1
|
Morcos-Sandino M, Quezada-Ramírez SI, Gómez-De León A. Advances in the Treatment of Acute Myeloid Leukemia: Implications for Low- and Middle-Income Countries. Biomedicines 2025; 13:1221. [PMID: 40427048 PMCID: PMC12109363 DOI: 10.3390/biomedicines13051221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Acute myeloid leukemia (AML) presents a significant global health challenge due to its aggressive behavior and mortality rates. Traditionally, AML treatment has relied on intensive chemotherapy-anthracyclines and cytarabine. However, recent breakthroughs in targeted therapies are transforming clinical practices. This review examines current treatment strategies, including breakthrough therapies. Also, a global perspective on AML management includes the disparity in treatment availability, particularly the difficulties faced by low- and middle-income countries due to the high cost and restricted access to novel therapies.
Collapse
Affiliation(s)
| | | | - Andrés Gómez-De León
- Hematology Service, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León (UANL), Av. Madero y Gonzalitos S/N, Mitras Centro, Monterrey ZC 64460, Nuevo León, Mexico; (M.M.-S.); (S.I.Q.-R.)
| |
Collapse
|
2
|
Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, Moses EJ. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 2023; 23:1137-1159. [PMID: 36229751 DOI: 10.1007/s10238-022-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
Collapse
Affiliation(s)
- Aliaa Arina Rosli
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Prinses Máxima Centrum Voor Kinderoncologie, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Yin PY, Wang RW, Jing R, Li X, Ma JH, Li KM, Wang H. Research progress on molecular biomarkers of acute myeloid leukemia. Front Oncol 2023; 13:1078556. [PMID: 36824144 PMCID: PMC9941555 DOI: 10.3389/fonc.2023.1078556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of adult acute leukemia. The pathophysiology of the disease has been studied intensively at the cellular and molecular levels. At present, cytogenetic markers are an important basis for the early diagnosis, prognostic stratification and treatment of AML. However, with the emergence of new technologies, the detection of other molecular markers, such as gene mutations and epigenetic changes, began to play important roles in evaluating the occurrence and development of diseases. Recent evidence shows that identifying new AML biomarkers contributes to a better understanding of the molecular mechanism of the disease and is essential for AML screening, diagnosis, prognosis monitoring, and individualized treatment response. In this review, we summarized the promising AML biomarkers from four aspects, which contributing to a better understanding of the disease. Of course, it must be soberly aware that we have not listed all biomarkers of AML. Anyway, the biomarkers we mentioned are representative. For example, mutations in TP53, FLT3, and ASXL1 suggest poor prognosis, low remission rate, short survival period, and often require allogeneic hematopoietic stem cell transplantation. The CEBPA double mutation, NPM1 and CBF mutation suggest that the prognosis is good, the remission rate is high, the survival period is long, and the effect of chemotherapy or autotherapy is good. As for other mutations mentioned in the article, they usually predict a moderate prognosis. All in all, we hope it could provide a reference for the precise diagnosis and treatment of AML.
Collapse
Affiliation(s)
- Pei-Yuan Yin
- Hematology Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China,Department of Blood Supply, Yantai Center Blood Station, Yantai, Shandong, China
| | - Rui-Wen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Rui Jing
- Hematology Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Xing Li
- Department of Blood Supply, Yantai Center Blood Station, Yantai, Shandong, China
| | - Jing-Hua Ma
- Department of Science and Education, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China,*Correspondence: Hua Wang, ; Kai-Min Li, ; Jing-Hua Ma,
| | - Kai-Min Li
- Hematology Department, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China,*Correspondence: Hua Wang, ; Kai-Min Li, ; Jing-Hua Ma,
| | - Hua Wang
- Hematology Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China,*Correspondence: Hua Wang, ; Kai-Min Li, ; Jing-Hua Ma,
| |
Collapse
|
4
|
A novel prognostic model of methylation-associated genes in acute myeloid leukemia. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1719-1728. [PMID: 36715873 DOI: 10.1007/s12094-022-03069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND There is growing evidence that methylation-associated genes (MAGs) play an important role in the prognosis of acute myeloid leukemia (AML) patients. Thus, the aim of this research was to investigate the impact of MAGs in predicting the outcomes of AML patients. METHODS The expression profile and clinical information of patients were downloaded from public databases. A novel prognostic model based on 7 MAGs was established in the TCGA training cohort and validated in the GSE71014 dataset. To validate the clinical implications, the correlation between MAGs signature and drug sensitivity was further investigated. RESULTS 76 genes were screened out by the univariate Cox regression and significantly enriched in multiple methylation-related pathways. After filtering variables using LASSO regression analysis, 7 MAGs were introduced to construct the predictive model. The survival analysis showed overall survival of patients with the high-risk score was considerably poorer than that with the low-risk score in both the training and validating cohorts (p < 0.01). Furthermore, the risk score system as a prognostic factor also worked in the intermediate-risk patients based on ELN-2017 classification. Importantly, the risk score was demonstrated to be an independent prognostic factor for AML in the univariate and multivariate Cox regression analysis. Interestingly, GSEA analysis revealed that multiple metabolism-related pathways were significantly enriched in the high-risk group. Drug sensitivity analysis showed there was a significant difference in sensitivity of some drugs between the two groups. CONCLUSION We developed a robust and accurate prognostic model with 7 MAGs. Our findings might provide a reference for the clinical prognosis and management of AML.
Collapse
|
5
|
Karakitsou E, Foguet C, Contreras Mostazo MG, Kurrle N, Schnütgen F, Michaelis M, Cinatl J, Marin S, Cascante M. Genome-scale integration of transcriptome and metabolome unveils squalene synthase and dihydrofolate reductase as targets against AML cells resistant to chemotherapy. Comput Struct Biotechnol J 2021; 19:4059-4066. [PMID: 34377370 PMCID: PMC8326745 DOI: 10.1016/j.csbj.2021.06.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
The development of resistance to chemotherapeutic agents, such as Doxorubicin (DOX) and cytarabine (AraC), is one of the greatest challenges to the successful treatment of Acute Myeloid Leukemia (AML). Such acquisition is often underlined by a metabolic reprogramming that can provide a therapeutic opportunity, as it can lead to the emergence of vulnerabilities and dependencies to be exploited as targets against the resistant cells. In this regard, genome-scale metabolic models (GSMMs) have emerged as powerful tools to integrate multiple layers of data to build cancer-specific models and identify putative metabolic vulnerabilities. Here, we use genome-scale metabolic modelling to reconstruct a GSMM of the THP1 AML cell line and two derivative cell lines, one with acquired resistance to AraC and the second with acquired resistance to DOX. We also explore how, adding to the transcriptomic layer, the metabolomic layer enhances the selectivity of the resulting condition specific reconstructions. The resulting models enabled us to identify and experimentally validate that drug-resistant THP1 cells are sensitive to the FDA-approved antifolate methotrexate. Moreover, we discovered and validated that the resistant cell lines could be selectively targeted by inhibiting squalene synthase, providing a new and promising strategy to directly inhibit cholesterol synthesis in AML drug resistant cells.
Collapse
Affiliation(s)
- Effrosyni Karakitsou
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carles Foguet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Miriam G. Contreras Mostazo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
6
|
Pourrajab F, Zare-Khormizi MR, Hekmatimoghaddam S, Hashemi AS. Molecular Targeting and Rational Chemotherapy in Acute Myeloid Leukemia. J Exp Pharmacol 2020; 12:107-128. [PMID: 32581600 PMCID: PMC7269636 DOI: 10.2147/jep.s254334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a molecularly complex disease with multiple aberrant genetic pathways involved in its pathogenesis. Approximately one-third to one-half of patients with AML would relapse, and no standard therapy is established for relapsing and/or refractory AML (RR-AML) yet. It is unlikely that blockage of only one specific pathway will lead to prolonged remissions and cures in all fractions of the AML patients population. Nowadays, novel therapeutic agents with rational combination are being recognized which improve the cure rate for relapsed AML. These drugs and their metabolites impart unique properties in the interaction with each of the intracellular targets and metabolic enzymes whereby resulting in unique clinical activity. To date, most of the combinations have used a targeted agent combined with standard agents such as anthracyclines, cytarabine, or hypomethylating agents to improve the outcome. Rational combinations of DNA damage-inducing therapies with DNA methyltransferase and histone deacetylase inhibitors synergistically enhance the DNA damage, growth inhibition and apoptosis of myeloid cells. This review makes a thorough look at current antineoplastic agents for AML with emphasis on its genetics and molecular mechanisms of action and the role of combination regimens.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyedhossein Hekmatimoghaddam
- Hematology & Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azam Sadat Hashemi
- Hematology & Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Pediatrics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Pourrajab F, Zare-Khormizi MR, Hashemi AS, Hekmatimoghaddam S. Genetic Characterization and Risk Stratification of Acute Myeloid Leukemia. Cancer Manag Res 2020; 12:2231-2253. [PMID: 32273762 PMCID: PMC7104087 DOI: 10.2147/cmar.s242479] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/22/2020] [Indexed: 12/24/2022] Open
Abstract
The most common acute leukemia in adults is acute myeloid leukemia (AML). The pathophysiology of the disease associates with cytogenetic abnormalities, gene mutations and aberrant gene expressions. At the molecular level, the disease manifests as changes in both epigenetic and genetic signatures. At the clinical level, two aspects of AML should be taken into account. First, the molecular changes occurring in the disease are important prognostic and predictive markers of AML. Second, use of novel therapies targeting these molecular changes. Currently, cytogenetic abnormalities and molecular alterations are the common biomarkers for the prognosis and choice of treatment for AML. Finding a panel of multiple biomarkers is a crucial diagnostic step for patient classification and serves as a prerequisite for individualized treatment strategies. Furthermore, the most important way of identifying relevant targets for new treatment approaches is defining specific patterns or a spectrum of driver gene mutations occurring in AML. Then, an algorithm can be established by the use of several biomarkers, to be used for personalized medicine. This review deals with molecular alterations, risk stratification, and relevant therapeutic decision-making in AML.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Azam Sadat Hashemi
- Hematology & Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Hematology & Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Apidi E, Wan Taib WR, Hassan R, Ab Mutalib NS, Ismail I. A review on effect of genetic features on treatment responses in acute myeloid leukemia. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Kalaiyarasi JP, Ganesan P, Kannan K, Ganesan TS, Radhakrishnan V, Dhanushkodi M, Krupashankar S, Mehra N, Sagar TG. Outcomes of Intensive Treatment of Adult Acute Myeloid Leukemia Patients: A Retrospective Study From a Single Centre. Indian J Hematol Blood Transfus 2018; 35:248-254. [PMID: 30988559 DOI: 10.1007/s12288-018-1023-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/25/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Acute Myeloid Leukemia (AML) is a very aggressive cancer with difficult treatment and poor outcomes. The treatment of these patients is quite challenging due to various reasons including the need for extensive supportive care, and high cost of therapy. Reports on outcomes from India are few. METHODS We analyzed 93 adult patients (≥ 18 years) with AML who were treated with curative intent between 2007 and 2014. Patients received daunorubicin at dose of 60-90 mg/m2 and cytarabine 100 mg/m2 during induction and consolidation with 3 courses of high dose cytarabine (1.5-3 g/m2per dose for 6 doses per cycle). Only 4 patients underwent consolidation allogenic stem cell transplantation in first remission (CR1). RESULTS The median age was 37 (18-66) years; males: 52%. Conventional cytogenetics (N = 63) showed 23% (N = 15), 56% (N = 35), 27% (N = 13) in good, intermediate risk and poor risk category respectively. FLT3-ITD was positive in 12/33 (36%) and NPM mutation in 7/23 (30%). Daunorubicin dose was 60 mg/m2 in 75% (N = 70) and 90 mg/m2 in 25% (N = 23) patients. Induction mortality was 17% (16/93) [60 mg/m2:19% (13/70), and 90 mg/m2:13% (3/23); p = 0.39)]. Complete remission was achieved by 60% (56/93) [60 mg/m2:53% (37/70), and 90 mg/m2:83% (19/23); p = 0.09)]. The median overall survival was 9.2 months and the actuarial survival at 2 years was 30%. By univariate analysis, FLT3-ITD positivity, white cell counts higher than 100,000/mm3 at presentation, and use of lower dose of daunorubicin in induction were associated with poorer outcomes. CONCLUSIONS Outcomes in adult AML are generally poor. Many patients with high risk disease don't receive allogenic transplantation in CR1. Increased availability of allogenic stem cell transplantation may help to improve outcomes.
Collapse
Affiliation(s)
| | - Prasanth Ganesan
- Department of Medical Oncology, Cancer Institute (WIA), 36, Sardar Patel Road, Guindy, Chennai, Tamilnadu India
| | - Krishnarathinam Kannan
- Department of Medical Oncology, Cancer Institute (WIA), 36, Sardar Patel Road, Guindy, Chennai, Tamilnadu India
| | - Trivadi S Ganesan
- Department of Medical Oncology, Cancer Institute (WIA), 36, Sardar Patel Road, Guindy, Chennai, Tamilnadu India
| | - Venkatraman Radhakrishnan
- Department of Medical Oncology, Cancer Institute (WIA), 36, Sardar Patel Road, Guindy, Chennai, Tamilnadu India
| | - Manikandan Dhanushkodi
- Department of Medical Oncology, Cancer Institute (WIA), 36, Sardar Patel Road, Guindy, Chennai, Tamilnadu India
| | - S Krupashankar
- Department of Medical Oncology, Cancer Institute (WIA), 36, Sardar Patel Road, Guindy, Chennai, Tamilnadu India
| | - Nikita Mehra
- Department of Medical Oncology, Cancer Institute (WIA), 36, Sardar Patel Road, Guindy, Chennai, Tamilnadu India
| | - Tenali Gnana Sagar
- Department of Medical Oncology, Cancer Institute (WIA), 36, Sardar Patel Road, Guindy, Chennai, Tamilnadu India
| |
Collapse
|
10
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
11
|
KIT D816V Positive Acute Mast Cell Leukemia Associated with Normal Karyotype Acute Myeloid Leukemia. Case Rep Hematol 2018; 2018:3890361. [PMID: 29670776 PMCID: PMC5835284 DOI: 10.1155/2018/3890361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/06/2017] [Indexed: 11/17/2022] Open
Abstract
Introduction Mast cell (MC) leukemia (MCL) is extremely rare. We present a case of MCL diagnosed concomitantly with acute myeloblastic leukemia (AML). Case Report A 41-year-old woman presented with asthenia, anorexia, fever, epigastralgia, and diarrhea. She had a maculopapular skin rash, hepatosplenomegaly, retroperitoneal adenopathies, pancytopenia, 6% blast cells (BC) and 20% MC in the peripheral blood, elevated lactate dehydrogenase, cholestasis, hypoalbuminemia, hypogammaglobulinemia, and increased serum tryptase (184 μg/L). The bone marrow (BM) smears showed 24% myeloblasts, 17% promyelocytes, and 16% abnormal toluidine blue positive MC, and flow cytometry revealed 12% myeloid BC, 34% aberrant promyelocytes, a maturation blockage at the myeloblast/promyelocyte level, and 16% abnormal CD2−CD25+ MC. The BM karyotype was normal, and the KIT D816V mutation was positive in BM cells. The diagnosis of MCL associated with AML was assumed. The patient received corticosteroids, disodium cromoglycate, cladribine, idarubicin and cytosine arabinoside, high-dose cytosine arabinoside, and hematopoietic stem cell transplantation (HSCT). The outcome was favorable, with complete hematological remission two years after diagnosis and one year after HSCT. Conclusions This case emphasizes the need of an exhaustive laboratory evaluation for the concomitant diagnosis of MCL and AML, and the therapeutic options.
Collapse
|
12
|
Hassan C, Afshinnekoo E, Li S, Wu S, Mason CE. Genetic and epigenetic heterogeneity and the impact on cancer relapse. Exp Hematol 2017; 54:26-30. [PMID: 28705639 PMCID: PMC5651672 DOI: 10.1016/j.exphem.2017.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with an exceedingly poor prognosis: a 5-year overall survival rate of 40%-45% in the young and a 5-year survival rate of less than 10% in the elderly (>60 years of age). Although a high percentage of patients enters complete remission after chemotherapeutic intervention, the majority of patients relapse within 3 years. Such stark prognostic outcomes highlight the need for additional clinical research, basic discovery, and molecular delineation of the etiologies and mechanisms behind responses to therapy that lead to relapse. Here, we summarize recent discoveries in tumor heterogeneity at the genetic and epigenetic levels and their independent molecular trajectories and dynamics in response to therapy. These new discoveries may have significant implications for understanding, monitoring, and treating leukemia and other cancers.
Collapse
MESH Headings
- Age Factors
- Antineoplastic Agents/therapeutic use
- Chromosome Aberrations
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Genetic Heterogeneity
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
- Recurrence
- Remission Induction
- Single-Cell Analysis
- Survival Analysis
Collapse
Affiliation(s)
- Ciaran Hassan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; School of Medicine, New York Medical College, Valhalla, NY, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, Maine, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Shixiu Wu
- Hangzhou Cancer Institute in Hangzhou Cancer Hospital, Hangzhou, China; Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Wilop S, Chou WC, Jost E, Crysandt M, Panse J, Chuang MK, Brümmendorf TH, Wagner W, Tien HF, Kharabi Masouleh B. A three-gene expression-based risk score can refine the European LeukemiaNet AML classification. J Hematol Oncol 2016; 9:78. [PMID: 27585840 PMCID: PMC5009640 DOI: 10.1186/s13045-016-0308-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Background Risk stratification based on cytogenetics of acute myeloid leukemia (AML) remains imprecise. The introduction of novel genetic and epigenetic markers has helped to close this gap and increased the specificity of risk stratification, although most studies have been conducted in specific AML subpopulations. In order to overcome this limitation, we used a genome-wide approach in multiple AML populations to develop a robust prediction model for AML survival. Methods We conducted a genome-wide expression analysis of two data sets from AML patients enrolled into the AMLCG-1999 trial and from the Tumor Cancer Genome Atlas (TCGA) to develop a prognostic score to refine current risk classification and performed a validation on two data sets of the National Taiwan University Hospital (NTUH) and an independent AMLCG cohort. Results In our training set, using a stringent multi-step approach, we identified a small three-gene prognostic scoring system, named Tri-AML score (TriAS) which highly correlated with overall survival (OS). Multivariate analysis revealed TriAS to be an independent prognostic factor in all tested training and additional validation sets, even including age, current cytogenetic-based risk stratification, and three other recently developed expression-based scoring models for AML. Conclusions The Tri-AML score allows robust and clinically practical risk stratification for the outcome of AML patients. TriAS substantially refined current ELN risk stratification assigning 44.5 % of the patients into a different risk category. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0308-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Wilop
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Wen-Chien Chou
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Edgar Jost
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ming-Kai Chuang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular, Engineering, University Hospital of the RWTH Aachen, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of the RWTH, Aachen, Germany
| | - Hwei-Fang Tien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
14
|
Prognostic implication of gene mutations on overall survival in the adult acute myeloid leukemia patients receiving or not receiving allogeneic hematopoietic stem cell transplantations. Leuk Res 2014; 38:1278-84. [PMID: 25260824 DOI: 10.1016/j.leukres.2014.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022]
Abstract
Several gene mutations have been shown to provide clinical implications in patients with acute myeloid leukemia (AML). However, the prognostic impact of gene mutations in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unclear. We retrospectively evaluated the clinical implications of 8 gene mutations in 325 adult AML patients; 100 of them received allo-HSCT and 225 did not. The genetic alterations analyzed included NPM1, FLT3-ITD, FLT3-TKD, CEBPA, RUNX1, RAS, MLL-PTD, and WT1. In patients who did not receive allo-HSCT, older age, higher WBC count, higher lactate dehydrogenase level, unfavorable karyotype, and RUNX1 mutation were significantly associated with poor overall survival (OS), while CEBPA double mutation (CEBPA(double-mut)) and NPM1(mut)/FLT3-ITD(neg) were associated with good outcome. However, in patients who received allo-HSCT, only refractory disease status at the time of HSCT and unfavorable karyotype were independent poor prognostic factors. Surprisingly, RUNX1 mutation was an independent good prognostic factor for OS in multivariate analysis. The prognostic impact of FLT3-ITD or NPM1(mut)/FLT3-ITD(neg) was lost in this group of patients receiving allo-HSCT, while CEBPA(double-mut) showed a trend to be a good prognostic factor. In conclusion, allo-HSCT can ameliorate the unfavorable influence of some poor-risk gene mutations in AML patients. Unexpectedly, the RUNX1 mutation showed a favorable prognostic impact in the context of allo-HSCT. These results need to be confirmed by further studies with more AML patients.
Collapse
|
15
|
Yang M, Jiang G, Li W, Qiu K, Zhang M, Carter CM, Al-Quran SZ, Li Y. Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol 2014; 7:5. [PMID: 24405684 PMCID: PMC3895837 DOI: 10.1186/1756-8722-7-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/24/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The majority of patients with acute myelogenous leukemia (AML) still die of their disease. In order to improve survival rates in AML patients, new strategies are necessary to discover biomarkers for the detection and targeted therapy of AML. One of the advantages of the aptamer-based technology is the unique cell-based selection process, which allows us to efficiently select for cell-specific aptamers without knowing which target molecules are present on the cell surface. METHODS The NB4 AML cell line was used as the target cell population for selecting single stranded DNA aptamers. After determining the affinity of selected aptamers to leukocytes, the aptamers were used to phenotype human bone marrow leukocytes and AML cells in clinical specimens. Then a biotin-labelled aptamer was used to enrich and identify its target surface protein. RESULTS Three new aptamers were characterized from the selected aptamer pools (JH6, JH19, and K19). All of them can selectively recognize myeloid cells with Kd in the low nanomole range (2.77 to 12.37 nM). The target of the biotin-labelled K19 aptamer probe was identified as Siglec-5, a surface membrane protein in low abundance whose expression can serve as a biomarker of granulocytic maturation and be used to phenotype AML. More importantly, Siglec-5 expression can be used to detect low concentrations of AML cells in human bone marrow specimens, and functions as a potential target for leukemic therapy. CONCLUSIONS We have demonstrated a pipeline approach for developing single stranded DNA aptamer probes, phenotyping AML cells in clinical specimens, and then identifying the aptamer-recognized target protein. The developed aptamer probes and identified Siglec-5 protein may potentially be used for leukemic cell detection and therapy in our future clinical practice.
Collapse
MESH Headings
- Acute Disease
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Diagnosis, Differential
- Flow Cytometry
- HL-60 Cells
- Humans
- Lectins/genetics
- Lectins/metabolism
- Leukemia, Myeloid/diagnosis
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukocytes/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Polymerase Chain Reaction
- Protein Binding
- Reproducibility of Results
- SELEX Aptamer Technique/methods
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Mingli Yang
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Guohua Jiang
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Wenjing Li
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Kai Qiu
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Min Zhang
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Christopher M Carter
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Samer Z Al-Quran
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Ying Li
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| |
Collapse
|
16
|
Xu B, Chen G, Shi P, Guo X, Xiao P, Wang W, Zhou S. shRNA-Mediated BAALC knockdown affects proliferation and apoptosis in human acute myeloid leukemia cells. Hematology 2013; 17:35-40. [PMID: 22549446 DOI: 10.1179/102453312x13221316477499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Bing Xu
- Department of HematologyNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoshu Chen
- Department of HematologyNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of HematologyNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xutao Guo
- Department of HematologyNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingnan Xiao
- Department of HematologyNanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguang Wang
- Research Institute in Healthcare Science, School of Applied Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Shuyun Zhou
- Department of HematologyNanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|