1
|
Acheson J, Joanisse S, Sale C, Hodson N. Recycle, repair, recover: the role of autophagy in modulating skeletal muscle repair and post-exercise recovery. Biosci Rep 2025; 45:1-30. [PMID: 39670455 PMCID: PMC12096956 DOI: 10.1042/bsr20240137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Skeletal muscle is a highly plastic tissue that can adapt relatively rapidly to a range of stimuli. In response to novel mechanical loading, e.g. unaccustomed resistance exercise, myofibers are disrupted and undergo a period of ultrastructural remodeling to regain full physiological function, normally within 7 days. The mechanisms that underpin this remodeling are believed to be a combination of cellular processes including ubiquitin-proteasome/calpain-mediated degradation, immune cell infiltration, and satellite cell proliferation/differentiation. A relatively understudied system that has the potential to be a significant contributing mechanism to repair and recovery is the autophagolysosomal system, an intracellular process that degrades damaged and redundant cellular components to provide constituent metabolites for the resynthesis of new organelles and cellular structures. This review summarizes our current understanding of the autophagolysosomal system in the context of skeletal muscle repair and recovery. In addition, we also provide hypothetical models of how this system may interact with other processes involved in skeletal muscle remodeling and provide avenues for future research to improve our understanding of autophagy in human skeletal muscle.
Collapse
Affiliation(s)
- Jordan Acheson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K.
| | - Sophie Joanisse
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, U.K.
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K.
| | - Nathan Hodson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K.
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Seiliez I, Gabillard JC, Riflade M, Sadoul B, Dias K, Avérous J, Tesseraud S, Skiba S, Panserat S. Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy 2014; 8:364-75. [DOI: 10.4161/auto.18863] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
3
|
Macronutrient composition of the diet affects the feeding-mediated down regulation of autophagy in muscle of rainbow trout (O. mykiss). PLoS One 2013; 8:e74308. [PMID: 24069294 PMCID: PMC3771976 DOI: 10.1371/journal.pone.0074308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/31/2013] [Indexed: 01/18/2023] Open
Abstract
Autophagy functions as an important catabolic mechanism by mediating the turnover of intracellular organelles and protein complexes through a lysosome dependent degradative pathway. Although the induction of autophagy by starvation has been extensively studied, we still know very little about how autophagy is regulated under normal nutritional conditions. The purpose of the present study was to characterize both in vivo and in vitro the response of the autophagy-lysosomal degradative pathway to nutrient (amino acids and carbohydrates) availability in the muscle of the carnivorous rainbow trout. We report that meal feeding is accompanied by a rapid activation of Akt, FoxO1 and the Target of Rapamycin (TOR) signaling pathways and a concomitant decrease of autophagosome formation. We also show that this effect occurs only when the proportion of dietary proteins increases at the expense of carbohydrates. Concurrently, our in vitro study on primary culture of trout muscle cells demonstrates an opposite effect of amino acids and glucose on the regulation of autophagy-lysosomal pathways. More specifically, the addition of amino acids in cell culture medium inhibited the formation of autophagosomes, whereas the addition of glucose had an opposite effect. The effect of amino acids was accompanied by an activation of TOR, considered as an important regulator of autophagosomal formation. However, the mechanisms involved in the effect of glucose were independent of Akt, TOR and AMPK and remain to be determined. Together, these results demonstrated the specific role of macronutrients as well as that of their interactions in the regulation of autophagy and highlight the interest to consider the macronutrient composition of the diets in the control of this degradative pathway.
Collapse
|
4
|
van den Hoven R, Bauer A, Hackl S, Zickl M, Spona J, Zentek J. A preliminary study on the changes in some potential markers of muscle-cell degradation in sub-maximally exercised horses supplemented with a protein and amino acid mixture. J Anim Physiol Anim Nutr (Berl) 2010; 95:664-75. [PMID: 21121963 DOI: 10.1111/j.1439-0396.2010.01097.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this preliminary study, time-dependent changes in plasma CK and AST activity, tyrosine (Tyr), 3-methyl-histidine (3mHis), glucose and lactate concentrations were analysed in nine horses under two different conditions. Furthermore, intramuscular concentrations of Tyr, 3mHis and activities of cathepsin B, acid phosphatase (ACP), glucose-6-phosphate dehydrogenase (G6PDH) and mRNA expression of ubiquitin were determined at the same time. After studying the effects of exercise alone, the effects of exercise and feeding of an experimental protein/amino acid (AA) supplement were analysed. Horses were submitted to a total of four standardised exercise tests (SETs) of high intensity. Potential markers of muscle break down were determined prior to, immediately after, 4 and 18 h after exercise. The experiment was subdivided into two consecutive periods of 3 weeks. In each period, two SETs were performed. In the second period, horses were fed with the protein/AA supplement within 1 h after exercise. Significant changes in plasma, intramuscular Tyr levels and mRNA expression of ubiquitin were caused both by time in relation to exercise and by treatment with the protein/AA supplement. The experimental supplement significantly decreased the 4-h post-exercise expression of ubiquitin mRNA in muscle. Only a borderline increase of markers of lysosomal involvement was seen and CK and AST activity generally showed their normal post-exercise patterns. A clear post-exercise reduction of this CK activity, however, was not observed after supplementation with the protein/AA mixture. The current findings indicate that horses might benefit from protein and AA supplementation directly after training by decreasing post-exercise proteolysis. The results support that further studies should be performed to characterize changes in equine protein metabolism caused by exercise including underlying molecular mechanisms.
Collapse
Affiliation(s)
- R van den Hoven
- Clinic of Internal Medicine and Clinical Epidemiology of Equids, Clinical Department of Companion Animals and Horses, Institute of Animal Nutrition, Veterinary University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
AbstractThe first part of this review is concerned with the balance between N input and output as urinary urea. I start with some observations on classical biochemical studies of the operation of the urea cycle. According to Krebs, the cycle is instantaneous and automatic, as a result of the irreversibility of the first enzyme, carbamoyl-phosphate synthetase 1 (EC6.3.5.5; CPS-I), and it should be able to handle many times the normal input to the cycle. It is now generally agreed that acetyl glutamate is a necessary co-factor for CPS-1, but not a regulator. There is abundant evidence that changes in dietary protein supply induce coordinated changes in the amounts of all five urea-cycle enzymes. How this coordination is achieved, and why it should be necessary in view of the properties of the cycle mentioned above, is unknown. At the physiological level it is not clear how a change in protein intake is translated into a change of urea cycle activity. It is very unlikely that the signal is an alteration in the plasma concentration either of total amino-N or of any single amino acid. The immediate substrates of the urea cycle are NH3and aspartate, but there have been no measurements of their concentration in the liver in relation to urea production. Measurements of urea kinetics have shown that in many cases urea production exceeds N intake, and it is only through transfer of some of the urea produced to the colon, where it is hydrolysed to NH3, that it is possible to achieve N balance. It is beginning to look as if this process is regulated, possibly through the operation of recently discovered urea transporters in the kidney and colon. The second part of the review deals with the synthesis and breakdown of protein. The evidence on whole-body protein turnover under a variety of conditions strongly suggests that the components of turnover, including amino acid oxidation, are influenced and perhaps regulated by amino acid supply or amino acid concentration, with insulin playing an important but secondary role. Molecular biology has provided a great deal of information about the complex processes of protein synthesis and breakdown, but so far has nothing to say about how they are coordinated so that in the steady state they are equal. A simple hypothesis is proposed to fill this gap, based on the self-evident fact that for two processes to be coordinated they must have some factor in common. This common factor is the amino acid pool, which provides the substrates for synthesis and represents the products of breakdown. The review concludes that although the achievement and maintenance of N balance is a fact of life that we tend to take for granted, there are many features of it that are not understood, principally the control of urea production and excretion to match the intake, and the coordination of protein synthesis and breakdown to maintain a relatively constant lean body mass.
Collapse
|
6
|
Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes. BMC Mol Biol 2007; 8:23. [PMID: 17371596 PMCID: PMC1845170 DOI: 10.1186/1471-2199-8-23] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 03/19/2007] [Indexed: 02/02/2023] Open
Abstract
Background The ubiquitin-proteasome system is the predominant pathway for myofibrillar proteolysis but a previous study in C2C12 myotubes only observed alterations in lysosome-dependent proteolysis in response to complete starvation of amino acids or leucine from the media. Here, we determined the interaction between insulin and amino acids in the regulation of myotube proteolysis Results Incubation of C2C12 myotubes with 0.2 × physiological amino acids concentration (0.2 × PC AA), relative to 1.0 × PC AA, significantly increased total proteolysis and the expression of 14-kDa E2 ubiquitin conjugating enzyme (p < 0.05). The proteasome inhibitor MG132 blocked the rise in proteolysis observed in the 0.2 × PC AA media. Addition of insulin to the medium inhibited proteolysis at both 0.2 and 1.0× PC AA and the expression of 14-kDa E2 proteins and C2 sub unit of 20 S proteasome (p < 0.05). Incubation of myotubes with increasing concentrations of leucine in the 0.2 × PC AA media inhibited proteolysis but only in the presence of insulin. Incubation of rapamycin (inhibitor of mTOR) inhibited amino acid or insulin-dependent p70 S6 kinase phosphorylation, blocked (P < 0.05) the inhibitory effects of 1.0 × PC AA on protein degradation, but did not alter the inhibitory effects of insulin or leucine Conclusion In a C2C12 myotube model of myofibrillar protein turnover, amino acid limitation increases proteolysis in a ubiquitin-proteasome-dependent manner. Increasing amino acids or leucine alone, act additively with insulin to down regulate proteolysis and expression of components of ubiquitin-proteasome pathway. The effects of amino acids on proteolysis but not insulin and leucine, are blocked by inhibition of the mTOR signalling pathway.
Collapse
|
7
|
Minnaard R, Drost MR, Wagenmakers AJM, van Kranenburg GP, Kuipers H, Hesselink MKC. Skeletal Muscle wasting and contractile performance in septic rats. Muscle Nerve 2005; 31:339-48. [PMID: 15751123 DOI: 10.1002/mus.20268] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the temporal effects of sepsis on muscle wasting and function in order to study the contribution of wasting to the decline in muscle function; we also studied the fiber-type specificity of this muscle wasting. Sepsis was induced by injecting rats intraperitoneally with a zymosan suspension. At 2 h and at 2, 6, and 11 days after injection, muscle function was measured using in situ electrical stimulation, Zymosan injection induced severe muscle wasting compared to pair-fed and ad libitum fed controls. At 6 days, isometric force-generating capacity was drastically reduced in zymosan-treated rats. We conclude that this was fully accounted fo by the reduction of muscle mas. At day 6, we also observed increased activity of the 20S proteasome in gastrocnemius but not soleus muscle from septic rats. In tibialis anterior but not in soleus, muscle wasting occurred in a fiber-type specific fashion, i.e., the reduction in cross-sectional area was significantly smaller in type 1 than type 2A and 2B/X fibers. These findings suggest that both the inherent function of a muscle and the muscle fiber-type distribution affect the responsiveness to catabolic signals.
Collapse
Affiliation(s)
- R Minnaard
- Nutrition and Toxicology Research Institute Maastricht, Depatment of Movement Sciencs, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2003; 15:1101-11. [PMID: 14699058 PMCID: PMC363084 DOI: 10.1091/mbc.e03-09-0704] [Citation(s) in RCA: 1937] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy mediates the bulk degradation of cytoplasmic components. It accounts for the degradation of most long-lived proteins: cytoplasmic constituents, including organelles, are sequestered into autophagosomes, which subsequently fuse with lysosomes, where degradation occurs. Although the possible involvement of autophagy in homeostasis, development, cell death, and pathogenesis has been repeatedly pointed out, systematic in vivo analysis has not been performed in mammals, mainly because of a limitation of monitoring methods. To understand where and when autophagy occurs in vivo, we have generated transgenic mice systemically expressing GFP fused to LC3, which is a mammalian homologue of yeast Atg8 (Aut7/Apg8) and serves as a marker protein for autophagosomes. Fluorescence microscopic analyses revealed that autophagy is differently induced by nutrient starvation in most tissues. In some tissues, autophagy even occurs actively without starvation treatments. Our results suggest that the regulation of autophagy is organ dependent and the role of autophagy is not restricted to the starvation response. This transgenic mouse model is a useful tool to study mammalian autophagy.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
9
|
de Lange P, Ragni M, Silvestri E, Moreno M, Schiavo L, Lombardi A, Farina P, Feola A, Goglia F, Lanni A. Combined cDNA array/RT‐PCR analysis of gene expression profile in rat gastrocnemius muscle: relation to its adaptive function in energy metabolism during fasting. FASEB J 2003; 18:350-2. [PMID: 14656997 DOI: 10.1096/fj.03-0342fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We evaluated the effects of fasting on the gene expression profile in rat gastrocnemius muscle using a combined cDNA array and RT-PCR approach. Of the 1176 distinct rat genes analyzed on the cDNA array, 114 were up-regulated more than twofold in response to fasting, including all 17 genes related to lipid metabolism present on the membranes and all 10 analyzed components of the proteasome machinery. Only 7 genes were down-regulated more than twofold. On the basis of our analysis of genes on the cDNA array plus the data from our RT-PCR assays, the metabolic adaptations shown by rat gastrocnemius muscle during fasting are reflected by i) increased transcription both of myosin heavy chain (MHC) Ib (associated with type I fibers) and of at least three factors involved in the shift toward type I fibers [p27kip1, muscle LIM protein (MLP), cystein rich protein-2], of which one (MLP) has been shown to enhance the activity of MyoD, which would explain the known increase in the expression of skeletal muscle uncoupling protein-3 (UCP3); ii) increased lipoprotein lipase (LPL) expression, known to trigger UCP3 transcription, which tends, together with the first point, to underline the suggested role of UCP3 in mitochondrial lipid handling (the variations under the first point and this one have not been observed in mice, indicating a species-specific regulation of these mechanisms); iii) reduced expression of the muscle-specific coenzyme Q (CoQ)7 gene, which is necessary for mitochondrial CoQ synthesis, together with an increased expression of mitochondrial adenylate kinase 3, which inactivates the resident key enzyme for CoQ synthesis, 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the mRNA level for which fell during fasting; and iv) increased transcription of components of the proteasomal pathways involved in protein degradation/turnover.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Energy Metabolism
- Fasting
- Free Radical Scavengers/metabolism
- Gene Expression Profiling
- Heat-Shock Proteins/genetics
- Lipid Metabolism
- Mitochondria/metabolism
- Muscle Fibers, Slow-Twitch
- Muscle, Skeletal/metabolism
- Myosin Heavy Chains/genetics
- Oligonucleotide Array Sequence Analysis
- Oxidative Phosphorylation
- Protein Kinases/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptor, Insulin/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Retinoic Acid/genetics
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Retinoid X Receptors
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Ubiquinone/biosynthesis
- Ubiquitin/genetics
- Ubiquitin-Conjugating Enzymes/genetics
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli (SUN), Caserta,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
BACKGROUND The anabolic effects of insulin are well recognized but the mechanism by which insulin decreases muscle protein degradation in human is unclear. However, in a variety of catabolic conditions it is believed to be changes in the activity of the ATP-dependent ubiquitin proteolytic pathway that are responsible for changes in protein degradation in skeletal muscle. The aim of this study was to test the hypothesis that insulin regulates the ATP-dependent ubiquitin proteolytic pathway in human muscle. MATERIAL AND METHODS The effects of insulin and acidosis on protein degradation were measured in human myocytes using L-[14C]phenylalanine. The effect of insulin on the activity of the ATP-dependent ubiquitin pathway was assessed from the mRNA expression of ubiquitin and the ubiquitin-conjugating enzyme E214k in human myocytes. RESULTS AND CONCLUSIONS Coincubation of human myocytes with 100 nM of insulin was associated with a significant reduction in protein degradation. Metabolic acidosis is known to increase skeletal muscle protein degradation rates, and in our experiments protein degradation at a pH of 7.0 was significantly higher than pH 7.35. Eight-hour exposure to 100 nM of insulin resulted in a significant reduction in the expression of E214k but no change in the expression of ubiquitin. CONCLUSIONS In human muscle we have demonstrated regulation by insulin of the ATP-dependent ubiquitin pathway at the level of ubiquitin conjugation.
Collapse
Affiliation(s)
- R G Roberts
- Department of Nephrology, School of Clinical Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
11
|
Merforth S, Kuehn L, Osmers A, Dahlmann B. Alteration of 20S proteasome-subtypes and proteasome activator PA28 in skeletal muscle of rat after induction of diabetes mellitus. Int J Biochem Cell Biol 2003; 35:740-8. [PMID: 12672465 DOI: 10.1016/s1357-2725(02)00381-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insulin-dependent diabetes mellitus is known to go along with enhanced muscle protein breakdown. Since evidence has been presented that the ubiquitin-proteasome system is significantly involved in muscle wasting under this condition, we have investigated, whether this biological role goes along with alterations of the proteasome system in skeletal muscle of streptozotocin-diabetic rats. Previously, we have found a drop of overall proteasome activity in muscle extracts of rats after induction of diabetes but no change in total amount of 20S proteasome was detected. In the present investigation under the same diabetic conditions we have measured a significant decrease in the amount of proteasome activator PA28, a finding that explains the loss of total proteasome activity. Since increased mRNA levels of proteasome subunits have been measured in muscle tissue of rats after induction of diabetes, we have isolated and purified 20S proteasomes from muscle tissue of control and 6 days diabetic rats. The specific chymotrypsin-like, trypsin-like, and peptidylglutamylpeptide-hydrolysing activities of proteasomes from diabetic and control rats were found to be not significantly different. Therefore, we have fractionated 20S proteasomes into their subtypes and detected that induction of diabetes mellitus effects a redistribution of subtypes of all three proteasome populations but only the increase in subtype V (immuno-subtype) was statistically significant. This altered subtype pattern obviously meets the requirements to the system under wasting conditions. Since this process goes along with de novo biogenesis of 20S proteasomes, it most likely explains the phenomenon of elevated mRNA concentrations of proteasome subunits after induction of diabetes mellitus.
Collapse
Affiliation(s)
- Simone Merforth
- Department of Clinical Biochemistry, Deutsches Diabetes-Forschungsinstitut, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | | | | | | |
Collapse
|
12
|
Vigouroux S, Farout L, Clavel S, Briand Y, Briand M. Increased muscle proteasome activities in rats fed a polyunsaturated fatty acid supplemented diet. Int J Biochem Cell Biol 2003; 35:749-55. [PMID: 12672466 DOI: 10.1016/s1357-2725(02)00389-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in the proteasome system, a dominant actor in protein degradation in eukaryotic cells, have been documented in a large number of physiological and pathological conditions. We investigated the influence of monounsaturated or polyunsaturated fatty acids (PUFAs) supplemented diets on the proteasome system, in rat skeletal muscles. Thirty rats were randomly assigned to three groups. The control group received only a standard diet. The monounsaturated fatty acid (MUFA) enriched diet group was fed with 3% sunflower oil in addition to standard food, and the polyunsaturated fatty acid supplemented diet group received 9% Maxepa) in addition to the standard diet. We analyzed muscle proteasome activities and content. Monounsaturated or PUFAs supplemented diets given for 8 weeks induced a significant increase in proteasome activities. With the polyunsaturated fatty acid enriched diet, the chymotrypsin-like and peptidylglutamylpeptide hydrolase activities increased by 45% in soleus and extensor digitorum longus (EDL), and by 90% in the gastrocnemius medialis (GM) muscle. Trypsin-like activity of the proteasome increased by 250% in soleus, EDL and GM. This increase in proteasome activities was associated with a concomitant enhancement in the muscle content of proteasome. Proteasome activities and level were less stimulated with a monounsaturated fatty acid supplemented diet. This study provides evidence that a monounsaturated or polyunsaturated fatty acid supplemented diet may regulate muscle proteasomes. Unsaturated fatty acids are particularly prone to free radical attack. Thus, we suggest that alterations in muscle proteasome may result from monounsaturated and polyunsaturated fatty acid-induced peroxidation, in order to eliminate damaged proteins.
Collapse
Affiliation(s)
- Sophie Vigouroux
- Laboratoire de Biochimie Appliquée, Associé INRA, Université Blaise Pascal, 63174, Aubière, France
| | | | | | | | | |
Collapse
|
13
|
Down-regulation of genes in the lysosomal and ubiquitin-proteasome proteolytic pathways in calpain-3-deficient muscle. Int J Biochem Cell Biol 2003; 35:676-84. [PMID: 12672459 DOI: 10.1016/s1357-2725(02)00357-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Calpain-3 deficiency leads to muscular dystrophy in humans and mice and to perturbation of the NFkappaB/IkappaB pathway. As this phenotype is mainly atrophic, this study was performed to determine whether protein turnover and/or proteolytic gene expression was altered in muscles following calpain-3 deficiency. In vitro rates of protein turnover and of substrate ubiquitination, cathepsin B and B+L activities, and mRNA levels for several proteolytic genes were measured in skeletal muscles from 4-5 month-old control and calpain-3 knockout mice. Rates of protein synthesis and breakdown, cathepsin activities, and rates of substrate ubiquitination remained stable in muscles from calpain-3 deficient mice. However, and surprisingly, mRNA levels for cathepsin L, the 14-kDa ubiquitin-conjugating enzyme E2, and the C2 subunit of the 20S proteasome decreased by approximately 47% (P<0.005) in the gastrocnemius muscle from calpain-3 deficient mice. In contrast, muscle mRNA levels for ubiquitin and subunit S5a of the 26S proteasome were unaffected by calpain-3 deficiency. Taken together these data demonstrate that the expression of some genes that are involved in distinct proteolytic pathways is selectively and coordinately down-regulated without any effect on proteolysis. This suggests new pathophysiological hypotheses, e.g. a lack of maturation of NFkappaB precursor and/or a defect in specific substrate targeting.
Collapse
|
14
|
Kee AJ, Combaret L, Tilignac T, Souweine B, Aurousseau E, Dalle M, Taillandier D, Attaix D. Ubiquitin-proteasome-dependent muscle proteolysis responds slowly to insulin release and refeeding in starved rats. J Physiol 2003; 546:765-76. [PMID: 12563002 PMCID: PMC2342579 DOI: 10.1113/jphysiol.2002.032367] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The central role of the ubiquitin-proteasome system in the loss of skeletal muscle protein in many wasting conditions has been well established. However, it is unclear what factors are responsible for the suppression of this system during periods of protein gain. Thus, the aim of these studies was to examine the short-term effects of insulin release and nutrients on skeletal muscle protein turnover in young rats starved for 48 h, and then infused intravenously with amino acids (AA), or fed an oral diet. Forty-eight hours of starvation (i.e. prolonged starvation in young rats) decreased muscle protein synthesis and increased proteasome-dependent proteolysis. Four-hour AA infusion and 4 h of refeeding increased plasma insulin release and AA concentrations, and stimulated muscle protein synthesis, but had no effect on either total or proteasome-dependent proteolysis, despite decreased plasma corticosterone concentrations. Both muscle proteasome-dependent proteolysis and the rate of ubiquitination of muscle proteins were not suppressed until 10 h of refeeding. The temporal response of these two measurements correlated with the normalised expression of the 14-kDa E2 (a critical enzyme in substrate ubiquitination in muscle) and the expression of the MSS1 subunit of the 19S regulatory complex of the 26S proteasome. In contrast, the starvation-induced increase in mRNA levels for 20S proteasome subunits was normalised by refeeding within 24 h in muscle, and 6 h in jejunum, respectively. In conclusion, unlike protein synthesis, skeletal muscle proteasome-dependent proteolysis is not acutely responsive in vivo to insulin, AA, and/or nutrient intake in refed starved rats. This suggests that distinct and perhaps independent mechanisms are responsible for the nutrient-dependent regulation of protein synthesis and ubiquitin-proteasome-dependent proteolysis following a prolonged period of catabolism. Furthermore, factors other than the expression of ubiquitin-proteasome pathway components appear to be responsible for the suppression of skeletal muscle proteasome-dependent proteolysis by nutrition.
Collapse
Affiliation(s)
- Anthony J Kee
- Muscle Development Unit, Children's Medical Research Institute, Locked Bag 23, Wentworthville NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Spees JL, Chang SA, Mykles DL, Snyder MJ, Chang ES. Molt cycle–dependent molecular chaperone and polyubiquitin gene expression in lobster. Cell Stress Chaperones 2003; 8:258-64. [PMID: 14984059 PMCID: PMC514879 DOI: 10.1379/1466-1268(2003)008<0258:mcmcap>2.0.co;2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lobster claw muscle undergoes atrophy in correlation with increasing ecdysteroid (steroid molting hormone) titers during premolt. In vivo molecular chaperone (constitutive heat shock protein 70 [Hsc70], heat shock protein 70 [Hsp70], and Hsp90) and polyubiquitin messenger ribonucleic acid (mRNA) levels were examined in claw and abdominal muscles from individual premolt or intermolt lobsters. Polyubiquitin gene expression was assayed as a marker for muscle atrophy. Both Hsc70 and Hsp90 mRNA levels were significantly induced in premolt relative to intermolt lobster claw muscle, whereas Hsp70 mRNA levels were not. Hsp90 gene expression was significantly higher in premolt claw muscle when compared with abdominal muscle. Polyubiquitin mRNA levels were elevated in premolt when compared with intermolt claw muscle and significantly elevated relative to premolt abdominal muscle.
Collapse
Affiliation(s)
- Jeffrey L Spees
- Bodega Marine Laboratory, University of California, PO Box 247, Bodega Bay, CA 94923, USA
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Wray CJ, Mammen JMV, Hasselgren PO. Catabolic response to stress and potential benefits of nutrition support. Nutrition 2002; 18:971-7. [PMID: 12431720 DOI: 10.1016/s0899-9007(02)00985-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The catabolic response to sepsis, severe injury, and burn is characterized by whole-body protein loss, mainly reflecting increased breakdown of muscle proteins, in particular myofibrillar proteins. Glucocorticoids and various proinflammatory cytokines are important regulators of muscle proteolysis in stressed patients. There is evidence that breakdown of proteins by the ubiquitin-proteasome pathway plays an important role in muscle cachexia, although other mechanisms may participate, such as calcium- and calpain-dependent release of myofilaments from the sarcomere. Three types of treatments have been used to reduce or prevent the catabolic response to injury and sepsis: 1). nutritional, 2). hormonal, and 3). pharmacologic. With regard to nutrition support, it is generally believed that enteral feeding is superior to parenteral feeding and that early feeding is better than late feeding. Although "immune-enhancing" enteral nutrition has been shown in several recent studies to improve outcome in critically ill patients, the specific effects of these treatments on the catabolic response in muscle are not known. In addition to nutrition support, various hormones, including insulin, growth hormone, and insulin-like growth factor-1, may blunt the catabolic response in patients with stress. Experimental studies have indicated that other treatments may become available in the future, including cytokine antibodies, calcium antagonists, and induction of heat shock response. Methods to prevent or reduce the catabolic response to stress are important considering the significant clinical consequences of muscle cachexia.
Collapse
Affiliation(s)
- Curtis J Wray
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
18
|
Roberts RG, Redfern CPF, Graham KA, Bartlett K, Wilkinson R, Goodship THJ. Sodium bicarbonate treatment and ubiquitin gene expression in acidotic human subjects with chronic renal failure. Eur J Clin Invest 2002; 32:488-92. [PMID: 12153548 DOI: 10.1046/j.1365-2362.2002.01008.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In chronic renal failure, metabolic acidosis is associated with increased whole body protein degradation. In rats this effect of acidosis occurs in skeletal muscle and is associated with increased ubiquitin mRNA expression. This has not been demonstrated in humans. MATERIALS AND METHODS Six patients with chronic renal failure and acidosis underwent muscle biopsy before and after 1 month's treatment with sodium bicarbonate. RNA was extracted from the biopsy, and the expression of the genes for ubiquitin and the proteasome component, C2, were measured by Northern blotting. RESULTS AND CONCLUSIONS There was no significant difference in the expression of ubiquitin or C2 after bicarbonate treatment. This is contrast with results from animal models of acidosis and some other catabolic conditions in humans. This may reflect the complexity of the ubiquitin-dependent pathway, and it may be that changes in ubiquitin expression are only seen with more severe and/or acute changes in pH.
Collapse
Affiliation(s)
- R G Roberts
- University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
19
|
Dutaud D, Aubry L, Henry L, Levieux D, Hendil KB, Kuehn L, Bureau JP, Ouali A. Development and evaluation of a sandwich ELISA for quantification of the 20S proteasome in human plasma. J Immunol Methods 2002; 260:183-93. [PMID: 11792388 DOI: 10.1016/s0022-1759(01)00555-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Because quantification of the 20S proteasome by functional activity measurements is difficult and inaccurate, we have developed an indirect sandwich enzyme-linked immunosorbent assays (ELISA) for quantification of the 20S proteasome in human plasma. This sandwich ELISA uses a combination of a monoclonal antibody (mcp 20) recognizing the C2-beta subunit of human 20S proteasome (Mr approximately 30,000) and a polyclonal rabbit anti-20S antibody which labels different subunits of the complex. The detection limit of the assay was established as 10 ng/ml (n=10, mean of zero standard+2 S.D.) and the recovery rate ranged from 96% to 104%. The within-run and between-run coefficients of variation (CV) ranges were 2.8-3.3 and 3.0-3.4, respectively. Using serial dilutions of plasma to which various amounts of purified 20S proteasome were added, a linear dose-response was observed between 102 and 2050 ng/ml with a slope of 1.004 and a coefficient of determination r(2) of 0.99. In a preliminary experiment performed on a limited number of patients, the present assay was used to quantify the 20S proteasome in plasma from healthy subjects (n=11) and from a limited number of patients with various diseases (two patients with each of the following diagnoses: acute myeloid leukaemia, chronic myeloproliferative syndromes, Hodgkin's disease and solid tumors). The average concentration of 20S proteasome in plasma from normal subjects was found to be 2319+/-237 ng/ml (n=11). With reference to this normal range, the plasma proteasome concentration was found to be increased in most of these pathological state and as high as 1200% when solid tumors had been detected. For patients with Hodgkin's disease, the changes were more variable whereas in patients with chronic lymphocytic leukaemia, the proteasome concentration was raised during the acute phase of disease and decreased during therapy. We suggest that this robust, accurate and highly reproducible assay could be used to quantify proteasome in human plasma and investigate its value as a biological marker for various malignant and nonmalignant diseases.
Collapse
Affiliation(s)
- Dominique Dutaud
- Biochemistry Team, SRV, INRA Theix, 63122 Saint Genès Champanelle, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hasselgren PO, Wray C, Mammen J. Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem Biophys Res Commun 2002; 290:1-10. [PMID: 11779124 DOI: 10.1006/bbrc.2001.5849] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle cachexia induced by sepsis, severe injury, cancer, and a number of other catabolic conditions is mainly caused by increased protein degradation, in particular breakdown of myofibrillar proteins. Ubiquitin-proteasome-dependent proteolysis is the predominant mechanism of muscle protein loss in these conditions, but there is evidence that several other regulatory mechanisms may be important as well. Some of those mechanisms are reviewed in this article and they include pre-, para-, and postproteasomal mechanisms. Among preproteasomal mechanisms, mediators, receptor binding, signaling pathways, activation of transcription factors, and modification of proteins are important. Several paraproteasomal mechanisms may influence the trafficking of ubiquitinated proteins and their interaction with the proteasome, including the expression and activity of the COP9 signalosome, the carboxy terminus of heat shock protein 70-interacting protein (CHIP) and valosin-containing protein (VCP). Finally, because the proteasome does not degrade proteins completely into free amino acids but into peptides, postproteasomal degradation of peptides by the giant protease tripeptidyl peptidase II (TPP II) and various aminopeptidases is important in muscle catabolism. Thus, multiple mechanisms and regulatory steps may influence the breakdown of ubiquitinated muscle proteins by the 26S proteasome.
Collapse
Affiliation(s)
- Per-Olof Hasselgren
- Department of Surgery, University of Cincinnati, 231 Bethesda Avenue, Cincinnati, Ohio 45267-0558, USA.
| | | | | |
Collapse
|
21
|
Lorite MJ, Smith HJ, Arnold JA, Morris A, Thompson MG, Tisdale MJ. Activation of ATP-ubiquitin-dependent proteolysis in skeletal muscle in vivo and murine myoblasts in vitro by a proteolysis-inducing factor (PIF). Br J Cancer 2001; 85:297-302. [PMID: 11461093 PMCID: PMC2364050 DOI: 10.1054/bjoc.2001.1879] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Loss of skeletal muscle is a major factor in the poor survival of patients with cancer cachexia. This study examines the mechanism of catabolism of skeletal muscle by a tumour product, proteolysis-inducing factor (PIF). Intravenous administration of PIF to normal mice produced a rapid decrease in body weight (1.55 +/- 0.12 g in 24 h) that was accompanied by increased mRNA levels for ubiquitin, the Mr 14 000 ubiquitin carrier-protein, E2, and the C9 proteasome subunit in gastrocnemius muscle. There was also increased protein levels of the 20S proteasome core and 19S regulatory subunit, detectable by immunoblotting, suggesting activation of the ATP-ubiquitin-dependent proteolytic pathway. An increased protein catabolism was also seen in C(2)C(12)myoblasts within 24 h of PIF addition with a bell-shaped dose-response curve and a maximal effect at 2-4 nM. The enhanced protein degradation was attenuated by anti-PIF antibody and by the proteasome inhibitors MG115 and lactacystin. Glycerol gradient analysis of proteasomes from PIF-treated cells showed an elevation in chymotrypsin-like activity, while Western analysis showed a dose-related increase in expression of MSSI, an ATPase that is a regulatory subunit of the proteasome, with a dose-response curve similar to that for protein degradation. These results confirm that PIF acts directly to stimulate the proteasome pathway in muscle cells and may play a pivotal role in protein catabolism in cancer cachexia.
Collapse
Affiliation(s)
- M J Lorite
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham, B4 7ET, UK
| | | | | | | | | | | |
Collapse
|
22
|
La protéolyse ubiquitine-protéasome-dépendante : une machinerie complexe spécialisée dans la destruction sélective et hautement régulée des protéines. NUTR CLIN METAB 2001. [DOI: 10.1016/s0985-0562(00)00040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Abstract
OBJECTIVE To review present knowledge of intracellular mechanisms and molecular regulation of muscle cachexia. SUMMARY BACKGROUND DATA Muscle cachexia, mainly reflecting degradation of myofibrillar proteins, is an important clinical feature in patients with severe injury, sepsis, and cancer. The catabolic response in skeletal muscle may result in muscle wasting and weakness, delaying or preventing ambulation and rehabilitation in these patients and increasing the risk for pulmonary complications. RESULTS Muscle cachexia, induced by severe injury, sepsis, and cancer, is associated with increased gene expression and activity of the calcium/calpain- and ubiquitin/proteasome-proteolytic pathways. Calcium/calpain-regulated release of myofilaments from the sarcomere is an early, and perhaps rate-limiting, component of the catabolic response in muscle. Released myofilaments are ubiquitinated in the N-end rule pathway, regulated by the ubiquitin-conjugating enzyme E2(14k) and the ubiquitin ligase E3 alpha, and degraded by the 26S proteasome. CONCLUSIONS An understanding of the mechanisms regulating muscle protein breakdown is important for the development of therapeutic strategies aimed at treating or preventing muscle cachexia in patients with severe injury, sepsis, cancer, and perhaps other catabolic conditions as well.
Collapse
Affiliation(s)
- P O Hasselgren
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio 45267-0558, USA.
| | | |
Collapse
|
24
|
Li BG, Fang CH, Hasselgren P. Degradation of methoxysuccinyl-phe-leu-phe-7-amido-4-trifluoromethyl coumarin (FLF) in cultured myotubes and HepG2 cells is proteasome- and calpain/calcium-dependent. Int J Biochem Cell Biol 2000; 32:677-86. [PMID: 10785364 DOI: 10.1016/s1357-2725(00)00010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During recent years, it has become increasingly clear that the ubiquitin-proteasome proteolytic pathway regulates intracellular protein degradation in various physiological and pathophysiological conditions. Substrates specifically degraded by the proteasome are important tools to assess the involvement of the proteasome in cellular proteolysis. It was recently proposed that the membrane permeable substrate methoxysuccinyl-phenylalanine-leucine-phenylalanine-7-amido-4- trifluoromethyl coumarin (FLF) is degraded specifically by the proteasome. The role of other proteolytic pathways in the degradation of FLF, however, is not fully understood. In the present study, we tested the role of different proteolytic pathways in the degradation of FLF in cultured myotubes and HepG2 cells by treating the cells with inhibitors of lysosomal, calpain and proteasome activity. In addition, we tested the hypothesis that insulin blocks proteasome-dependent degradation of FLF in myotubes and HepG2 cells. Results suggest that degradation of FLF in both myotubes and HepG2 cells is regulated by proteasome and calpain activity but not by lysosomal activity. Insulin inhibited proteasome-dependent but not calpain-dependent degradation of FLF in both myotubes and HepG2 cells. The results are important because they suggest that FLF degradation does not specifically reflect proteasome activity.
Collapse
Affiliation(s)
- B G Li
- Department of Surgery, University of Cincinnati, and Shriners Hospital for Children, Cincinnati, USA
| | | | | |
Collapse
|
25
|
Fischer D, Gang G, Pritts T, Hasselgren PO. Sepsis-induced muscle proteolysis is prevented by a proteasome inhibitor in vivo. Biochem Biophys Res Commun 2000; 270:215-21. [PMID: 10733930 DOI: 10.1006/bbrc.2000.2398] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sepsis-induced muscle proteolysis mainly reflects ubiquitin-proteasome-dependent protein degradation. The effect of in vivo administration of a proteasome inhibitor on muscle protein breakdown during sepsis is not known. We treated rats with the proteasome inhibitor N-benzyloxycarbonyl-Ile-Glu-(O-t-butyl)-Ala-leucinal (PSI) or corresponding volume of vehicle i.p. 2 h before sham-operation or induction of sepsis by cecal ligation and puncture. The sepsis-induced increase in total and myofibrillar muscle protein breakdown was inhibited in rats treated in vivo with PSI and a maximal effect was seen following 15 mg/kg of the proteasome inhibitor. Results from in vitro experiments in which incubated muscles were treated with 100 microM PSI suggest that the drug has a direct effect on muscle and that the effect is specific for the proteasome. The results are important because they suggest that it may be possible to prevent or improve the cachectic response in skeletal muscle during sepsis by treatment with a proteasome inhibitor.
Collapse
Affiliation(s)
- D Fischer
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
26
|
Luo GJ, Sun X, Hasselgren PO. Hyperthermia stimulates energy-proteasome-dependent protein degradation in cultured myotubes. Am J Physiol Regul Integr Comp Physiol 2000; 278:R749-56. [PMID: 10712297 DOI: 10.1152/ajpregu.2000.278.3.r749] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies suggest that elevated temperature stimulates protein degradation in skeletal muscle, but the intracellular mechanisms are not fully understood. We tested the role of different proteolytic pathways in temperature-dependent degradation of long- and short-lived proteins in cultured L6 myotubes. When cells were cultured at different temperatures from 37 to 43 degrees C, the degradation of both classes of proteins increased, with a maximal effect noted at 41 degrees C. The effect of high temperature was more pronounced on long-lived than on short-lived protein degradation. By using blockers of individual proteolytic pathways, we found evidence that the increased degradation of both long-lived and short-lived proteins at high temperature was independent of lysosomal and calcium-mediated mechanisms but reflected energy-proteasome-dependent degradation. mRNA levels for enzymes and other components of different proteolytic pathways were not influenced by high temperature. The results suggest that hyperthermia stimulates the degradation of muscle proteins and that this effect of temperature is regulated by similar mechanisms for short- and long-lived proteins. Elevated temperature may contribute to the catabolic response in skeletal muscle typically seen in sepsis and severe infection.
Collapse
Affiliation(s)
- G J Luo
- Department of Surgery, University of Cincinnati, and Shriners Hospital for Children, Cincinnati, Ohio 45267, USA
| | | | | |
Collapse
|
27
|
|
28
|
Fischer D, Sun X, Gang G, Pritts T, Hasselgren PO. The gene expression of ubiquitin ligase E3alpha is upregulated in skeletal muscle during sepsis in rats-potential role of glucocorticoids. Biochem Biophys Res Commun 2000; 267:504-8. [PMID: 10631091 DOI: 10.1006/bbrc.1999.1987] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle protein breakdown during sepsis is associated with upregulated expression and activity of the ubiquitin-proteasome proteolytic pathway. Previous studies suggest that ubiquitination of proteins in skeletal muscle is regulated by the ubiquitin ligase E3alpha together with the 14 kDa ubiquitin-conjugating enzyme E2(14k). The E3alpha gene was cloned only recently. The influence of sepsis on the gene expression of E3alpha in skeletal muscle has not been reported. In the present study, induction of sepsis in rats by cecal ligation and puncture resulted in increased mRNA levels for E3alpha in white, fast-twitch but not in red slow-twitch muscle. Treatment with the glucocorticoid receptor antagonist RU38486 (10 mg/kg) prevented the sepsis-induced increase in E3alpha and E2(14k) mRNA levels. The present study is the first report of increased E3alpha expression in skeletal muscle during sepsis. The results lend further support to the concept that glucocorticoid-mediated upregulation of the ubiquitin-proteasome proteolytic pathway is involved in sepsis-induced muscle cachexia. Increased expression of both E3alpha and E2(14k) suggests that muscle proteins are degraded in the N-end rule pathway during sepsis.
Collapse
Affiliation(s)
- D Fischer
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Three tracer methods have been used to measure protein synthesis, protein breakdown and protein oxidation at whole-body level. The method using L-[1-(13)C]leucine is considered the method of reference. These methods have contributed greatly to the existing knowledge on whole-body protein turnover and its regulation by feeding, fasting, hormones and disease. How exercise and ingestion of mixed protein-containing meals affect whole-body protein metabolism is still open to debate, as there are discrepancies in results obtained with different tracers. The contribution of whole-body methods to the future gain of knowledge is expected to be limited due to the fact that most physiological disturbances have been investigated extensively, and due to the lack of information on the relative contribution of various tissues and proteins to whole-body changes. Tracer amino acid-incorporation methods are most suited to investigate these latter aspects of protein metabolism. These methods have shown that some tissues (liver and gut) have much higher turnover rates and deposit much more protein than others (muscle). Massive differences also exist between the fractional synthesis rates of individual proteins. The incorporation methods have been properly validated, although minor disagreements remain on the identity of the true precursor pool (the enrichment of which should be used in the calculations). Arterio-venous organ balance studies have shown that little protein is deposited in skeletal muscle following a protein-containing meal, while much more protein is deposited in liver and gut. The amount deposited in the feeding period in each of these tissues is released again during overnight fasting. The addition of tracers to organ balance studies allows the simultaneous estimation of protein synthesis and protein breakdown, and provides information on whether changes in net protein balance are caused primarily by a change in protein synthesis or in protein breakdown. In the case of a small arterio-venous difference in a tissue with a high blood flow, estimates of protein synthesis and breakdown become very uncertain, limiting the value of using the tracer. An additional measurement of the intracellular free amino acid pool enrichment allows a correction for amino acid recycling and quantification of the inward and outward transmembrane transport. However, in order to obtain reliable estimates of the intramuscular amino acid enrichment and, therefore, of muscle protein synthesis and breakdown in this so-called three-pool model, the muscle should be freeze-dried and the resulting fibres should be freed from connective tissue and small blood clots under a dissection microscope. Even when optimal precautions are taken, the calculations in these tracer balance methods use multiple variables and, therefore, are bound to lead to more variability in estimates of protein synthesis than the tracer amino acid incorporation methods. In the future, most studies should focus on the measurement of protein synthesis and breakdown in specific proteins in order to understand the mechanisms behind tissue adaptation in response to various stimuli (feeding, fasting, exercise, trauma, sepsis, disuse and disease). The tracer laboratories, therefore, should improve the methodology to allow the measurement of low tracer amino acid enrichments in small amounts of protein.
Collapse
Affiliation(s)
- A J Wagenmakers
- Department of Human Biology, NUTRIM, Maastricht University, The Netherlands.
| |
Collapse
|
30
|
Williams A, Sun X, Fischer JE, Hasselgren PO. The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 1999. [DOI: 10.1016/s0039-6060(99)70131-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Abstract
The purpose of this article is to review evidence that the ubiquitin-proteasome proteolytic pathway plays an important role in injury- and sepsis-induced muscle catabolism. Such evidence includes upregulated gene expression of several of the components of the ubiquitin-proteasome pathway as well as energy-dependency of the injury- and sepsis-induced muscle protein breakdown. Although the ubiquitin-proteasome pathway is the predominant mechanism of muscle breakdown in various catabolic conditions, other proteolytic mechanisms, in particular calcium-dependent, calpain-mediated protein degradation, probably participate as well.
Collapse
Affiliation(s)
- P O Hasselgren
- Department of Surgery, University of Cincinnati, Ohio 45267-0558, USA.
| |
Collapse
|
32
|
Lobley G. Nutritional and hormonal control of muscle and peripheral tissue metabolism in farm species. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0301-6226(98)00186-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|