1
|
Yin Y, James Barnstable C, Zhang X, Li X, Zhao S, Tombran-Tink J. Pigment epithelium-derived factor (PEDF) promotes survival and contraction of myoepithelial cells in lacrimal gland. Exp Eye Res 2025; 253:110269. [PMID: 39922524 DOI: 10.1016/j.exer.2025.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
PEDF is critical for general health of the ocular surface. In order to study mechanisms of PEDF's action in lacrimal gland (LG) secretion, these visual structures were studied in a PEDF deficient (Pedf-/-) mouse model using biochemical, histochemical, and morphometric analyses. In Pedf-/- animals there were several ocular surface and LG disturbances not seen in controls. Notably, changes in body and LG weight, corneal sensitivity, tear film, ocular surface damage, and size of acini comprising the LG were evident. Survival of myoepithelial cells (MECs) surrounding the acini showed a PEDF survival dependence as there were significant reduction in MEC-specific P63 cells and Bcl2 expression levels, and increased TUNEL positive cells in PEDF deficient mice. Expression levels of the major contractile MEC proteins, α-SMA, calponin, and keratin 14, were also reduced with PEDF gene deletion and MECs contraction apparatus impaired, since oxytocin significantly reduced acinar area in controls but had no effect in PEDF deficient LGs, although the oxytocin receptor (OXTR) was expressed in both PEDF genotypes. These findings suggest that PEDF is essential to MECs survival and contractile function, and tear homeostasis on the ocular surface. Treatment with PEDF is likely to alleviate ocular-related conditions in diseases associated with dry eye as well as promote healthy MEC cell function in other secretory glands of the body.
Collapse
Affiliation(s)
- Yilan Yin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Colin James Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, 17112, USA
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Skyran Biologics Inc., Harrisburg, PA, 17112, USA.
| |
Collapse
|
2
|
Abdal Dayem A, Bin Jang S, Lim N, Yeo HC, Kwak Y, Lee SH, Shin HJ, Cho SG. Advances in lacrimal gland organoid development: Techniques and therapeutic applications. Biomed Pharmacother 2025; 183:117870. [PMID: 39870025 DOI: 10.1016/j.biopha.2025.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage. This review explores the recent advancements in LG organoid generation using tissues and stem cells, highlighting cutting-edge techniques in biomaterial-based and scaffold-free technologies. Additionally, we shed light on the complex pathophysiology of LG dysfunction, providing insights into the LG physiological roles while identifying strategies for generating LG organoids and exploring their potential clinical applications. Alterations in LG morphology or secretory function can affect the tear film stability and quality, leading to various ocular pathological conditions. This comprehensive review underlines the critical crosslink of LG organoid development with disease modeling and drug screening, underscoring their potential for advancing therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nahee Lim
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin-Hyo Lee
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea; Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Hyun Jin Shin
- Konkuk University School of Medicine, Chungju city, Republic of Korea; Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, Republic of Korea.
| | - Sang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
3
|
Namdari M, McDonnell FS. Extracellular vesicles as emerging players in glaucoma: Mechanisms, biomarkers, and therapeutic targets. Vision Res 2025; 226:108522. [PMID: 39581065 PMCID: PMC11640964 DOI: 10.1016/j.visres.2024.108522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
In recent years, extracellular vesicles (EVs) have attracted significant scientific interest due to their widespread distribution, their potential as disease biomarkers, and their promising applications in therapy. Encapsulated by lipid bilayers these nanovesicles include small extracellular vesicles (sEV) (30-150 nm), microvesicles (100-1000 nm), and apoptotic bodies (100-5000 nm) and are essential for cellular communication, immune responses, biomolecular transport, and physiological regulation. As they reflect the condition and functionality of their originating cells, EVs play critical roles in numerous physiological processes and diseases. Therefore, EVs offer valuable opportunities for uncovering disease mechanisms, enhancing drug delivery systems, and identifying novel biomarkers. In the context of glaucoma, a leading cause of irreversible blindness, the specific roles of EVs are still largely unexplored. This review examines the emerging role of EVs in the pathogenesis of glaucoma, with a focus on their potential as diagnostic biomarkers and therapeutic agents. Through a thorough analysis of current literature, we summarize key advancements in EV research and identify areas where further investigation is needed to fully understand their function in glaucoma.
Collapse
Affiliation(s)
- Maral Namdari
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Jaffet J, Singh V, Schrader S, Mertsch S. The Potential Role of Exosomes in Ocular Surface and Lacrimal Gland Regeneration. Curr Eye Res 2024:1-14. [PMID: 39508276 DOI: 10.1080/02713683.2024.2424265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Dry eye disease (DED), a multifactorial disease of the lacrimal system, manifests itself in patients with various symptoms such as itching, inflammation, discomfort and visual impairment. In its most severe forms, it results in the breakdown of the vital tissues of lacrimal functional unit and carries the risk of vision loss. Despite the frequency of occurrence of the disease, there are no effective curative treatment options available to date. Treatment using stem cells and its secreted factors could be a promising approach in the regeneration of damaged tissues of ocular surface. The treatment using secreted factors as well as extracellular vesicles has been demonstrated beneficial effects in various ocular surface diseases. This review provides insights on the usage of stem cell derived exosomes as a promising therapy against LG dysfunction induced ADDE for ocular surface repair. METHODS In order to gain an overview of the existing research in this field, literature search was carried out using the PubMed, Medline, Scopus and Web of Science databases. This review is based on 164 publications until June 2024 and the literature search was carried out using the key words "exosomes", "lacrimal gland regeneration", "exosomes in lacrimal dysfunction". RESULTS The literature and studies till date suggest that exosomes and other secreted factors from stem cells have demonstrated beneficial effects on damaged ocular tissues in various ocular surface diseases. Exosomal cargo plays a crucial role in regenerating tissues by promoting homeostasis in the lacrimal system, which is often compromised in severe cases of dry eye disease. Exosome therapy shows promise as a regenerative therapy, potentially addressing the lack of effective curative treatments available for patients with dry eye disease. CONCLUSION Stem cell-derived exosomes represent a promising, innovative approach as a new treatment option for ADDE. By targeting lacrimal gland dysfunction and enhancing ocular surface repair, exosome therapy offers potential for significant advances in dry eye disease management. Future research is needed to refine the application of this therapy, optimize delivery methods, and fully understand its long-term efficacy in restoring ocular health.
Collapse
Affiliation(s)
- Jilu Jaffet
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vivek Singh
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
5
|
Murashima ADAB, Sant’Ana AMS, Faustino-Barros JF, Machado Filho EB, da Silva LCM, Fantucci MZ, Módulo CM, Chahud F, Garcia DM, Rocha EM. Exorbital Lacrimal Gland Ablation and Regrafting Induce Inflammation but Not Regeneration or Dry Eye. Int J Mol Sci 2024; 25:8318. [PMID: 39125889 PMCID: PMC11312169 DOI: 10.3390/ijms25158318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The study evaluated the regenerative responses of the lacrimal functional unit (LFU) after lacrimal gland (LG) ablation. The LG of Wistar rats was submitted to G1) partial LG ablation, G2) partial ablation and transplantation of an allogeneic LG, or G3) total LG ablation, (n = 7-10/group). The eye wipe test, slit lamp image, tear flow, and histology were evaluated. RT-PCR analyzed inflammatory and proliferation mediators. The findings were compared to naïve controls after 1 and 2 months (M1 and M2). G3 presented increased corneal sensitivity, and the 3 groups showed corneal neovascularization. Histology revealed changes in the LG and corneal inflammation. In the LG, there was an increase in MMP-9 mRNA of G1 and G2 at M1 and M2, in RUNX-1 at M1 and M2 in G1, in RUNX-3 mRNA at M1 in G1, and at M2 in G2. TNF-α mRNA rose in the corneas of G1 and G2 at M2. There was an increase in the IL-1β mRNA in the trigeminal ganglion of G1 at M1. Without changes in tear flow or evidence of LG regeneration, LG ablation and grafting are unreliable models for dry eye or LG repair in rats. The surgical manipulation extended inflammation to the LFU.
Collapse
Affiliation(s)
- Adriana de Andrade Batista Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Ariane M. S. Sant’Ana
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Jacqueline Ferreira Faustino-Barros
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Elísio B. Machado Filho
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Lilian Costa Mendes da Silva
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Marina Zilio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Carolina Maria Módulo
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Fernando Chahud
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Denny Marcos Garcia
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Eduardo M. Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
6
|
Wang Q, Tao C, Wu Y, Anderson KE, Hannan A, Lin CS, Hawkins P, Stephens L, Zhang X. Phospholipase Cγ regulates lacrimal gland branching by competing with PI3K in phosphoinositide metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601066. [PMID: 39005344 PMCID: PMC11244885 DOI: 10.1101/2024.06.28.601066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although the regulation of branching morphogenesis by spatially distributed cues is well established, the role of intracellular signaling in determining the branching pattern remains poorly understood. In this study, we investigated the regulation and function of phospholipase C gamma (PLCγ) in Fibroblast Growth Factor (FGF) signaling in lacrimal gland development. We showed that deletion of PLCγ1 in the lacrimal gland epithelium leads to ectopic branching and acinar hyperplasia, which was phenocopied by either mutating the PLCγ1 binding site on Fgfr2 or disabling any of its SH2 domains. PLCγ1 inactivation did not change the level of Fgfr2 or affect MAPK signaling, but instead led to sustained AKT phosphorylation due to increased PIP3 production. Consistent with this, PLCγ1 mutant phenotype can be reproduced by elevation of PI3K signaling in Pten knockout and attenuated by blocking AKT signaling. This study demonstrated that PLCγ modulates PI3K signaling by shifting phosphoinositide metabolism, revealing an important role of signaling dynamics in conjunction with spatial cues in shaping branching morphogenesis.
Collapse
|
7
|
Hannan A, Wang Q, Wu Y, Makrides N, Qu X, Mao J, Que J, Cardoso W, Zhang X. Crk mediates Csk-Hippo signaling independently of Yap tyrosine phosphorylation to induce cell extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601065. [PMID: 39005335 PMCID: PMC11244872 DOI: 10.1101/2024.06.27.601065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Src family kinases (SFKs), including Src, Fyn and Yes, play important roles in development and cancer. Despite being first discovered as the Yes-associated protein, the regulation of Yap by SFKs remains poorly understood. Here, through single-cell analysis and genetic lineage tracing, we show that the pan-epithelial ablation of C-terminal Src kinase (Csk) in the lacrimal gland unleashes broad Src signaling but specifically causes extrusion and apoptosis of acinar progenitors at a time when they are shielded by myoepithelial cells from the basement membrane. Csk mutants can be phenocopied by constitutively active Yap and rescued by deleting Yap or Taz, indicating a significant functional overlap between Src and Yap signaling. Although Src-induced tyrosine phosphorylation has long been believed to regulate Yap activity, we find that mutating these tyrosine residues in both Yap and Taz fails to perturb mouse development or alleviate the Csk lacrimal gland phenotype. In contrast, Yap loses Hippo signaling-dependent serine phosphorylation and translocates into the nucleus in Csk mutants. Further chemical genetics studies demonstrate that acute inhibition of Csk enhances Crk/CrkL phosphorylation and Rac1 activity, whereas removing Crk/CrkL or Rac1/Rap1 ameliorates the Csk mutant phenotype. These results show that Src controls Hippo-Yap signaling through the Crk/CrkL-Rac/Rap axis to promote cell extrusion.
Collapse
Affiliation(s)
- Abdul Hannan
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yihua Wu
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jianwen Que
- Columbia Center for Human Development, Columbia University, New York, NY, USA
| | - Wellington Cardoso
- Columbia Center for Human Development, Columbia University, New York, NY, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Columbia Center for Human Development, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Chen S, Barnstable CJ, Zhang X, Li X, Zhao S, Tombran-Tink J. A PEDF peptide mimetic effectively relieves dry eye in a diabetic murine model by restoring corneal nerve, barrier, and lacrimal gland function. Ocul Surf 2024; 32:1-12. [PMID: 38103731 DOI: 10.1016/j.jtos.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/27/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE The study investigated effectiveness of a novel PEDF peptide mimetic to alleviate dry eye-like pathologies in a Type I diabetic mouse model established using streptozotocin. METHODS Mice were treated topically for 3-6 weeks with Ppx (a 17-mer PEDF mimetic) 2x/day or vehicle. Corneal sensitivity, tear film, epithelial and endothelial injury were measured using Cochet-Bonnet esthesiometer, phenol red cotton thread wetting, fluorescein sodium staining, and ZO1 expression, respectively. Inflammatory and parasympathetic nerve markers and activation of the MAPK/JNK pathways in the lacrimal glands were measured. RESULTS Diabetic mice exhibited features of dry eye including reduced corneal sensation and tear secretion and increased corneal epithelium injury, nerve degeneration, and edema. Ppx reversed these pathologies and restored ZO1 expression and morphological integrity of the endothelium. Upregulation of IL-1β and TNFα, increased activation of P-38, JNK, and ERK, and higher levels of M3ACHR in diabetic lacrimal glands were also reversed by the peptide treatment. CONCLUSION The study demonstrates that topical application of a synthetic PEDF mimetic effectively alleviates diabetes-induced dry eye by restoring corneal sensitivity, tear secretion, and endothelial barrier and lacrimal gland function. These findings have significant implications for the potential treatment of dry eye using a cost-effective and reproducible approach with minimal invasiveness and no obvious side effects.
Collapse
Affiliation(s)
- Shuangping Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Colin James Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China; Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033-0850, USA; Skyran Biologics Inc., Harrisburg, PA, USA, 17112.
| |
Collapse
|
9
|
Safonova TN, Zaitseva GV. [Cell technologies as a basis for the development of regenerative principles for the treatment of lacrimal gland diseases]. Vestn Oftalmol 2024; 140:158-165. [PMID: 38739146 DOI: 10.17116/oftalma2024140022158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The lacrimal gland (LG) is a tubuloacinar exocrine gland composed of acinar, ductal, and myoepithelial cells. Three-dimensional distribution of acinar lobules, ducts, and myoepithelial cells is necessary for the effective functioning of the organ. LG is the main organ of immune surveillance of the ocular surface system. The embryogenesis of the gland is regulated by the interaction of genetic mechanisms, internal epigenetic (enzyme systems, hormones) and exogenous factors. There is no doubt that there is a clear genetic program for the implementation of the complex process of embryonic development. The mechanisms regulating LG organogenesis initiate the work of a huge number of structural oncogenes, transcription and growth factors, etc. Studying the expression and selective activity of regulatory genes during organ development, their participation in the differentiation of different cell types is a current trend at the nexus of clinical genetics, molecular biology, embryology and immunocytochemistry. Due to its relatively simple structure and accessibility, human LG is a suitable object for potential application in regenerative medicine. Development of a universal protocol for obtaining functional differentiated secretory epithelium of LG capable of expressing tissue-specific markers is an urgent task. Determining the nature and origin of stem cells and progenitor cells will allow the isolation and multiplication of these cells in culture. After obtaining a functionally active culture of LG cells, it is possible to create a model of autoimmune diseases.
Collapse
Affiliation(s)
- T N Safonova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - G V Zaitseva
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
10
|
Yu C, Zou J, Ge QM, Liao XL, Pan YC, Wu JL, Su T, Zhang LJ, Liang RB, Shao Y. Ocular microvascular alteration in Sjögren's syndrome treated with hydroxychloroquine: an OCTA clinical study. Ther Adv Chronic Dis 2023; 14:20406223231164498. [PMID: 37114215 PMCID: PMC10126603 DOI: 10.1177/20406223231164498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Background Sjögren's syndrome (SjS) is a rare autoimmune disease, and despite our knowledge of SjS, we still lack effective treatments. Chloroquine drugs used to treat autoimmune diseases are still the primary medicine for SjS but increase the risk of chloroquine retinopathy. Objectives The objective of this study is to use Optical Coherence Tomography Angiography (OCTA) images to monitor the microvascular changes in the fundus of SjS patients after hydroxychloroquine (HCQ) treatment and the feasibility of using them as diagnostic indicators. Design This is a retrospective observational cohort study. Methods Twelve healthy controls (HCs group; 24 eyes), 12 SjS patients (SjS group; 24 eyes), and 12 SjS patients treated with HCQ (HCQ group; 24 eyes) were recruited. Three-dimensional OCTA images of the retina were collected, and microvascular density was calculated for each eye. OCTA image segmentation for analysis was conducted using the central wheel division method (C1-C6), hemisphere segmentation method (SR, SL, IL, and IR), and the early treatment of diabetic retinopathy study method (ETDRS) (R, S, L, and I). Results Retinal microvascular density was significantly lower in the SjS patients compared to the HCs group (p < 0.05) and much lower in the HCQ group compared to the SjS patients (p < 0.05). The SjS and HCQ groups differed in the I, R, SR, IL, and IR regions in the superficial and deep retina and the S region in the superficial retina. The ROC curves of the relationship between the HCs and SjS groups and between the SjS and HCQ groups demonstrated good classification accuracy. Conclusion HCQ may contribute significantly to the microvascular alteration in SjS. Microvascular alteration is a potential marker with adjunctive diagnostic value. The MIR and the OCTA images of I, IR, and C1 regions showed high accuracy in minoring the alteration.
Collapse
Affiliation(s)
- Chao Yu
- Department of Ophthalmology, The First
Affiliated Hospital of Nanchang University, Nanchang, P.R. China
- The First Clinical Medical College, Nanchang
University, Nanchang, P.R. China
| | - Jie Zou
- Department of Ophthalmology, The First
Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Qian-Min Ge
- Department of Ophthalmology, The First
Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual
Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yi-Cong Pan
- Department of Ophthalmology, The First
Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jie-Li Wu
- Department of Ophthalmology, Xiang’an Hospital
of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and
Visual Science, Eye Institute of Xiamen University, Xiamen University School
of Medicine, Xiamen, P.R. China
| | - Ting Su
- Department of Ophthalmology, Xiang’an Hospital
of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and
Visual Science, Eye Institute of Xiamen University, Xiamen University School
of Medicine, Xiamen, Fujian, P.R. China
- Massachusetts Eye and Ear, Department of
Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Li-Juan Zhang
- Department of Ophthalmology, The First
Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First
Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yi Shao
- Department of Ophthalmology and Jiangxi
Province Clinical Ophthalmology Institute, The First Affiliated Hospital of
Nanchang University, 17 Yongwaizheng Street, Donghu, Nanchang 330006, P.R.
China
| |
Collapse
|
11
|
Faustino-Barros JF, Saranzo Sant'Ana AM, Dias LC, de Andrade Batista Murashima A, Costa Mendes da Silva LE, Fantucci MZ, Garcia DM, Rocha EM. Distinct Inflammatory and Oxidative Effects of Diabetes Mellitus and Hypothyroidism in the Lacrimal Functional Unit. Int J Mol Sci 2023; 24:ijms24086974. [PMID: 37108138 PMCID: PMC10138510 DOI: 10.3390/ijms24086974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes mellitus (DM) and hypothyroidism (HT) are prevalent diseases associated with dry eye (DE). Their impact on the lacrimal functional unit (LFU) is poorly known. This work evaluates the changes in the LFU in DM and HT. Adult male Wistar rats had the disease induced as follows: (a) DM: streptozotocin and (b) HT: methimazole. The tear film (TF) and blood osmolarity were measured. Cytokine mRNA was compared in the lacrimal gland (LG), trigeminal ganglion (TG), and cornea (CO). Oxidative enzymes were evaluated in the LG. The DM group showed lower tear secretion (p = 0.02) and higher blood osmolarity (p < 0.001). The DM group presented lower mRNA expression of TRPV1 in the cornea (p = 0.03), higher Il1b mRNA expression (p = 0.03), and higher catalase activity in the LG (p < 0.001). The DM group presented higher Il6 mRNA expression in the TG (p = 0.02). The HT group showed higher TF osmolarity (p < 0.001), lower expression of Mmp9 mRNA in the CO (p < 0.001), higher catalase activity in the LG (p = 0.002), and higher expression of Il1b mRNA in the TG (p = 0.004). The findings revealed that DM and HT induce distinct compromises to the LG and the entire LFU.
Collapse
Affiliation(s)
- Jacqueline Ferreira Faustino-Barros
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Ariane Mirela Saranzo Sant'Ana
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Lara Cristina Dias
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Adriana de Andrade Batista Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Lilian Eslaine Costa Mendes da Silva
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Marina Zílio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Denny Marcos Garcia
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
12
|
Asal M, Koçak G, Sarı V, Reçber T, Nemutlu E, Utine CA, Güven S. Development of lacrimal gland organoids from iPSC derived multizonal ocular cells. Front Cell Dev Biol 2023; 10:1058846. [PMID: 36684423 PMCID: PMC9846036 DOI: 10.3389/fcell.2022.1058846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Lacrimal gland plays a vital role in maintaining the health and function of the ocular surface. Dysfunction of the gland leads to disruption of ocular surface homeostasis and can lead to severe outcomes. Approaches evolving through regenerative medicine have recently gained importance to restore the function of the gland. Using human induced pluripotent stem cells (iPSCs), we generated functional in vitro lacrimal gland organoids by adopting the multi zonal ocular differentiation approach. We differentiated human iPSCs and confirmed commitment to neuro ectodermal lineage. Then we identified emergence of mesenchymal and epithelial lacrimal gland progenitor cells by the third week of differentiation. Differentiated progenitors underwent branching morphogenesis in the following weeks, typical of lacrimal gland development. We were able to confirm the presence of lacrimal gland specific acinar, ductal, and myoepithelial cells and structures during weeks 4-7. Further on, we demonstrated the role of miR-205 in regulation of the lacrimal gland organoid development by monitoring miR-205 and FGF10 mRNA levels throughout the differentiation process. In addition, we assessed the functionality of the organoids using the β-Hexosaminidase assay, confirming the secretory function of lacrimal organoids. Finally, metabolomics analysis revealed a shift from amino acid metabolism to lipid metabolism in differentiated organoids. These functional, tear proteins secreting human lacrimal gland organoids harbor a great potential for the improvement of existing treatment options of lacrimal gland dysfunction and can serve as a platform to study human lacrimal gland development and morphogenesis.
Collapse
Affiliation(s)
- Melis Asal
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gamze Koçak
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Vedat Sarı
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Canan Aslı Utine
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Department of Ophthalmology, Dokuz Eylül University Hospital, Dokuz Eylül University, Izmir, Turkey
| | - Sinan Güven
- Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey,*Correspondence: Sinan Güven,
| |
Collapse
|
13
|
Singh VK, Sharma P, Vaksh UKS, Chandra R. Current approaches for the regeneration and reconstruction of ocular surface in dry eye. Front Med (Lausanne) 2022; 9:885780. [PMID: 36213677 PMCID: PMC9544815 DOI: 10.3389/fmed.2022.885780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Significant research revealed the preocular tear film composition and regulations that remain vital for maintaining Ocular surface functional integrity. Inflammation triggered by many factors is the hallmark of Ocular surface disorders or dry eyes syndrome (DES). The tear deficiencies may lead to ocular surface desiccation, corneal ulceration and/or perforation, higher rates of infectious disease, and the risk of severe visual impairment and blindness. Clinical management remains largely supportive, palliative, and frequent, lifelong use of different lubricating agents. However, few advancements such as punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts are of limited use. Cell-based therapies, tissue engineering, and regenerative medicine, have recently evolved as long-term cures for many diseases, including ophthalmic diseases. The present article focuses on the different regenerative medicine and reconstruction/bioengineered lacrimal gland formation strategies reported so far, along with their limiting factors and feasibility as an effective cure in future.
Collapse
Affiliation(s)
- Vimal Kishor Singh
- Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vimal Kishor Singh ; ;
| | - Pallavi Sharma
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
| | - Uttkarsh Kumar Sharma Vaksh
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Gurgaon, Haryana, India
| | - Ramesh Chandra
- Institute of Nanomedical Sciences, University of Delhi, Delhi, India
| |
Collapse
|
14
|
Liu R, Wang Y, Li Q, Xia Q, Xu T, Han T, Cai S, Luo S, Wu R, Shao Y. Optical Coherence Tomography Angiography Biomarkers of Retinal Thickness and Microvascular Alterations in Sjogren's Syndrome. Front Neurol 2022; 13:853930. [PMID: 35350402 PMCID: PMC8957855 DOI: 10.3389/fneur.2022.853930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the differences of retinal thickness (RT) and superficial vascular density (SVD) between patients with Sjogren's syndrome (SS) and healthy controls (HCs) using optical coherence tomography angiography (OCTA). Methods Individuals with SS and healthy controls were enrolled (n = 12 per group). An en-face OCTA scan was performed on each eye. Images were segmented into 9 subregions and macular RT and SVD were measured and compared between the 2 groups. Results Visual acuity (VA) differed significantly between patients with SS (24 eyes) and controls (24 eyes) (p < 0.001). In patients with SS, inner RT was reduced in the inner superior region, outer RT was reduced in the outer nasal (ON) region, and full RT was reduced in the ON region compared with the control group (p < 0.05). RT was negatively correlated with serum IgG level in the outer and full retina at ON regions (p < 0.05). SVD in the inner nasal, ON, and inner temporal regions was significantly lower in patients with SS than in control subjects (p < 0.05). SVD was positively correlated with full RT in the ON region in patients with SS (p < 0.05). The areas under the receiver operating characteristic (ROC) curves for the diagnostic sensitivity of outer RT and full RT in the ON region for SS were 0.828 (95% CI: 0.709–0.947) and 0.839 (95% CI: 0.715–0.963), respectively. Conclusions In patients with SS, retinal thinning in the macular area—which affects vision—can also reflect the severity of dry eyes in SS and has clinical value for assisted imaging diagnosis.
Collapse
Affiliation(s)
- Ren Liu
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Wang
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiuyu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
| | - Qiang Xia
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tian Xu
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Han
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuang Cai
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuilin Luo
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Rui Wu
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, China
- Yi Shao
| |
Collapse
|
15
|
Chen KH, Tseng CL, Lin IC, Wang YC, Chen YZ, Tang YJ. Dry eye syndrome model established in rabbits via mitomycin C injection in the lacrimal gland. Taiwan J Ophthalmol 2022; 13:34-42. [DOI: 10.4103/tjo.tjo_11_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/14/2022] [Indexed: 11/04/2022] Open
|
16
|
Wang Q, Tao C, Hannan A, Yoon S, Min X, Peregrin J, Qu X, Li H, Yu H, Zhao J, Zhang X. Lacrimal gland budding requires PI3K-dependent suppression of EGF signaling. SCIENCE ADVANCES 2021; 7:7/27/eabf1068. [PMID: 34193412 PMCID: PMC8245041 DOI: 10.1126/sciadv.abf1068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The patterning of epithelial buds is determined by the underlying signaling network. Here, we study the cross-talk between phosphoinositide 3-kinase (PI3K) and Ras signaling during lacrimal gland budding morphogenesis. Our results show that PI3K is activated by both the p85-mediated insulin-like growth factor (IGF) and Ras-mediated fibroblast growth factor (FGF) signaling. On the other hand, PI3K also promotes extracellular signal-regulated kinase (ERK) signaling via a direct interaction with Ras. Both PI3K and ERK are upstream regulators of mammalian target of rapamycin (mTOR), and, together, they prevent expansion of epidermal growth factor (EGF) receptor expression from the lacrimal gland stalk to the bud region. We further show that this suppression of EGF signaling is necessary for induction of lacrimal gland buds. These results reveal that the interplay between PI3K, mitogen-activated protein kinase, and mTOR mediates the cross-talk among FGF, IGF, and EGF signaling in support of lacrimal gland development.
Collapse
Affiliation(s)
- Qian Wang
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Chenqi Tao
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Abdul Hannan
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Sungtae Yoon
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Xuanyu Min
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - John Peregrin
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hongge Li
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - Honglian Yu
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
- Department of Biochemistry, School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Jean Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Sharma HP, Halder N, Singh SB, Velpandian T. Evaluation of the Presence and Functional Importance of Nucleoside Transporters in Lacrimal Gland for Tear Disposition of Intravenously Injected Substrate in Rabbits. Curr Eye Res 2021; 46:1659-1665. [PMID: 33941003 DOI: 10.1080/02713683.2021.1925698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: Purpose of the current study was to assess the presence and functionality of the nucleoside transporters in the lacrimal gland for the tear disposition of its substrate given intravenously in rabbits.Materials and Methods: Rabbits were divided into two groups - control and blocker pretreated. The blocker pretreated group received 5 mg/kg of dipyridamole 30 min before ribavirin (substrate), which was given at a dose of 2.5 mg/kg. All the treatments were given intravenously. Blood and tear samples were collected at 5, 15, 30, 60, 90, 120, 180, 240, 300 and 360 min (n = 4; each time point) after substrate administration. Tear samples were collected on Schirmer's strips, and plasma was separated immediately after blood collection. All the samples were stored at -80°C until analysis by LC-MS/MS.Results: Plasma ribavirin concentration for blocker pretreated group showed significantly (p < .05) higher levels at 5, 15, 30, 60, 120, 180 and 300 min as compared to the control group. Similarly, tear ribavirin concentration for blocker pretreated group also showed a significant (p < .05) increase at 5, 15, 60, 90, 180, 240 and 300 min compared to the control group. Plasma and tear AUC(0-6) for blocker pretreated group was 1.7 (p < .001) and 2.42 (p < .001) folds higher in a significant manner as compared to the control group, respectively. Percentage penetration of ribavirin from plasma to tears was also different between control and blocker pretreated group. Permeation ratio of ribavirin from plasma to tear for blocker pretreated group was found to be 1.4-folds higher in a significant (p < .05) manner.Conclusion: It is evident from the results that nucleoside transporters are present in lacrimal gland. The blocker treatment induced increase in tear transport of ribavirin indicates the possibility of the presence of nucleoside transporters on the apical side of lacrimal acinar cells in the uptake position.
Collapse
Affiliation(s)
- Hanuman Prasad Sharma
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Nabanita Halder
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - T Velpandian
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Hsu CYY, Tu JCY, Chung CH, Sun CA, Chien WC, Lin HT. Risk of Dry Eye Syndrome in Patients with Orbital Fracture: A Nationwide Population-Based Cohort Study. Healthcare (Basel) 2021; 9:healthcare9050605. [PMID: 34070017 PMCID: PMC8157863 DOI: 10.3390/healthcare9050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to investigate whether orbital fracture increases the risk of dry eye syndrome (DES) and identified the profile of prognostic factors. We studied a cohort from the Taiwan National Health Insurance Research Database (NHIRD). Overall, 46,179 and 184,716 participants were enrolled in the study and control groups, respectively. Each patient in the case group was age- and gender-matched to four individuals without orbital fracture that served as the control group. Cox proportional hazards analysis regression was used to estimate the risks of incident DES. During the follow-up period, the case group was more likely to develop incident DES (0.17%) than the control group (0.11%) (p = 0.001). Multivariate Cox regression analysis demonstrated that the case group had a 4.917-fold increased risk of DES compared to the controls. In the stratified age group, orbital fracture had the highest impact on patients aged 18–29 years. Furthermore, patients with orbital roof fracture have a greater risk of developing DES. Regardless of whether having received surgery or not, the patients with orbital fracture have higher risks of DES. Our study demonstrated that orbital fracture increases the risk of developing subsequent DES. Early recognition by thorough examinations with raised awareness in the clinical setting could preserve visual function and prevent further complications.
Collapse
Affiliation(s)
- Cindy Yi-Yu Hsu
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan;
| | - Junior Chun-Yu Tu
- Department of Plastic Surgery, Chang Gung Memorial Hospital, Chung Gung Medical University, Taoyuan 333, Taiwan;
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association (TIPSPA), Taipei 114, Taiwan
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan;
- Big Data Research Center, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association (TIPSPA), Taipei 114, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (W.-C.C.); (H.-T.L.); Tel.: +886-2-87923311 (ext. 19189) (W.-C.C.); +886-2-87923311 (H.-T.L.); Fax: +886-2-87927235 (W.-C.C.)
| | - Hsin-Ting Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (W.-C.C.); (H.-T.L.); Tel.: +886-2-87923311 (ext. 19189) (W.-C.C.); +886-2-87923311 (H.-T.L.); Fax: +886-2-87927235 (W.-C.C.)
| |
Collapse
|
19
|
Antunes-Foschini R, Adriano L, Murashima ADAB, Barbosa AP, Nominato LF, Dias LC, Fantucci MZ, Garcia DM, Alves M, Rocha EM. Limitations and advances in new treatments and future perspectives of corneal blindness. Arq Bras Oftalmol 2021; 84:282-296. [PMID: 33567031 PMCID: PMC11826770 DOI: 10.5935/0004-2749.20210042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
This review is intended to describe the therapeutic approaches for corneal blindness, detailing the steps and elements involved in corneal wound healing. It also presents the limitations of the actual surgical and pharmacological strategies used to restore and maintain corneal transparency in terms of long-term survival and geographic coverage. In addition, we critically review the perspectives of anabolic agents, including vitamin A, hormones, growth factors, and novel promitotic and anti-inflammatory modulators, to assist corneal wound healing. We discuss the studies involving nanotechnology, gene therapy, and tissue reengineering as potential future strategies to work solely or in combination with corneal surgery to prevent or revert corneal blindness.
Collapse
Affiliation(s)
- Rosalia Antunes-Foschini
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Leidiane Adriano
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Adriana de Andrade Batista Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Amanda Pires Barbosa
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Luis Fernando Nominato
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Lara Cristina Dias
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Marina Zilio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Denny Marcos Garcia
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| | - Monica Alves
- Discipline of Ophthalmology and Otorhinolaryngology, Faculdade de
Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP,
Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck
Surgery, Faculdade de Medicina de Ribeirão, Universidade de São Paulo,
Ribeirão Preto, SP, Brazil
| |
Collapse
|
20
|
Jiang L, Rong A, Wei R, Diao J, Ding H, Wang W. Tear proteomics of orbital decompression for disfiguring exophthalmos in inactive thyroid-associated ophthalmopathy. Exp Ther Med 2020; 20:253. [PMID: 33178351 PMCID: PMC7654220 DOI: 10.3892/etm.2020.9383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
The progress and achievements that have been made in tear proteomics in thyroid-associated ophthalmopathy (TAO) are critical for exploring the pathogenesis of TAO and investigating potential therapeutic targets. However, the tear proteomics of orbital decompression for disfiguring exophthalmos in inactive TAO have yet to be properly investigated. In the present study, orbital decompression was performed to repair disfiguring exophthalmos in patients with inactive TAO. Tears were collected before and after orbital decompression in patients with inactive TAO. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was performed to explore the changes in tear proteomics. Bioinformatics analyses were then employed to analyze the functions of the differentially expressed proteins (DEPs) identified by LC-MS/MS. The palpebral fissure height and exophthalmia area were significantly restored after 1 month of orbital decompression such that they approached the normal levels identified in healthy eyeballs. Among the 669 proteins identified by LC-MS/MS, 83 proteins were changed significantly between the preoperative and postoperative stages in inactive TAO patients and healthy control individuals. The DEPs were predicted to be involved in numerous signaling pathways. Bioinformatics analyses revealed that pathways associated with the immune system, metabolism, programmed cell death, vesicle-mediated transport, neuronal system and extracellular matrix organization may fulfill significant roles in orbital decompression in patients with inactive TAO. Taken together, these results provided a preliminary understanding of the mechanism of orbital decompression for disfiguring exophthalmos in inactive TAO patients.
Collapse
Affiliation(s)
- Lihong Jiang
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China.,Department of Ophthalmology, Zhabei Central Hospital, Jingan District, Shanghai 200070, P.R. China
| | - Ao Rong
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital, Naval Medicine University, Shanghai 200003, P.R. China
| | - Jiale Diao
- Department of Ophthalmology, Changzheng Hospital, Naval Medicine University, Shanghai 200003, P.R. China
| | - Hui Ding
- Department of Ophthalmology, Zhabei Central Hospital, Jingan District, Shanghai 200070, P.R. China
| | - Wei Wang
- Department of Ophthalmology, Zhabei Central Hospital, Jingan District, Shanghai 200070, P.R. China
| |
Collapse
|
21
|
Gong B, Zheng L, Huang W, Pu J, Pan S, Liang Y, Wu Z, Tang J. Murine embryonic mesenchymal stem cells attenuated xerostomia in Sjögren-like mice via improving salivary gland epithelial cell structure and secretory function. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:954-963. [PMID: 32509066 PMCID: PMC7270676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Xerostomia is the main manifestation from patients with Sjögren syndrome (SS). However, traditional immunosuppressive agents are nearly invalid due to complicated etiopathogenesis in salivary glands, including aberrant immune dysregulation, epithelial structure destruction, and diminished secretory function. OBJECTIVE To investigate the therapeutic effect of murine embryonic mesenchymal stem cells (ME-MSCs) on salivary glandular epithelium structure and secretory function in Sjögren-like mice. METHODS Salivary flow rate (SFR), blood glucose, and body weight was weekly monitored among treatment group, disease group, and health control group. ME-MSCs were used to treat NOD mice via tail vein injection. HE staining and transmission electron microscope was used to evaluate the structure of salivary gland epithelial cells (SGEC). TUNEL fluorescence staining and PCNA immumohistochemical staining was used to evaluate the SGEC apoptosis and proliferation. The SGEC secretory function was tested by PAS staining and amylase immumohistochemical staining. RESULTS ME-MSC treatment could elevate SFR, restore the acini and micromorphologies, promote the SGEC proliferation, and suppress the SGEC apoptosis in NOD mice, but not restore to that in health control group. The SGEC structure was more intact in treatment group. Mucopolysaccharide and amylase of salivary acinar cells in treatment group was better than that in disease group, although transmission electron microscopy showed secretory granules were lower than those in healthy control. CONCLUSION ME-MSCs demonstrated its potential as a candidate treatment for xerostomia due to some effects on salivary flow rate in NOD mice by restoring the SGEC impairment and secretory function.
Collapse
Affiliation(s)
- Bangdong Gong
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Ling Zheng
- Division of Respiratory Medicine, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Wanxue Huang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Jincheng Pu
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Shengnan Pan
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Yuanyuan Liang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Zhenzhen Wu
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Jianping Tang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| |
Collapse
|
22
|
Lei S, Liu XM, Liu Y, Bi J, Zhu S, Chen X. Lipopolysaccharide Downregulates the Osteo-/Odontogenic Differentiation of Stem Cells From Apical Papilla by Inducing Autophagy. J Endod 2020; 46:502-508. [DOI: 10.1016/j.joen.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
|
23
|
Chronic dry eye induced corneal hypersensitivity, neuroinflammatory responses, and synaptic plasticity in the mouse trigeminal brainstem. J Neuroinflammation 2019; 16:268. [PMID: 31847868 PMCID: PMC6918709 DOI: 10.1186/s12974-019-1656-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Background Dry eye disease (DED) is a multifactorial disease associated with ocular surface inflammation, pain, and nerve abnormalities. We studied the peripheral and central neuroinflammatory responses that occur during persistent DED using molecular, cellular, behavioral, and electrophysiological approaches. Methods A mouse model of DED was obtained by unilateral excision of the extraorbital lachrymal gland (ELG) and Harderian gland (HG) of adult female C57BL/6 mice. In vivo tests were conducted at 7, 14, and 21 days (d) after surgery. Tear production was measured by a phenol red test and corneal alterations and inflammation were assessed by fluorescein staining and in vivo confocal microscopy. Corneal nerve morphology was evaluated by nerve staining. Mechanical corneal sensitivity was monitored using von Frey filaments. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous corneal nerve activity. RT-qPCR and immunostaining were used to determine RNA and protein levels at d21. Results We observed a marked reduction of tear production and the development of corneal inflammation at d7, d14, and d21 post-surgery in DED animals. Chronic DE induced a reduction of intraepithelial corneal nerve terminals. Behavioral and electrophysiological studies showed that the DED animals developed time-dependent mechanical corneal hypersensitivity accompanied by increased spontaneous ciliary nerve fiber electrical activity. Consistent with these findings, DED mice exhibited central presynaptic plasticity, demonstrated by a higher Piccolo immunoreactivity in the ipsilateral trigeminal brainstem sensory complex (TBSC). At d21 post-surgery, mRNA levels of pro-inflammatory (IL-6 and IL-1β), astrocyte (GFAP), and oxidative (iNOS2 and NOX4) markers increased significantly in the ipsilateral trigeminal ganglion (TG). This correlated with an increase in Iba1, GFAP, and ATF3 immunostaining in the ipsilateral TG of DED animals. Furthermore, pro-inflammatory cytokines (IL-6, TNFα, IL-1β, and CCL2), iNOS2, neuronal (ATF3 and FOS), and microglial (CD68 and Itgam) markers were also upregulated in the TBSC of DED animals at d21, along with increased immunoreactivity against GFAP and Iba1. Conclusions Overall, these data highlight peripheral sensitization and neuroinflammatory responses that participate in the development and maintenance of dry eye-related pain. This model may be useful to identify new analgesic molecules to alleviate ocular pain.
Collapse
|
24
|
Dietrich J, Schrader S. Towards Lacrimal Gland Regeneration: Current Concepts and Experimental Approaches. Curr Eye Res 2019; 45:230-240. [PMID: 31246108 DOI: 10.1080/02713683.2019.1637438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dry eye disease (DED) is a complex and multifactorial disease resulting in a continual cycle of tear hyperosmolarity and inflammation. Patients suffering from DED experience severe pain and visual impairments leading to a reduced quality of life. Aqueous-deficient dry eye (ADDE), mainly caused through a loss of functional lacrimal gland tissue, results in the most severe forms of DED. Despite a high prevalence, the current treatments remain palliative and may be insufficient to alleviate the symptoms. Consequently, investigations on experimental approaches for in situ lacrimal gland regeneration are of great clinical interest. This article reviews the current knowledge about processes involved in lacrimal gland regeneration, about lacrimal gland resident stem cells, and offers deductions about possible concepts for in situ lacrimal gland regeneration. Promising starting points might be the utilization of therapeutic proteins, such as bone morphogenetic protein 7, mesenchymal stem cells (MSC) or MSC-based treatments such as conditioned medium, lyophilized cell extracts or adult acinar cells. This review further summarizes current experimental approaches for the treatment of ADDE in animal models and patients. Approaches investigating side population stem cells, epithelial progenitor cells and MSC showed that the transplantation of these cells had therapeutic effects on ADDE. However, the most promising and best-studied experimental approach is the use of MSC for induction/enhancement of in situ lacrimal gland regeneration. Their immunomodulatory effects, low immunogenicity, promotion of tissue regeneration and involvement during spontaneous lacrimal regeneration are favorable traits for clinical applications. In addition, the efficacy and safety of allogeneic MSC transplantation have already been demonstrated in a small patient cohort.
Collapse
Affiliation(s)
- Jana Dietrich
- Department of Ophthalmology, Laboratory of Experimental Ophthalmology, PIUS-HOSPITAL, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Stefan Schrader
- Department of Ophthalmology, Laboratory of Experimental Ophthalmology, PIUS-HOSPITAL, Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
25
|
Shrinkhal, Singh A, Mittal SK, Agrawal A, Verma R, Yadav P. Waardenburg syndrome with dry eyes: A rare association. Taiwan J Ophthalmol 2019; 9:198-201. [PMID: 31572658 PMCID: PMC6759548 DOI: 10.4103/tjo.tjo_103_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 04/08/2019] [Indexed: 11/04/2022] Open
Abstract
Waardenburg syndrome (WS) is a rare congenital disorder primarily characterized by characteristic facial abnormalities as dystopia canthorum and synophrys; depigmentation of the hair, skin (premature graying of hair), and/or the iris of both eyes; and/or congenital deafness. Here, we report a rare case of WS with associated dry eyes. A 4-year-old female presented with blue eyes and no tear and nasal secretion production since birth. She was also deaf and dumb since birth. On examination, it was recognized as an atypical case of WS type 2 clinically, with several classical features such as white forelock, bilateral blue iris, hypopigmented fundus, smooth philtrum, bilateral profound hearing loss, and a rare association of bilateral dry eyes. The patient was given proper refractive correction, treatment of her dry eyes, and subjected to multidisciplinary approach as for the management of sensorineural hearing loss. It was a case of WS type 2 with a rare association of bilateral dry eyes.
Collapse
Affiliation(s)
- Shrinkhal
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Anupam Singh
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sanjeev Kumar Mittal
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ajai Agrawal
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Rupal Verma
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Preeti Yadav
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
26
|
Lee C, Guo H, Klinngam W, Janga SR, Yarber F, Peddi S, Edman MC, Tiwari N, Liu S, Louie SG, Hamm-Alvarez SF, MacKay JA. Berunda Polypeptides: Biheaded Rapamycin Carriers for Subcutaneous Treatment of Autoimmune Dry Eye Disease. Mol Pharm 2019; 16:3024-3039. [PMID: 31095909 DOI: 10.1021/acs.molpharmaceut.9b00263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The USFDA-approved immunosuppressive drug rapamycin (Rapa), despite its potency, is limited by poor bioavailability and a narrow therapeutic index. In this study, we sought to improve bioavailability of Rapa with subcutaneous (SC) administration and to test its therapeutic feasibility and practicality in a murine model of Sjögren's syndrome (SS), a systemic autoimmune disease with no approved therapies. To improve its therapeutic index, we formulated Rapa with a carrier termed FAF, a fusion of the human cytosolic FK506-binding protein 12 (FKBP12) and an elastin-like polypeptide (ELP). The resulting 97 kDa FAF (i) has minimal burst release, (ii) is "humanized", (iii) is biodegradable, (iv) solubilizes two Rapa per FAF, and (v) avoids organic solvents or amphiphilic carriers. Demonstrating high stability, FAF remained soluble and monodisperse with a hydrodynamic radius of 8 nm at physiological temperature. A complete pharmacokinetic (PK) analysis of FAF revealed that the bioavailability of SC FAF was 60%, with significantly higher blood concentration during the elimination phase compared to IV FAF. The plasma concentration of Rapa delivered by FAF was 8-fold higher with a significantly increased plasma-to-whole blood ratio relative to free Rapa, 24 h after injection. To evaluate therapeutic effects, FAF-Rapa was administered SC every other day for 2 weeks to male non-obese diabetic (NOD) mice, which develop an SS-like autoimmune-mediated lacrimal gland (LG) inflammation and other characteristic features of SS. Both FAF-Rapa and free Rapa exhibited immunomodulatory effects by significantly suppressing lymphocytic infiltration, gene expression of IFN-γ, MHC II, type I collagen and IL-12a, and cathepsin S (CTSS) activity in LG compared to controls. Serum chemistry and histopathological analyses in major organs revealed no apparent toxicity of FAF-Rapa. Given its improved PK and equipotent therapeutic efficacy compared to free Rapa, FAF-Rapa is of further interest for systemic treatments for autoimmune diseases like SS.
Collapse
Affiliation(s)
- Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Srikanth R Janga
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Frances Yarber
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Maria C Edman
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Nishant Tiwari
- Department of Pathology, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Siyu Liu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Stan G Louie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States.,Department of Biomedical Engineering, Viterbi School of Engineering , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
27
|
Zaheer M, Wang C, Bian F, Yu Z, Hernandez H, de Souza RG, Simmons KT, Schady D, Swennes AG, Pflugfelder SC, Britton RA, de Paiva CS. Protective role of commensal bacteria in Sjögren Syndrome. J Autoimmun 2018; 93:45-56. [PMID: 29934134 DOI: 10.1016/j.jaut.2018.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
CD25 knock-out (CD25KO) mice spontaneously develop Sjögren Syndrome (SS)-like inflammation. We investigated the role of commensal bacteria by comparing CD25KO mice housed in conventional or germ-free conditions. Germ-free CD25KO mice have greater corneal barrier dysfunction, lower goblet cell density, increased total lymphocytic infiltration score, increased expression of IFN-γ, IL-12 and higher a frequency of CD4+IFN-γ+ cells than conventional mice. CD4+ T cells isolated from female germ-free CD25KO mice adoptively transferred to naive immunodeficient RAG1KO recipients caused more severe Sjögren-like disease than CD4+ T cells transferred from conventional CD25KO mice. Fecal transplant in germ-free CD25KO mice reversed the spontaneous dry eye phenotype and decreased the generation of pathogenic CD4+IFN-γ+ cells. Our studies indicate that lack of commensal bacteria accelerates the onset and severity of dacryoadenitis and generates autoreactive CD4+T cells with greater pathogenicity in the CD25KO model, suggesting that the commensal bacteria or their metabolites products have immunoregulatory properties that protect exocrine glands in the CD25KO SS model.
Collapse
Affiliation(s)
- Mahira Zaheer
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Changjun Wang
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Fang Bian
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Humberto Hernandez
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Rodrigo G de Souza
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ken T Simmons
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Deborah Schady
- Department of Texas Children's Hospital Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Alton G Swennes
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Stephen C Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Basova LV, Tang X, Umasume T, Gromova A, Zyrianova T, Shmushkovich T, Wolfson A, Hawley D, Zoukhri D, Shestopalov VI, Makarenkova HP. Manipulation of Panx1 Activity Increases the Engraftment of Transplanted Lacrimal Gland Epithelial Progenitor Cells. Invest Ophthalmol Vis Sci 2017; 58:5654-5665. [PMID: 29098296 PMCID: PMC5678547 DOI: 10.1167/iovs.17-22071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Sjögren's syndrome is a systemic chronic autoimmune inflammatory disease that primarily targets the salivary and lacrimal glands (LGs). Currently there is no cure; therefore, cell-based regenerative therapy may be a viable option. LG inflammation is facilitated by extracellular ATP and mediated by the Pannexin-1 (Panx1) membrane channel glycoprotein. We propose that suppression of inflammation through manipulation of Panx1 activity can stimulate epithelial cell progenitor (EPCP) engraftment. Methods The expression of pannexins in the mouse and human LG was assayed by qRT-PCR and immunostaining. Acute LG inflammation was induced by interleukin-1α (IL1α) injection. Prior to EPCP transplantation, IL1α-injured or chronically inflamed LGs of thrombospondin-1–null mice (TSP-1−/−) were treated with the Panx1-specific blocking peptide (10panx) or the self-deliverable RNAi (sdRNAi). The efficacy of cell engraftment and the area of inflammation were analyzed by microscopy. Results Panx1 and Panx2 were detected in the mouse and human LGs. Panx1 and proinflammatory factors were upregulated during acute inflammation at days 1 to 3 after the IL1α injection. The analysis of EPCP engraftment demonstrated a significant and reproducible positive correlation between the 10panx peptide or Panx1 sdRNAi treatment and the number of engrafted cells. Similarly, treatment of the LG of the TSP-1−/− mouse (mouse model of chronic LG inflammation) by either Panx1 or Caspase-4 (also known as Casp11) sdRNAi showed a significant decrease in expression of proinflammatory markers and the lymphocyte infiltration. Conclusions Our results suggest that blocking Panx1 and/or Casp4 activities is a beneficial strategy to enhance donor cell engraftment and LG regeneration through the reduction of inflammation.
Collapse
Affiliation(s)
- Liana V Basova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Xin Tang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Takeshi Umasume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Anastasia Gromova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Tatiana Zyrianova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | | | | | - Dillon Hawley
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States.,Department of Cell Biology, University of Miami School of Medicine, Miami, Florida, United States
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
29
|
Wu AY, Daniel MG. Using stem cell biology to study and treat ophthalmologic and oculoplastic diseases. Taiwan J Ophthalmol 2017; 7:77-81. [PMID: 29018761 PMCID: PMC5602152 DOI: 10.4103/tjo.tjo_16_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the rapid growth of the stem cell biology field, the prospect of regenerative medicine across multiple tissue types comes closer to reality. Several groundbreaking steps paved the way for applying stem cell biology to the several subfields within ophthalmology and oculoplastic surgery. These steps include the use of stem cell transplants as well as studies of various ophthalmologic pathologies at the molecular level. The necessity of stem cell transplant is readily apparent, having already been used for several studies such as artificial lacrimal gland design and eyelid reconstruction. Investigating the stem cell biology behind oncological diseases of the eye has also developed recently, such as with the identification of specific markers to label cancer stem cells in orbital adenoid cystic carcinoma. The advent of induced pluripotent stem cells led to a burst of productivity in the field of regenerative medicine, making it possible to take a patient's own cells, reprogram them, and use them to either study patient-specific pathology in vitro or use them for eventual patient specific therapeutics. Patient-specific adipose-derived stem cells (ASCs) have been used for a variety of treatments, such as wound healing and burn therapies. As the fields of stem cell biology and regenerative medicine continue to progress, its use will become a mainstay of patient-specific cell therapies in the future.
Collapse
Affiliation(s)
- Albert Y Wu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael G Daniel
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
Garg A, Zhang X. Lacrimal gland development: From signaling interactions to regenerative medicine. Dev Dyn 2017; 246:970-980. [PMID: 28710815 DOI: 10.1002/dvdy.24551] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/13/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
The lacrimal gland plays a pivotal role in keeping the ocular surface lubricated, and protecting it from environmental exposure and insult. Dysfunction of the lacrimal gland results in deficiency of the aqueous component of the tear film, which can cause dryness of the ocular surface, also known as the aqueous-deficient dry eye disease. Left untreated, this disease can lead to significant morbidity, including frequent eye infections, corneal ulcerations, and vision loss. Current therapies do not treat the underlying deficiency of the lacrimal gland, but merely provide symptomatic relief. To develop more sustainable and physiological therapies, such as in vivo lacrimal gland regeneration or bioengineered lacrimal gland implants, a thorough understanding of lacrimal gland development at the molecular level is of paramount importance. Based on the structural and functional similarities between rodent and human eye development, extensive studies have been undertaken to investigate the signaling and transcriptional mechanisms of lacrimal gland development using mouse as a model system. In this review, we describe the current understanding of the extrinsic signaling interactions and the intrinsic transcriptional network governing lacrimal gland morphogenesis, as well as recent advances in the field of regenerative medicine aimed at treating dry eye disease. Developmental Dynamics 246:970-980, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, New York
| |
Collapse
|
31
|
A Ligation of the Lacrimal Excretory Duct in Mouse Induces Lacrimal Gland Inflammation with Proliferative Cells. Stem Cells Int 2017; 2017:4923426. [PMID: 28874911 PMCID: PMC5569877 DOI: 10.1155/2017/4923426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/12/2017] [Accepted: 05/21/2017] [Indexed: 01/02/2023] Open
Abstract
The lacrimal gland secretes tear fluids to ocular surface, which plays an indispensable role in maintaining the health of the ocular epithelia and protecting the ocular surface from the external environment. The dysfunction of the lacrimal glands causes dry eye disease due to a reduction in tear volume. The dry eye disease is becoming a popular public disease, for the number of patients is increasing, who have subjective symptom and loss of vision, which affect the quality of life. Inflammatory change in the damaged lacrimal gland has been reported; however, a major challenge is to establish a simple animal model to observe the changes. Here, we demonstrated an injury model by ligating the main excretory duct of the lacrimal gland, which is a simple and stable way to clearly understand the mechanism of lacrimal gland inflammation. We observed the process of injury and proliferation of the lacrimal gland and detected a population of lacrimal gland epithelial cells with proliferation potential which were also nestin-positive cells following duct ligation. This study successfully established an injury model to observe the tissue injury process of the lacrimal gland, and this model will be useful for analysis of the inflammation and proliferation mechanism in the future.
Collapse
|
32
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1126] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
RNA-Seq and CyTOF immuno-profiling of regenerating lacrimal glands identifies a novel subset of cells expressing muscle-related proteins. PLoS One 2017; 12:e0179385. [PMID: 28662063 PMCID: PMC5491009 DOI: 10.1371/journal.pone.0179385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/28/2017] [Indexed: 01/14/2023] Open
Abstract
The purpose of the present studies was to use CyTOF and RNA-Seq technologies to identify cells and genes involved in lacrimal gland repair that could be targeted to treat diseases of lacrimal gland dysfunction. Lacrimal glands of female BALB/c mice were experimentally injured by intra-glandular injection of interleukin 1 alpha (IL-1α). The lacrimal glands were harvested at various time points following injury (1 to 14 days) and used to either prepare single cell suspensions for CyTOF immuno-phenotyping analyses or to extract RNA for gene expression studies using RNA-Seq. CyTOF immuno-phenotyping identified monocytes and neutrophils as the major infiltrating populations 1 and 2 days post injury. Clustering of significantly differentially expressed genes identified 13 distinct molecular signatures: 3 associated with immune/inflammatory processes included genes up-regulated at days 1–2 and 3 associated with reparative processes with genes up-regulated primarily between days 4 and 5. Finally, clustering identified 65 genes which were specifically up-regulated 2 days post injury which was enriched for muscle specific genes. The expression of select muscle-related proteins was confirmed by immunohistochemistry which identified a subset of cells expressing these proteins. Double staining experiments showed that these cells are distinct from the myoepithelial cells. We conclude that experimentally induced injury to the lacrimal gland leads to massive infiltration by neutrophils and monocytes which resolved after 3 days. RNAseq and immunohistochemistry identified a group of cells, other than myoepithelial cells, that express muscle-related proteins that could play an important role in lacrimal gland repair.
Collapse
|
34
|
The lacrimal gland: development, wound repair and regeneration. Biotechnol Lett 2017; 39:939-949. [DOI: 10.1007/s10529-017-2326-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/23/2017] [Indexed: 01/16/2023]
|
35
|
Affiliation(s)
- Ana Raquel Rodrigues
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal and
| | - Raquel Soares
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal and
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Hirayama M, Tsubota K, Tsuji T. Generation of a Bioengineered Lacrimal Gland by Using the Organ Germ Method. Methods Mol Biol 2017; 1597:153-165. [PMID: 28361316 DOI: 10.1007/978-1-4939-6949-4_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In organogenesis including lacrimal gland development, cell arrangement within a tissue plays an important role. The lacrimal gland develops from embryonic ocular surface epithelium through reciprocal epithelial and mesenchymal interaction, which is organized by interactive regulation of various pathways of signaling molecules. Current development of an in vitro three-dimensional cell manipulation procedure to generate a bioengineered organ germ, named as the organ germ method, has shown the regeneration of a histologically correct and fully functional bioengineered lacrimal gland after engraftment in vivo. This method demonstrated a possibility of lacrimal gland organ replacement to treat dry eye disease, which has been a public health problem leading reduction of visual function. Here, we describe protocols for lacrimal gland germ regeneration using the organ germ method and methods for analyzing the function of the bioengineered lacrimal gland after its transplantation in vivo.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe, Hyogo, 650-0047, Japan.
- Organ Technologies Inc., Chiyoda-ku, Tokyo, 101-0048, Japan.
| |
Collapse
|
37
|
Bittencourt MKW, Barros MA, Martins JFP, Vasconcellos JPC, Morais BP, Pompeia C, Bittencourt MD, Evangelho KDS, Kerkis I, Wenceslau CV. Allogeneic Mesenchymal Stem Cell Transplantation in Dogs With Keratoconjunctivitis Sicca. CELL MEDICINE 2016; 8:63-77. [PMID: 28003932 DOI: 10.3727/215517916x693366] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Keratoconjunctivitis sicca (KCS) is a dysfunction in tear production associated with clinical signs, which include conjunctival hyperemia, ocular discharge, discomfort, pain, and, eventually, corneal vascularization and pigmentation. Immunosuppressive drugs are routinely administrated for long periods to treat KCS but with side effects and limited results. Evaluation of the clinical benefits of intralacrimal transplantation of allogeneic mesenchymal stem cells (MSCs) in dogs with mild-moderate and severe KCS was done. A total of 24 eyes with KCS from 15 dogs of different breeds were enrolled in the present study. A single transplantation of MSCs (1 × 106) directly into lacrimal glands (dorsal and third eyelid) was performed. The Schirmer tear tests (STTs) and ocular surface improvements were used to assess short- and long-term effects of these cells. The STTs were carried out on day 0 (before MSCs transplantation) and on days 7, 14, 21, and 28, as well as 6 and 12 months after MSC transplantation. Our data demonstrate that allogeneic MSC transplantation in KCS dogs is safe since no adverse effects were observed immediately after transplantation and in short- and long-term follow-ups. A statistically significant increase in the STT and ocular surface improvements was found in all eyes studied. In all the eyes with mild-moderate KCS, STT values reverted to those of healthy eyes, while in eyes with severe KCS, although complete reversion was not found, there was improvement in tear production and in other clinical signs. Our study shows that a single dose of a low number of MSCs can be used to treat KCS in dogs. In contrast to immunosuppressive drug use, MSC transplantation has an effect over a long period (up to 12 months), even after a single administration, and does not require daily drug administration.
Collapse
Affiliation(s)
- Maura K W Bittencourt
- Department of Ophthalmology, Universidade Estadual de Campinas (UNICAMP) , Campinas, SP , Brazil
| | - Michele A Barros
- † Regenera Medicina Veterinária Avançada , Campinas, SP , Brazil
| | | | | | - Bruna P Morais
- † Regenera Medicina Veterinária Avançada , Campinas, SP , Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Massie I, Dietrich J, Roth M, Geerling G, Mertsch S, Schrader S. Development of Causative Treatment Strategies for Lacrimal Gland Insufficiency by Tissue Engineering and Cell Therapy. Part 2: Reconstruction of Lacrimal Gland Tissue: What Has Been Achieved So Far and What Are the Remaining Challenges? Curr Eye Res 2016; 41:1255-1265. [DOI: 10.3109/02713683.2016.1151531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isobel Massie
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Jana Dietrich
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Mathias Roth
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Gerd Geerling
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sonja Mertsch
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Stefan Schrader
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
39
|
Farid M, Agrawal A, Fremgen D, Tao J, Chuyi H, Nesburn AB, BenMohamed L. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease. Ocul Immunol Inflamm 2016; 24:327-47. [PMID: 25535823 PMCID: PMC4478284 DOI: 10.3109/09273948.2014.986581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear production and/or an increase in tear evaporation; and (2) an age-related uncontrolled inflammation of the surface of the eye triggered by yet-to-be-determined internal immunopathological mechanisms, independent of tear deficiency and evaporation. In this review we summarize current knowledge on animal models that mimic both the severity and chronicity of inflammatory DED and that have been reliably used to provide insights into the immunopathological mechanisms of DED, and we provide an overview of the opportunities and limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune systems in the immunopathology of inflammatory DED and in testing novel immunotherapies aimed at delaying or reversing the uncontrolled age-related inflammatory DED.
Collapse
Affiliation(s)
- Marjan Farid
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Daniel Fremgen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Jeremiah Tao
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - He Chuyi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology, University of California Irvine, School of Medicine, Irvine, California, USA
- Biochemistry and Institute for Immunology, University of California Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The review examines the utility of stem cell biology in ophthalmology and oculoplastic surgery. RECENT FINDINGS The applicability of stem cell biology varies across a range of different subfields within ophthalmology and oculoplastic surgery. Resident stem cells have been identified in the lacrimal gland, corneal limbus, orbital fat, and muscles of the eye, and can potentially be applied for in-vitro cell and organ cultures with the intent of disease modeling and transplants. The discovery of adipocyte-derived stem cells offered a potentially powerful tool for a variety of oculoplastic applications, such as wound healing, skin rejuvenation, and burn therapeutics. Several groups are currently identifying new uses for stem cells in oculoplastic surgery. SUMMARY The need for stem cell treatment spans a wide array of subfields within ophthalmology, ranging from reconstruction of the eyelid to the generation of artificial lacrimal glands and oncological therapeutics. The advent of induced pluripotent stem cells opened the realm of regenerative medicine, making the modeling of patient-specific diseases a possibility. The identification and characterization of endogenous stem cell populations in the eye makes it possible to obtain specific tissues through induced pluripotent stem cells differentiation, permitting their use in transplants for oculoplastic surgery.
Collapse
|
41
|
Umazume T, Thomas WM, Campbell S, Aluri H, Thotakura S, Zoukhri D, Makarenkova HP. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci 2016; 56:8392-402. [PMID: 26747770 DOI: 10.1167/iovs.15-17477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The adult lacrimal gland (LG) is highly regenerative and is able to repair itself even after substantial damage; however, this ability to regenerate is lost with the development of dry eye conditions in chronically inflamed LGs.This study compares changes in the cell adhesion and cell matrix molecules and stem cell transcription factors in the LGs of healthy mice and of two mouse models of Sjögren's syndrome: nonobese diabetic (NOD) and MRL-lpr/lpr (MRL/lpr) mice during the early stage of inflammation. METHODS The LGs from 12- to 13-week-old female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for quantitative (q) RT-PCR and qRT-PCR Arrays, histology, immunohistochemistry, and Western blotting. RESULTS The extracellular matrix (ECM) and adhesion molecules RT2-PCR array combined with protein expression data revealed changes in the expression of integrins, matrix metalloproteinases, and other molecules, which are associated largely with invasion, attachment, and expansion of the lymphocytic cells, whereas changes in the stem cell transcription factors revealed substantial decrease in expression of transcription factors associated with epithelial stem/progenitor cell lineage. CONCLUSIONS We concluded that the expression of several important ECM components is significantly deregulated in the LG of two murine models of Sjögren's syndrome, suggesting an alteration of the epithelial stem/progenitor cell niche. This may result in profound effects on localization, activation, proliferation, and differentiation of the LG stem/progenitor cells and, therefore, LG regeneration.
Collapse
Affiliation(s)
- Takeshi Umazume
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - William M Thomas
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sabrina Campbell
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Hema Aluri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Suharika Thotakura
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Diagnosis and Health Promotion, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Helen P Makarenkova
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
42
|
Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases. Stem Cells Int 2016; 2016:7961816. [PMID: 27110252 PMCID: PMC4823508 DOI: 10.1155/2016/7961816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs), derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease.
Collapse
|
43
|
Hirayama M, Liu Y, Kawakita T, Shimmura S, Tsubota K. Cytokeratin expression in mouse lacrimal gland germ epithelium. Exp Eye Res 2015; 146:54-59. [PMID: 26658712 DOI: 10.1016/j.exer.2015.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/10/2015] [Accepted: 11/25/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE The lacrimal gland secretes tear fluids that protect the ocular surface epithelium, and its dysfunction leads to dry eye disease (DED). The functional restoration of the lacrimal gland by engraftment of a bioengineered lacrimal gland using lacrimal gland germ epithelial cells has been proposed to cure DED in mice. Here, we investigate the expression profile of cytokeratins in the lacrimal gland germ epithelium to clarify their unique characteristics. METHODS We performed quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC) analysis to clarify the expression profile of cytokeratin in the lacrimal gland germ epithelium. RESULTS The mRNA expression of keratin (KRT) 5, KRT8, KRT14, KRT15, and KRT18 in the lacrimal gland germ epithelium was increased compared with that in mouse embryonic stem cells and the lacrimal gland germ mesenchyme, as analyzed by Q-PCR. The expression level of KRT15 increased in the transition from stem cells to lacrimal gland germ epithelium, then decreased as the lacrimal gland matured. IHC revealed that the expression set of these cytokeratins in the lacrimal gland germ epithelium was different from that in the adult lacrimal gland. The expression of KRT15 was observed in the lacrimal gland germ epithelium, and it segmentalized into some of the basal cells in the intercanulated duct in mature gland. CONCLUSION We determined the expression profile of cytokeratins in the lacrimal gland epithelium, and identified KRT15 as a candidate unique cellular marker for the lacrimal gland germ epithelium.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Ying Liu
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Tetsuya Kawakita
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
44
|
Bioengineered Lacrimal Gland Organ Regeneration in Vivo. J Funct Biomater 2015; 6:634-49. [PMID: 26264034 PMCID: PMC4598675 DOI: 10.3390/jfb6030634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/18/2015] [Accepted: 07/23/2015] [Indexed: 12/23/2022] Open
Abstract
The lacrimal gland plays an important role in maintaining a homeostatic environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and causes ocular discomfort, significant visual disturbances, and a reduced quality of life. Current therapies for dry eye disease, including artificial tear eye drops, are transient and palliative. The lacrimal gland, which consists of acini, ducts, and myoepithelial cells, develops from its organ germ via reciprocal epithelial-mesenchymal interactions during embryogenesis. Lacrimal tissue stem cells have been identified for use in regenerative therapeutic approaches aimed at restoring lacrimal gland functions. Fully functional organ replacement, such as for tooth and hair follicles, has also been developed via a novel three-dimensional stem cell manipulation, designated the Organ Germ Method, as a next-generation regenerative medicine. Recently, we successfully developed fully functional bioengineered lacrimal gland replacements after transplanting a bioengineered organ germ using this method. This study represented a significant advance in potential lacrimal gland organ replacement as a novel regenerative therapy for dry eye disease. In this review, we will summarize recent progress in lacrimal regeneration research and the development of bioengineered lacrimal gland organ replacement therapy.
Collapse
|
45
|
Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:527926. [PMID: 25802852 PMCID: PMC4352730 DOI: 10.1155/2015/527926] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022]
Abstract
Keratoconjunctivitis sicca (KCS) or dry eye disease (DED) is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) implanted around the lacrimal glands in 12 dogs (24 eyes) with KCS, which is refractory to current available treatments. Schirmer tear test (STT) and ocular surface integrity were assessed at 0 (before treatment), 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P < 0.001) during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human.
Collapse
|
46
|
Vaginoperineal Fistula as a Complication of Perianal Surgery in a Patient with Sjögren's Syndrome: A Case Report. Case Rep Rheumatol 2014; 2014:359605. [PMID: 25295212 PMCID: PMC4175910 DOI: 10.1155/2014/359605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/01/2014] [Indexed: 01/20/2023] Open
Abstract
Forty-seven-year-old woman with Sjögren's syndrome had been operated on because of transsphincteric perianal fistula secondary to perianal abscess. Vaginal wall injury occurred during the course of the operation and injured tissue was repaired primarily. Three months later, patient suffered from the recurrence of perianal fistula symptoms and fistulectomy was performed once again under antibiotic suppression. Several months later, perineal discharge continued, and, therefore, patient was admitted to the hospital for the third time and a fistulotomy was performed. Two months after the third operation, patient was admitted with leukorrhea and a perineovaginal fistula was detected. This time, not only her surgical problem but also her immune system disorder was considered in the preoperative workup. Then, patient was hospitalized for the fourth time and “fistulectomy/perineoplasty” was performed successfully. We believe that patients with autoimmune disorders with or without medical treatment may have healing problems during the course of surgical processes and therefore such medical problems must be taken into consideration by the surgeons.
Collapse
|
47
|
Efficacy of topical mesenchymal stem cell therapy in the treatment of experimental dry eye syndrome model. Stem Cells Int 2014; 2014:250230. [PMID: 25136370 PMCID: PMC4127226 DOI: 10.1155/2014/250230] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/22/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022] Open
Abstract
Purpose. The current study was set out to address the therapeutic efficacy of topically applied mesenchymal stem cells (MSCs) on dry eye syndrome (DES) induced by benzalkonium chloride (BAC) in rats. Methods. Rats were divided into two groups just after establishment of DES. Eye drops containing either bromodeoxyuridine labeled MSCs (n = 9) or phosphate buffer solution (n = 7) were topically applied once daily for one week. Schirmer test, break-up time score, ocular surface evaluation tests, and corneal inflammatory index scoring tests were applied to all rats at baseline and after treatment. All rats were sacrificed after one week for histological and electron microscopic analysis. Results. Mean aqueous tear volume and tear film stability were significantly increased in rats treated with MSCs (P < 0.05). Infiltration of bromodeoxyuridine labeled MSCs into the meibomian glands and conjunctival epithelium was observed in MSCs treated rats. Increased number of secretory granules and number of goblet cells were observed in MSCs treated rats. Conclusion. Topical application of MSCs could be a safe and effective method for the treatment of DES and could potentially be used for further clinical research studies.
Collapse
|
48
|
Seo Y, Ji YW, Lee SM, Shim J, Noh H, Yeo A, Park C, Park MS, Chang EJ, Lee HK. Activation of HIF-1α (hypoxia inducible factor-1α) prevents dry eye-induced acinar cell death in the lacrimal gland. Cell Death Dis 2014; 5:e1309. [PMID: 24967971 PMCID: PMC4611733 DOI: 10.1038/cddis.2014.260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022]
Abstract
The pathogenesis of immune-mediated lacrimal gland (LG) dysfunction in Sjögren's syndrome has been thoroughly studied. However, the majority of dry eye (DE) is not related to Sjögren type, and its pathophysiology remains unclear. The purpose of this study was to determine and investigate the protective mechanisms against DE stress in mice. DE induced prominent blood vessel loss without apoptosis or necrosis in the LG. Autophagic vacuoles, distressed mitochondria, and stressed endoplasmic reticulum were observed via electron microscopy. Immunoblotting confirmed the increase in autophagic markers. Glycolytic activities were enhanced with increasing levels of succinate and malate that, in turn, activated hypoxia-inducible factor (HIF)-1α. Interestingly, the areas of stable HIF-1α expression overlapped with COX-2 and MMP-9 upregulation in LGs of DE-induced mice. We generated HIF-1α conditional knockout (CKO) mice in which HIF-1α expression was lost in the LG. Surprisingly, normal LG polarities and morphologies were completely lost with DE induction, and tremendous acinar cell apoptosis was observed. Similar to Sjögren's syndrome, CD3+ and CD11b+ cells infiltrated HIF-1α CKO LGs. Our results show that DE induced the expression of HIF-1α that activated autophagy signals to prevent further acinar cell damage and to maintain normal LG function.
Collapse
Affiliation(s)
- Y Seo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Y W Ji
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - S M Lee
- 1] Schephens Eye Research Institute, Harvard Medical School, Boston, MA, USA [2] Department of Ophthalmology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Gyeonggi-do, Korea
| | - J Shim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - H Noh
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - A Yeo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - C Park
- Clinical Trials Center, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - M S Park
- Clinical Trials Center, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | - E J Chang
- Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - H K Lee
- 1] Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea [2] Institute of Corneal Dystrophy Research, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
49
|
Hirayama M, Ogawa M, Oshima M, Sekine Y, Ishida K, Yamashita K, Ikeda K, Shimmura S, Kawakita T, Tsubota K, Tsuji T. Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ. Nat Commun 2014; 4:2497. [PMID: 24084941 PMCID: PMC3806342 DOI: 10.1038/ncomms3497] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/23/2013] [Indexed: 12/22/2022] Open
Abstract
The lacrimal gland has a multifaceted role in maintaining a homeostatic microenvironment for a healthy ocular surface via tear secretion. Dry-eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye diseases that cause corneal epithelial damage and results in significant loss of vision and a reduction in the quality of life. Here we demonstrate orthotopic transplantation of bioengineered lacrimal gland germs into adult mice with an extra-orbital lacrimal gland defect, a mouse model that mimics the corneal epithelial damage caused by lacrimal gland dysfunction. The bioengineered lacrimal gland germs and harderian gland germs both develop in vivo and achieve sufficient physiological functionality, including tear production in response to nervous stimulation and ocular surface protection. This study demonstrates the potential for bioengineered organ replacement to functionally restore the lacrimal gland. Lacrimal glands maintain a healthy corneal epithelium but are dysfunctional for example in dry-eye disease. Here, the authors transplant bioengineered lacrimal and harderian gland germs into mice, where they connect to the host duct and nervous system and restore lacrimal gland function.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- 1] Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160 8582, Japan [2] Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278 8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Current approaches for the development of regenerative therapies have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. The ultimate goal of regenerative therapy is to develop fully functioning bioengineered organs to replace lost or damaged organs that result from disease, injury, or aging. Almost all organs including ectodermal organs, such as teeth, hair, salivary glands, and lacrimal glands, arise from organ germs induced by reciprocal epithelial-mesenchymal interactions in the developing embryo. A novel concept to generate a bioengineered organ is to recreate organogenesis and thereby develop fully functioning bioengineered organs from the resulting bioengineered organ germ generated via 3-dimensional cell manipulation using immature stem cells in vitro. We have previously developed a bioengineering method for forming a 3-dimensional organ germ in the early developmental stages, termed the "bioengineered organ germ method." Recently, we reported fully functioning bioengineered tooth replacements after transplantation of a bioengineered tooth germ or a mature tooth unit comprising the bioengineered tooth and periodontal tissues. This concept could be adopted to generate not only teeth but also bioengineered hair follicles, salivary glands, and lacrimal glands. These studies emphasize the potential for bioengineered organ replacement in future regenerative therapies. In this review, we will summarize the strategies and the recent progress of research and development for the establishment of organ replacement regenerative therapies.
Collapse
|