germany
| |
Collapse
|
21
|
Delivery of miRNA-Targeted Oligonucleotides in the Rat Striatum by Magnetofection with Neuromag ®. Molecules 2018; 23:molecules23071825. [PMID: 30041414 PMCID: PMC6099620 DOI: 10.3390/molecules23071825] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression at posttranscriptional level by triggering RNA interference. In such a sense, aberrant expressions of miRNAs play critical roles in the pathogenesis of many disorders, including Parkinson’s disease (PD). Controlling the level of specific miRNAs in the brain is thus a promising therapeutic strategy for neuroprotection. A fundamental need for miRNA regulation (either replacing or inhibition) is a carrier capable of delivering oligonucleotides into brain cells. This study aimed to examine a polymeric magnetic particle, Neuromag®, for delivery of synthetic miRNA inhibitors in the rat central nervous system. We injected the miRNA inhibitor complexed with Neuromag® into the lateral ventricles next to the striatum, by stereotaxic surgery. Neuromag efficiently delivered oligonucleotides in the striatum and septum areas, as shown by microscopy imaging of fluorescein isothiocyanate (FITC)-labeled oligos in astrocytes and neurons. Transfected oligos showed efficacy concerning miRNA inhibition. Neuromag®-structured miR-134 antimiR (0.36 nmol) caused a significant 0.35 fold decrease of striatal miR-134, as revealed by real-time quantitative polymerase chain reaction (RT-qPCR). In conclusion, the polymeric magnetic particle Neuromag® efficiently delivered functional miRNA inhibitors in brain regions surrounding lateral ventricles, particularly the striatum. This delivery system holds potential as a promising miRNA-based disease-modifying drug and merits further pre-clinical studies using animal models of PD.
Collapse
|
22
|
Li Y, Ye D, Li M, Ma M, Gu N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. Chemphyschem 2018. [DOI: 10.1002/cphc.201701294] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Dewen Ye
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Mingxi Li
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ming Ma
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| | - Ning Gu
- Southeast University; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Sipailou 2; 210096 Nanjing China
| |
Collapse
|
23
|
Cellular and Molecular Toxicity of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:199-213. [DOI: 10.1007/978-3-319-72041-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
|
25
|
Singh J, Mohanty I, Rattan S. In vivo magnetofection: a novel approach for targeted topical delivery of nucleic acids for rectoanal motility disorders. Am J Physiol Gastrointest Liver Physiol 2018; 314:G109-G118. [PMID: 29051187 PMCID: PMC5866375 DOI: 10.1152/ajpgi.00233.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In these studies, we developed a novel approach of in vivo magnetofection for localized delivery of nucleic acids such as micro-RNA-139-5p (miR-139-5p; which is known to target Rho kinase2) to the circular smooth muscle layer of the internal anal sphincter (IAS). The IAS tone is known to play a major role in the rectoanal continence via activation of RhoA-associated kinase (RhoA/ROCK2). These studies established an optimized protocol for efficient gene delivery using an assembly of equal volumes of in vivo PolyMag and miR139-5p or anti-miR-139-5p (100 nM each) injected in the circular smooth muscle layer in the pinpointed areas of the rat perianal region and then incubated for 20 min under magnetic field. Magnetofection efficiency was confirmed and analyzed by confocal microscopy of FITC-tagged siRNA. Using physiological and biochemical approaches, we investigated the effects of miR-139-5p and anti-miR-139-5p on basal intraluminal IAS pressure (IASP), fecal pellet count, IAS tone, agonist-induced contraction, contraction-relaxation kinetics, and RhoA/ROCK2 signaling. Present studies demonstrate that magnetofection-mediated miR-139-5p delivery significantly decreased RhoA/ROCK2, p-MYPT1, and p-MLC20 signaling, leading to decreases in the basal IASP and IAS tone and in rates of contraction and relaxation associated with increase in fecal pellet output. Interestingly, anti-miR-139-5p transfection had opposite effects on these parameters. Collectively, these data demonstrate that magnetofection is a promising novel method of in vivo gene delivery and of nucleotides to the internal anal sphincter for the site-directed and targeted therapy for rectoanal motility disorders. NEW & NOTEWORTHY These studies for the first time demonstrate the success of topical in vivo magnetofection (MF) of nucleic acids using perianal injections. To demonstrate its effectiveness, we used FITC-tagged siRNA via immunofluorescence microcopy and functional and biochemical evidence using miR-139-5p (which is known to target ROCK2). In conclusion, MF allows safe, convenient, efficient, and targeted delivery of oligonucleotides such as siRNAs and microRNAs. These studies have direct therapeutic implications in rectoanal motility disorders especially associated with IAS.
Collapse
Affiliation(s)
- Jagmohan Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ipsita Mohanty
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Synthesis, Characterization and Applications of Magnetic Iron Oxide Nanostructures. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2835-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Kono Y, Jinzai H, Kotera Y, Fujita T. Influence of Physicochemical Properties and PEG Modification of Magnetic Liposomes on Their Interaction with Intestinal Epithelial Caco-2 Cells. Biol Pharm Bull 2017; 40:2166-2174. [PMID: 28966298 DOI: 10.1248/bpb.b17-00563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study aimed to investigate the effect of particle size (100, 500 nm), surface charge (cationic, neutral and anionic) and polyethylene glycol (PEG) modification of magnetic liposomes on their interaction with the human intestinal epithelial cell line, Caco-2. The cellular associated amount of all the magnetic liposomes was significantly increased by the presence of a magnetic field. The highest association and internalization into Caco-2 cells was observed with magnetic cationic liposomes. Moreover, small magnetic liposomes were more efficiently associated and taken up into the cells, than large ones. In contrast, PEG modification significantly attenuated the enhancing effect of the magnetic field on the cellular association of magnetic liposomes. We also found that magnetic cationic liposomes had the highest retention properties to Caco-2 cells. Moreover, the retention of large magnetic liposomes to the cells was much longer than that of small ones. In addition, magnetic cationic and neutral liposomes had relatively high stability in Caco-2 cells, whereas magnetic anionic liposomes rapidly degraded. These results indicate that the physicochemical properties and PEG modification of magnetic liposomes greatly influences their intestinal epithelial transport.
Collapse
Affiliation(s)
- Yusuke Kono
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University.,Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University
| | - Hitomi Jinzai
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Yota Kotera
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University.,Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University.,Research Center for Drug Discovery and Development, Ritsumeikan University
| |
Collapse
|
28
|
Heun Y, Hildebrand S, Heidsieck A, Gleich B, Anton M, Pircher J, Ribeiro A, Mykhaylyk O, Eberbeck D, Wenzel D, Pfeifer A, Woernle M, Krötz F, Pohl U, Mannell H. Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo. Theranostics 2017; 7:295-307. [PMID: 28042335 PMCID: PMC5197065 DOI: 10.7150/thno.16192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro. Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo, we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy.
Collapse
|
29
|
Xia B, Huang L, Zhu L, Liu Z, Ma T, Zhu S, Huang J, Luo Z. Manipulation of Schwann cell migration across the astrocyte boundary by polysialyltransferase-loaded superparamagnetic nanoparticles under magnetic field. Int J Nanomedicine 2016; 11:6727-6741. [PMID: 28003748 PMCID: PMC5161335 DOI: 10.2147/ijn.s122358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Schwann cell (SC) transplantation is an attractive strategy for spinal cord injury (SCI). However, the efficacy of SC transplantation has been limited by the poor migratory ability of SCs in the astrocyte-rich central nervous system (CNS) environment and the inability to intermingle with the host astrocyte. In this study, we first magnetofected SCs by polysialyltransferase-functionalized superparamagnetic iron oxide nanoparticles (PST/SPIONs) to induce overexpression of polysialylation of neural cell adhesion molecule (PSA-NCAM) to enhance SC migration ability, before manipulating the direction of SC migration with the assistance of an applied magnetic field (MF). It was found that magnetofection with PST/SPIONs significantly upregulated the expression of PSA-NCAM in SCs, which significantly enhanced the migration ability of SCs, but without preferential direction in the absence of MF. The number and averaged maximum distance of SCs with PST/SPIONs migrating into the astrocyte domain were significantly enhanced by an applied MF. In a 300 μm row along the astrocyte boundary, the number of SCs with PST/SPIONs migrating into the astrocyte domain under an MF was 2.95 and 6.71 times higher than that in the absence of MF and the intact control SCs, respectively. More interestingly, a confrontation assay demonstrated that SCs with PST/SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. In conclusion, SCs with PST/SPIONs showed enhanced preferential migration along the axis of a magnetic force, which might be beneficial for the formation of Büngner bands in the CNS. These findings raise the possibilities of enhancing the migration of transplanted SCs in astrocyte-rich CNS regions in a specific direction and creating an SC bridge in the CNS environment to guide regenerated axons to their distal destination in the treatment of SCI.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Liangliang Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Lei Zhu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhongyang Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shu Zhu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
30
|
Badieyan ZS, Pasewald T, Mykhaylyk O, Rudolph C, Plank C. Efficient ex vivo delivery of chemically modified messenger RNA using lipofection and magnetofection. Biochem Biophys Res Commun 2016; 482:796-801. [PMID: 27888105 DOI: 10.1016/j.bbrc.2016.11.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
Abstract
Recently, chemically modified mRNA (cmRNA) therapeutics have been the subject of extensive application-oriented research in both academia and industry as a safer alternative for gene and recombinant protein therapies. However, the lack of an efficient delivery system hinders widespread application. Here we used ∼100-nm lipoplexes and magnetic lipoplexes that can protect cmRNA from RNases and efficiently deliver it into muscle and fat tissues as well as to the endothelium of the carotid artery. Establishing magnetofection for ex vivo cmRNA delivery for the first time, we suggest this method for potential enhanced and targeted delivery of cmRNA. This study introduces optimal cmRNA complexes with high ex vivo efficiency as good candidates for further in vivo cmRNA delivery.
Collapse
Affiliation(s)
- Zohreh Sadat Badieyan
- Institute of Molecular Immunology-Experimental Oncology, Technische Universität München, Munich, Germany.
| | | | | | | | - Christian Plank
- Institute of Molecular Immunology-Experimental Oncology, Technische Universität München, Munich, Germany; Ethris GmbH, Planegg, Germany
| |
Collapse
|
31
|
Kim KW, Kim HR, Kim BM, Cho ML, Lee SH. Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3011-24. [PMID: 26362732 DOI: 10.1016/j.ajpath.2015.07.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023]
Abstract
This study determined the effect of type 17 helper T-cell (Th17) cytokines on osteoclastogenesis in rheumatoid arthritis (RA). The expression of IL-17 and receptor activator of NF-κB ligand (RANKL) was determined in synovial tissue, fibroblast-like synoviocytes (FLSs), and synovial fluids of RA patients using immunostaining and enzyme-linked immunosorbent assay. Th17 cytokine-induced RANKL expression was studied in RA FLS by using real-time PCR, luciferase activity assays, and Western blot analysis. Human peripheral blood monocytes were cultured with macrophage colony-stimulating factor and Th17 cytokines, after which osteoclastogenesis was evaluated by counting the number of tartrate-resistant acid phosphatase-positive multinucleated cells. Osteoclastogenesis was also evaluated after monocytes were co-cultured with IL-17-prestimulated FLS. There was significant correlation between RANKL and IL-17 levels in RA synovial fluid. IL-17, IL-21, and IL-22 increased the expression of Rankl mRNA in RA FLS, and the IL-17-induced RANKL expression decreased by the inhibition of Act1, tumor necrosis factor receptor-associated factor 6, NF-κB, and activator protein-1. Th17 cytokines and IL-17-prestimulated FLS induced osteoclastogenesis from monocytes in the absence of exogenous RANKL. The osteoclastic effect was reduced by inhibition of tumor necrosis factor-α. Th17 cytokines have a dual effect on osteoclastogenesis in RA: direct induction of osteoclastogenesis from monocytes and up-regulation of RANKL production in RA FLS. This Th17 cytokine/RANKL axis could be a potential therapeutic target for bone destruction in RA.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Conversant Research Consorcium in Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Bo-Mi Kim
- Conversant Research Consorcium in Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- Conversant Research Consorcium in Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Rheumatism Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Kim SY, Mammen A, Yoo SJ, Cho B, Kim EK, Park JI, Moon C, Ronnett GV. Phosphoinositide and Erk signaling pathways mediate activity-driven rodent olfactory sensory neuronal survival and stress mitigation. J Neurochem 2015; 134:486-98. [PMID: 25903517 DOI: 10.1111/jnc.13131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/31/2015] [Accepted: 04/19/2015] [Indexed: 01/31/2023]
Abstract
Olfactory sensory neurons (OSNs) are the initial site for olfactory signal transduction. Therefore, their survival is essential to olfactory function. In the current study, we demonstrated that while odorant stimulation promoted rodent OSN survival, it induced generation of reactive oxygen species in a dose- and time-dependent manner as well as loss of membrane potential and fragmentation of mitochondria. The MEK-Erk pathway played a critical role in mediating these events, as its inhibition decreased odorant stimulation-dependent OSN survival and exacerbated intracellular stress measured by reactive oxygen species generation and heat-shock protein 70 expression. The phosphoinositide pathway, rather than the cyclic AMP pathway, mediated the odorant-induced activation of the MEK-Erk pathway. These findings provide important insights into the mechanisms of activity-driven OSN survival, the role of the phosphoinositide pathway in odorant signaling, and demonstrate that odorant detection and odorant stimulation-mediated survival proceed via independent signaling pathways. This mechanism, which permits independent regulation of odorant detection from survival signaling, may be advantageous if not diminished by repeated or prolonged odor exposure. We investigated the role of odorant stimulation in generating cellular stress and the molecular mechanisms mitigating such stress and promoting neuronal survival. Odorant stimulation promoted olfactory sensory neuron (OSN) survival and also induced intracellular oxidative stress, which was exacerbated when MEK/Erks pathway was inhibited. Sensory stimulation simultaneously activated at least two parallel pathways, the AC/cAMP cascade responsible for odorant detection, and phosphoinositide hydrolysis to promote odorant stimulation-dependent neuronal survival odorants may activate parallel signaling cascades to mediate sensory detection and sensory stimulation-dependent survival. AC, adenylyl cyclase; cAMP, cyclic adenosine monophosphate; Erk, extracellular signal-regulated kinase; MEK, MAPK/ERK kinase.
Collapse
Affiliation(s)
- So Yeun Kim
- Department of Brain & Cognitive Sciences, Graduate School, DaeguGyeungbuk Institute of Science and Technology, Daegu, Korea
| | - Alex Mammen
- Departments of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seung-Jun Yoo
- Department of Brain & Cognitive Sciences, Graduate School, DaeguGyeungbuk Institute of Science and Technology, Daegu, Korea
| | - Bongki Cho
- Department of Brain & Cognitive Sciences, Graduate School, DaeguGyeungbuk Institute of Science and Technology, Daegu, Korea
| | - Eun-Kyoung Kim
- Department of Brain & Cognitive Sciences, Graduate School, DaeguGyeungbuk Institute of Science and Technology, Daegu, Korea
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, DaeguGyeungbuk Institute of Science and Technology, Daegu, Korea
| | - Gabriele V Ronnett
- Department of Brain & Cognitive Sciences, Graduate School, DaeguGyeungbuk Institute of Science and Technology, Daegu, Korea.,Departments of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Oral O, Cıkım T, Zuvin M, Unal O, Yagci-Acar H, Gozuacik D, Koşar A. Effect of Varying Magnetic Fields on Targeted Gene Delivery of Nucleic Acid-Based Molecules. Ann Biomed Eng 2015; 43:2816-26. [DOI: 10.1007/s10439-015-1331-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 05/02/2015] [Indexed: 12/14/2022]
|
34
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
35
|
Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 2015; 16:8070-101. [PMID: 25867479 PMCID: PMC4425068 DOI: 10.3390/ijms16048070] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/27/2015] [Accepted: 04/03/2015] [Indexed: 01/19/2023] Open
Abstract
In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release.
Collapse
|
36
|
Jiang D, Zhu P, Jiang H, Ji J, Sun X, Gu W, Zhang G. Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosens Bioelectron 2015; 70:482-90. [PMID: 25889258 DOI: 10.1016/j.bios.2015.03.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
In this study, a novel electrochemical rat basophilic leukemia cell (RBL-2H3) cell sensor, based on fluorescent magnetic beads, has been developed for the detection and evaluation of different allergens in foodstuffs. Fluorescein isothiocyanate (FITC) was successfully fused inside the SiO2 layer of SiO2 shell-coated Fe3O4 nanoparticles, which was superior to the traditional Fe3O4@SiO2@FITC modification process. The as-synthesized fluorescent magnetic beads were then encapsulated with lipidosome to form cationic magnetic fluorescent nanoparticles (CMFNPs) for mast cell magnetofection. The CMFNPs were then characterized by SEM, TEM, VSM, FTIR, and XRD analyses, and transfected into RBL-2H3 cells through a highly efficient, lipid-mediated magnetofection procedure. Magnetic glassy carbon electrode (MGCE), which possesses excellent reproducibility and regeneration qualities, was then employed to adsorb the CMFNP-transfected RBL-2H3 cells activated by an allergen antigen for electrochemical assay. Results show that the exposure of model antigen-dinitrophenol-bovine serum albumin (DNP-BSA) to anti-DNP IgE-sensitized mast cells induced a robust and long-lasting electrochemical impedance signal in a dose-dependent manner. The detection limit was identified at 3.3×10(-4) ng/mL. To demonstrate the utility of this mast cell-based biosensor for detection of real allergens in foodstuffs, Anti-Pen a1 IgE and Anti-PV IgE-activated cells were employed to quantify both shrimp allergen tropomyosin (Pen a 1) and fish allergen parvalbumin (PV). Results show high detection accuracy for these targets, with a limit of 0.03 μg/mL (shrimp Pen a 1) and 0.16 ng/mL (fish PV), respectively. To this effect, we conclude the proposed method is a facile, highly sensitive, innovative electrochemical method for the evaluation of food allergens.
Collapse
Affiliation(s)
- Donglei Jiang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pei Zhu
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Hui Jiang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenshu Gu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Genyi Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
37
|
Alig SK, Stampnik Y, Pircher J, Rotter R, Gaitzsch E, Ribeiro A, Wörnle M, Krötz F, Mannell H. The tyrosine phosphatase SHP-1 regulates hypoxia inducible factor-1α (HIF-1α) protein levels in endothelial cells under hypoxia. PLoS One 2015; 10:e0121113. [PMID: 25799543 PMCID: PMC4370726 DOI: 10.1371/journal.pone.0121113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS) formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia. Results SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn) increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin). SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS) further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A) resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132) returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS) formation, as measured by oxidation of H2-DCF and DHE fluorescence. Conclusions SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.
Collapse
Affiliation(s)
- Stefan K. Alig
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
- Department of Internal Medicine III, University of Munich, Munich, Germany
| | - Yvonn Stampnik
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
| | - Joachim Pircher
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
- Department of Internal Medicine I, University of Munich, Munich, Germany
| | - Raffaela Rotter
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
| | - Erik Gaitzsch
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
| | - Andrea Ribeiro
- Department of Internal Medicine IV, University of Munich, Munich, Germany
| | - Markus Wörnle
- Department of Internal Medicine IV, University of Munich, Munich, Germany
| | - Florian Krötz
- Interventional Cardiology, Starnberg Community Hospital, Starnberg, Germany
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
38
|
Son S, Liang MS, Lei P, Xue X, Furlani EP, Andreadis ST. Magnetofection Mediated Transient NANOG Overexpression Enhances Proliferation and Myogenic Differentiation of Human Hair Follicle Derived Mesenchymal Stem Cells. Bioconjug Chem 2015; 26:1314-27. [PMID: 25685943 DOI: 10.1021/bc5005203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We used magnetofection (MF) to achieve high transfection efficiency into human mesenchymal stem cells (MSCs). A custom-made magnet array, matching well-to-well to a 24-well plate, was generated and characterized. Theoretical predictions of magnetic force distribution within each well demonstrated that there was no magnetic field interference among magnets in adjacent wells. An optimized protocol for efficient gene delivery to human hair follicle derived MSCs (hHF-MSCs) was established using an egfp-encoding plasmid, reaching approximately ∼50% transfection efficiency without significant cytotoxicity. Then we applied the optimized MF protocol to express the pluripotency-associated transcription factor NANOG, which was previously shown to reverse the effects of organismal aging on MSC proliferation and myogenic differentiation capacity. Indeed, MF-mediated NANOG delivery increased proliferation and enhanced the differentiation of hHF-MSCs into smooth muscle cells (SMCs). Collectively, our results show that MF can achieve high levels of gene delivery to MSCs and, therefore, may be employed to moderate or reverse the effects of cellular senescence or reprogram cells to the pluripotent state without permanent genetic modification.
Collapse
Affiliation(s)
| | | | | | | | | | - Stelios T Andreadis
- ∥Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, United States
| |
Collapse
|
39
|
Xie L, Jiang Q, He Y, Nie Y, Yue D, Gu Z. Insight into the efficient transfection activity of a designed low aggregated magnetic polyethyleneimine/DNA complex in serum-containing medium and the application in vivo. Biomater Sci 2015. [DOI: 10.1039/c4bm00317a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vitro fate of designed low aggregated magnetic polyethyleneimine/DNA (MPD-cc) complexes and in vivo study via systemic administration.
Collapse
Affiliation(s)
- Li Xie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yiyan He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Dong Yue
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
40
|
Mykhaylyk O, Sanchez-Antequera Y, Vlaskou D, Cerda MB, Bokharaei M, Hammerschmid E, Anton M, Plank C. Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro. Methods Mol Biol 2015; 1218:53-106. [PMID: 25319646 DOI: 10.1007/978-1-4939-1538-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type.
Collapse
Affiliation(s)
- Olga Mykhaylyk
- Institute of Experimental Oncology, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, Munich, 81675, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mcam Silencing With RNA Interference Using Magnetofection has Antitumor Effect in Murine Melanoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e205. [PMID: 25350580 PMCID: PMC4217080 DOI: 10.1038/mtna.2014.56] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/09/2014] [Indexed: 01/27/2023]
Abstract
The melanoma cell adhesion molecule (MCAM) is involved in melanoma development and its progression, including invasiveness, metastatic potential and angiogenesis. Therefore, MCAM represents a potential target for gene therapy of melanoma, whose expression could be hindered with posttranscriptional specific gene silencing with RNA interference technology. In this study, we constructed a plasmid DNA encoding short hairpin RNA against MCAM (pMCAM) to explore the antitumor and antiangiogenic effects. The experiments were performed in vitro on murine melanoma and endothelial cells, as well as in vivo on melanoma tumors in mice. The antiproliferative, antimigratory, antiangiogenic and antitumor effects were examined after gene therapy with pMCAM. Gene delivery was performed by magnetofection, and its efficacy compared to gene electrotransfer. Gene therapy with pMCAM has proved to be an effective approach in reducing the proliferation and migration of melanoma cells, as well as having antiangiogenic effect in endothelial cells and antitumor effect on melanoma tumors. Magnetofection as a developing nonviral gene delivery system was effective in the transfection of melanoma cells and tumors with pMCAM, but less efficient than gene electrotransfer in in vivo tumor gene therapy due to the lack of antiangiogenic effect after silencing Mcam by magnetofection.
Collapse
|
42
|
Cardiac-targeting magnetic lipoplex delivery of SH-IGF1R plasmid attenuate norepinephrine-induced cardiac hypertrophy in murine heart. Biosci Rep 2014; 34:BSR20130107. [PMID: 24965872 PMCID: PMC4182904 DOI: 10.1042/bsr20130107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have demonstrated a number of molecular mechanisms contributing to the initiation of cardiac hypertrophy response to pressure overload. IGF1R (insulin-like growth factor-1 receptor), an important oncogene, is overexpressed in hypertrophic heart and mediates the hypertrophic pathology process. In this study, we applied with liposomal magnetofection that potentiated gene transfection by applying an external magnetic field to enhance its transfection efficiency. Liposomal magnetofection provided high efficiency in transgene expression in vivo. In vivo, IGF1R-specific-shRNA (small-hairpin RNA) by magnetofection inhibited IGF1R protein expression by 72.2 ± 6.8, 80.7 ± 9.6 and 84.5 ± 5.6%, at 24, 48 and 72 h, respectively, after pGFPshIGF1R injection, indicating that liposomal magnetofection is a promising method that allows the targeting of gene therapy for heart failure. Furthermore, we found that the treated animals (liposomal magnetofection with shIGF1R) showed reduced septal and posterior wall thickness, reduced HW:BWs (heart weight-to-body weights) compared with controls. Moreover, we also found that liposomal magnetofection-based shIGF1R transfection decreased the expression level of p-ERK (phosphorylated extracellular-signal-regulated kinase)1/2, p-AKT1 (phosphorylated protein kinase B1) compared with untreated hearts. These results suggested that liposomal magnetofection-mediated IGF1R-specific-shRNA may be a promising method, and suppression the IGF1R expression inhibited norepinephrine-induced cardiac hypertrophic process via inhibiting PI3K (phosphoinositide 3-kinase)/AKT pathway.
Collapse
|
43
|
Shah BP, Pasquale N, De G, Tan T, Ma J, Lee KB. Core-shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS NANO 2014; 8:9379-87. [PMID: 25133971 PMCID: PMC4174096 DOI: 10.1021/nn503431x] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/25/2023]
Abstract
Mitochondria-targeting peptides have garnered immense interest as potential chemotherapeutics in recent years. However, there is a clear need to develop strategies to overcome the critical limitations of peptides, such as poor solubility and the lack of target specificity, which impede their clinical applications. To this end, we report magnetic core-shell nanoparticle (MCNP)-mediated delivery of a mitochondria-targeting pro-apoptotic amphipathic tail-anchoring peptide (ATAP) to malignant brain and metastatic breast cancer cells. Conjugation of ATAP to the MCNPs significantly enhanced the chemotherapeutic efficacy of ATAP, while the presence of targeting ligands afforded selective delivery to cancer cells. Induction of MCNP-mediated hyperthermia further potentiated the efficacy of ATAP. In summary, a combination of MCNP-mediated ATAP delivery and subsequent hyperthermia resulted in an enhanced effect on mitochondrial dysfunction, thus resulting in increased cancer cell apoptosis.
Collapse
Affiliation(s)
- Birju P. Shah
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Nicholas Pasquale
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Gejing De
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
44
|
Mitsudome Y, Takahama M, Hirose J, Yoshida N. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes. AMB Express 2014; 4:70. [PMID: 25401071 PMCID: PMC4230895 DOI: 10.1186/s13568-014-0070-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/15/2014] [Indexed: 11/15/2022] Open
Abstract
Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (α-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on α-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, β-lactamase and β-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring β-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the β-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for elucidation of gene function in bacterial species that have been refractory to experimental introduction of exogenous DNA.
Collapse
|
45
|
Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 2014; 39:1648-60. [PMID: 25011394 DOI: 10.1007/s11064-014-1380-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.
Collapse
Affiliation(s)
- Charlotte Petters
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | | | | | | |
Collapse
|
46
|
Zhao X, Cui H, Chen W, Wang Y, Cui B, Sun C, Meng Z, Liu G. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One 2014; 9:e98919. [PMID: 24911360 PMCID: PMC4049641 DOI: 10.1371/journal.pone.0098919] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Modified magnetic nanoparticles are used as non-viral gene carriers in biological applications. To achieve successful gene delivery, it is critical that nanoparticles effectually assemble with nucleic acids. However, relatively little work has been conducted on the assemble mechanisms between nanoparticles and DNA, and its effects on transfection efficiency. Using biophysical and biochemical characterization, along with Atomic force microscopy (AFM) and Transmission electron microscopy (TEM), we investigate the morphologies, assembling structures and gene delivering abilities of the PEI modified magnetic nanoparticles (MNPs) gene delivery system. In this gene delivery system, MNP/DNA complexes are formed via binding of DNA onto the surface of MNPs. MNPs are favorable to not only increase DNA concentration but also prevent DNA degradation. Magnetofection experiments showed that MNPs has low cytotoxicity and introduces highly stable transfection in mammalian somatic cells. In addition, different binding ratios between MNPs and DNA result in various morphologies of MNP/DNA complexes and have an influence on transfection efficiency. Dose–response profile indicated that transfection efficiency positively correlate with MNP/DNA ratio. Furthermore, intracellular tracking demonstrate that MNPs move though the cell membranes, deliver and release exogenous DNA into the nucleus.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Nano biological Research Center, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Nano biological Research Center, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| | - Wenjie Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqiang Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
47
|
Pershina AG, Sazonov AE, Filimonov VD. Magnetic nanoparticles–DNA interactions: design and applications of nanobiohybrid systems. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n04abeh004412] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Huang H, Li Y, Sa Z, Sun Y, Wang Y, Wang J. A Smart Drug Delivery System from Charge-Conversion Polymer-Drug Conjugate for Enhancing Tumor Therapy and Tunable Drug Release. Macromol Biosci 2014; 14:485-90. [DOI: 10.1002/mabi.201300337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/08/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Hailong Huang
- Alan G. MacDiarmid Institute of Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Yapeng Li
- Alan G. MacDiarmid Institute of Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Zongpeng Sa
- Alan G. MacDiarmid Institute of Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Yuan Sun
- Alan G. MacDiarmid Institute of Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Yuzhen Wang
- Alan G. MacDiarmid Institute of Jilin University; 2699 Qianjin Street Changchun 130012 China
| | - Jingyuan Wang
- Alan G. MacDiarmid Institute of Jilin University; 2699 Qianjin Street Changchun 130012 China
| |
Collapse
|
49
|
Gene therapy and DNA delivery systems. Int J Pharm 2013; 459:70-83. [PMID: 24286924 DOI: 10.1016/j.ijpharm.2013.11.041] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Gene therapy is a promising new technique for treating many serious incurable diseases, such as cancer and genetic disorders. The main problem limiting the application of this strategy in vivo is the difficulty of transporting large, fragile and negatively charged molecules like DNA into the nucleus of the cell without degradation. The key to success of gene therapy is to create safe and efficient gene delivery vehicles. Ideally, the vehicle must be able to remain in the bloodstream for a long time and avoid uptake by the mononuclear phagocyte system, in order to ensure its arrival at the desired targets. Moreover, this carrier must also be able to transport the DNA efficiently into the cell cytoplasm, avoiding lysosomal degradation. Viral vehicles are the most commonly used carriers for delivering DNA and have long been used for their high efficiency. However, these vehicles can trigger dangerous immunological responses. Scientists need to find safer and cheaper alternatives. Consequently, the non-viral carriers are being prepared and developed until techniques for encapsulating DNA can be found. This review highlights gene therapy as a new promising technique used to treat many incurable diseases and the different strategies used to transfer DNA, taking into account that introducing DNA into the cell nucleus without degradation is essential for the success of this therapeutic technique.
Collapse
|
50
|
Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/646284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since they were first proposed as nonviral transfection agents for their gene-carrying capacity, magnetic nanoparticles have been studied thoroughly, both in vitro and in vivo. Great effort has been made to manufacture biocompatible magnetic nanoparticles for use in the theragnosis of cancer and other diseases. Here we survey recent advances in the study of magnetic nanoparticles, as well as the polymers and other coating layers currently available for gene therapy, their synthesis, and bioconjugation processes. In addition, we review several gene therapy models based on magnetic nanoparticles.
Collapse
|