1
|
Tabolacci C, Caruso A, Micai M, Galati G, Lintas C, Pisanu ME, Scattoni ML. Biogenic Amine Metabolism and Its Genetic Variations in Autism Spectrum Disorder: A Comprehensive Overview. Biomolecules 2025; 15:539. [PMID: 40305279 PMCID: PMC12025284 DOI: 10.3390/biom15040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Autism spectrum disorder (ASD) is a genetically heterogeneous syndrome characterized by repetitive, restricted, and stereotyped behaviors, along with persistent difficulties with social interaction and communication. Despite its increasing prevalence globally, the underlying pathogenic mechanisms of this complex neurodevelopmental disorder remain poorly understood. Therefore, the identification of reliable biomarkers could play a crucial role in enabling early screening and more precise classification of ASD subtypes, offering valuable insights into its physiopathology and aiding the customization of treatment or early interventions. Biogenic amines, including serotonin, histamine, dopamine, epinephrine, norepinephrine, and polyamines, are a class of organic compounds mainly produced by the decarboxylation of amino acids. A substantial portion of the genetic variation observed in ASD has been linked to genes that are either directly or indirectly involved in the metabolism of biogenic amines. Their potential involvement in ASD has become an area of growing interest due to their pleiotropic activities in the central nervous system, where they act as both neurotransmitters and neuromodulators or hormones. This review examines the role of biogenic amines in ASD, with a particular focus on genetic alterations in the enzymes responsible for their synthesis and degradation.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Angela Caruso
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Martina Micai
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Giulia Galati
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Maria Elena Pisanu
- Core Facilities, High Resolution NMR Unit, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Luisa Scattoni
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| |
Collapse
|
2
|
Design synthesis and evaluation of novel aldose reductase inhibitors: The case of indolyl–sulfonyl–phenols. Bioorg Med Chem 2020; 28:115575. [DOI: 10.1016/j.bmc.2020.115575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 01/28/2023]
|
3
|
Papastavrou N, Chatzopoulou M, Ballekova J, Cappiello M, Moschini R, Balestri F, Patsilinakos A, Ragno R, Stefek M, Nicolaou I. Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation. Eur J Med Chem 2017; 130:328-335. [DOI: 10.1016/j.ejmech.2017.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022]
|
4
|
Inhibition of aldose reductase activates hepatic peroxisome proliferator-activated receptor-α and ameliorates hepatosteatosis in diabetic db/db mice. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:789730. [PMID: 22110479 PMCID: PMC3216305 DOI: 10.1155/2012/789730] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 02/07/2023]
Abstract
We previously demonstrated in streptozotocin-induced diabetic mice that deficiency or inhibition of aldose reductase (AR) caused significant dephosphorylation of hepatic transcriptional factor PPARα, leading to its activation and significant reductions in serum lipid levels. Herein, we report that inhibition of AR by zopolrestat or by a short-hairpin RNA (shRNA) against AR caused a significant reduction in serum and hepatic triglycerides levels in 10-week old diabetic db/db mice. Meanwhile, hyperglycemia-induced phosphorylation of hepatic ERK1/2 and PPARα was significantly attenuated in db/db mice treated with zopolrestat or AR shRNA. Further, in comparison with the untreated db/db mice, the hepatic mRNA expression of Aco and ApoA5, two target genes for PPARα, was increased by 93% (P < 0.05) and 73% (P < 0.05) in zopolrestat-treated mice, respectively. Together, these data indicate that inhibition of AR might lead to significant amelioration in hyperglycemia-induced dyslipidemia and nonalcoholic fatty liver disease.
Collapse
|
5
|
Goldstein DS, Holmes C, Sewell L, Pechnik S, Kopin IJ. Effects of carbidopa and entacapone on the metabolic fate of the norepinephrine prodrug L-DOPS. J Clin Pharmacol 2011; 51:66-74. [PMID: 20220040 PMCID: PMC4893306 DOI: 10.1177/0091270010363476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND L-threo-3,4-dihydroxyphenylserine (L-DOPS), a norepinephrine (NE) prodrug, is investigational for orthostatic hypotension, which occurs commonly in Parkinson's disease. Adjunctive anti-parkinsonian drugs might interact with L-DOPS. We tested whether L-aromatic amino-acid decarboxylase inhibition by carbidopa (CAR) attenuates L-DOPS conversion to NE and blocks the pressor effect of L-DOPS, whereas catechol-O-methyltransferase inhibition by entacapone (ENT) interferes with L-DOPS metabolism and augments the pressor effect. METHODS Twelve patients with autonomic failure took 400 mg of L-DOPS with 200 mg of placebo (PLA), CAR, or ENT on different days. Plasma L-DOPS, NE, and deaminated NE metabolites (dihydroxyphenylglycol [DHPG], dihydroxymandelic acid [DHMA]) were measured. RESULTS L-DOPS+PLA and L-DOPS+ENT increased systolic pressure similarly (by 27 ± 8 and 24 ± 9 mm Hg at 3 hours). L-DOPS+CAR did not increase pressure. The peak increase in plasma NE (0.57 ± 0.11 nmol/L) averaged less than 1/15,000 th that in L-DOPS and less than 1/35th that in DHPG+DHMA. CAR prevented and ENT augmented responses of plasma DHPG and DHMA to L-DOPS. CONCLUSIONS After L-DOPS administration plasma, NE levels do not increase sufficiently to increase blood pressure. Pressor responses to L-DOPS seem to reflect NE produced extraneuronally that escapes extensive enzymatic deamination and O-methylation and evokes vasoconstriction before reaching the systemic circulation.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1620, USA.
| | | | | | | | | |
Collapse
|
6
|
Alka K, Ryan BJ, Dolly JO, Henehan GTM. Substrate profiling and aldehyde dismutase activity of the Kvβ2 subunit of the mammalian Kv1 potassium channel. Int J Biochem Cell Biol 2010; 42:2012-8. [PMID: 20833259 DOI: 10.1016/j.biocel.2010.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/10/2010] [Accepted: 09/02/2010] [Indexed: 11/29/2022]
Abstract
Voltage-dependent potassium channels (Kv) are involved in various cellular signalling processes by governing the membrane potential of excitable cells. The cytosolic face of these α subunit-containing channels is associated with β subunits that can modulate channel responses. Surprisingly, the β subunit of the mammalian Kv1 channels, Kvβ2, has a high level of sequence homology with the aldo-keto reductase (AKR) superfamily of proteins. Recent studies have shown that Kvβ2 can catalyze the reduction of aldehydes and, most significantly, that channel function is modulated when Kvβ2-bound NADPH is concomitantly oxidized. As a result, the redox chemistry of this subunit is crucial to understanding its role in K(+) channel modulation. The present study has extended knowledge of the substrate profile of this subunit using a single turnover fluorimetric assay. Kvβ2 was found to catalyse the reduction of aromatic aldehyde substrates such as 2, 3 and 4-nitrobenzaldehydes, 4-hydroxybenzaldehyde, pyridine 2-aldehyde and benzaldehyde. The presence of an electron withdrawing group at the position para to the aldehyde in aromatic compounds facilitated reduction. Aliphatic aldehydes proved to be poor substrates. We devised a simple HPLC-based assay to identify Kvβ2 reaction products. Using this assay we showed, for the first time, that Kvβ2 can catalyze a slow aldehyde dismutation reaction using 4-nitrobenzaldehyde as substrate and have identified the products of this reaction. The ability of Kvβ2 to carry out both an aldehyde reduction and a dismutation reaction is discussed in the light of current thinking on the role of redox chemistry in channel modulation.
Collapse
Affiliation(s)
- Kumari Alka
- School of Food Science and Environmental Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | | | | | | |
Collapse
|
7
|
Jiang Y, Calcutt NA, Ramos KM, Rames KM, Mizisin AP. Novel sites of aldose reductase immunolocalization in normal and streptozotocin-diabetic rats. J Peripher Nerv Syst 2007; 11:274-85. [PMID: 17117935 DOI: 10.1111/j.1529-8027.2006.00099.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucose metabolism by aldose reductase (AR) is implicated in the pathogenesis of many diabetic complications, including neuropathy. We have re-evaluated the distribution of AR in the sciatic nerve and dorsal root ganglion (DRG) of normal rats, expanded these observations to describe the location of AR in the spinal cord and footpad skin, and investigated whether diabetes alters the distribution of AR. In sciatic nerve, AR was restricted to cytoplasm of myelinated Schwann cells and endothelial cells of epineurial, but not endoneurial, blood vessels. AR immunoreactivity (IR) was present in satellite cells in the DRG. In skin, AR-IR was detected in vascular endothelial cells, Schwann cells of myelinated fibers, and axons of perivascular sympathetic nerves. AR was localized selectively to oligodendrocytes of the white matter of spinal cord. The distribution of AR-IR in sciatic nerve, DRG, skin, and spinal cord was not altered by up to 12 weeks of streptozotocin-induced diabetes. Identification of perineuronal satellite cells, oligodendrocytes, and perivascular sympathetic nerves as AR-expressing cells reveals them as cellular sites with the potential to contribute to diabetic neuropathy.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Pathology (Neuropathology), School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
8
|
Sango K, Suzuki T, Yanagisawa H, Takaku S, Hirooka H, Tamura M, Watabe K. High glucose-induced activation of the polyol pathway and changes of gene expression profiles in immortalized adult mouse Schwann cells IMS32. J Neurochem 2006; 98:446-58. [PMID: 16805838 DOI: 10.1111/j.1471-4159.2006.03885.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We investigated the polyol pathway activity and the gene expression profiles in immortalized adult mouse Schwann cells (IMS32) under normal (5.6 mM) and high (30 and 56 mM) glucose conditions for 7-14 days in culture. Messenger RNA and the protein expression of aldose reductase (AR) and the intracellular sorbitol and fructose contents were up-regulated in IMS32 under high glucose conditions compared with normal glucose conditions. By employing DNA microarray and subsequent RT-PCR/northern blot analyses, we observed significant up-regulation of the mRNA expressions for serum amyloid A3 (SAA3), angiopoietin-like 4 (ANGPTL4) and ecotropic viral integration site 3 (Evi3), and the down-regulation of aldehyde reductase (AKR1A4) mRNA expression in the cells under high glucose (30 mM) conditions. The application of an AR inhibitor, SNK-860, to the high glucose medium ameliorated the increased sorbitol and fructose contents and the reduced AKR1A4 mRNA expression, while it had no effect on mRNA expressions for SAA3, ANGPTL4 or Evi3. Considering that the exposure to the high glucose (>or= 30 mM) conditions mimicking hyperglycaemia in vivo accelerated the polyol pathway in IMS32, but not in other previously reported Schwann cells, the culture system of IMS32 under those conditions may provide novel findings about the polyol pathway-related abnormalities in diabetic neuropathy.
Collapse
Affiliation(s)
- Kazunori Sango
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Logendra S, Ribnicky DM, Yang H, Poulev A, Ma J, Kennelly EJ, Raskin I. Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. PHYTOCHEMISTRY 2006; 67:1539-46. [PMID: 16806328 DOI: 10.1016/j.phytochem.2006.05.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 05/05/2006] [Accepted: 05/10/2006] [Indexed: 05/10/2023]
Abstract
An ethanolic extract of Artemisia dracunculus L. having antidiabetic activity was examined as a possible aldose reductase (ALR2) inhibitor, a key enzyme involved in diabetic complications. At 3.75 microg/mL, the total extract inhibited ALR2 activity by 40%, while quercitrin, a known ALR2 inhibitor, inhibited its activity by 54%. Bioactivity guided fractionation and isolation of the compounds that inhibit ALR2 activity was carried out with the total ethanolic extract yielding four bioactive compounds with ALR2 inhibitory activity ranging from 58% to 77% at 3.75 microg/mL. Using LC/MS, (1)H NMR, (13)C NMR and 2D NMR spectroscopic analyses, the four compounds were identified as 4,5-di-O-caffeoylquinic acid, davidigenin, 6-demethoxycapillarisin and 2',4'-dihydroxy-4-methoxydihydrochalcone. This is the first report on their isolation from A. dracunculus and the ALR2 inhibitory activity of 4,5-di-O-caffeoylquinic acid, 6-demethoxycapillarisin and 2',4'-dihydroxy-4-methoxydihydrochalcone. These results suggest a use of the extract of A. dracunculus for ameliorating diabetic complications.
Collapse
Affiliation(s)
- Sithes Logendra
- Biotech Center, Cook College, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004; 56:331-49. [PMID: 15317907 DOI: 10.1124/pr.56.3.1] [Citation(s) in RCA: 689] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article provides an update about catecholamine metabolism, with emphasis on correcting common misconceptions relevant to catecholamine systems in health and disease. Importantly, most metabolism of catecholamines takes place within the same cells where the amines are synthesized. This mainly occurs secondary to leakage of catecholamines from vesicular stores into the cytoplasm. These stores exist in a highly dynamic equilibrium, with passive outward leakage counterbalanced by inward active transport controlled by vesicular monoamine transporters. In catecholaminergic neurons, the presence of monoamine oxidase leads to formation of reactive catecholaldehydes. Production of these toxic aldehydes depends on the dynamics of vesicular-axoplasmic monoamine exchange and enzyme-catalyzed conversion to nontoxic acids or alcohols. In sympathetic nerves, the aldehyde produced from norepinephrine is converted to 3,4-dihydroxyphenylglycol, not 3,4-dihydroxymandelic acid. Subsequent extraneuronal O-methylation consequently leads to production of 3-methoxy-4-hydroxyphenylglycol, not vanillylmandelic acid. Vanillylmandelic acid is instead formed in the liver by oxidation of 3-methoxy-4-hydroxyphenylglycol catalyzed by alcohol and aldehyde dehydrogenases. Compared to intraneuronal deamination, extraneuronal O-methylation of norepinephrine and epinephrine to metanephrines represent minor pathways of metabolism. The single largest source of metanephrines is the adrenal medulla. Similarly, pheochromocytoma tumor cells produce large amounts of metanephrines from catecholamines leaking from stores. Thus, these metabolites are particularly useful for detecting pheochromocytomas. The large contribution of intraneuronal deamination to catecholamine turnover, and dependence of this on the vesicular-axoplasmic monoamine exchange process, helps explain how synthesis, release, metabolism, turnover, and stores of catecholamines are regulated in a coordinated fashion during stress and in disease states.
Collapse
Affiliation(s)
- Graeme Eisenhofer
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Dr., MSC-1620, Bethesda, MD 20892-1620, USA.
| | | | | |
Collapse
|
11
|
Eisenhofer G, Goldstein DS, Kopin IJ, Crout JR. Pheochromocytoma: rediscovery as a catecholamine-metabolizing tumor. Endocr Pathol 2003; 14:193-212. [PMID: 14586065 DOI: 10.1007/s12022-003-0012-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Catecholamine-producing tumors are rare neoplasms derived mainly from chromaffin cells of the adrenal medulla (pheochromocytomas) or, in about 10% of cases, from paraganglia (paragangliomas). Diagnosis of these tumors relies heavily on measurements of urinary or plasma catecholamines or catecholamine metabolites. The metabolites are usually thought to be produced after release of catecholamines into the bloodstream. This, however, ignores observations of over 40 yr ago that catecholamines are metabolized within pheochromocytoma tumor cells. Development of improved methods for measurement of catecholamine metabolites, in particular, plasma concentrations of free normetanephrine and metanephrine, has reestablished the importance of intratumoral catecholamine metabolism. In patients with pheochromocytoma, over 90% of the elevations in plasma free normetanephrine and metanephrine result from metabolism of catecholamines within pheochromocytoma tumor cells. This process occurs continuously and independently of variations in catecholamine release. As a consequence, measurements of plasma concentrations and urinary outputs of normetanephrine and metanephrine provide more reliable methods for diagnosis of pheochromocytoma than measurements of the parent amines. Rediscovery of the importance of intratumoral catecholamine metabolism is leading to a reevaluation of the procedures used to diagnose pheochromocytoma. This review provides an update on the diagnosis of pheochromocytoma, with emphasis on identifying and correcting relevant misconceptions about catecholamine metabolism.
Collapse
Affiliation(s)
- Graeme Eisenhofer
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|