1
|
Kamel AI, Badawy SA, Abdel-Mogib M, El-Rokh AR. Phytochemical, biological, DFT, and molecular docking evaluation of Euphorbia paralias. Sci Rep 2025; 15:17961. [PMID: 40410195 PMCID: PMC12102368 DOI: 10.1038/s41598-025-02420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
This study aimed to bridge the knowledge gap in the unclear previous studies of the molecular processes that cause the biological activities of Euphorbia paralias by integrating phytochemical analysis with quantum chemical calculations and molecular docking investigations, providing unprecedented insights into the therapeutic potential of its chemical constituents. Seven important flavonoids were isolated and identified using spectroscopic techniques, and 34 and 13 additional compounds were identified via GC/MS analysis of the hexane and chloroform fractions, respectively. The crude methanol extract, some fractions, and isolated compounds were screened for antimicrobial activity against Gram-positive and Gram-negative bacteria. Among the tested constituents, β-sitosterol-3-O-β-D-glucoside 1, kaempferol-3-O-α-D-arabinopyranoside 4, and genistein-8-β-C-glucoside 6, as well as the chloroform and ethyl acetate fractions, demonstrated notable broad-spectrum antibacterial activity. The insecticidal activities of the butanol fraction and a combination of genistein-4'-O-β-D-glucopyranoside 2 and quercetin-3-O-β-D-glucoside 3 significantly inhibited Aphis gossypii and Amrasca biguttula, with LC50 values of 397.39 ppm and 332.92 ppm, respectively. DFT calculations at the B3LYP/6-31G(d) level revealed that hirsutissimiside B 7 exhibited the lowest HOMO-LUMO gap (1.643 eV), highest dipole moment (7.562 Debye), and lowest chemical hardness (0.821 eV), suggesting enhanced chemical reactivity and bioactivity. Molecular docking simulations revealed the strong binding affinities of the active compounds to key microbial and insecticidal target proteins. The high degree of concordance between computational predictions and experimental bioactivity results reinforces the therapeutic potential of these natural products. These findings highlight the synergistic value of integrating quantum chemical calculations, molecular modeling, and biological assays to advance natural product-based drug discovery and pest control strategies.
Collapse
Affiliation(s)
- Abdullah I Kamel
- Chemistry Department, Faculty of Science, New Mansoura University, Mansoura, Egypt.
| | - Safa A Badawy
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mamdouh Abdel-Mogib
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Ramadan El-Rokh
- Plant Protection Research Institute, Agricultural Research Center, Giza, 12618, Egypt
| |
Collapse
|
2
|
Cho CH, Chae SH, Thi NHL, Um SH, Lee S, Yu JS, Kang KS, Kim KH. Lambertianic Acid from Platycladus orientalis Inhibits Muscle Atrophy in Dexamethasone-Induced C2C12 Muscle Atrophy Cells. PLANTS (BASEL, SWITZERLAND) 2025; 14:1357. [PMID: 40364384 PMCID: PMC12073373 DOI: 10.3390/plants14091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Platycladus orientalis, an evergreen tree belonging to the Cupressaceae family, has been traditionally used to treat various ailments, including fever, cough, diarrhea, diuresis, cold symptoms, and gastrointestinal disorders in folk medicine. As part of our ongoing investigation aimed at discovering bioactive natural products and elucidating their mechanisms of action from various natural sources, we investigated a methanol (MeOH) extract of P. orientalis leaves. This investigation led to the isolation and identification of a labdane-type diterpene, lambertianic acid (LA), via column chromatography and HPLC purification. The structure of LA was elucidated using LC/MS and NMR spectroscopic analyses, including HR-ESIMS, while its absolute configuration was confirmed through electronic circular dichroism (ECD) calculations. Recent studies have reported that labdane-type diterpenes exhibit diverse pharmacological activities, such as anticancer, anti-inflammatory, anti-obesity, and hypolipidemic effects. Notably, LA has been shown to modulate adipocyte metabolism via AMPK signaling; however, its role in skeletal muscle atrophy remains unexplored. Therefore, in this study, we investigated the effects of LA on dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Treatment with LA at concentrations of 25 µM and 50 µM significantly rescued myotube diameter and reduced the expression of atrophy-related proteins, including MuRF-1 and atrogin-1/MAFbx, without compromising cell viability at these moderate concentrations. These findings suggest that LA derived from P. orientalis exerts protective effects against skeletal muscle atrophy, highlighting its potential as a promising natural therapeutic candidate for muscle-wasting disorders.
Collapse
Affiliation(s)
- Chan Hee Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (C.H.C.); (S.H.C.)
| | - Si Hyeon Chae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (C.H.C.); (S.H.C.)
| | - Ngoc Han Le Thi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea;
| | - Sung Hee Um
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Seulah Lee
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Jae Sik Yu
- Department of Integrative Biological Sciences and Industry, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (C.H.C.); (S.H.C.)
| |
Collapse
|
3
|
Antoniuk O, Maranha A, Salvador JAR, Empadinhas N, Moreira VM. Bi- and tricyclic diterpenoids: landmarks from a decade (2013-2023) in search of leads against infectious diseases. Nat Prod Rep 2024; 41:1858-1894. [PMID: 39371026 DOI: 10.1039/d4np00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Covering: 2013 to 2023In an era where antimicrobial resistance severely threatens our ability to treat infections, the discovery of new drugs that belong to different chemical classes and/or bear original modes of action is urgently needed. In this case, diterpenoids comprise a productive field with a proven track record in providing new anti-infectives to tackle bacterial infections and malaria. This review highlights the potential of both naturally occurring and semi-synthetic bi- and tricyclic diterpenoids to become leads in search of new drugs to treat infections caused by bacteria, fungi, viruses and protozoan parasites. The literature from the last decade (2013-2023) is covered, focusing on naturally occurring and semi-synthetic bicyclic (labdanes and labdane-type) and tricyclic (all classes) diterpenoids, detailing their relevant biological activities in the context of infection, which are explained through structure-activity relationships.
Collapse
Affiliation(s)
- Olha Antoniuk
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Ana Maranha
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Jorge A R Salvador
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Nuno Empadinhas
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Vânia M Moreira
- Faculty of Pharmacy, University of Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
4
|
Jojić AA, Liga S, Uţu D, Ruse G, Suciu L, Motoc A, Şoica CM, Tchiakpe-Antal DS. Beyond Essential Oils: Diterpenes, Lignans, and Biflavonoids from Juniperus communis L. as a Source of Multi-Target Lead Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3233. [PMID: 39599442 PMCID: PMC11598787 DOI: 10.3390/plants13223233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Common Juniper (Juniperus communis L.) is a gymnosperm that stands out through its fleshy, spherical female cones, often termed simply "berries". The cone berries and various vegetative parts (leaves, twigs and even roots) are used in traditional phytotherapy, based on the beneficial effects exerted by a variety of secondary metabolites. While the volatile compounds of Juniperus communis are known for their aromatic properties and have been well-researched for their antimicrobial effects, this review shifts focus to non-volatile secondary metabolites-specifically diterpenes, lignans, and biflavonoids. These compounds are of significant biomedical interest due to their notable pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. The aim of this review is to offer an up-to-date account of chemical composition of Juniperus communis and related species, with a primary emphasis on the bioactivities of diterpenes, lignans, and biflavonoids. By examining recent preclinical and clinical data, this work assesses the therapeutic potential of these metabolites and their mechanisms of action, underscoring their value in developing new therapeutic options. Additionally, this review addresses the pharmacological efficacy and possible therapeutic applications of Juniperus communis in treating various human diseases, thus supporting its potential role in evidence-based phytotherapy.
Collapse
Affiliation(s)
- Alina Arabela Jojić
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Sergio Liga
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, 6 Vasile Parvan, 300223 Timisoara, Romania
| | - Diana Uţu
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
| | - Graţiana Ruse
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Liana Suciu
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
| | - Andrei Motoc
- Department of Anatomy-Embryology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Codruța Marinela Şoica
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Diana-Simona Tchiakpe-Antal
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
5
|
Rah B, Shafarin J, Hamad M, Muhammad JS. Sclareol induces cell cycle arrest and ROS-mediated apoptosis and ferroptosis in lung adenocarcinoma cells. J Biochem Mol Toxicol 2024; 38:e23563. [PMID: 37850667 DOI: 10.1002/jbt.23563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Sclareol (SC) has shown significant anticancer activity against breast and colon cancers among others. However, its ability to precipitate similar anticancer effects in lung cancer has yet to be investigated. To address this issue, SC-treated lung adenocarcinoma cells (A549) were assessed for viability and functional competence as well as the expression of genes related to apoptosis and cell cycling. Our results demonstrated that SC treatment inhibited A549 cell clonogenic features and reduced their migration and invasion potential in a dose-dependent manner. Mechanistically, SC treatment downregulated the expression of cyclin D1 and survivin and upregulated that of p21 and p16, which was associated with a significant increase in the percentage of SubG0 cells. SC treatment is also associated with the induction of both the extrinsic and intrinsic apoptotic pathways, as evidenced by the increased expression and splitting of PARP1 and procaspases 3 and 9 and the reduced expression of antiapoptotic proteins Bcl-2 and Bcl-xL. Increased cell death in SC-treated cells is likely to have resulted from the induction of ferroptosis as suggested by the reduced expression of FPN and the inhibition of the anti-ferroptosis regulator GPX4. In conclusion, the data presented here suggest that SC can reduce lung carcinoma cell growth and metastasis and promote cell death.
Collapse
Affiliation(s)
- Bilal Rah
- Iron Biology Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Iron Biology Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Iron Biology Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Iron Biology Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Zhu M, Gao Y, Li Y, Xie F, Zhou J, Xu L, Lv D, Zhang X, Xu Z, Dong T, Shen T, Zhang J, Lou H. Novel Diterpenoids Incorporating Rearranged Labdanes from the Chinese Liverwort Anastrophyllum joergensenii and Their Anti-inflammatory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19551-19567. [PMID: 38032113 DOI: 10.1021/acs.jafc.3c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Liverworts provide valuable ecological services to improve the sustainability of agriculture, encompassing soil health maintenance and natural pest management. Some liverworts have potential applications in medicine and as food additives. Twenty-two novel diterpenoids (anajoerins A-V), of which anajoerins B-G are rearranged labdanes featuring an unprecedented 6/5 fused ring system, were isolated from the Chinese liverwort Anastrophyllum joergensenii Schiffn. The absolute configurations of all compounds were identified based on high-resolution electrospray ionization mass spectroscopy data, NMR spectra, and ECD calculations. Plausible biogenetic pathways for unprecedented rearranged labdanes were proposed. Seven diterpenoids exhibited anti-inflammatory activity by reducing nitric oxide production in LPS-stimulated RAW264.7 murine macrophages in a dose-dependent manner with IC50s between 9.71 and 56.56 μM. All tested compounds showed no cytotoxicity at the tested concentrations. Western blot analyses of NF-κB p65 downregulation showed that anajoerin L could inhibit the NF-κB signaling pathway. Furthermore, anajoerin L also suppressed the secretion of the ConA-induced proinflammatory cytokines IFN-γ, TNF-α, and IL-6.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yinghui Gao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Feng Xie
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinchuan Zhou
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Lintao Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongxue Lv
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinyu Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zejun Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Dong
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Shen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
7
|
Liu Z, Xia C, Wang N, Cao J, Huang G, Ma L. Synthesis and Evaluation of Piperazine-Tethered Derivatives of Alepterolic Acid as Anticancer Agents. Chem Biodivers 2023; 20:e202300208. [PMID: 36960853 DOI: 10.1002/cbdv.202300208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/25/2023]
Abstract
Alepterolic acid is a natural diterpenoid isolated from Aleuritopteris argentea with potential anti-cancer activity. In this study, alepterolic acid was modified to construct a series of arylformyl piperazinyl derivatives (3a-3p). The synthesized derivatives were fully characterized with HRMS, NMR, and IR. Four compounds with inhibition rate higher than 30 % at 10 μM (3f, 3n, 3g and 3k) were further measured to obtain the IC50 values against four cancer cell lines, including hepatoma cell lines HepG2, lung cancer cell lines A549, estrogen receptor-positive cell lines MCF7, and triple-negative breast cancer (TNBC) cell lines MDA-MB-231 by MTT assay. It was found that these compounds were more effective to HepG2 and MDA-MB-231 cells, while less toxic to A549 and MCF7 cells, and compound 3n as the most toxic derivatve against MDA-MB-231 cell lines, with IC50 value of 5.55±0.56 μM. Trypan blue staining and colony formation assay showed that compound 3n inhibited the growth of MDA-MB-231 cells and prevented colony formation. Hoechst staining, flow cytometry and western blot analysis revealed that compound 3n induced caspase-dependent apoptosis in MDA-MB-231 cells. Conclusively, compound 3n was demonstrated to be a potential anti-cancer lead compound for further investigation.
Collapse
Affiliation(s)
- Zi Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Chenlu Xia
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Nina Wang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Jianguo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai, 201418, P. R. China
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Liang Ma
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
8
|
Wu B, Wei X, Wang N, Xia C, Bao R, Cao J, Zhong Z, Liu Z, Ma L, Huang G. Synthesis, Structural Characterization and Antiproliferative Evaluation of Phenylalkylamino-containing Alepterolic Acid Derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Gupta MK, Singh R, Rangan L. Phytochemical screening, antibacterial, anti-biofilm and quorum sensing inhibiting activity of Alpinia nigra leaf extract against infectious pathogen Pseudomonas aeruginosa PAO1. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Sitarek P, Kowalczyk T, Synowiec E, Merecz-Sadowska A, Bangay G, Princiotto S, Śliwiński T, Rijo P. An Evaluation of the Novel Biological Properties of Diterpenes Isolated from Plectranthus ornatus Codd. In Vitro and In Silico. Cells 2022; 11:cells11203243. [PMID: 36291112 PMCID: PMC9600095 DOI: 10.3390/cells11203243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6β-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II—Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
- Correspondence: (P.S.); (P.R.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
| | - Gabrielle Bangay
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Salvatore Princiotto
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Patricia Rijo
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: (P.S.); (P.R.)
| |
Collapse
|
11
|
Sartori AGDO, Cesar ASM, Woitowicz FCG, Saliba ASMC, Ikegaki M, Rosalen PL, Coutinho LL, Alencar SMD. Plant genetic diversity by DNA barcoding to investigate propolis origin. PHYTOCHEMISTRY 2022; 200:113226. [PMID: 35605810 DOI: 10.1016/j.phytochem.2022.113226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Identify the botanical origins of a certain type of propolis may be challenging and time demanding, since it involves bee's behavior observation, plant resins collection and chemical analysis. Thus, this study aimed to determine the plant genetic materials in propolis from southern Brazil using the DNA barcoding to investigate their botanical origins, as well as to compare it with the phytochemical composition determined by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) and with the pollinic profile. As principal results, non-native Populus carolinensis Moench (Salicaceae) was almost the only DNA source in some propolis samples, which coincided with the presence of flavonoids typical from poplar exudates. Conversely, other propolis samples had DNA material coming mainly from native plant species, most of them characterized to the species level, although no specific chemical markers from those plants could be identified by UHPLC-HRMS. However, pollen from several plants identified by the DNA barcoding were extracted from some propolis samples. Despite the identification of typical diterpenes, DNA material from Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae), which have been indicated as a major resin source for propolis from preservation areas in southern Brazil, was found in very small abundancies, likely because bees do not drag tissue material containing DNA when collecting resin from this native species. In conclusion, DNA barcoding analysis successfully provided information about the provenance of propolis, although, depending on the plant resin sources, this information is likely to come from pollen.
Collapse
Affiliation(s)
| | - Aline Silva Mello Cesar
- Luiz de Queiroz College of Agriculture, University of São Paulo, CEP: 13418-900, Piracicaba, SP, Brazil
| | | | | | - Masaharu Ikegaki
- Federal University of Alfenas, CEP: 37130-001, Alfenas, MG, Brazil
| | | | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, CEP: 13418-900, Piracicaba, SP, Brazil
| | | |
Collapse
|
12
|
Kemboi D, Siwe-Noundou X, Krause RWM, Langat MK, Tembu VJ. Euphorbia Diterpenes: An Update of Isolation, Structure, Pharmacological Activities and Structure-Activity Relationship. Molecules 2021; 26:5055. [PMID: 34443641 PMCID: PMC8399488 DOI: 10.3390/molecules26165055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023] Open
Abstract
Euphorbia species have a rich history of ethnomedicinal use and ethnopharmacological applications in drug discovery. This is due to the presence of a wide range of diterpenes exhibiting great structural diversity and pharmacological activities. As a result, Euphorbia diterpenes have remained the focus of drug discovery investigations from natural products. The current review documents over 350 diterpenes, isolated from Euphorbia species, their structures, classification, biosynthetic pathways, and their structure-activity relationships for the period covering 2013-2020. Among the isolated diterpenes, over 20 skeletal structures were identified. Lathyrane, jatrophane, ingenane, ingenol, and ingol were identified as the major diterpenes in most Euphorbia species. Most of the isolated diterpenes were evaluated for their cytotoxicity activities, multidrug resistance abilities, and inhibitory activities in vitro, and reported good activities with significant half-inhibitory concentration (IC50) values ranging from 10-50 µM. The lathyranes, isopimaranes, and jatrophanes diterpenes were further found to show potent inhibition of P-glycoprotein, which is known to confer drug resistance abilities in cells leading to decreased cytotoxic effects. Structure-activity relationship (SAR) studies revealed the significance of a free hydroxyl group at position C-3 in enhancing the anticancer and anti-inflammatory activities and the negative effect it has in position C-2. Esterification of this functionality, in selected diterpenes, was found to enhance these activities. Thus, Euphorbia diterpenes offer a valuable source of lead compounds that could be investigated further as potential candidates for drug discovery.
Collapse
Affiliation(s)
- Douglas Kemboi
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
- Department of Chemistry, Rhodes University, Makhanda 6140, South Africa;
| | | | - Rui W. M. Krause
- Department of Chemistry, Rhodes University, Makhanda 6140, South Africa;
| | - Moses K. Langat
- Jodrell Laboratory, Department of Unlocking Properties, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK;
| | - Vuyelwa Jacqueline Tembu
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
13
|
Borrego-Muñoz P, Ospina F, Quiroga D. A Compendium of the Most Promising Synthesized Organic Compounds against Several Fusarium oxysporum Species: Synthesis, Antifungal Activity, and Perspectives. Molecules 2021; 26:3997. [PMID: 34208916 PMCID: PMC8271819 DOI: 10.3390/molecules26133997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022] Open
Abstract
Vascular wilt caused by F. oxysporum (FOX) is one of the main limitations of producing several agricultural products worldwide, causing economic losses between 40% and 100%. Various methods have been developed to control this phytopathogen, such as the cultural, biological, and chemical controls, the latter being the most widely used in the agricultural sector. The treatment of this fungus through systemic fungicides, although practical, brings problems because the agrochemical agents used have shown mutagenic effects on the fungus, increasing the pathogen's resistance. The design and the synthesis of novel synthetic antifungal agents used against FOX have been broadly studied in recent years. This review article presents a compendium of the synthetic methodologies during the last ten years as promissory, which can be used to afford novel and potential agrochemical agents. The revision is addressed from the structural core of the most active synthetic compounds against FOX. The synthetic methodologies implemented strategies based on cyclo condensation reactions, radical cyclization, electrocyclic closures, and carbon-carbon couplings by metal-organic catalysis. This revision contributes significantly to the organic chemistry, supplying novel alternatives for the use of more effective agrochemical agents against F. oxysporum.
Collapse
Affiliation(s)
| | | | - Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar, Nueva Granada, Cajicá 250247, Colombia; (P.B.-M.); (F.O.)
| |
Collapse
|
14
|
Moe TS, Chaturonrutsamee S, Bunteang S, Kuhakarn C, Prabpai S, Surawatanawong P, Chairoungdua A, Suksen K, Akkarawongsapat R, Limthongkul J, Napaswad C, Nuntasaen N, Reutrakul V. Boesenmaxane Diterpenoids from Boesenbergia maxwellii. JOURNAL OF NATURAL PRODUCTS 2021; 84:518-526. [PMID: 33372792 DOI: 10.1021/acs.jnatprod.0c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three new diterpenoids, boesenmaxanes A-C (1-3), with an unprecedented core skeleton consisting of an unusual C-C bond between C-12 and an exo-cyclic methylene C-13, were isolated from the rhizome extracts of Boesenbergia maxwellii. The structures were elucidated by analysis of spectroscopic and X-ray diffraction data. Electronic circular dichroism spectra were used to determine the absolute configuration. All the isolates were evaluated for their cytotoxic effects, anti-HIV activity, and antimicrobial activity. Boesenmaxanes A and C (1 and 3) showed significant inhibitory activity in the syncytium reduction assay, with EC50 values of 55.2 and 27.5 μM, respectively.
Collapse
Affiliation(s)
- The S Moe
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse 05151, Myanmar
| | - Suppisak Chaturonrutsamee
- Research and Innovation Department, International Laboratories Corp., Ltd., Bang Phli, Samut Prakan 10540, Thailand
| | | | | | | | | | | | | | | | | | | | - Narong Nuntasaen
- The Forest Herbarium, National Parks, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Bangkok 10900, Thailand
| | | |
Collapse
|
15
|
Milet-Pinheiro P, Domingos-Melo A, Olivera JB, Albuquerque NSL, Costa ACG, Albuquerque-Lima S, Silva MFR, Navarro DMAF, Maia ACD, Gundersen LL, Schubert M, Dötterl S, Machado IC. A Semivolatile Floral Scent Marks the Shift to a Novel Pollination System in Bromeliads. Curr Biol 2021; 31:860-868.e4. [PMID: 33338429 DOI: 10.1016/j.cub.2020.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/26/2022]
Abstract
Perfume flowers (sensu Vogel1) produce intense scents that function both as attractants and as the sole rewards for pollinators. The scent is collected exclusively by male euglossine bees and used during pre-mating behavior.2-5 Perfume flowers have evolved independently in 15 angiosperm families, with over 1,000 reported species across the Neotropical region.6 Members of Cryptanthus (Bromeliaceae) represent a puzzling exception among perfume flowers, as flowers produce nectar and do not emit a noticeable scent yet still attract euglossine males.7 Here, we studied the pollination ecology of Cryptanthus burle-marxii and decode the chemical communication between its flowers and euglossine males. Field observations revealed euglossine males and hummingbirds as potential pollinators. The bees always contacted anthers/stigma of C. burle-marxii while scraping the petals to obtain chemicals, whereas nectar-seeking hummingbirds normally only contacted the anthers. Based on gas chromatography-mass spectrometry/nuclear magnetic resonance analyses of flower scent samples and bioassays, we identified the diterpene copalol as the only floral scent compound triggering scent-gathering behavior in euglossine males. Unlike euglossine-bee-mediated pollination, hummingbird pollination is ancestral in the Cryptanthus clade, suggesting a case of an ongoing pollinator shift8-10 mediated by the evolution of perfume as a reward. Copalol was previously unknown as a floral scent constituent and represents the heaviest and least-volatile compound known to attract euglossine males. Our study provides the first experimental evidence that semivolatile floral compounds can mediate euglossine bee interactions. Male euglossine pollination in other plant species lacking noticeable floral scents11-13 suggests that semivolatile-mediated pollinator attraction is more widespread than currently appreciated.
Collapse
Affiliation(s)
- Paulo Milet-Pinheiro
- Departament of Botany, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil.
| | - Arthur Domingos-Melo
- Departament of Botany, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - João B Olivera
- Departament of Botany, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Nayara S L Albuquerque
- Departament of Botany, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Ana Carolina G Costa
- Departament of Botany, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Sinzinando Albuquerque-Lima
- Departament of Botany, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Marcelo F R Silva
- Department of Fundamental Chemistry, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Daniela M A F Navarro
- Department of Fundamental Chemistry, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Artur C D Maia
- Departament of Systematics and Ecology, Universidade Federal da Paraíba, 58051-900 João Pessoa, Brazil
| | | | - Mario Schubert
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria
| | - Isabel C Machado
- Departament of Botany, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| |
Collapse
|
16
|
Soumya T, Lakshmipriya T, Klika KD, Jayasree PR, Manish Kumar PR. Anticancer potential of rhizome extract and a labdane diterpenoid from Curcuma mutabilis plant endemic to Western Ghats of India. Sci Rep 2021; 11:552. [PMID: 33436696 PMCID: PMC7803788 DOI: 10.1038/s41598-020-79414-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
Zingiberaceae plants are well known for their use in ethnomedicine. Curcuma mutabilis Škorničk., M. Sabu & Prasanthk., is an endemic Zingiberaceae species from Western Ghats of Kerala, India. Here, we report for the first time, the anticancer potential of petroleum ether extract from C. mutabilis rhizome (CMRP) and a novel labdane diterpenoid, (E)-14, 15-epoxylabda-8(17), 12-dien-16-al (Cm epoxide) isolated from it. CMRP was found to be a mixture of potent bioactive compounds including Cm epoxide. Both the extract and the compound displayed superior antiproliferative activity against several human cancer cell lines, without any display of cytotoxicity towards normal human cells such as peripheral blood derived lymphocytes and erythrocytes. CMRP treatment resulted in phosphatidylserine externalization, increase in the levels of intracellular ROS, Ca2+, loss of mitochondrial membrane potential as well as fragmentation of genomic DNA. Analyses of transcript profiling and immunostained western blots of extract-treated cancer cells confirmed induction of apoptosis by both intrinsic and extrinsic pathways. The purified compound, Cm epoxide, was also found to induce apoptosis in many human cancer cell types tested. Both CMRP and the Cm epoxide were found to be pharmacologically safe in terms of acute toxicity assessment using Swiss albino mice model. Further, molecular docking interactions of Cm epoxide with selected proteins involved in cell survival and death were also indicative of its druggability. Overall, our findings reveal that the endemic C. mutabilis rhizome extract and the compound Cm epoxide isolated from it are potential candidates for development of future cancer chemotherapeutics.
Collapse
Affiliation(s)
- T Soumya
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India
| | - T Lakshmipriya
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P R Jayasree
- School of Health Sciences, University of Calicut, Malappuram, 673635, Kerala, India
| | - P R Manish Kumar
- Department of Biotechnology, University of Calicut, Malappuram, 673635, Kerala, India.
| |
Collapse
|
17
|
Bakhtiari H, Gheysarzadeh A, Ghanadian M, Aghaei M. 15-Hydroxy-8(17),13(E)-labdadiene-19-carboxylic acid (HLCA) inhibits proliferation and induces cell cycle arrest and apoptosis in ovarian cancer cells. Life Sci 2020; 267:118981. [PMID: 33385409 DOI: 10.1016/j.lfs.2020.118981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 11/15/2022]
Abstract
AIM 15-Hydroxy-8(17),13(E)-labdadiene-19-carboxylic acid (HLCA) isolated from Juniperus foetidissima, has been recently identified as an antiproliferative agent; however, the molecular basis of antiproliferative effects of HLCA remains unknown. To investigate it, the current study has emphasized the hypothesis that HLCA induced cell death is a consequence of intracellular reactive oxygen species (ROS) production followed by cell cycle arrest and apoptosis. MAIN METHODS Human ovarian OVCAR-3 and Caov-4 cells were treated with various concentrations of HLCA (48 h) and the measurement of intracellular ROS was considered. Then, the potential of HLCA in promoting apoptosis was investigated via flow cytometry, western blot, and caspase activity assay. Also, the inhibitory effect of HLCA on the cell cycle was evaluated using flow cytometry and western blot analysis. KEY FINDINGS We found intracellular (ROS) accumulation in HLCA-treated cells. Subsequent observation of the increment in pro-apoptotic Bax as well as the decrement in antiapoptotic Bcl2 revealed that the HLCA-induced cytotoxicity may be triggered by the intrinsic pathway of apoptosis. Our subsequent experiments suggested that caspase-9 and -3 were activated and led the cells to apoptosis during the process. Cell cycle disruption at the G1 phase via down-regulation of cyclin D1 and Cyclin-dependent kinase 4 (CDK4) was another proved mechanism by which HLCA exerts its antiproliferative effects on the ovarian cell lines, OVCAR-3 and Caov-4, especially at relatively lower concentrations. SIGNIFICANCE This is the first study that reveals the apoptotic effects of HLCA, suggesting its therapeutic potential as an effective anti-tumor agent. However, further in vivo studies are required to confirm these effects.
Collapse
Affiliation(s)
- Hadi Bakhtiari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Gheysarzadeh
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Oharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Scuiences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Sitarek P, Merecz-Sadowska A, Śliwiński T, Zajdel R, Kowalczyk T. An In Vitro Evaluation of the Molecular Mechanisms of Action of Medical Plants from the Lamiaceae Family as Effective Sources of Active Compounds against Human Cancer Cell Lines. Cancers (Basel) 2020; 12:E2957. [PMID: 33066157 PMCID: PMC7601952 DOI: 10.3390/cancers12102957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
It is predicted that 1.8 million new cancer cases will be diagnosed worldwide in 2020; of these, the incidence of lung, colon, breast, and prostate cancers will be 22%, 9%, 7%, and 5%, respectively according to the National Cancer Institute. As the global medical cost of cancer in 2020 will exceed about $150 billion, new approaches and novel alternative chemoprevention molecules are needed. Research indicates that the plants of the Lamiaceae family may offer such potential. The present study reviews selected species from the Lamiaceae and their active compounds that may have the potential to inhibit the growth of lung, breast, prostate, and colon cancer cells; it examines the effects of whole extracts, individual compounds, and essential oils, and it discusses their underlying molecular mechanisms of action. The studied members of the Lamiaceae are sources of crucial phytochemicals that may be important modulators of cancer-related molecular targets and can be used as effective factors to support anti-tumor treatment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
19
|
Veena KS, Taniya MS, Ravindran J, Thangarasu AK, Priya S, Lankalapalli RS. Semi-synthetic diversification of coronarin D, a labdane diterpene, under Ugi reaction conditions. Nat Prod Res 2020; 36:334-340. [PMID: 32586133 DOI: 10.1080/14786419.2020.1782406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The prevalence of 5-hydroxydihydrofuran-2(3H)-one moiety in natural products is exploited for the first time using coronarin D, a labdane diterpene, to afford Ugi reaction product 1a and interrupted Ugi product 2a. The potential of the Ugi reaction was further extended to l-phenylalanine, 2-aminopyridine, and d-glucosamine, which afforded Ugi reaction products 3a-f, 4, and 5a-d, respectively. Cytotoxicity studies in RAW cells reveal that compounds 3e and 5b were non-toxic up to 50 µM, and these compounds were able to reduce the LPS stimulated NO production in RAW cells in par with the standard anti-inflammatory drug dexamethasone.
Collapse
Affiliation(s)
- Kollery S Veena
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Murikkinthara S Taniya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Jaice Ravindran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Arun Kumar Thangarasu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sulochana Priya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Ravi Shankar Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
20
|
The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020. [DOI: 10.3390/antibiotics9060325
expr 928323768 + 816400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
|
21
|
The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020; 9:antibiotics9060325. [PMID: 32545761 PMCID: PMC7344648 DOI: 10.3390/antibiotics9060325] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
|
22
|
Incorporation of amino moiety to alepterolic acid improve activity against cancer cell lines: Synthesis and biological evaluation. Bioorg Chem 2020; 98:103756. [PMID: 32200331 DOI: 10.1016/j.bioorg.2020.103756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Aleuritopteris argentea (S. G. Gmél.) Fée is a medicinal fern consisting of an ent-labdane diterpene, i.e. alepterolic aicd, as the major metabolite. We recently isolated grams of alepterolic acid from A. argentea enabling subsequent structural modification. By incorporation of amino moiety to alepterolic acid, fifteen amide derivatives were synthesized, characterized, and further biological evaluated regarding their activity against four cancer cells and normal human liver cells. The potency of synthesized amides dramatically improved as compared to alepterolic aicd itself. The best hit (compound 11) inhibits HeLa cells with an IC50 of 7.39 ± 0.80 μM, and is nearly nontoxic to normal cells. Compound 11 exhibits an inhibitory effect on the colony forming ability of the four cancer cells, especially of HeLa cells. Moreover, it induces apoptosis of HeLa cells by decreasing mitochondrial membrane potential and altering expression of apoptosis-associated proteins. Release of cytochrome c, activation of caspases-3, caspases-9 and alteration of Bax/Bcl-2 balance was detected in the biological assays. These results imply that compound 11 can inhibit the proliferation of cervical cancer cell line HeLa and induce apoptosis through the mitochondrial pathway. These findings encourage further rational structural modification of 15- carboxyl group of alepterolic acid.
Collapse
|
23
|
Siddiqui NA, Mothana RA, Al-Said MS, Parvez MK, Alam P, Tabish Rehman M, Ali M, Alajmi MF, Al-Dosari MS, Al-Rehaily AJ, Nasr FA, Khalid JM. Cell proliferation activity delineated by molecular docking of four new compounds isolated from the aerial parts of Suaeda monoica Forssk. ex. J.F. Gmel. Saudi Pharm J 2020; 28:172-186. [PMID: 32042256 PMCID: PMC7000348 DOI: 10.1016/j.jsps.2019.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
Using different chromatographic methods, four new compounds were isolated from the aerial parts of Suaeda monoica (Chenopodiaceae) along with 2-hydroxy-1-naphthoic acid (SCM-3). The structures of the new compounds were established as 6'-hydroxy-10'-geranilanyl naphtha-1-oate (SMC-1), 4,4,8β,10β-Tetramethyl-9β-isobutanyl decalin-13-ol-13-O-β-D-xylopyranoside (SCM-2), 6'-(2-hydroxynaphthalen-3-yl) hexanoic acid (SCM-4) and 1'-(2-Methoxy-3-naphthyl)-4'-(2''-methylbenzoyl)-n-butane (SMC-5) by IR, EIMS and NMR (1 & 2D) analyses. All compounds (50 μg/mL) were tested for cell proliferative potential on cultured human liver cell HepG2 cells by MTT assay. The results revealed a marked cell proliferative potential of all compounds (1.42-1.48 fold) as compared to untreated control. The results of molecular docking and binding with specific proteins such as PTEN (Phosphatase and Tensin homolog) and p53 also justify the cell proliferative potential of the isolated compounds. Glide program with Schrodinger suit 2018 was used to evaluate the binding between SMC compounds and proteins (PTEN and p53). The binding affinity of all compounds was in order of 104-105 M-1 towards both PTEN and p53. All the SMC compounds have been found to bind at the active site of PTEN, thereby may prevent the binding of phosphatidylinositiol 3,4,5-triphosphate (PI3P). In the locked position, PTEN would not be able to hydrolyze PI3P and hence the PI3P regulated signaling pathway remains active. Similarly, SMC molecules were found to interact with the amino acid residues (Ser99, Thr170, Gly199, and Asp224) which are critically involved in the formation of tetrameric p53. The blockage of p53 to attain its active conformation thus may prevent the recruitment of p53 on DNA and hence may promote cell proliferation.
Collapse
Affiliation(s)
- Nasir A. Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mansour S. Al-Said
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - M. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohd. Ali
- Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan J. Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Medicinal Aromatic, and Poisonous Plants Research Center, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jamal M. Khalid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Pontes de Sousa I, Ferreira AG, Miller Crotti AE, Alves Dos Santos R, Kiermaier J, Kraus B, Heilmann J, Jacometti Cardoso Furtado NA. New antifungal ent-labdane diterpenes against Candida glabrata produced by microbial transformation of ent-polyalthic acid. Bioorg Chem 2020; 95:103560. [PMID: 31918399 DOI: 10.1016/j.bioorg.2019.103560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
Candida glabrata, the most common non-albicans Candida species and one of the primary causes of candidemia, exhibits decreased susceptibility to azoles and more recently to echinocandins. Polyalthic acid 1, a furan diterpene, has been shown promising biological potential and in this study ent-polyalthic acid derivatives with antifungal activity against Candida glabrata were produced by microbial transformation. Incubation of 1 with Aspergillus brasiliensis afforded two known (compounds 5 and 10) and eight new derivatives (compounds 2-4, 6-9 and 11). The most common reaction was hydroxylation, but isomerization of the double bond and acetylation were also detected. None of the tested compounds showed cytotoxicity against HeLa, MCF-7 and MCF-10A cell lines showing IC50 values ranging from 62.6 µM to > 500 µM. Compounds 1, 5, 6, 8 and 11 showed fungistatic effects (ranging from 34.1 µM to 39.5 µM) on C. glabrata at lower concentrations than fluconazole (163.2 µM). Compounds 1, 6 and 8 were more potent fungicides (ranging from 79.0 to 143.6 µM) than fluconazole, which showed fungicidal effect at concentrations higher than 163.2 µM. These results suggest that ent-polyalthic acid and some of its derivatives could be used as lead compounds to develop new antifungal agents.
Collapse
Affiliation(s)
- Ingrid Pontes de Sousa
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| | - Antônio Gilberto Ferreira
- Laboratory of Nuclear Magnetic Resonance, Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Antônio Eduardo Miller Crotti
- Department of Chemistry, School of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | - Josef Kiermaier
- Department of Pharmaceutical Biology, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany.
| | - Birgit Kraus
- Department of Pharmaceutical Biology, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany.
| | - Jörg Heilmann
- Department of Pharmaceutical Biology, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany.
| | - Niege Araçari Jacometti Cardoso Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
25
|
Sharma V, Qayum A, Kaul S, Singh A, Kapoor KK, Mukherjee D, Singh SK, Dhar MK. Carbohydrate Modifications of Neoandrographolide for Improved Reactive Oxygen Species-Mediated Apoptosis through Mitochondrial Pathway in Colon Cancer. ACS OMEGA 2019; 4:20435-20442. [PMID: 31858026 PMCID: PMC6906770 DOI: 10.1021/acsomega.9b01249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/04/2019] [Indexed: 05/04/2023]
Abstract
Modifications at the carbohydrate moiety of neoandrographolide, isolated from the medicinal plant Andrographis paniculata, result in more potent and less toxic derivatives, namely, 4',6'-benzylidene neoandrographolide (2b) and 4'6'-p-methoxybenzylidene neoandrographolide (2c). These showed improved cytotoxicity against SW-620, PC-3, and A549 cancer cell lines. Nuclear morphology studies were conducted on compound 2b by 4',6-diamidino-2-phenylidole staining and detection of intracellular reactive oxygen species (ROS) accumulation. It showed an increase in the generation of cellular and mitochondrial ROS level. The probable relation of B-cell lymphoma-2 (Bcl-2, an apoptosis inhibitor) to B-cell lymphoma-2-associated X protein (Bax, an apoptosis promoter) ratio with caspase-3 (apoptosis coordination enzyme) in the colon cancer cell line SW-620 was investigated, and it was discovered that upon 2b treatment, the expression of caspase-3 Bax increased remarkably. However, in 2b-treated cells, the expression of Bcl-2 was downregulated as compared to untreated cells.
Collapse
Affiliation(s)
- Venu Sharma
- School of Biotechnology and Department of Chemistry, University of Jammu, Jammu 180006, Jammu & Kashmir, India
- E-mail: . Phone: 911912456534 (V.S.)
| | - Arem Qayum
- Indian
Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Sanjana Kaul
- School of Biotechnology and Department of Chemistry, University of Jammu, Jammu 180006, Jammu & Kashmir, India
- E-mail: (S.K.)
| | - Ajeet Singh
- Indian
Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Kamal K. Kapoor
- School of Biotechnology and Department of Chemistry, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| | - Debaraj Mukherjee
- Indian
Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Shashank K. Singh
- Indian
Institute of Integrative Medicine, Jammu 180001, Jammu & Kashmir, India
| | - Manoj K. Dhar
- School of Biotechnology and Department of Chemistry, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| |
Collapse
|
26
|
Tan YP, Xue Y, Savchenko AI, Houston SD, Modhiran N, McMillan CLD, Boyle GM, Bernhardt PV, Young PR, Watterson D, Williams CM. Basimarols A, B, and C, Highly Oxygenated Pimarane Diterpenoids from Basilicum polystachyon. JOURNAL OF NATURAL PRODUCTS 2019; 82:2828-2834. [PMID: 31553187 DOI: 10.1021/acs.jnatprod.9b00522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The highly oxygenated pimarane diterpenoids basimarols A, B, and C (3-5) were isolated from the plant species Basilicum polystachyon, which was collected within the Australian arid zone. Structure elucidation was performed using a suite of spectroscopic techniques, including X-ray crystallography. Anticancer and anti-DENV activity of 3-5 was explored, but only limited activity was observed. More extensive antiviral evaluation of stachyonic acid A (1), which was also isolated from B. polystachyon, revealed broad spectrum antiviral activity against West Nile virus (Kunjin strain, WNVKun) and human influenza viruses H1N1 and H3N2.
Collapse
Affiliation(s)
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-Sen University , Guangzhou , 510275 , People's Republic of China
| | | | | | | | | | - Glen M Boyle
- QIMR Berghofer Medical Research Institute , PO Royal Brisbane Hospital, Brisbane , 4029 , Queensland , Australia
| | | | | | | | | |
Collapse
|
27
|
Soleymani S, Farzaei MH, Zargaran A, Niknam S, Rahimi R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review. Arch Dermatol Res 2019; 312:5-23. [PMID: 31448393 DOI: 10.1007/s00403-019-01968-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
28
|
Hemisynthesis and Bactericidal Activity of Several Substituted Benzoic Acid Esters of 13(S)-Labdan-8α,15-Diol, a Diterpene from Oxylobus glanduliferus. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02777-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Balbinot RB, de Oliveira JAM, Bernardi DI, Melo UZ, Zanqueta ÉB, Endo EH, Ribeiro FM, Volpato H, Figueiredo MC, Back DF, Basso EA, Ruiz ALTG, de Carvalho JE, Foglio MA, Prado Filho BD, Nakamura TU, Nakamura CV, do Carmo MRB, Sarragiotto MH, Baldoqui DC. Structural Characterization and Biological Evaluation of 18‐Nor‐
ent
‐labdane Diterpenoids from
Grazielia gaudichaudeana. Chem Biodivers 2019; 16:e1800644. [DOI: 10.1002/cbdv.201800644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Rodolfo B. Balbinot
- Departamento de QuímicaUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| | - Josiane A. M. de Oliveira
- Departamento de QuímicaUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| | - Darlon I. Bernardi
- Departamento de QuímicaUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| | - Ulisses Z. Melo
- Departamento de QuímicaUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| | - Érica B. Zanqueta
- Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá, Paraná, Brazil
| | - Eliana H. Endo
- Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá, Paraná, Brazil
| | - Fabianne M. Ribeiro
- Programa de Pós-Graduação em Ciências BiológicasUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| | - Hélito Volpato
- Programa de Pós-Graduação em Ciências BiológicasUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| | - Mariana C. Figueiredo
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA)Universidade Estadual de Campinas 13083-970 Campinas São Paulo Brazil
| | - Davi F. Back
- Departamento de QuímicaUniversidade Federal de Santa Maria, Caixa Postal 5031 97105-970 Santa Maria, Rio Grande do Sul Brazil
| | - Ernani A. Basso
- Departamento de QuímicaUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| | - Ana L. T. G. Ruiz
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA)Universidade Estadual de Campinas 13083-970 Campinas São Paulo Brazil
| | - João E. de Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA)Universidade Estadual de Campinas 13083-970 Campinas São Paulo Brazil
| | - Mary Ann Foglio
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA)Universidade Estadual de Campinas 13083-970 Campinas São Paulo Brazil
| | - Benedito D. Prado Filho
- Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá, Paraná, Brazil
| | - Tania U. Nakamura
- Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá, Paraná, Brazil
| | - Celso V. Nakamura
- Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá, Paraná, Brazil
- Programa de Pós-Graduação em Ciências BiológicasUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| | - Marta R. B. do Carmo
- Departamento de Biologia GeralUniversidade Estadual de Ponta Grossa Av. Carlos Cavalcanti, 4748 84030-910 Ponta Grossa, Paraná Brazil
| | - Maria H. Sarragiotto
- Departamento de QuímicaUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| | - Debora C. Baldoqui
- Departamento de QuímicaUniversidade Estadual de Maringá Av. Colombo 5790 87020-900 Maringá, Paraná Brazil
| |
Collapse
|
30
|
Tan YP, Houston SD, Modhiran N, Savchenko AI, Boyle GM, Young PR, Watterson D, Williams CM. Stachyonic Acid: A Dengue Virus Inhibitor from Basilicum polystachyon. Chemistry 2019; 25:5664-5667. [PMID: 30924209 DOI: 10.1002/chem.201900591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 01/13/2023]
Abstract
Stachyonic acid A, arising from the first in-depth phytochemical investigation of the herb Basilicum polystachyon, was found to display potent inhibitory activity against dengue virus, with limited cytotoxicity. Andrographolide, a known dengue virus inhibitor and closely related labdane-type diterpene, is structurally more complex but displayed poor antiviral activity in the PRNT assay, and increased cytotoxicity in comparison. Furthermore, a Diels-Alder reaction with PTAD identified the active pharmacophore of stachyonic acid to be the conjugated diene.
Collapse
Affiliation(s)
- Yuen P Tan
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Andrei I Savchenko
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, 4029, Queensland, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
31
|
Antony† T, Chakraborty† K. First report of antioxidant abeo-labdane type diterpenoid from intertidal red seaweed Gracilaria salicornia with 5-lipoxygenase inhibitory potential. Nat Prod Res 2018; 34:1409-1416. [DOI: 10.1080/14786419.2018.1508150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tima Antony†
- Central Marine Fisheries Research Institute, Cochin, India
| | | |
Collapse
|
32
|
Ali MS, Amina M, Al-Lohedan HA, Al Musayeib NM. Human serum albumin binding to the biologically active labdane diterpene “leoheterin”: Spectroscopic and in silico analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:9-17. [DOI: 10.1016/j.jphotobiol.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
|
33
|
Kurashov EA, Mitrukova GG, Krylova JV. Interannual Variability of Low-Molecular Metabolite Composition in Ceratophyllum demersum (Ceratophyllaceae) from a Floodplain Lake with a Changeable Trophic Status. CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s1995425518020063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Jokić S, Molnar M, Jakovljević M, Aladić K, Jerković I. Optimization of supercritical CO2 extraction of Salvia officinalis L. leaves targeted on Oxygenated monoterpenes, α-humulene, viridiflorol and manool. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Frazão DF, Raimundo JR, Domingues JL, Quintela-Sabarís C, Gonçalves JC, Delgado F. Cistus ladanifer (Cistaceae): a natural resource in Mediterranean-type ecosystems. PLANTA 2018; 247:289-300. [PMID: 29218421 DOI: 10.1007/s00425-017-2825-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
Cistus ladanifer has a well-defined taxonomic identity. 2,2,6-trimethylcyclohexanone may be an authenticity and taxonomic marker. Its traits and applications make it a possible economic resource fitted for Mediterranean areas. Cistus ladanifer is a dominant shrub species endemic to the western Mediterranean region. Due to its dominant nature and its potential ecological, aromatic or pharmacological applications, C. ladanifer has been the object of numerous studies. In this review current knowledge on different aspects of this species is summarized, from its taxonomy to its chemical characterisation or its competitive traits. There are no doubts about the taxonomic entity of C. ladanifer, although the recognition of infraspecific taxa deserves more attention. Given that the fragrant exudate of C. ladanifer holds a very specific composition, one species specific carotenoid, 2,2,6-trimethylcyclohexanone, derivative is proposed as an authenticity marker for uses of C. ladanifer in pharmacological or aromatic industries. Evidence is also gathered on the extreme adaptation of C. ladanifer to stressful conditions in the Mediterranean region, such as the ability to survive in low hydric and high solar exposition conditions, presistence in poor and contaminated soils, and growth inhibition of several other plants through the release of allelochemicals. Thus, the finding of potential applications for this plant may contribute to enhance the economic dimension of derelict lands, such as mine tailings or poor agricultural Mediterranean areas.
Collapse
Affiliation(s)
- David F Frazão
- CBPBI, Centro de Biotecnologia de Plantas da Beira Interior, Quinta da Senhora de Mércules, Apartado 119, 6001-909, Castelo Branco, Portugal
| | - Joana R Raimundo
- CBPBI, Centro de Biotecnologia de Plantas da Beira Interior, Quinta da Senhora de Mércules, Apartado 119, 6001-909, Castelo Branco, Portugal
| | - Joana L Domingues
- CBPBI, Centro de Biotecnologia de Plantas da Beira Interior, Quinta da Senhora de Mércules, Apartado 119, 6001-909, Castelo Branco, Portugal
| | - Celestino Quintela-Sabarís
- Laboratoire Sols et Environnement (UMR 1120, INRA-Univ. Lorraine), ENSAIA, 2 Av. de la Forêt de Haye, TSA 40602, 54518, Vandoeuvre-lès-Nancy, France
| | - José C Gonçalves
- CBPBI, Centro de Biotecnologia de Plantas da Beira Interior, Quinta da Senhora de Mércules, Apartado 119, 6001-909, Castelo Branco, Portugal
- IPCB-ESA, Escola Superior Agrária, Instituto Politécnico de Castelo Branco, Quinta da Senhora de Mércules, Apartado 119, 6001-909, Castelo Branco, Portugal
- CERNAS/IPCB, Centro de Estudos de Recursos Naturais, Ambiente e Sociedade/Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal
| | - Fernanda Delgado
- CBPBI, Centro de Biotecnologia de Plantas da Beira Interior, Quinta da Senhora de Mércules, Apartado 119, 6001-909, Castelo Branco, Portugal.
- IPCB-ESA, Escola Superior Agrária, Instituto Politécnico de Castelo Branco, Quinta da Senhora de Mércules, Apartado 119, 6001-909, Castelo Branco, Portugal.
- CERNAS/IPCB, Centro de Estudos de Recursos Naturais, Ambiente e Sociedade/Instituto Politécnico de Castelo Branco, Castelo Branco, Portugal.
| |
Collapse
|
36
|
Labdane-Type Diterpenes, Galangalditerpenes A-C, with Melanogenesis Inhibitory Activity from the Fruit of Alpinia galanga. Molecules 2017; 22:molecules22122279. [PMID: 29261124 PMCID: PMC6149739 DOI: 10.3390/molecules22122279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022] Open
Abstract
In our continuing study of biologically active natural products from the fruit of Alpinia galanga (Zingiberaceae), we newly isolated three new labdane-type diterpenes, termed galangalditerpenes A–C (1–3), along with four known sesquiterpenes (4–7) and two diterpenes (8 and 9). The stereostructures of 1–3 were elucidated on the basis of their spectroscopic properties. The melanogenesis inhibitory activities in theophylline-stimulated murine B16 melanoma 4A5 cells of these isolates, including the new diterpenes (1–3, IC50 = 4.4, 8.6, and 4.6 μM, respectively), were found to be more than 6–87-fold higher than that of arbutin (174 μM), a commercially available positive control.
Collapse
|
37
|
Spectroscopic and microbiological characterization of labdane diterpene 15,16-epoxy-4-hydroxy-labda-13(16),14-dien-3,12-dione isolated from the stems of Croton jacobinensis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Brill ZG, Condakes ML, Ting CP, Maimone TJ. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chem Rev 2017; 117:11753-11795. [PMID: 28293944 PMCID: PMC5638449 DOI: 10.1021/acs.chemrev.6b00834] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pool of abundant chiral terpene building blocks (i.e., "chiral pool terpenes") has long served as a starting point for the chemical synthesis of complex natural products, including many terpenes themselves. As inexpensive and versatile starting materials, such compounds continue to influence modern synthetic chemistry. This review highlights 21st century terpene total syntheses which themselves use small, terpene-derived materials as building blocks. An outlook to the future of research in this area is highlighted as well.
Collapse
Affiliation(s)
- Zachary G. Brill
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Matthew L. Condakes
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Chi P. Ting
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
39
|
Enhanced Antibacterial Activity of Ent-Labdane Derivatives of Salvic Acid (7α-Hydroxy-8(17)-ent-Labden-15-Oic Acid): Effect of Lipophilicity and the Hydrogen Bonding Role in Bacterial Membrane Interaction. Molecules 2017. [PMID: 28644410 PMCID: PMC6152121 DOI: 10.3390/molecules22071039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present study, the antibacterial activity of several ent-labdane derivatives of salvic acid (7α-hydroxy-8(17)-ent-labden-15-oic acid) was evaluated in vitro against the Gram-negative bacterium Escherichia coli and the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus. For all of the compounds, the antibacterial activity was expressed as the minimum inhibitory concentration (MIC) in liquid media and minimum inhibitory amount (MIA) in solid media. Structure activity relationships (SAR) were employed to correlate the effect of the calculated lipophilicity parameters (logPow) on the inhibitory activity. Employing a phospholipidic bilayer (POPG) as a bacterial membrane model, ent-labdane-membrane interactions were simulated utilizing docking studies. The results indicate that (i) the presence of a carboxylic acid in the C-15 position, which acted as a hydrogen-bond donor (HBD), was essential for the antibacterial activity of the ent-labdanes; (ii) an increase in the length of the acylated chain at the C-7 position improved the antibacterial activity until an optimum length of five carbon atoms was reached; (iii) an increase in the length of the acylated chain by more than five carbon atoms resulted in a dramatic decrease in activity, which completely disappeared in acyl chains of more than nine carbon atoms; and (iv) the structural factors described above, including one HBD at C-15 and a hexanoyloxi moiety at C-7, had a good fit to a specific lipophilic range and antibacterial activity. The lipophilicity parameter has a predictive characteristic feature on the antibacterial activity of this class of compounds, to be considered in the design of new biologically active molecules.
Collapse
|
40
|
Nsuala BN, Kamatou GP, Sandasi M, Enslin G, Viljoen A. Variation in essential oil composition of Leonotis leonurus, an important medicinal plant in South Africa. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Olivier WJ, Kilah NL, Horne J, Bissember AC, Smith JA. ent-Labdane Diterpenoids from Dodonaea viscosa. JOURNAL OF NATURAL PRODUCTS 2016; 79:3117-3126. [PMID: 28006912 DOI: 10.1021/acs.jnatprod.6b00858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Seven new and two known ent-labdane diterpenoids have been isolated from a single plant specimen of Dodonaea viscosa ssp. spatulata, found in Tasmania, Australia. Prior to this study, only seven different labdane diterpenoids had been isolated from D. viscosa. The structures of the natural products were assigned via 1D and 2D NMR spectroscopy and other standard spectroscopic methods. The absolute configuration of three ent-labdane diterpenoids was determined by single-crystal X-ray crystallography of synthetic derivatives. Significantly, the results of this study suggest that the absolute configuration of some known labdane diterpenoids may have been misassigned.
Collapse
Affiliation(s)
- Wesley J Olivier
- School of Physical Sciences-Chemistry and ‡Central Science Laboratory, University of Tasmania , Hobart, Tasmania, Australia
| | - Nathan L Kilah
- School of Physical Sciences-Chemistry and ‡Central Science Laboratory, University of Tasmania , Hobart, Tasmania, Australia
| | - James Horne
- School of Physical Sciences-Chemistry and ‡Central Science Laboratory, University of Tasmania , Hobart, Tasmania, Australia
| | - Alex C Bissember
- School of Physical Sciences-Chemistry and ‡Central Science Laboratory, University of Tasmania , Hobart, Tasmania, Australia
| | - Jason A Smith
- School of Physical Sciences-Chemistry and ‡Central Science Laboratory, University of Tasmania , Hobart, Tasmania, Australia
| |
Collapse
|
42
|
Kushwaha V, Saxena K, Verma R, Verma SK, Katoch D, Kumar N, Lal B, Murthy PK, Singh B. Antifilarial activity of diterpenoids from Taxodium distichum. Parasit Vectors 2016; 9:312. [PMID: 27245322 PMCID: PMC4888613 DOI: 10.1186/s13071-016-1592-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/13/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lymphatic filariasis caused by Wuchereria bancrofti, Brugia malayi and B. timori, is a debilitating disease with an adverse social and economic impact. The infection remains unabated in spite of treatment with existing antifilarial drugs diethylcarbamazine (DEC) and ivermectin which are chiefly microfilaricides. There is therefore, need for macrofilaricides, embryostatic agents and better microfilaricides. In the present study we explored the antifilarial potential of crude extract and its molecular fractions of the plant Taxodium distichum using in vitro assay systems and rodent models of B. malayi infection. METHODS Ethanolic extract (A001) of aerial parts of T. distichum was solvent fractionated and sub-fractionated. Four molecules, 3-Acetoxylabda-8(20), 13-diene-15-oic acid (K001), Beta-sitosterol (K002), labda-8(20),13-diene-15-oic acid (K003) and Metasequoic acid A (K004) were isolated from the fractions and their structure determined by spectroscopic analysis. The extract, subfractions and molecules were evaluated for antifilarial activity against B. malayi by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) reduction and motility assays in vitro and in two animal models, Meriones unguiculatus and Mastomys coucha, harbouring B. malayi infection. RESULTS A001 was effective in killing microfilariae (mf) and adult worms in vitro. The diterpenoid K003 produced 100 % reduction in motility of both mf and adult worms and > 80 % inhibition in MTT reduction potential of adult female worms. In B. malayi-M. unguiculatus model, A001 killed all the adult worms in > 80 % of infected animals. K003 was embryostatic (> 95 %) in this model. In the B. malayi-M. coucha model, K003 killed ~54 % of adult worms (macrofilaricidal activity) and rendered > 36 % female worms sterile; it also stopped any further rise in microfilaraemia after day 42 post-initiation of treatment. CONCLUSION Ethanolic extract of aerial parts of the plant T. distichum possesses potent antifilarial activity and the active principle was localised to K003 which showed significant macrofilaricidal activity and late suppression of peripheral microfilaraemia and some embryostatic activity. These findings indicate that labdane diterpenoid molecule(s) may provide valuable leads for design and development of new macrofilaricidal agent(s). To the best of our knowledge, this is the first report on antifilarial efficacy of products from the plant T. distichum.
Collapse
Affiliation(s)
- Vikas Kushwaha
- Division of Parasitology, CSIR-Central Drug Research Institute, New Campus, BS 10/1, Sector 10, Jankipuram Extension, Lucknow, 226 031, India
| | - Kirti Saxena
- Division of Parasitology, CSIR-Central Drug Research Institute, New Campus, BS 10/1, Sector 10, Jankipuram Extension, Lucknow, 226 031, India
| | - Richa Verma
- Division of Parasitology, CSIR-Central Drug Research Institute, New Campus, BS 10/1, Sector 10, Jankipuram Extension, Lucknow, 226 031, India
| | - Shiv K Verma
- Division of Parasitology, CSIR-Central Drug Research Institute, New Campus, BS 10/1, Sector 10, Jankipuram Extension, Lucknow, 226 031, India
- Present Address: USDA, ARS, APDL, BARC-East Bldg 1001, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Deepali Katoch
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, HP, India
| | - Neeraj Kumar
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, HP, India
| | - Brij Lal
- Biodiversity Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, HP, India
| | - P Kalpana Murthy
- Division of Parasitology, CSIR-Central Drug Research Institute, New Campus, BS 10/1, Sector 10, Jankipuram Extension, Lucknow, 226 031, India.
| | - Bikram Singh
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, HP, India.
| |
Collapse
|
43
|
Kurashov EA, Fedorova EV, Krylova JV, Mitrukova GG. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR. SCIENTIFICA 2016; 2016:1205680. [PMID: 27200207 PMCID: PMC4854990 DOI: 10.1155/2016/1205680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/27/2016] [Indexed: 05/29/2023]
Abstract
The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases.
Collapse
Affiliation(s)
- Evgeny A. Kurashov
- Institute of Limnology, Russian Academy of Sciences, Ulica Sevastyanova 9, Saint Petersburg 196105, Russia
- Department of Ecological Security and Sustainable Development, Institute of Earth Sciences of Saint Petersburg State University, Ulica 10-ya Liniya 33–35, Saint Petersburg 199178, Russia
| | - Elena V. Fedorova
- VVS Lab Inc., Ulica Dostoevskogo 44, Saint Petersburg 191119, Russia
| | - Julia V. Krylova
- Department of Ecological Security and Sustainable Development, Institute of Earth Sciences of Saint Petersburg State University, Ulica 10-ya Liniya 33–35, Saint Petersburg 199178, Russia
| | - Galina G. Mitrukova
- Institute of Limnology, Russian Academy of Sciences, Ulica Sevastyanova 9, Saint Petersburg 196105, Russia
- Saint Petersburg State Chemical and Pharmaceutical Academy, Ulica Professora Popova 14, Saint Petersburg 197376, Russia
| |
Collapse
|
44
|
Nsuala BN, Enslin G, Viljoen A. "Wild cannabis": A review of the traditional use and phytochemistry of Leonotis leonurus. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:520-539. [PMID: 26292023 DOI: 10.1016/j.jep.2015.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonotis leonurus, locally commonly known as "wilde dagga" (=wild cannabis), is traditionally used as a decoction, both topically and orally, in the treatment of a wide variety of conditions such as haemorrhoids, eczema, skin rashes, boils, itching, muscular cramps, headache, epilepsy, chest infections, constipation, spider and snake bites. The dried leaves and flowers are also smoked to relieve epilepsy. The leaves and flowers are reported to produce a mild euphoric effect when smoked and have been said to have a similar, although less potent, psychoactive effect to cannabis. AIM OF THE REVIEW To amalgamate the botanical aspects, ethnopharmacology, phytochemistry, biological activity, toxicity and commercial aspects of the scientific literature available on L. leonurus. METHODS An extensive review of the literature from 1900 to 2015 was carried out. Electronic databases including Scopus, SciFinder, Pubmed, Google Scholar and Google were used as data sources. All abstracts, full-text articles and books written in English were considered. RESULTS The phytochemistry of particularly the non-volatile constituents of L. leonurus has been comprehensively investigated due to interest generated as a result of the wide variety of biological effects reported for this plant. More than 50 compounds have been isolated and characterised. L. leonurus contains mainly terpenoids, particularly labdane diterpenes, the major diterpene reported is marrubiin. Various other compounds have been reported by some authors to have been isolated from the plant, including, in the popular literature only, the mildly psychoactive alkaloid, leonurine. Leonurine has however, never been reported by any scientific analysis of the extracts of L. leonurus. CONCLUSION Despite the publication of various papers on L. leonurus, there is still, however, the need for definitive research and clarification of other compounds, including alkaloids and essential oils from L. leonurus, as well as from other plant parts, such as the roots which are extensively used in traditional medicine. The traditional use by smoking also requires further investigation as to how the chemistry and activity are affected by this form of administration. Research has proven the psychoactive effects of the crude extract of L. leonurus, but confirmation of the presence of psychoactive compounds, as well as isolation and characterization, is still required. Deliberate adulteration of L. leonurus with synthetic cannabinoids has been reported recently, in an attempt to facilitate the marketing of these illegal substances, highlighting the necessity for refinement of appropriate quality control processes to ensure safety and quality. Much work is therefore still required on the aspect of quality control to ensure safety, quality and efficacy of the product supplied to patients, as this plant is widely used in South Africa as a traditional medicine. Commercially available plant sources provide a viable option for phytochemical research, particularly with regard to the appropriate validation of the plant material (taxonomy) in order to identify and delimit closely related species such as L. leonurus and L. nepetifolia which are very similar in habit.
Collapse
Affiliation(s)
- Baudry N Nsuala
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Gill Enslin
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
45
|
Chan EWC, Wong SK. Phytochemistry and pharmacology of ornamental gingers, Hedychium coronarium and Alpinia purpurata: a review. JOURNAL OF INTEGRATIVE MEDICINE 2015; 13:368-79. [PMID: 26559362 DOI: 10.1016/s2095-4964(15)60208-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, the phytochemistry and pharmacology of two ornamental gingers, Hedychium coronarium (butterfly ginger) and Alpinia purpurata (red ginger), are updated, and their botany and uses are described. Flowers of H. coronarium are large, showy, white, yellow or white with a yellow centre and highly fragrant. Inflorescences of A. purpurata are erect spikes with attractive red or pink bracts. Phytochemical investigations on the rhizomes of H. coronarium generated research interest globally. This resulted in the isolation of 53 labdane-type diterpenes, with little work done on the leaves and flowers. Pharmacological properties of H. coronarium included antioxidant, antibacterial, antifungal, cytotoxic, chemopreventive, anti-allergic, larvicidal, anthelminthic, analgesic, anti-inflammatory, anti-urolithiatic, anti-angiogenic, neuro-pharmacological, fibrinogenolytic, coagulant and hepatoprotective activities. On the contrary, little is known on the phytochemistry of A. purpurata with pharmacological properties of antioxidant, antibacterial, larvicidal, cytotoxic and vasodilator activities reported in the leaves and rhizomes. There is much disparity in terms of research effort within and between these two ornamental gingers.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, Cheras 56000, Kuala Lumpur, Malaysia
| | - Siu Kuin Wong
- School of Science, Monash University Sunway, Petaling Jaya 46150, Selangor, Malaysia
| |
Collapse
|
46
|
Monteiro AF, Batista JM, Machado MA, Severino RP, Blanch EW, Bolzani VS, Vieira PC, Severino VGP. Structure and Absolute Configuration of Diterpenoids from Hymenaea stigonocarpa. JOURNAL OF NATURAL PRODUCTS 2015; 78:1451-5. [PMID: 26039872 DOI: 10.1021/acs.jnatprod.5b00166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chemical investigations of the ethanolic extracts from the flowers and leaves of Hymenaea stigonocarpa Mart. ex Hayne afforded one new ent-halimane diterpenoid, 18-hydroxy-ent-halima-1(10),13-(E)-dien-15-oic acid (1), together with five known compounds (2-6). The structural elucidation was performed by means of NMR (COSY, HSQC, HMBC, and NOESY) and MS analyses. Complete (1)H and (13)C NMR data assignments are also reported for labd-13-en-8β-ol-15-oic (2) and labd-7,13-dien-15-oic (3) acids. The absolute configurations of 1 and 2 were established by comparison of experimental and calculated Raman optical activity spectra.
Collapse
Affiliation(s)
- Afif F Monteiro
- †Unidade Acadêmica Especial de Física e Química, Universidade Federal de Goiás, Avenida Dr. Lamartine Pinto de Avelar, 1120, 75704-020, Catalão, GO, Brazil
| | - João M Batista
- ‡Departamento de Química Orgânica, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rua Prof. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil
| | - Michelle A Machado
- †Unidade Acadêmica Especial de Física e Química, Universidade Federal de Goiás, Avenida Dr. Lamartine Pinto de Avelar, 1120, 75704-020, Catalão, GO, Brazil
| | - Richele P Severino
- †Unidade Acadêmica Especial de Física e Química, Universidade Federal de Goiás, Avenida Dr. Lamartine Pinto de Avelar, 1120, 75704-020, Catalão, GO, Brazil
| | - Ewan W Blanch
- §Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, 131 Princess Street, M1 7DN, Manchester, United Kingdom
| | - Vanderlan S Bolzani
- ‡Departamento de Química Orgânica, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rua Prof. Francisco Degni, 55, 14800-060, Araraquara, SP, Brazil
| | - Paulo C Vieira
- ⊥Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luis, km 235, 13565-905, São Carlos, SP, Brazil
| | - Vanessa G P Severino
- †Unidade Acadêmica Especial de Física e Química, Universidade Federal de Goiás, Avenida Dr. Lamartine Pinto de Avelar, 1120, 75704-020, Catalão, GO, Brazil
| |
Collapse
|
47
|
Vasas A, Hohmann J. Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008–2012). Chem Rev 2014; 114:8579-612. [DOI: 10.1021/cr400541j] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrea Vasas
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
48
|
Reta GF, Chiaramello AI, García C, León LG, Martín VS, Padrón JM, Tonn CE, Donadel OJ. Derivatives of grindelic acid: From a non-active natural diterpene to synthetic antitumor derivatives. Eur J Med Chem 2013; 67:28-38. [DOI: 10.1016/j.ejmech.2013.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/10/2013] [Indexed: 11/26/2022]
|
49
|
Pertino MW, Theoduloz C, Bastías M, Schmeda-Hirschmann G. Dimeric labdane diterpenes: synthesis and antiproliferative effects. Molecules 2013; 18:5936-53. [PMID: 23698047 PMCID: PMC6270601 DOI: 10.3390/molecules18055936] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 12/14/2022] Open
Abstract
Several diterpenes with the labdane skeleton show biological activity, including antiproliferative effects. Most of the research work on bioactive labdanes has been carried out on naturally occurring diterpenes and semisynthetic derivatives, but much less is known on the effects of diterpene dimers. The aim of the present work was to synthesize dimeric diterpenes from the labdane imbricatolic acid using esters, ethers and the triazole ring as linkers. Some 18 new derivatives were prepared and the compounds were evaluated for antiproliferative activity on human normal fibroblasts (MRC-5) and the following human tumor cell lines: AGS, SK-MES-1, J82 and HL-60. The diethers 8-10, differing in the number of CH₂ units in the linker, presented better antiproliferative activity with a maximum effect for the derivative 9. The best antiproliferative effect against HL-60 cells was found for compounds 3 and 17, with IC₅₀ values of 22.3 and 23.2 μM, lower than that found for the reference compound etoposide (2.23 μM). The compounds 9, 17 and 11 were the most active derivatives towards AGS cells with IC₅₀ values of 17.8, 23.4 and 26.1 μM. A free carboxylic acid function seems relevant for the effect as several of the compounds showed less antiproliferative effect after methylation.
Collapse
Affiliation(s)
- Mariano Walter Pertino
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, Chile.
| | | | | | | |
Collapse
|
50
|
Bioassay-guided isolation and identification of cytotoxic compounds from Gymnosperma glutinosum leaves. Molecules 2012; 17:11229-41. [PMID: 22996346 PMCID: PMC6268992 DOI: 10.3390/molecules170911229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022] Open
Abstract
Bioassay-guided fractionation of hexane extracts of Gymnosperma glutinosum (Asteraceae) leaves, collected in North Mexico, afforded the known compounds hentriacontane (1) and (+)-13S,14R,15-trihydroxy-ent-labd-7-ene (2), as well as the new ent-labdane diterpene (−)-13S,14R,15-trihydroxy-7-oxo-ent-labd-8(9)-ene (3). In addition, D-glycero-D-galactoheptitol (4) was isolated from the methanolic extract of this plant. Their structures were established on the basis of high-field 1D- and 2D NMR methods supported by HR-MS data. The cytotoxic activity was determined by using the in vitro L5178Y-R lymphoma murine model. Hentriacontane (1) and the new ent-labdane 3 showed weak cytotoxicity, whereas the ent-labdane 2 showed significant (p < 0.05) and concentration dependent cytotoxicity (up to 78%) against L5178Y-R cells at concentrations ranging from 7.8 to 250 µg/mL.
Collapse
|