1
|
Gow I, Smith NC, Stark D, Ellis J. Laboratory diagnostics for human Leishmania infections: a polymerase chain reaction-focussed review of detection and identification methods. Parasit Vectors 2022; 15:412. [PMID: 36335408 PMCID: PMC9636697 DOI: 10.1186/s13071-022-05524-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/02/2022] [Indexed: 11/08/2022] Open
Abstract
Leishmania infections span a range of clinical syndromes and impact humans from many geographic foci, but primarily the world's poorest regions. Transmitted by the bite of a female sand fly, Leishmania infections are increasing with human movement (due to international travel and war) as well as with shifts in vector habitat (due to climate change). Accurate diagnosis of the 20 or so species of Leishmania that infect humans can lead to the successful treatment of infections and, importantly, their prevention through modelling and intervention programs. A multitude of laboratory techniques for the detection of Leishmania have been developed over the past few decades, and although many have drawbacks, several of them show promise, particularly molecular methods like polymerase chain reaction. This review provides an overview of the methods available to diagnostic laboratories, from traditional techniques to the now-preferred molecular techniques, with an emphasis on polymerase chain reaction-based detection and typing methods.
Collapse
Affiliation(s)
- Ineka Gow
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Nicholas C. Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Damien Stark
- Department of Microbiology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010 Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
2
|
Hussein BK, Ibrahium OM, Alamin MF, Ahmed LAM, Abuswar SAE, Abdelraheem MH, Ibrahim ME. The Spike Protein of SARS-coV2 19B (S) Clade Mirrors Critical Features of Viral Adaptation and Coevolution. Microorganisms 2022; 10:2017. [PMID: 36296293 PMCID: PMC9609303 DOI: 10.3390/microorganisms10102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 12/01/2022] Open
Abstract
Pathogens including viruses evolve in tandem with diversity in their animal and human hosts. For SARS-coV2, the focus is generally for understanding such coevolution on the virus spike protein, since it demonstrates high mutation rates compared to other genome regions, particularly in the receptor-binding domain (RBD). Viral sequences of the SARS-coV2 19B (S) clade and variants of concern from different continents were investigated, with a focus on the A.29 lineage, which presented with different mutational patterns within the 19B (S) lineages in order to learn more about how SARS-coV2 may have evolved and adapted to widely diverse populations globally. Results indicated that SARS-coV2 went through evolutionary constrains and intense selective pressure, particularly in Africa. This was manifested in a departure from neutrality with excess nonsynonymous mutations and a negative Tajima D consistent with rapid expansion and directional selection as well as deletion and deletion-frameshifts in the N-terminal domain (NTD region) of the spike protein. In conclusion, we hypothesize that viral transmission during epidemics through populations of diverse genomic structures and marked complexity may be a significant factor for the virus to acquire distinct patterns of mutations within these populations in order to ensure its survival and fitness, explaining the emergence of novel variants and strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Muntaser E. Ibrahim
- Unit of Disease and Diversity, Department of Molecular Biology, Institute of Endemic Diseases, Khartoum University, Khartoum P.O Box 102, Sudan
| |
Collapse
|
3
|
Jariyapan N, Bates MD, Bates PA. Molecular identification of two newly identified human pathogens causing leishmaniasis using PCR-based methods on the 3' untranslated region of the heat shock protein 70 (type I) gene. PLoS Negl Trop Dis 2021; 15:e0009982. [PMID: 34847144 PMCID: PMC8631652 DOI: 10.1371/journal.pntd.0009982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
PCR-based methods to amplify the 3′ untranslated region (3′-UTR) of the heat shock protein 70 (type I) gene (HSP70-I) have previously been used for typing of Leishmania but not with Leishmania (Mundinia) martiniquensis and L. (Mundinia) orientalis, newly identified human pathogens. Here, the 3′-UTRs of HSP70-I of L. martiniquensis, L. orientalis, and 10 other species were sequenced and analyzed. PCR-Restriction Fragment Length Polymorphism (RFLP) analysis targeting the 3′-UTR of HSP70-I was developed. Also, the detection limit of HSP70-I-3′-UTR PCR methods was compared with two other commonly used targets: the 18S small subunit ribosomal RNA (SSU-rRNA) gene and the internal transcribed spacer 1 region of the rRNA (ITS1-rRNA) gene. Results showed that HSP70-I-3′-UTR PCR methods could be used to identify and differentiate between L. martiniquensis (480–2 bp) and L. orientalis (674 bp) and distinguished them from parasites of the subgenus Viannia and of the subgenus Leishmania. PCR-RFLP patterns of the 3′-UTR of HSP70-I fragments digested with BsuRI restriction enzyme successfully differentiated L. martiniquensis, L. orientalis, L. braziliensis, L. guyanensis = L. panamensis, L. mexicana = L. aethiopica = L. tropica, L. amazonensis, L. major, and L. donovani = L. infantum. For the detection limit, the HSP70-I-3′-UTR PCR method could detect the DNA of L. martiniquensis and L. orientalis at the same concentration, 1 pg/μL, at a similar level to the SSU-rRNA PCR. The PCR that amplified ITS1-rRNA was more sensitive (0.01 pg/μL) than that of the HSP70-I-3′-UTR PCR. However, the sizes of both SSU-rRNA and ITS1-rRNA PCR amplicons could not differentiate between L. martiniquensis and L. orientalis. This is the first report of using HSP70-I-3′-UTR PCR based methods to identify the parasites causing leishmaniasis in Thailand. Also, the BsuRI-PCR-RFLP method can be used for differentiating some species within other subgenera. L. martiniquensis and L. orientalis, newly identified human pathogens, cause visceral leishmaniasis and cutaneous leishmaniasis in HIV-negative patients, respectively. However, both parasite species cause disseminated cutaneous leishmaniasis accompanying visceral leishmaniasis in HIV-positive patients. Species typing in leishmaniasis is important in diagnostics, epidemiology, and clinical studies. We show here that the 3′-UTR of HSP70-I region is a suitable target for PCR-based identification and discrimination between L. martiniquensis and L. orientalis. The technique is simple to perform and can be implemented in all settings where PCR is available. In species with similar PCR product size, the BsuRI-PCR-RFLP patterns of the 3′-UTR of HSP70-I fragments can be used for differentiating some species within other subgenera. However, where identification of species is essential or there is a travel history outside Thailand, sequencing of the HSP70-I-3′-UTR product or a similar discriminating target sequence is recommended. The PCR-based methods used in this study can also be applicable to the identification of Leishmania species obtained from vectors and reservoirs.
Collapse
Affiliation(s)
- Narissara Jariyapan
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| | - Michelle D. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
4
|
Bel Hadj Ali I, Chouaieb H, Saadi Ben Aoun Y, Harigua-Souiai E, Souguir H, Yaacoub A, El Dbouni O, Harrat Z, Mukhtar MM, Ben Said M, Haddad N, Fathallah-Mili A, Guizani I. Dipeptidyl peptidase III as a DNA marker to investigate epidemiology and taxonomy of Old World Leishmania species. PLoS Negl Trop Dis 2021; 15:e0009530. [PMID: 34310607 PMCID: PMC8341715 DOI: 10.1371/journal.pntd.0009530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/05/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase III (DPPIII) member of M49 peptidase family is a zinc-dependent metallopeptidase that cleaves dipeptides sequentially from the N-terminus of its substrates. In Leishmania, DPPIII, was reported with other peptidases to play a significant role in parasites' growth and survival. In a previous study, we used a coding sequence annotated as DPPIII to develop and evaluate a PCR assay that is specific to dermotropic Old World (OW) Leishmania species. Thus, our objective was to further assess use of this gene for Leishmania species identification and for phylogeny, and thus for diagnostic and molecular epidemiology studies of Old World Leishmania species. METHODOLOGY Orthologous DDPIII genes were searched in all Leishmania genomes and aligned to design PCR primers and identify relevant restriction enzymes. A PCR assays was developed and seventy-two Leishmania fragment sequences were analyzed using MEGA X genetics software to infer evolution and phylogenetic relationships of studied species and strains. A PCR-RFLP scheme was also designed and tested on 58 OW Leishmania strains belonging to 8 Leishmania species and evaluated on 75 human clinical skin samples. FINDINGS Sequence analysis showed 478 variable sites (302 being parsimony informative). Test of natural selection (dN-dS) (-0.164, SE = 0.013) inferred a negative selection, characteristic of essential genes, corroborating the DPPIII importance for parasite survival. Inter- and intra-specific genetic diversity was used to develop universal amplification of a 662bp fragment. Sequence analyses and phylogenies confirmed occurrence of 6 clusters congruent to L. major, L. tropica, L. aethiopica, L. arabica, L. turanica, L. tarentolae species, and one to the L. infantum and L. donovani species complex. A PCR-RFLP algorithm for Leishmania species identification was designed using double digestions with HaeIII and KpnI and with SacI and PvuII endonucleases. Overall, this PCR-RFLP yielded distinct profiles for each of the species L. major, L. tropica, L. aethiopica, L. arabica and L. turanica and the L. (Sauroleishmania) L. tarentolae. The species L. donovani, and L. infantum shared the same profile except for strains of Indian origin. When tested on clinical samples, the DPPIII PCR showed sensitivities of 82.22% when compared to direct examination and was able to identify 84.78% of the positive samples. CONCLUSION The study demonstrates that DPPIII gene is suitable to detect and identify Leishmania species and to complement other molecular methods for leishmaniases diagnosis and epidemiology. Thus, it can contribute to evidence-based disease control and surveillance.
Collapse
Affiliation(s)
- Insaf Bel Hadj Ali
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Hamed Chouaieb
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Yusr Saadi Ben Aoun
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Hejer Souguir
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Alia Yaacoub
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Oussaïma El Dbouni
- Department of Infectious Diseases, Rafik Hariri Hospital, Beirut, Lebanon
| | - Zoubir Harrat
- Laboratoire d’Eco-épidémiologie Parasitaire et Génétique des Populations, Institut Pasteur d’Algérie, Algiers, Algeria
| | | | - Moncef Ben Said
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Nabil Haddad
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health Lebanese University, Hadath, Lebanon
| | - Akila Fathallah-Mili
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| |
Collapse
|
5
|
Eslami G, Hatefi S, Ramezani V, Tohidfar M, Churkina TV, Orlov YL, Hosseini SS, Boozhmehrani MJ, Vakili M. Molecular characteristic of treatment failure clinical isolates of Leishmania major. PeerJ 2021; 9:e10969. [PMID: 33763300 PMCID: PMC7956003 DOI: 10.7717/peerj.10969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/28/2021] [Indexed: 01/06/2023] Open
Abstract
Background Leishmaniasis is a prevalent tropical disease caused by more than 20 Leishmania species (Protozoa, Kinetoplastida and Trypanosomatidae). Among different clinical forms of the disease, cutaneous leishmaniasis is the most common form, with an annual 0.6–1 million new cases reported worldwide. This disease’s standard treatment is pentavalent antimonial (SbV) that have been used successfully since the first half of the 20th century as a first-line drug. However, treatment failure is an increasing problem that is persistently reported from endemic areas. It is important to define and standardize tests for drug resistance in cutaneous leishmaniasis. SbV must be reduced to its trivalent active form (SbIII). This reduction occurs within the host macrophage, and the resultant SbIIIenters amastigotes via the aquaglyceroporin1 (AQP1) membrane carrier. Overexpression of AQP1 results in hypersensitivity of the parasites to SbIII, but resistant phenotypes accompany reduced expression, inactivation mutations, or deletion of AQP1. Hence, in this study, a phylogenetic analysis using barcode gene COXII and kDNA minicircle and expression analysis of AQP1 were performed in treatment failure isolates to assess the isolates’ molecular characteristics and to verify possible association with drug response. Methods Samples in this study were collected from patients with cutaneous leishmaniasis referred to the Diagnosis Laboratory Center in Isfahan Province, Iran, from October 2017 to December 2019. Among them, five isolates (code numbers 1–5) were categorized as treatment failures. The PCR amplification of barcode gene COXII and kDNA minicircle were done and subsequently analyzed using MEGA (10.0.5) to perform phylogenetics analysis of Treatment failures (TF) and Treatment response (TR) samples. Relative quantification of the AQP1 gene expression of TF and TR samples was assessed by real-time PCR. Results All samples were classified as L. major. No amplification failure was observed in the cases of barcode gene COXII and kDNA minicircle amplification. Having excluded the sequences with complete homology using maximum parsimony with the Bootstrap 500 method, four major groups were detected to perform phylogenetic analysis using COXII. The phylogenetic analysis using the barcode target of minicircle showed that all five treatment failure isolates were grouped in a separate sub-clade. Conclusions We concluded that the barcode gene COXII and the minicircle kDNA were suitable for identification, differentiation and phylogenetic analysis in treatment failure clinical isolates of Leishmania major. Also, AQP1 gene expression analyses showed that treatment failure isolates had less expression than TR isolates. The isolate with TF and overexpression of the AQP1 gene of other molecular mechanisms such as overexpression of ATP-binding cassette may be involved in the TR, such as overexpression of ATP-binding cassette which requires further research.
Collapse
Affiliation(s)
- Gilda Eslami
- Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samira Hatefi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Pharmaceutical Research Center, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Tohidfar
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Tatyana V Churkina
- Insitute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Yuriy L Orlov
- Insitute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia.,The Digital Health Institute, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Saeedeh Sadat Hosseini
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Boozhmehrani
- Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Vakili
- Department of Community and Preventive Medicine, Health Monitoring Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
6
|
Banu SS, Meyer W, Ferreira-Paim K, Wang Q, Kuhls K, Cupolillo E, Schönian G, Lee R. A novel multilocus sequence typing scheme identifying genetic diversity amongst Leishmania donovani isolates from a genetically homogeneous population in the Indian subcontinent. Int J Parasitol 2019; 49:555-567. [PMID: 31108098 DOI: 10.1016/j.ijpara.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 01/29/2023]
Abstract
In the Indian subcontinent, infection with Leishmania donovani can cause fatal visceral leishmaniasis. Genetic variation in L. donovani is believed to occur rapidly from environmental changes and through selective drug pressures, thereby allowing continued disease occurrence in this region. All previous molecular markers that are commonly in use multilocus microsatellite typing and multilocus sequence typing, were monomorphic in L. donovani originating from the Indian subcontinent (with only a few exceptions) and hence are not suitable for this region. An multilocus sequence typing scheme consisting of a new set of seven housekeeping genes was developed in this study, based on recent findings from whole genome sequencing data. This new scheme was used to assess the genetic diversity amongst 22 autochthonous L. donovani isolates from Bangladesh. Nineteen additional isolates of the L. donovani complex (including sequences of L. donovani reference strain BPK282A1) from other countries were included for comparison. By using restriction fragment length polymorphism of the internal transcribed spacer 1 region (ITS1-RFLP) and ITS1 sequencing, all Bangladeshi isolates were confirmed to be L. donovani. Population genetic analyses of 41 isolates using the seven new MLST loci clearly separated L. donovani from Leishmania infantum. With this multilocus sequence typing scheme, seven genotypes were identified amongst Bangladeshi L. donovani isolates, and these isolates were found to be phylogenetically different compared with those from India, Nepal, Iraq and Africa. This novel multilocus sequence typing approach can detect intra- and inter-species variations within the L. donovani complex, but most importantly these molecular markers can be applied to resolve the phylogenetically very homogeneous L. donovani strains from the Indian subcontinent. Four of these markers were found suitable to differentiate strains originating from Bangladesh, with marker A2P being the most discriminative one.
Collapse
Affiliation(s)
- Sultana Shahana Banu
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Directorate General of Health Services (DGHS), Ministry of Health and Family Welfare (MOHFW), Dhaka, Bangladesh
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Department of Microbiology, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Qinning Wang
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Elisa Cupolillo
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute - Fiocruz, Rio de Janeiro, Brazil
| | - Gabriele Schönian
- Institute for Microbiology and Hygiene CC05, Charité University Medicine Berlin, Berlin, Germany
| | - Rogan Lee
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Abstract
Visceral leishmaniasis (VL), a deadly parasitic disease, is a major public health concern globally. Countries affected by VL have signed the London Declaration on Neglected Tropical Diseases and committed to eliminate VL as a public health problem by 2020. To achieve and sustain VL elimination, it will become progressively important not to miss any remaining cases in the community who can maintain transmission. This requires accurate identification of symptomatic and asymptomatic carriers using highly sensitive diagnostic tools at the primary health service setting. The rK39 rapid diagnostic test (RDT) is the most widely used tool and with its good sensitivity and specificity is the first choice for decentralized diagnosis of VL in endemic areas. However, this test cannot discriminate between current, subclinical, or past infections and is useless for diagnosis of relapses and as a prognostic (cure) test. Importantly, as the goal of elimination of VL as a public health problem is approaching, the number of people susceptible to infection will increase. Therefore, correct diagnosis using a highly sensitive diagnostic test is crucial for applying appropriate treatment and management of cases. Recent advances in molecular techniques have improved Leishmania detection and quantification, and therefore this technology has become increasingly relevant due to its possible application in a variety of clinical sample types. Most importantly, given current problems in identifying asymptomatic individuals because of poor correlation between the main methods of detection, molecular tests are valuable for VL elimination programs, especially to monitor changes in burden of infection in specific communities. This review provides a comprehensive overview of the available VL diagnostics and discusses the usefulness of molecular methods in the diagnosis, quantification, and species differentiation as well as their clinical applications.
Collapse
Affiliation(s)
- Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India.
| |
Collapse
|
8
|
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L, Sereno D. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57:1-29. [PMID: 28159546 DOI: 10.1016/j.mam.2016.11.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France.
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Christophe Ravel
- French National Reference Centre on Leishmaniasis, Montpellier University, Montpellier, France
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Mohamed Kasbari
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, ANSES, Laboratoire de Santé Animale, Maisons-Alfort, Cedex, France
| | - Bruno Granouillac
- IRD/UMI 233, INSERM U1175, Montpellier University, Montpellier, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Denis Sereno
- MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France; Intertryp UMR IRD177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Cassan C, Dione MM, Dereure J, Diedhiou S, Bucheton B, Hide M, Kako C, Gaye O, Senghor M, Niang AA, Bañuls AL, Faye B. First insights into the genetic diversity and origin of Leishmania infantum in Mont Rolland (Thiès region, Senegal). Microbes Infect 2016; 18:412-420. [DOI: 10.1016/j.micinf.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
|
10
|
Khan NH, Messenger LA, Wahid S, Sutherland CJ. Phylogenetic position of Leishmania isolates from Khyber Pakhtunkhwa province of Pakistan. Exp Parasitol 2016; 167:61-6. [PMID: 27233810 DOI: 10.1016/j.exppara.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 11/25/2022]
Abstract
Several species of the genus Leishmania are causative agents of cutaneous leishmaniasis in Pakistan. This study aimed to determine phylogenetic placement of Leishmania species causing cutaneous leishmaniasis in Khyber Pakhtunkhwa province, Pakistan (34 Leishmania tropica, 3 Leishmania infantum), in-relation to species from other geographical areas using gene sequences encoding cytochrome b (cytb) and internal transcribed spacer 2 (its2). Based on cytochrome b sequence analysis, L. tropica strains from Pakistan and other geographical regions were differentiated into two genotype groups, A and B. Within the province, five distinct L. tropica genotypes were recognized; two in group A, three in group B. Two L. infantum isolates from the province were closely associated with both Afro-Eurasian and American species of the Leishmania donovani complex, including Leishmania chagasi, L. infantum and L. donovani from Sudan and Ethiopia; while a third L. infantum isolate could not be differentiated from visceralizing Kenyan and Indian L. donovani. We observed apposite phylogenetic placement of CL-causing L. tropica and L. infantum from Khyber Pakhtunkhwa. Affinities ascribed to Leishmania spp. From the region are valuable in tracing potential importation of leishmaniasis.
Collapse
Affiliation(s)
- Nazma Habib Khan
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK; Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK.
| | - Sobia Wahid
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK; Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Colin J Sutherland
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK.
| |
Collapse
|
11
|
Lopes EG, Geraldo Junior CA, Marcili A, Silva RD, Keid LB, Oliveira TMFDS, Soares RM. PERFORMANCE OF CONVENTIONAL PCRs BASED ON PRIMERS DIRECTED TO NUCLEAR AND MITOCHONDRIAL GENES FOR THE DETECTION AND IDENTIFICATION OF Leishmania spp. Rev Inst Med Trop Sao Paulo 2016; 58:41. [PMID: 27253743 PMCID: PMC4879998 DOI: 10.1590/s1678-9946201658041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/26/2015] [Indexed: 11/22/2022] Open
Abstract
In visceral leishmaniasis, the detection of the agent is of paramount importance to
identify reservoirs of infection. Here, we evaluated the diagnostic attributes of
PCRs based on primers directed to cytochrome-B (cytB),
cytochrome-oxidase-subunit II (coxII), cytochrome-C
(cytC), and the minicircle-kDNA. Although PCRs directed to
cytB, coxII, cytC were able to detect different species of
Leishmania, and the nucleotide sequence of their amplicons
allowed the unequivocal differentiation of species, the analytical and diagnostic
sensitivity of these PCRs were much lower than the analytical and diagnostic
sensitivity of the kDNA-PCR. Among the 73 seropositive animals, the asymptomatic dogs
had spleen and bone marrow samples collected and tested; only two animals were
positive by PCRs based on cytB, coxII, and
cytC, whereas 18 were positive by the kDNA-PCR. Considering the
kDNA-PCR results, six dogs had positive spleen and bone marrow samples, eight dogs
had positive bone marrow results but negative results in spleen samples and, in four
dogs, the reverse situation occurred. We concluded that PCRs based on
cytB, coxII, and cytC can be
useful tools to identify Leishmania species when used in combination
with automated sequencing. The discordance between the results of the kDNA-PCR in
bone marrow and spleen samples may indicate that conventional PCR lacks sensitivity
for the detection of infected dogs. Thus, primers based on the kDNA should be
preferred for the screening of infected dogs.
Collapse
Affiliation(s)
- Estela Gallucci Lopes
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Arlei Marcili
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Ricardo Duarte Silva
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Lara Borges Keid
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | | | - Rodrigo Martins Soares
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
12
|
Phylogenetic relationships of Leishmania species based on trypanosomatid barcode (SSU rDNA) and gGAPDH genes: Taxonomic revision of Leishmania (L.) infantum chagasi in South America. INFECTION GENETICS AND EVOLUTION 2014; 25:44-51. [PMID: 24747606 DOI: 10.1016/j.meegid.2014.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 11/23/2022]
Abstract
Phylogenetic studies on trypanosomatid barcode using V7V8 SSU rRNA and gGAPDH gene sequences have provided support for redefining some trypanosomatid species and positioning new isolates. The genus Leishmania is a slow evolving monophyletic group and including important human pathogens. The phylogenetic relationships of this genus have been determined by the natural history of its vertebrate hosts, vector specificity, clinical manifestations, geographical distribution and molecular approaches using different markers. Thus, in an attempt to better understand the phylogenetic relationships of Leishmania species, we performed phylogenetic analysis on trypanosomatid barcode using V7V8 SSU rRNA and gGAPDH gene sequences among a large number of Leishmania species and also several Brazilian visceral Leishmania infantum chagasi isolates obtained from dogs and humans. Our phylogenetic analysis strongly suggested that Leishmania hertigi and Leishmania equatoriensis should be taxonomically revised so as to include them in the genus Endotrypanum; and supported ancient divergence of Leishmania enriettii. This, together with recent data in the literature, throws light on the discussion about the evolutionary southern supercontinent hypothesis for the origin of Leishmania ssp. and validates L. infantum chagasi from Brazil, thus clearly differentiating it from L. infantum, for the first time.
Collapse
|
13
|
Evolution and species discrimination according to the Leishmania heat-shock protein 20 gene. INFECTION GENETICS AND EVOLUTION 2013; 18:229-37. [PMID: 23722022 DOI: 10.1016/j.meegid.2013.05.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/11/2013] [Accepted: 05/20/2013] [Indexed: 01/09/2023]
Abstract
The Leishmania genus comprises up to 35 species, of which 20 are responsible for human disease. However, the taxonomic status for many of them is under discussion. The small Heat Shock Proteins (sHSPs) are physiologically relevant, protecting cellular proteins from aggregation and maintaining cellular viability under intensive stress conditions. In Leishmania, a protein of this class was previously described, the 20-kDa heat-shock protein (HSP20), which is encoded by a single gene. In the present study, we used this target, alone or in combination with hsp70 gene, to investigate the phylogenetic relationships among Leishmania species. Using a pair of degenerate primers it was possible amplifying a 370bp fragment of the hsp20 coding region in 39 strains of very different geographic origins, representing in total 16 Leishmania species (14 if L. chagasi and L. archibaldi are considered synonymous names of L. infantum and L. donovani, respectively). Nucleotide sequences were readily obtained by direct sequencing of the amplification products. Both phylogenetic trees and networks based on either hsp20 sequences or combined datasets of hsp20 and hsp70 sequences were constructed. These phylogenic analyses supported the division of the Leishmania genus into nine species: L. (L.) donovani, L. (L.) major, L. (L.) tropica, L. (L.) aethiopica, L. (L.) mexicana, L. (V.) lainsoni, L. (V.) naiffi, L. (V.) guyanensis and L. (V.) braziliensis. Additionally, by network analysis, the subspecies L. (L.) donovani infantum and L. (V.) braziliensis peruviana were recognized within the L. (L.) donovani and L. (V.) braziliensis species, respectively. Therefore, hsp20 gene was found to be a suitable molecular marker for Leishmania typing and classification purposes. In addition, this study represents a solid contribution to the objective of establishing a more reliable taxonomy for the genus Leishmania.
Collapse
|
14
|
Yang BB, Chen DL, Chen JP, Liao L, Hu XS, Xu JN. Analysis of kinetoplast cytochrome b gene of 16 Leishmania isolates from different foci of China: different species of Leishmania in China and their phylogenetic inference. Parasit Vectors 2013; 6:32. [PMID: 23383990 PMCID: PMC3573894 DOI: 10.1186/1756-3305-6-32] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 01/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmania species belong to the family Trypanosomatidae and cause leishmaniasis, a geographically widespread disease that infects humans and other vertebrates. This disease remains endemic in China. Due to the large geographic area and complex ecological environment, the taxonomic position and phylogenetic relationship of Chinese Leishmania isolates remain uncertain. A recent internal transcribed spacer 1 and cytochrome oxidase II phylogeny of Chinese Leishmania isolates has challenged some aspects of their traditional taxonomy as well as cladistics hypotheses of their phylogeny. The current study was designed to provide further disease background and sequence analysis. METHODS We systematically analyzed 50 cytochrome b (cyt b) gene sequences of 19 isolates (16 from China, 3 from other countries) sequenced after polymerase chain reaction (PCR) using a special primer for cyt b as well as 31 sequences downloaded from GenBank. After alignment, the data were analyzed using the maximum parsimony, Bayesian and netwok methods. RESULTS Sequences of six haplotypes representing 10 Chinese isolates formed a monophyletic group and clustered with Leishmania tarentolae. The isolates GS1, GS7, XJ771 of this study from China clustered with other isolates of Leishmania donovani complex. The isolate JS1 was a sister to Leishmania tropica, which represented an L. tropica complex instead of clustering with L. donovani complex or with the other 10 Chinese isolates. The isolates KXG-2 and GS-GER20 formed a monophyletic group with Leishmania turanica from central Asia. In the different phylogenetic trees, all of the Chinese isolates occurred in at least four groups regardless of geographic distribution. CONCLUSIONS The undescribed Leishmania species of China, which are clearly causative agents of canine leishmaniasis and human visceral leishmaniasis and are related to Sauroleishmania, may have evolved from a common ancestral parasite that came from the Americas and may have split off earlier than the other old world Leishmania. Our results also suggest the following: the isolates GS7, GS1 and XJ771 occur as part of the L. donovani complex; the JS1 isolate is L. tropica; and the isolate GS-GER20 identified as Leishmania gerbilli is close to KXG-2 which is L. turanica.
Collapse
Affiliation(s)
- Bin-Bin Yang
- Department of Medical Laboratory, Weifang Medical University, #7166, The West Baotong street, Weifang, Shandong, 261053, China
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, #17, The 3th Section of South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Da-Li Chen
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, #17, The 3th Section of South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jian-Ping Chen
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, #17, The 3th Section of South Renmin Road, Chengdu, Sichuan, 610041, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, #24, The South 1st Section of Yihuan Road, Chengdu, Sichuan, 610041, China
| | - Lin Liao
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, #17, The 3th Section of South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Xiao-Su Hu
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, #17, The 3th Section of South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jia-Nan Xu
- Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, #17, The 3th Section of South Renmin Road, Chengdu, Sichuan, 610041, China
| |
Collapse
|
15
|
Requena JM, Chicharro C, García L, Parrado R, Puerta CJ, Cañavate C. Sequence analysis of the 3'-untranslated region of HSP70 (type I) genes in the genus Leishmania: its usefulness as a molecular marker for species identification. Parasit Vectors 2012; 5:87. [PMID: 22541251 PMCID: PMC3425316 DOI: 10.1186/1756-3305-5-87] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/08/2012] [Indexed: 12/18/2022] Open
Abstract
Background The Leishmaniases are a group of clinically diverse diseases caused by parasites of the genus Leishmania. To distinguish between species is crucial for correct diagnosis and prognosis as well as for treatment decisions. Recently, sequencing of the HSP70 coding region has been applied in phylogenetic studies and for identifying of Leishmania species with excellent results. Methods In the present study, we analyzed the 3’-untranslated region (UTR) of Leishmania HSP70-type I gene from 24 strains representing eleven Leishmania species in the belief that this non-coding region would have a better discriminatory capacity for species typing than coding regions. Results It was observed that there was a remarkable degree of sequence conservation in this region, even between species of the subgenus Leishmania and Viannia. In addition, the presence of many microsatellites was a common feature of the 3´-UTR of HSP70-I genes in the Leishmania genus. Finally, we constructed dendrograms based on global sequence alignments of the analyzed Leishmania species and strains, the results indicated that this particular region of HSP70 genes might be useful for species (or species complex) typing, improving for particular species the discrimination capacity of phylogenetic trees based on HSP70 coding sequences. Given the large size variation of the analyzed region between the Leishmania and Viannia subgenera, direct visualization of the PCR amplification product would allow discrimination between subgenera, and a HaeIII-PCR-RFLP analysis might be used for differentiating some species within each subgenera. Conclusions Sequence and phylogenetic analyses indicated that this region, which is readily amplified using a single pair of primers from both Old and New World Leishmania species, might be useful as a molecular marker for species discrimination.
Collapse
Affiliation(s)
- Jose M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Leishmania AFLP: Paving the way towards improved molecular assays and markers of diversity. INFECTION GENETICS AND EVOLUTION 2011; 11:960-7. [DOI: 10.1016/j.meegid.2011.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/24/2022]
|
17
|
Gelanew T, Cruz I, Kuhls K, Alvar J, Cañavate C, Hailu A, Schönian G. Multilocus microsatellite typing revealed high genetic variability of Leishmania donovani strains isolated during and after a Kala-azar epidemic in Libo Kemkem district, northwest Ethiopia. Microbes Infect 2011; 13:595-601. [PMID: 21382503 DOI: 10.1016/j.micinf.2011.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
In 2004, an outbreak of kala-azar (KA) occurred for the first time in Libo Kemkem district, in the highland area of northwest Ethiopia. In order to track the possible origins of the outbreak parasites, we have investigated 19 strains of Leishmania donovani that were collected during (n = 6) and after (n = 13) the outbreak by using 14 highly polymorphic microsatellite markers. Unique microsatellite profiles were obtained for all strains from Libo Kemkem. When compared to those of L. donovani strains from different Ethiopian, Kenyan and Sudanese foci, by genetic distance and Bayesian clustering model analyses, most strains from Libo Kemkem grouped with strains from: (i) Humera and Metema in the lowlands and Belessa in the highland of Ethiopia, and (ii) Sudan, at different hierarchal levels. The strains from Libo Kemkem district were assigned at least to three genetically distinct clusters (A, B1 and B2) of which only one, cluster B2, consisted exclusively of strains from Libo Kemkem. The fact that most of the outbreak strains were found to be related to strains from well-known KA foci in northwest Ethiopia and Sudan might suggest multiple introductions of L. donovani strains from these foci into Libo Kemkem district.
Collapse
Affiliation(s)
- Tesfaye Gelanew
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Species delimitation and phylogenetic relationships of Chinese Leishmania isolates reexamined using kinetoplast cytochrome oxidase II gene sequences. Parasitol Res 2011; 109:163-73. [PMID: 21221640 DOI: 10.1007/s00436-010-2239-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
Leishmaniasis is a geographically widespread disease caused by protozoan parasites belonging to the genus Leishmania and transmitted by certain species of sand fly. This disease still remains endemic in China, especially in the west and northwest frontier regions. A recent ITS1 phylogeny of Chinese Leishmania isolates has challenged some aspects for their traditional taxonomy and cladistic hypotheses of their phylogeny. However, disagreement with respect to relationships within Chinese Leishmania isolates highlights the need for additional data and analyses. Here, we test the phylogenetic relationships among Chinese isolates and their relatives by analyzing kinetoplast cytochrome oxidase II (COII) gene sequences, including 14 Chinese isolates and three isolates from other countries plus 17 sequences retrieved from GenBank. The COII gene might have experienced little substitution saturation, and its evolutionary process was likely to have been stationary, reversible, and homogeneous. Both neighbor-joining and Bayesian analyses reveal a moderately supported group comprising ten newly determined isolates, which is closely related to Leishmania tarentolae and Endotrypanum monterogeii. In combination with genetic distance analysis as well as Bayesian hypothesis testing, this further corroborates the occurrence of an undescribed species of Leishmania. Our results also suggest that (1) isolate MHOM/CN/93/GS7 and isolate IPHL/CN/77/XJ771 are Leishmania donovani; (2) isolate MHOM/CN/84/JS1 is Leishmania tropica; (3) the status referring to an isolate MRHO/CN/62/GS-GER20 from a great gerbil in Gansu, China, as Leishmania gerbilli, formerly based on multilocus enzyme electrophoresis, is recognized; and (4) E. monterogeii is nested within the genus Leishmania, resulting in a paraphyletic Leishmania. In addition, the results of this study enrich our understanding of the heterogeneity and relationships of Chinese Leishmania isolates.
Collapse
|
19
|
Gadisa E, Kuru T, Genet A, Engers H, Aseffa A, Gedamu L. Leishmania donovani complex (Kinetoplastida, Trypanosomatidae): Comparison of deoxyribonucleic acid based techniques for typing of isolates from Ethiopia. Exp Parasitol 2010; 126:203-8. [DOI: 10.1016/j.exppara.2010.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 04/24/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
|
20
|
Species discrimination and phylogenetic inference of 17 Chinese Leishmania isolates based on internal transcribed spacer 1 (ITS1) sequences. Parasitol Res 2010; 107:1049-65. [PMID: 20617444 DOI: 10.1007/s00436-010-1969-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 06/18/2010] [Indexed: 02/04/2023]
Abstract
Leishmaniasis is a geographically widespread disease, caused by protozoan flagellates of the genus Leishmania. This disease still remains endemic in China, especially in the west and northwest frontier regions. To date, the phylogenetic relationships among Chinese Leishmania isolates are still unclear, and the possible taxonomic diversity remains to be established. In this study, the ITS1-5.8S fragments of ten isolates collected from different foci in China were determined. To infer the phylogenetic relationships among them, seven sequences of Chinese Leishmania isolates retrieved from GenBank were also included. Both parsimony and Bayesian analyses reveal an unexpected but strongly supported clade comprising eight newly determined isolates, which is sister to other members of subgenus Leishmania. In combination with genetic distance analysis, this provides evidence of the occurrence of an undescribed species of Leishmania. Our results also suggest that (1) the isolate IPHL/CN/77/XJ771 from Bachu County, Xinjiang Uygur Autonomous Region is not Leishmania infantum but Leishmania donovani; (2) the status referring to an isolate MRHO/CN/88/KXG-2 from a great gerbil in Karamay as Leishmania turanica, formerly based on multilocus enzyme electrophoresis, is recognized; (3) an earlier finding demonstrating the L. donovani identity of isolate MHOM/CN/80/801 from Kashi city is corroborated; (4) the three isolates from eastern Jiashi County, Xinjiang Uygur Autonomous Region, causing desert type of zoonotic visceral leishmaniasis (see Wang et al., Parasitol Int (in press), 2010), belong to L. donovani instead of L. infantum. In addition, the results of this study make an important contribution to understanding the heterogeneity and relationships of Chinese Leishmania isolates, further indicating that the isolates from China may have had a more complex evolutionary history than expected.
Collapse
|
21
|
Fraga J, Montalvo AM, De Doncker S, Dujardin JC, Van der Auwera G. Phylogeny of Leishmania species based on the heat-shock protein 70 gene. INFECTION GENETICS AND EVOLUTION 2009; 10:238-45. [PMID: 19913110 DOI: 10.1016/j.meegid.2009.11.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/04/2009] [Accepted: 11/06/2009] [Indexed: 11/29/2022]
Abstract
The 70kDa heat-shock protein (HSP70) is conserved across prokaryotes and eukaryotes, and the protein as well as its encoding gene have been applied in phylogenetic studies of different parasites. In spite of the frequent use of New World Leishmania species identification on the basis of restriction fragment length polymorphisms (RFLP) in the hsp70 gene, it was never sequenced extensively for studying evolutionary relationships. To fill this void we determined the nucleotide sequence of an 1380bp fragment of the coding region commonly used in RFLP analysis, from 43 isolates and strains of different geographic origins. Combination with previously determined sequences amounted to a phylogenetic analysis including 52 hsp70 sequences representing 17 species commonly causing leishmaniasis both in the New and Old World. The genus Leishmania formed a monophyletic group with three distinct subgenera L. (Leishmania), L. (Viannia), and L. (Sauroleishmania). The obtained phylogeny supports the following eight species: L. (L.) donovani, L. (L.) major, L. (L.) tropica, L. (L.) mexicana, L. (V.) lainsoni, L. (V.) naiffi, L. (V.) guyanensis and L. (V.) braziliensis, in some of which subspecies can be recognized: L. (L.) donovani infantum, L. (V.) guyanensis panamensis, and L. (V.) braziliensis peruviana. The currently recognized L. (L.) aethiopica, L. (L.) garnhami, and L. (L.) amazonensis did not form monophyletic clusters. These findings are discussed in relation to results from other genes and proteins, which have to be integrated in order to build a genetically supported taxonomy for the entire genus.
Collapse
Affiliation(s)
- Jorge Fraga
- Parasitology Department, Institute of Tropical Medicine Pedro Kouri, La Havana, Cuba
| | | | | | | | | |
Collapse
|
22
|
Ubeda JM, Légaré D, Raymond F, Ouameur AA, Boisvert S, Rigault P, Corbeil J, Tremblay MJ, Olivier M, Papadopoulou B, Ouellette M. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 2008; 9:R115. [PMID: 18638379 PMCID: PMC2530873 DOI: 10.1186/gb-2008-9-7-r115] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/06/2008] [Accepted: 07/18/2008] [Indexed: 12/02/2022] Open
Abstract
Gene expression and DNA copy number analyses using full genome oligonucleotide microarrays of Leishmania reveal molecular mechanisms of methotrexate resistance. Background Drug resistance can be complex, and several mutations responsible for it can co-exist in a resistant cell. Transcriptional profiling is ideally suited for studying complex resistance genotypes and has the potential to lead to novel discoveries. We generated full genome 70-mer oligonucleotide microarrays for all protein coding genes of the human protozoan parasites Leishmania major and Leishmania infantum. These arrays were used to monitor gene expression in methotrexate resistant parasites. Results Leishmania is a eukaryotic organism with minimal control at the level of transcription initiation and few genes were differentially expressed without concomitant changes in DNA copy number. One exception was found in Leishmania major, where the expression of whole chromosomes was down-regulated. The microarrays highlighted several mechanisms by which the copy number of genes involved in resistance was altered; these include gene deletion, formation of extrachromosomal circular or linear amplicons, and the presence of supernumerary chromosomes. In the case of gene deletion or gene amplification, the rearrangements have occurred at the sites of repeated (direct or inverted) sequences. These repeats appear highly conserved in both species to facilitate the amplification of key genes during environmental changes. When direct or inverted repeats are absent in the vicinity of a gene conferring a selective advantage, Leishmania will resort to supernumerary chromosomes to increase the levels of a gene product. Conclusion Aneuploidy has been suggested as an important cause of drug resistance in several organisms and additional studies should reveal the potential importance of this phenomenon in drug resistance in Leishmania.
Collapse
Affiliation(s)
- Jean-Michel Ubeda
- Université Laval, Division de Microbiologie, Centre de Recherche en Infectiologie, boulevard Laurier, Québec, G1V 4G2, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ibrahim ME, Mahdi MA, Bereir RE, Giha RS, Wasunna C. Evolutionary conservation of RNA editing in the genus Leishmania. INFECTION GENETICS AND EVOLUTION 2008; 8:378-80. [DOI: 10.1016/j.meegid.2007.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 12/30/2007] [Indexed: 11/29/2022]
|
24
|
Haralambous C, Antoniou M, Pratlong F, Dedet JP, Soteriadou K. Development of a molecular assay specific for the Leishmania donovani complex that discriminates L. donovani/Leishmania infantum zymodemes: a useful tool for typing MON-1. Diagn Microbiol Infect Dis 2007; 60:33-42. [PMID: 17889482 DOI: 10.1016/j.diagmicrobio.2007.07.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/27/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
We have developed a simple, rapid, sensitive, and cost-effective typing method, based on the amplicon size of the K26 gene, capable of species/strain discrimination of Leishmania donovani complex strains causing visceral leishmaniasis (VL). It was evaluated on 112 strains and compared with multilocus enzyme electrophoresis (MLEE) typing. The K26 polymerase chain reaction (PCR) applied on 26 representative L. donovani complex strains gave 14 different amplicon sizes. The assay was specific to the L. donovani complex and discriminated L. infantum from L. donovani strains. MON-1 strains were also easily distinguished from other non-MON-1. Surprisingly, 29.3% of the Greek strains included in this study were MLEE typed as MON-98 and gave exclusively a 940-bp amplicon. The majority of Greek MON-1 strains gave also the 940-bp amplicon, whereas a 626-bp amplicon was consistently obtained with other European MON-1 strains. K26 PCR-restriction fragment length polymorphism, based on MON-1 K26 sequence polymorphism, gave 2 MON-1 subgroups. Application of the method may contribute to efficiently monitor VL.
Collapse
Affiliation(s)
- Christos Haralambous
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | | | | | | | | |
Collapse
|
25
|
Bañuls AL, Hide M, Prugnolle F. Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. ADVANCES IN PARASITOLOGY 2007; 64:1-109. [PMID: 17499100 DOI: 10.1016/s0065-308x(06)64001-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leishmaniases remain a major public health problem today despite the vast amount of research conducted on Leishmania pathogens. The biological model is genetically and ecologically complex. This paper explores the advances in Leishmania genetics and reviews population structure, taxonomy, epidemiology and pathogenicity. Current knowledge of Leishmania genetics is placed in the context of natural populations. Various studies have described a clonal structure for Leishmania but recombination, pseudo-recombination and other genetic processes have also been reported. The impact of these different models on epidemiology and the medical aspects of leishmaniases is considered from an evolutionary point of view. The role of these parasites in the expression of pathogenicity in humans is also explored. It is important to ascertain whether genetic variability of the parasites is related to the different clinical expressions of leishmaniasis. The review aims to put current knowledge of Leishmania and the leishmaniases in perspective and to underline priority questions which 'leishmaniacs' must answer in various domains: epidemiology, population genetics, taxonomy and pathogenicity. It concludes by presenting a number of feasible ways of responding to these questions.
Collapse
Affiliation(s)
- Anne-Laure Bañuls
- Institut de Recherche pour le Développement, UMR CNRS/IRD 2724, Génétique et Evolution des Maladies Infectieuses, IRD Montpellier, 911 avenue Agropolis, 34394 Montpellier cedex 5, France
| | | | | |
Collapse
|
26
|
Haralambous C, Dakkak A, Pratlong F, Dedet JP, Soteriadou K. First detection and genetic typing of Leishmania infantum MON-24 in a dog from the Moroccan Mediterranean coast: genetic diversity of MON-24. Acta Trop 2007; 103:69-79. [PMID: 17603990 DOI: 10.1016/j.actatropica.2007.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 04/25/2007] [Accepted: 05/20/2007] [Indexed: 10/23/2022]
Abstract
As in the countries edging the Mediterranean basin, Leishmania infantum zymodeme MON-1 is the main causative agent of visceral leishmaniasis in Morocco, where visceral leishmaniasis is most active in the North-Eastern slopes of the Rif mountains. The dog was confirmed to be the main reservoir of L. infantum MON-1, while the reservoir of L. infantum MON-24 causative agent of both infantile visceral leishmaniasis and cutaneous leishmaniasis has not yet been identified. Here we report the first detection of this last zymodeme in a dog in Morocco. The isolated strain was first identified by the use of genotyping markers and confirmed by isoenzyme analysis. Phylogenetic analysis with the use of concatenated sequences from 26 Leishmania donovani complex strains revealed strong geographical correlation with the MON-24 strain from Morocco clustering with other East African strains whereas two other MON-24 strains clustered with L. infantum strains. Interestingly, the two distinct populations of MON-24 identified with the use of genotyping markers cannot be distinguished by multilocus enzyme electrophoresis.
Collapse
Affiliation(s)
- C Haralambous
- Department of Microbiology, Laboratory of Molecular Parasitology, Hellenic Pasteur Institute, 127 Bas. Sofias Ave., 115 21 Athens, Greece
| | | | | | | | | |
Collapse
|
27
|
Lukeš J, Mauricio IL, Schönian G, Dujardin JC, Soteriadou K, Dedet JP, Kuhls K, Tintaya KWQ, Jirků M, Chocholová E, Haralambous C, Pratlong F, Oborník M, Horák A, Ayala FJ, Miles MA. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci U S A 2007; 104:9375-80. [PMID: 17517634 PMCID: PMC1890502 DOI: 10.1073/pnas.0703678104] [Citation(s) in RCA: 301] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a geographically widespread severe disease, with an increasing incidence of two million cases per year and 350 million people from 88 countries at risk. The causative agents are species of Leishmania, a protozoan flagellate. Visceral leishmaniasis, the most severe form of the disease, lethal if untreated, is caused by species of the Leishmania donovani complex. These species are morphologically indistinguishable but have been identified by molecular methods, predominantly multilocus enzyme electrophoresis. We have conducted a multifactorial genetic analysis that includes DNA sequences of protein-coding genes as well as noncoding segments, microsatellites, restriction-fragment length polymorphisms, and randomly amplified polymorphic DNAs, for a total of approximately 18,000 characters for each of 25 geographically representative strains. Genotype is strongly correlated with geographical (continental) origin, but not with current taxonomy or clinical outcome. We propose a new taxonomy, in which Leishmania infantum and L. donovani are the only recognized species of the L. donovani complex, and we present an evolutionary hypothesis for the origin and dispersal of the species. The genus Leishmania may have originated in South America, but diversified after migration into Asia. L. donovani and L. infantum diverged approximately 1 Mya, with further divergence of infraspecific genetic groups between 0.4 and 0.8 Mya. The prevailing mode of reproduction is clonal, but there is evidence of genetic exchange between strains, particularly in Africa.
Collapse
Affiliation(s)
- Julius Lukeš
- *Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and
- Faculty of Biology, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Isabel L. Mauricio
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Gabriele Schönian
- Institute of Microbiology and Hygiene, Charité University Medicine, D-10117 Berlin, Germany
| | - Jean-Claude Dujardin
- Department of Molecular Parasitology, Institute of Tropical Medicine, B-2000 Antwerpen, Belgium
| | - Ketty Soteriadou
- Molecular Parasitology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Jean-Pierre Dedet
- **Laboratoire de Parasitologie, Université Montpellier 1, 34090 Montpellier, France; and
| | - Katrin Kuhls
- Institute of Microbiology and Hygiene, Charité University Medicine, D-10117 Berlin, Germany
| | | | - Milan Jirků
- *Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and
| | - Eva Chocholová
- *Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and
| | - Christos Haralambous
- Molecular Parasitology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Francine Pratlong
- **Laboratoire de Parasitologie, Université Montpellier 1, 34090 Montpellier, France; and
| | - Miroslav Oborník
- *Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and
- Faculty of Biology, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Aleš Horák
- *Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Michael A. Miles
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
28
|
Mauricio IL, Gaunt MW, Stothard JR, Miles MA. Glycoprotein 63 (gp63) genes show gene conversion and reveal the evolution of Old World Leishmania. Int J Parasitol 2007; 37:565-76. [PMID: 17280675 DOI: 10.1016/j.ijpara.2006.11.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 01/19/2023]
Abstract
Species of the subgenus Leishmania (Leishmania) cause the debilitating disease leishmaniasis on four continents. Species grouped within the Leishmania donovani complex cause visceral leishmaniasis, a life-threatening disease, often associated with poverty, and affecting some 0.5 million people each year. The Leishmania glycoprotein GP63, or major surface protease, is a metalloprotease involved in parasite survival, infectivity and virulence. Here, we show that evolution of the gp63 multigene family is influenced by mosaic or fragmental gene conversion. This is a major evolutionary force for both homogenisation and for generating diversity, even in the absence of sexual reproduction. We propose here that the high GC content at the third codon position in the gp63 family of Old World Leishmania may be higher in multicopy regions, under the biased gene conversion model, because increased copy numbers may lead to increased rates of recombination. We confirm that one class of gp63 genes with an extended 3'end signal, gp63(EXT), reveals genetic groups within the complex and gives insights into evolution and host associations. Gp63(EXT) genes can also provide the basis for rapid and reliable genotyping of strains in the L. donovani complex. Our results confirmed that a more stringent definition of Leishmania infantum is required and that the species Leishmania archibaldi should be suppressed.
Collapse
Affiliation(s)
- Isabel L Mauricio
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | |
Collapse
|
29
|
Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes Infect 2007; 9:334-43. [DOI: 10.1016/j.micinf.2006.12.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 11/28/2006] [Accepted: 12/01/2006] [Indexed: 11/18/2022]
|
30
|
Luque-Ortega JR, Rivas L. Miltefosine (hexadecylphosphocholine) inhibits cytochrome c oxidase in Leishmania donovani promastigotes. Antimicrob Agents Chemother 2007; 51:1327-32. [PMID: 17283192 PMCID: PMC1855476 DOI: 10.1128/aac.01415-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Miltefosine (hexadecylphosphocholine [HePC]) is currently on trial as a first-choice, orally active drug for the treatment of visceral leishmaniasis when resistance to organic pentavalent antimonials becomes epidemic. However, data on the targets involved in its leishmanicidal mechanism have, until now, been only fragmentary. We have carried out a systematic study of the alterations induced on the bioenergetic metabolism of Leishmania donovani promastigotes by HePC. Overnight incubation with HePC caused a significant decline in the intracellular ATP levels of the parasites, together with a reduction in the oxygen consumption rate and mitochondrial depolarization, while the integrity of the plasma membrane remained undamaged. In a further step, the effects of HePC on the respiratory chain were addressed in digitonized parasites. The inhibition of the oxygen consumption rate caused by HePC was not reverted either with the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone or with tetramethyl-p-phenylenediamine plus ascorbate, which feeds the electron transport chain at the level of cytochrome c. These results suggest that cytochrome c oxidase is a likely target in the complex leishmanicidal mechanism of HePC. This was further confirmed from the finding that this enzyme was specifically inhibited in a dose-dependent manner by HePC, but not the cytochrome c reductase, ruling out an unspecific effect of HePC on the respiratory chain.
Collapse
|
31
|
Hide M, Bras-Gonçalves R, Bañuls AL. Specific cpb copies within the Leishmania donovani complex: evolutionary interpretations and potential clinical implications in humans. Parasitology 2006; 134:379-89. [PMID: 17129395 DOI: 10.1017/s0031182006001600] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/17/2006] [Accepted: 08/22/2006] [Indexed: 11/06/2022]
Abstract
Leishmania infantum and Leishmania donovani both pertain to the L. (L.) donovani complex and are responsible for visceral leishmaniasis. To explore the L. donovani complex, we focused our study on cysteine protease B (cpb) and especially on 2 cpb copies: cpbE and cpbF. We selected cpb genes because of their phylogenetic interest and host-parasite interaction involvement. Sequencing these 2 copies revealed (i) that cpbE is specific to L. infantum and cpbF is specific to L. donovani and (ii) that these 2 copies are different in length and sequence. Phylogenetic analysis and protein predictions were carried out in order to compare these copies (i) with other trypanosomatid cpb, especially L. mexicana, and (ii) within the L. donovani complex. Our results revealed patterns specific to the L. donovani complex such as the COOH-terminal extension, potential epitopes and N-glycosylation sites. Moreover, phylogenetic analysis revealed different levels of polymorphism between L. infantum and L. donovani and confirmed the ancestral status of the latter. L. infantum has a shorter sequence and a deleted sequence responsible for modifications in protein conformation and catalytic triad. Considering the clinical aspect, L. infantum dermotropic strains appeared more polymorphic than L. infantum viscerotropic strains.
Collapse
Affiliation(s)
- M Hide
- Génétique et Evolution des Maladies Infectieuses, IRD/CNRS (UMR 2724), F-34394, France.
| | | | | |
Collapse
|
32
|
Mauricio IL, Yeo M, Baghaei M, Doto D, Pratlong F, Zemanova E, Dedet JP, Lukes J, Miles MA. Towards multilocus sequence typing of the Leishmania donovani complex: Resolving genotypes and haplotypes for five polymorphic metabolic enzymes (ASAT, GPI, NH1, NH2, PGD). Int J Parasitol 2006; 36:757-69. [PMID: 16725143 DOI: 10.1016/j.ijpara.2006.03.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/06/2006] [Accepted: 03/21/2006] [Indexed: 11/16/2022]
Abstract
Multilocus enzyme electrophoresis is the gold standard for identification of Leishmania species and strains. Drawbacks include: only amino acid polymorphisms affecting electrophoretic mobility are detected; distinct allozymes can have coincident mobilities; few characters are available; and parasites must be cultured in bulk. So far, thousands of Leishmania strains have been phenotyped by multilocus enzyme electrophoresis. Here, we sequence enzyme-coding genes to provide a PCR-based higher resolution equivalent of multilocus enzyme electrophoresis, particularly for Leishmania infantum. Of 15 enzymes used for multilocus enzyme electrophoresis (MON typing) we have sequenced aspartate aminotransferase, glucose-6-phosphate isomerase, nucleoside hydrolase 1, nucleoside hydrolase 2 and 6-phosphogluconate dehydrogenase. Heterozygous alleles were common, with multiple heterozygous sites within a single locus for several of the genes. Haplotypes were resolved by allele-specific PCR and allele-specific sequencing. Heterozygous haplotypes conformed to the haplotypes of putative parents. One strain appeared to be hybrid across two genetic groups of the Leishmania donovani complex. In most cases, a single amino acid polymorphism was responsible for change in enzyme mobility. Some indistinguishable phenotypes were produced by distinct genotypes. Silent genetic polymorphisms provided enhanced discrimination over multilocus enzyme electrophoresis, for example, by subdividing the zymodeme MON-1. The PCR-based genotyping that we describe could be applied directly to clinical samples or to small volume cultures and in a multilocus sequence typing format. Furthermore, it can be used to detect recombination indirectly and for population genetics studies.
Collapse
Affiliation(s)
- Isabel L Mauricio
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ibrahim ME. The epidemiology of visceral leishmaniasis in east Africa: hints and molecular revelations. Trans R Soc Trop Med Hyg 2002; 96 Suppl 1:S25-9. [PMID: 12055847 DOI: 10.1016/s0035-9203(02)90048-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Visceral leishmaniasis appears in the form of notoriously devastating epidemics and as an endemic disease of sporadic nature. In an attempt to understand the nature of this difference and its underlying causes, and to identify possible mechanisms for the instigation of outbreaks, the current status of the characterization of the parasite, its taxonomy, host immunity and genetics, are reviewed with the main focus on eastern Africa, one of the places where the dichotomous epidemiology of the disease is most pronounced. The new molecular tools offer various insights into the understanding of the complex epidemiology of visceral leishmaniasis and the interplay between parasite and host factors. Further insights are also provided on the parts played by demography, genetic history and geography in shaping the overall global portrait of the disease.
Collapse
Affiliation(s)
- Muntaser E Ibrahim
- Department of Molecular Biology, Leishmaniasis Research Group, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan.
| |
Collapse
|