1
|
Engineered holocytochrome c synthases that biosynthesize new cytochromes c. Proc Natl Acad Sci U S A 2017; 114:2235-2240. [PMID: 28196881 DOI: 10.1073/pnas.1615929114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c (cyt c), required for electron transport in mitochondria, possesses a covalently attached heme cofactor. Attachment is catalyzed by holocytochrome c synthase (HCCS), leading to two thioether bonds between heme and a conserved CXXCH motif of cyt c In cyt c, histidine (His19) of CXXCH acts as an axial ligand to heme iron and upon release of holocytochrome c from HCCS, folding leads to formation of a second axial interaction with methionine (Met81). We previously discovered mutations in human HCCS that facilitate increased biosynthesis of cyt c in recombinant Escherichia coli Focusing on HCCS E159A, novel cyt c variants in quantities that are sufficient for biophysical analysis are biosynthesized. Cyt c H19M, the first bis-Met liganded cyt c, is compared with other axial ligand variants (M81A, M81H) and single thioether cyt c variants. For variants with axial ligand substitutions, electronic absorption, near-UV circular dichroism, and electron paramagnetic resonance spectroscopy provide evidence that axial ligands are changed and the heme environment is altered. Circular dichroism spectra in far UV and thermal denaturation analyses demonstrate that axial ligand changes do not affect secondary structures and stability. Redox potentials span a 400-mV range (+349 mV vs. standard hydrogen electrode, H19M; +252 mV, WT; -19 mV, M81A; -69 mV, M81H). We discuss the results in the context of a four-step mechanism for HCCS, whereby HCCS mutants such as E159A are enhanced in release (step 4) of cyt c from the HCCS active site; thus, we term these "release mutants."
Collapse
|
2
|
Bren KL. Going with the Electron Flow: Heme Electronic Structure and Electron Transfer in Cytochrome
c. Isr J Chem 2016. [DOI: 10.1002/ijch.201600021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kara L. Bren
- Department of Chemistry University of Rochester Rochester NY 14627-0216 USA
| |
Collapse
|
3
|
Verissimo AF, Shroff NP, Daldal F. During Cytochrome c Maturation CcmI Chaperones the Class I Apocytochromes until the Formation of Their b-Type Cytochrome Intermediates. J Biol Chem 2015; 290:16989-7003. [PMID: 25979338 DOI: 10.1074/jbc.m115.652818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 12/12/2022] Open
Abstract
The c-type cytochromes are electron transfer proteins involved in energy transduction. They have heme-binding (CXXCH) sites that covalently ligate heme b via thioether bonds and are classified into different classes based on their protein folds and the locations and properties of their cofactors. Rhodobacter capsulatus produces various c-type cytochromes using the cytochrome c maturation (Ccm) System I, formed from the CcmABCDEFGHI proteins. CcmI, a component of the heme ligation complex CcmFHI, interacts with the heme-handling protein CcmE and chaperones apocytochrome c2 by binding its C-terminal helix. Whether CcmI also chaperones other c-type apocytochromes, and the effects of heme on these interactions were unknown previously. Here, we purified different classes of soluble and membrane-bound c-type apocytochromes (class I, c2 and c1, and class II c') and investigated their interactions with CcmI and apoCcmE. We report that, in the absence of heme, CcmI and apoCcmE recognized different classes of c-type apocytochromes with different affinities (nM to μM KD values). When present, heme induced conformational changes in class I apocytochromes (e.g. c2) and decreased significantly their high affinity for CcmI. Knowing that CcmI does not interact with mature cytochrome c2 and that heme converts apocytochrome c2 into its b-type derivative, these findings indicate that CcmI holds the class I apocytochromes (e.g. c2) tightly until their noncovalent heme-containing b-type cytochrome-like intermediates are formed. We propose that these intermediates are subsequently converted into mature cytochromes following the covalent ligation of heme via the remaining components of the Ccm complex.
Collapse
Affiliation(s)
- Andreia F Verissimo
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Namita P Shroff
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| | - Fevzi Daldal
- From the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6019
| |
Collapse
|
4
|
The mitochondrial cytochrome c
N-terminal region is critical for maturation by holocytochrome c
synthase. FEBS Lett 2011; 585:1891-6. [DOI: 10.1016/j.febslet.2011.04.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 11/19/2022]
|
5
|
Kleingardner JG, Bren KL. Comparing substrate specificity between cytochrome c maturation and cytochrome c heme lyase systems for cytochrome c biogenesis. Metallomics 2011; 3:396-403. [PMID: 21380436 PMCID: PMC3081496 DOI: 10.1039/c0mt00086h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hemes c are characterized by their covalent attachment to a polypeptide via a widely conserved CXXCH motif. There are multiple biological systems that facilitate heme c biogenesis. System I, the cytochrome c maturation (CCM) system, is found in many bacteria and is commonly employed in the maturation of bacterial cytochromes c in Escherichia coli-based expression systems. System III, cytochrome c heme lyase (CCHL), is an enzyme found in the mitochondria of many eukaryotes and is used for heterologous expression of mitochondrial holocytochromes c. To test CCM specificity, a series of Hydrogenobacter thermophilus cytochrome c(552) variants was successfully expressed and matured by the CCM system with CX(n)CH motifs where n = 1-4, further extending the known substrate flexibility of the CCM system by successful maturation of a bacterial cytochrome c with a novel CXCH motif. Horse cytochrome c variants with both expanded and contracted attachment motifs (n = 1-3) were also tested for expression and maturation by both CCM and CCHL, allowing direct comparison of CCM and CCHL substrate specificities. Successful maturation of horse cytochrome c by CCHL with an extended CXXXCH motif was observed, demonstrating that CCHL shares the ability of CCM to mature hemes c with extended heme attachment motifs. In contrast, two single amino acid mutants were found in horse cytochrome c that severely limit maturation by CCHL, yet were efficiently matured with CCM. These results identify potentially important residues for the substrate recognition of CCHL.
Collapse
|
6
|
Asher WB, Bren KL. A heme fusion tag for protein affinity purification and quantification. Protein Sci 2010; 19:1830-9. [PMID: 20665691 PMCID: PMC2998719 DOI: 10.1002/pro.460] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/07/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022]
Abstract
We report a novel affinity-based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L-histidine-immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme-tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200-500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag-HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.
Collapse
Affiliation(s)
| | - Kara L Bren
- Department of Chemistry, University of RochesterRochester, New York 14627-0216
| |
Collapse
|
7
|
Bowman SEJ, Bren KL. The chemistry and biochemistry of heme c: functional bases for covalent attachment. Nat Prod Rep 2008; 25:1118-30. [PMID: 19030605 DOI: 10.1039/b717196j] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histidine interaction with iron, it is proposed that heme attachment influences both heme reduction potential and ligand-iron interactions.
Collapse
Affiliation(s)
- Sarah E J Bowman
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
8
|
Zinc porphyrin: a fluorescent acceptor in studies of Zn-cytochrome c unfolding by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2008; 105:10779-84. [PMID: 18669660 DOI: 10.1073/pnas.0802737105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FRET between the zinc porphyrin (ZnP) chromophore in zinc-substituted cytochrome c (Zn-cyt c) and an Alexa Fluor dye attached to specific surface sites was used to characterize Zn-cyt c unfolding. The use of ZnP as a fluorescent acceptor eliminates the need to doubly label the protein with exogenous dyes to perform FRET experiments in which both donor and acceptor fluorescence is monitored. The requirement for attachment of only one dye also minimizes perturbation to the protein. This sensitive technique allowed for the determination of distances between the label placed at six different sites and ZnP through a range of denaturant concentrations. Fitting of the data to a three-state model provides distances in the unfolding intermediate. The use of ZnP as a fluorescent acceptor of energy in FRET has a significant potential for application to a range of other systems including heme-binding proteins and proteins to which a covalently attached heme tag may be added.
Collapse
|
9
|
Rodríguez-Roldán V, García-Heredia JM, Navarro JA, Hervás M, De la Cerda B, Molina-Heredia FP, De la Rosa MA. A comparative kinetic analysis of the reactivity of plant, horse, and human respiratory cytochrome c towards cytochrome c oxidase. Biochem Biophys Res Commun 2006; 346:1108-13. [PMID: 16782050 DOI: 10.1016/j.bbrc.2006.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/03/2006] [Indexed: 01/29/2023]
Abstract
Two synthetic genes coding for human and Arabidopsis cytochrome c, respectively, have been designed and constructed, and the recombinant proteins have been over-expressed in Escherichia coli cells. Thus a comparative analysis of the two heme proteins, including horse cytochrome c as a reference, has been performed. In addition to their physico-chemical properties, the redox behavior of the three proteins has been analyzed by following the kinetics of both their reduction by flavin semiquinones (lumiflavin, riboflavin, and FMN) and oxidation by cytochrome c oxidase. The resulting data indicate that the accessibility and electrostatic charge of the active site do not differ in a significant way among the three proteins, but human cytochrome c exhibits some intriguing differences when interacting with cytochrome c oxidase that could be related to the amino acid changes underwent by the latter along evolution.
Collapse
Affiliation(s)
- Vicente Rodríguez-Roldán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y CSIC, Centro de Investigaciones Científicas Isla de la Cartuja, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Walker FA. The heme environment of mouse neuroglobin: histidine imidazole plane orientations obtained from solution NMR and EPR spectroscopy as compared with X-ray crystallography. J Biol Inorg Chem 2006; 11:391-7. [PMID: 16586113 DOI: 10.1007/s00775-006-0095-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 02/22/2006] [Indexed: 12/16/2022]
Abstract
The 1H NMR chemical shifts of the heme methyl groups of the ferriheme complex of metneuroglobin (Du et al. in J. Am. Chem. Soc. 125:8080-8081, 2003) predict orientations of the axial histidine ligands (Shokhirev and Walker in J. Biol. Inorg. Chem. 3:581-594, 1998) that are not consistent with the X-ray data (Vallone et al. in Proteins Struct. Funct. Bioinf. 56:85-94, 2004), and the EPR spectrum (Vinck et al. in J. Am. Chem. Soc. 126:4516-4517, 2004) is only marginally consistent with these data. The reasons for these inconsistencies appear to be rooted in the high degree of aqueous solution exposure of the heme group and the fact that there are no strong hydrogen-bond acceptors for the histidine imidazole N-H protons provided by the protein. Similar inconsistencies may exist for other water-soluble heme proteins, and 1H NMR spectroscopy provides a simple means to verify whether the solution structure of the heme center is the same as or different from that in the crystalline state.
Collapse
Affiliation(s)
- F Ann Walker
- Department of Chemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041, USA.
| |
Collapse
|
11
|
Stevens JM, Gordon EH, Ferguson SJ. Overproduction of CcmABCDEFGH restores cytochrome c maturation in a DsbD deletion strain of E. coli: another route for reductant? FEBS Lett 2004; 576:81-5. [PMID: 15474015 DOI: 10.1016/j.febslet.2004.08.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/24/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
The multidomain transmembrane protein DsbD is essential for cytochrome c maturation (Ccm) in Escherichia coli and transports reductant to the otherwise oxidising environment of the bacterial periplasm. The Ccm proteins ABCDEFGH are also essential and we show that the overproduction of these proteins can unexpectedly complement for the absence of DsbD in a deletion strain by partially restoring the production of an exogenous c-type cytochrome under aerobic and anaerobic conditions. This suggests that one or more of the Ccm proteins can provide reductant to the periplasm. The Ccm proteins do not, however, restore the normal disulfide mis-isomerisation phenotype of the deletion strain, as shown by assay of the multidisulfide-bonded enzyme urokinase.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
12
|
Allen JWA, Barker PD, Ferguson SJ. A Cytochrome b562 Variant with a c-Type Cytochrome CXXCH Heme-binding Motif as a Probe of the Escherichia coli Cytochrome c Maturation System. J Biol Chem 2003; 278:52075-83. [PMID: 14534316 DOI: 10.1074/jbc.m307196200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome b562 is a periplasmic Escherichia coli protein; previous work has shown that heme can be attached covalently in vivo as a consequence of introduction of one or two cysteines into the heme-binding pocket. A heterogeneous mixture of products was obtained, and it was not established whether the covalent bond formation was catalyzed or spontaneous. Here, we show that coexpression from plasmids of a variant of cytochrome b562 containing a CXXCH heme-binding motif with the E. coli cytochrome c maturation (Ccm) proteins results in an essentially homogeneous product that is a correctly matured c-type cytochrome. Formation of the holocytochrome was accompanied by substantial production of its apo form, in which, for the protein as isolated, there is a disulfide bond between the two cysteines in the CXXCH motif. Following addition of heme to reduced CXXCH apoprotein, spontaneous covalent addition of heme to polypeptide occurred in vitro. Strikingly, the spectral properties were very similar to those of the material obtained from cells in which presumed uncatalyzed addition of heme (i.e. in the absence of Ccm) had been observed. The major product from uncatalyzed heme attachment was an incorrectly matured cytochrome with the heme rotated by 180 degrees relative to its normal orientation. The contrast between Ccm-dependent and Ccm-independent covalent attachment of heme indicates that the Ccm apparatus presents heme to the protein only in the orientation that results in formation of the correct product and also that heme does not become covalently attached to the apocytochrome b562 CXXCH variant without being handled by the Ccm system in the periplasm. The CXXCH variant of cytochrome b562 was also expressed in E. coli strains deficient in the periplasmic reductant DsbD or oxidant DsbA. In the DsbA- strain under aerobic conditions, c-type cytochromes were made abundantly and correctly when the Ccm proteins were expressed. This contrasts with previous reports indicating that DsbA is essential for cytochrome c biogenesis in E. coli.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
13
|
Allen JWA, Ferguson SJ. Variation of the axial haem ligands and haem-binding motif as a probe of the Escherichia coli c-type cytochrome maturation (Ccm) system. Biochem J 2003; 375:721-8. [PMID: 12901720 PMCID: PMC1223722 DOI: 10.1042/bj20030752] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 07/28/2003] [Accepted: 08/06/2003] [Indexed: 11/17/2022]
Abstract
Cytochromes c are typically characterized by the covalent attachment of haem to polypeptide through two thioether bonds with the cysteine residues of a Cys-Xaa-Xaa-Cys-His peptide motif. In many Gram-negative bacteria, the haem is attached to the polypeptide by the periplasmically functioning cytochrome c maturation (Ccm) proteins. Exceptionally, Hydrogenobacter thermophilus cytochrome c552 can be expressed as a stable holocytochrome both in the cytoplasm of Escherichia coli in an apparently uncatalysed reaction and also in the periplasm in a Ccm-mediated reaction. In the present study we show that a Met60-->Ala variant of c552, which does not have the usual distal methionine ligand to the haem iron of the mature cytochrome, can be made in the periplasm by the Ccm system. However, no holocytochrome could be detected when this variant was expressed cytoplasmically. These data highlight differences between the two modes of cytochrome c assembly. In addition, we report investigations of haem attachment to cytochromes altered to have the special Cys-Trp-Ser-Cys-Lys haem-binding motif, and Cys-Trp-Ser-Cys-His and Cys-Trp-Ala-Cys-His analogues, of the active-site haem of nitrite reductase NrfA.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | |
Collapse
|