1
|
Chen JS, Wang ST, Mei Q, Sun T, Hu JT, Xiao GS, Chen H, Xuan YH. The role of CBL-CIPK signaling in plant responses to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:53. [PMID: 38714550 DOI: 10.1007/s11103-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/06/2024] [Indexed: 05/10/2024]
Abstract
Plants have a variety of regulatory mechanisms to perceive, transduce, and respond to biotic and abiotic stress. One such mechanism is the calcium-sensing CBL-CIPK system responsible for the sensing of specific stressors, such as drought or pathogens. CBLs perceive and bind Calcium (Ca2+) in response to stress and then interact with CIPKs to form an activated complex. This leads to the phosphorylation of downstream targets, including transporters and ion channels, and modulates transcription factor levels and the consequent levels of stress-associated genes. This review describes the mechanisms underlying the response of the CBL-CIPK pathway to biotic and abiotic stresses, including regulating ion transport channels, coordinating plant hormone signal transduction, and pathways related to ROS signaling. Investigation of the function of the CBL-CIPK pathway is important for understanding plant stress tolerance and provides a promising avenue for molecular breeding.
Collapse
Affiliation(s)
- J S Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - S T Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Q Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - T Sun
- Chongqing Customs Technology Center, Chongqing, 400020, China
| | - J T Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - G S Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| | - H Chen
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Y H Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Weraduwage SM, Whitten D, Kulke M, Sahu A, Vermaas JV, Sharkey TD. The isoprene-responsive phosphoproteome provides new insights into the putative signalling pathways and novel roles of isoprene. PLANT, CELL & ENVIRONMENT 2024; 47:1099-1117. [PMID: 38038355 DOI: 10.1111/pce.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Departments of Biology and Biochemistry, Bishop's University, Sherbrooke, Quebec, Canada
| | - Douglas Whitten
- Research Technology Support Facility-Proteomics Core, Michigan State University, East Lansing, Michigan, USA
| | - Martin Kulke
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- School of Natural Sciences, Technische Universität München, Munich, Germany
| | - Abira Sahu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
An J, Kim SH, Bahk S, Le Anh Pham M, Park J, Ramadany Z, Lee J, Hong JC, Chung WS. Quercetin induces pathogen resistance through the increase of salicylic acid biosynthesis in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2023; 18:2270835. [PMID: 37902267 PMCID: PMC10761074 DOI: 10.1080/15592324.2023.2270835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
Quercetin is a flavonol belonging to the flavonoid group of polyphenols. Quercetin is reported to have a variety of biological functions, including antioxidant, pigment, auxin transport inhibitor and root nodulation factor. Additionally, quercetin is known to be involved in bacterial pathogen resistance in Arabidopsis through the transcriptional increase of pathogenesis-related (PR) genes. However, the molecular mechanisms underlying how quercetin promotes pathogen resistance remain elusive. In this study, we showed that the transcriptional increases of PR genes were achieved by the monomerization and nuclear translocation of nonexpressor of pathogenesis-related proteins 1 (NPR1). Interestingly, salicylic acid (SA) was approximately 2-fold accumulated by the treatment with quercetin. Furthermore, we showed that the increase of SA biosynthesis by quercetin was induced by the transcriptional increases of typical SA biosynthesis-related genes. In conclusion, this study strongly suggests that quercetin induces bacterial pathogen resistance through the increase of SA biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Jonguk An
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun Ho Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Sunghwa Bahk
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Minh Le Anh Pham
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jaemin Park
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Zakiyah Ramadany
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeongwoo Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo Sik Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
4
|
Backer R, Naidoo S, van den Berg N. The expression of the NPR1-dependent defense response pathway genes in Persea americana (Mill.) following infection with Phytophthora cinnamomi. BMC PLANT BIOLOGY 2023; 23:548. [PMID: 37936068 PMCID: PMC10631175 DOI: 10.1186/s12870-023-04541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
A plant's defense against pathogens involves an extensive set of phytohormone regulated defense signaling pathways. The salicylic acid (SA)-signaling pathway is one of the most well-studied in plant defense. The bulk of SA-related defense gene expression and the subsequent establishment of systemic acquired resistance (SAR) is dependent on the nonexpressor of pathogenesis-related genes 1 (NPR1). Therefore, understanding the NPR1 pathway and all its associations has the potential to provide valuable insights into defense against pathogens. The causal agent of Phytophthora root rot (PRR), Phytophthora cinnamomi, is of particular importance to the avocado (Persea americana) industry, which encounters considerable economic losses on account of this pathogen each year. Furthermore, P. cinnamomi is a hemibiotrophic pathogen, suggesting that the SA-signaling pathway plays an essential role in the initial defense response. Therefore, the NPR1 pathway which regulates downstream SA-induced gene expression would be instrumental in defense against P. cinnamomi. Thus, we identified 92 NPR1 pathway-associated orthologs from the P. americana West Indian pure accession genome and interrogated their expression following P. cinnamomi inoculation, using RNA-sequencing data. In total, 64 and 51 NPR1 pathway-associated genes were temporally regulated in the partially resistant (Dusa®) and susceptible (R0.12) P. americana rootstocks, respectively. Furthermore, 42 NPR1 pathway-associated genes were differentially regulated when comparing Dusa® to R0.12. Although this study suggests that SAR was established successfully in both rootstocks, the evidence presented indicated that Dusa® suppressed SA-signaling more effectively following the induction of SAR. Additionally, contrary to Dusa®, data from R0.12 suggested a substantial lack of SA- and NPR1-related defense gene expression during some of the earliest time-points following P. cinnamomi inoculation. This study represents the most comprehensive investigation of the SA-induced, NPR1-dependent pathway in P. americana to date. Lastly, this work provides novel insights into the likely mechanisms governing P. cinnamomi resistance in P. americana.
Collapse
Affiliation(s)
- Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
5
|
Baoxiang W, Zhiguang S, Yan L, Bo X, Jingfang L, Ming C, Yungao X, Bo Y, Jian L, Jinbo L, Tingmu C, Zhaowei F, Baiguan L, Dayong X, Bello BK. A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress. PLANTA 2023; 258:73. [PMID: 37668677 DOI: 10.1007/s00425-023-04232-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
MAIN CONCLUSION Transcriptional regulation of stress-responsive genes is a crucial step in establishing the mechanisms behind plant abiotic stress tolerance. A sensitive method of regulating transcription factors activity, stability, protein interaction, and subcellular localization is through phosphorylation. This review highlights a widespread regulation mechanism that involves phosphorylation of plant TFs in response to abiotic stress. Abiotic stress is one of the main components limiting crop yield and sustainability on a global scale. It greatly reduces the land area that is planted and lowers crop production globally. In all living organisms, transcription factors (TFs) play a crucial role in regulating gene expression. They participate in cell signaling, cell cycle, development, and plant stress response. Plant resilience to diverse abiotic stressors is largely influenced by TFs. Transcription factors modulate gene expression by binding to their target gene's cis-elements, which are impacted by genomic characteristics, DNA structure, and TF interconnections. In this review, we focus on the six major TFs implicated in abiotic stress tolerance, namely, DREB, bZIP, WRKY, ABF, MYB, and NAC, and the cruciality of phosphorylation of these transcription factors in abiotic stress signaling, as protein phosphorylation has emerged as one of the key post-translational modifications, playing a critical role in cell signaling, DNA amplification, gene expression and differentiation, and modification of other biological configurations. These TFs have been discovered after extensive study as stress-responsive transcription factors which may be major targets for crop development and important contributors to stress tolerance and crop production.
Collapse
Grants
- CARS-01-61 the earmarked funds for China Agricultural Research System
- 2015BAD01B01 National Science and Technology Support Program of China
- BE2016370-3 Science and Technology Support Program of Jiangsu Province, China
- BE2017323 Science and Technology Support Program of Jiangsu Province, China
- BK20201214 Natural Science Foundation of Jiangsu Province of China
- BK20161299 the Natural Science Foundation of Jiangsu Province, China
- QNJJ1704 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2102 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2107 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2211 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
Collapse
Affiliation(s)
- Wang Baoxiang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Sun Zhiguang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Yan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jingfang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chi Ming
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xing Yungao
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Yang Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jian
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Jinbo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chen Tingmu
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Fang Zhaowei
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Lu Baiguan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Dayong
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| | - Babatunde Kazeem Bello
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| |
Collapse
|
6
|
Liu X, Wang X, Yang C, Wang G, Fan B, Shang Y, Dang C, Xie C, Wang Z. Genome-wide identification of TaCIPK gene family members in wheat and their roles in host response to Blumeria graminis f. sp. tritici infection. Int J Biol Macromol 2023; 248:125691. [PMID: 37422244 DOI: 10.1016/j.ijbiomac.2023.125691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease affecting wheat crops worldwide. Functional genes can be activated in response to Bgt inoculations. Calcineurin B-like protein (CBL) together with CBL-interacting protein kinase (CIPK) forms the CBL-CIPK protein complex that participates in Ca2+ sensor kinase-related signaling pathways responding to abiotic and biotic stresses. In this study, we performed a genome-wide screening and identified 27 CIPK subfamilies (123 CIPK transcripts, TaCIPKs) including 55 new and 47 updated TaCIPKs in wheat. Phylogenetic analysis revealed that 123 TaCIPKs could be divided into four groups. Segmental duplications and tandem repeats promoted the expansion of the TaCIPK family. Gene function was further evidenced by differences in gene structure, cis-elements, and protein domains. TaCIPK15-4A was cloned in this study. TaCIPK15-4A contained 17 serine, seven tyrosine, and 15 threonine phosphorylation sites and localized in the plasma membrane and cytoplasm. TaCIPK15-4A expression was induced after Bgt inoculation. Virus-induced gene silencing and overexpression experiments indicated that TaCIPK15-4A could play a positive role in wheat disease resistance to Bgt. Overall, these results provide insights into the role of the TaCIPK gene family in wheat resistance and could be beneficial for further research to prevent Bgt infection.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Xueqing Wang
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Chenxiao Yang
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Guangyu Wang
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Baoli Fan
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China
| | - Yuntao Shang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 30087, China
| | - Chen Dang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agro-biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhenying Wang
- College of Life Science, Tianjin Normal University, Tianjin, 30087, China.
| |
Collapse
|
7
|
Rachowka J, Anielska-Mazur A, Bucholc M, Stephenson K, Kulik A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1135240. [PMID: 37621885 PMCID: PMC10445769 DOI: 10.3389/fpls.2023.1135240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 08/26/2023]
Abstract
In nature, all living organisms must continuously sense their surroundings and react to the occurring changes. In the cell, the information about these changes is transmitted to all cellular compartments, including the nucleus, by multiple phosphorylation cascades. Sucrose Non-Fermenting 1 Related Protein Kinases (SnRK2s) are plant-specific enzymes widely distributed across the plant kingdom and key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress and salinity. The main deleterious effects of salinity comprise water deficiency stress, disturbances in ion balance, and the accompanying appearance of oxidative stress. The reactive oxygen species (ROS) generated at the early stages of salt stress are involved in triggering intracellular signaling required for the fast stress response and modulation of gene expression. Here we established in Arabidopsis thaliana that salt stress or induction of ROS accumulation by treatment of plants with H2O2 or methyl viologen (MV) induces the expression of several genes encoding transcription factors (TFs) from the WRKY DNA-Binding Protein (WRKY) family. Their induction by salinity was dependent on SnRK2.10, an ABA non-activated kinase, as it was strongly reduced in snrk2.10 mutants. The effect of ROS was clearly dependent on their source. Following the H2O2 treatment, SnRK2.10 was activated in wild-type (wt) plants and the induction of the WRKY TFs expression was only moderate and was enhanced in snrk2.10 lines. In contrast, MV did not activate SnRK2.10 and the WRKY induction was very strong and was similar in wt and snrk2.10 plants. A bioinformatic analysis indicated that the WRKY33, WRKY40, WRKY46, and WRKY75 transcription factors have a similar target range comprising numerous stress-responsive protein kinases. Our results indicate that the stress-related functioning of SnRK2.10 is fine-tuned by the source and intracellular distribution of ROS and the co-occurrence of other stress factors.
Collapse
Affiliation(s)
| | | | | | | | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
He F, Wang C, Sun H, Tian S, Zhao G, Liu C, Wan C, Guo J, Huang X, Zhan G, Yu X, Kang Z, Guo J. Simultaneous editing of three homoeologues of TaCIPK14 confers broad-spectrum resistance to stripe rust in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:354-368. [PMID: 36326663 PMCID: PMC9884018 DOI: 10.1111/pbi.13956] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 05/26/2023]
Abstract
Wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is one of the most destructive wheat diseases resulting in significant losses to wheat production worldwide. The development of disease-resistant varieties is the most economical and effective measure to control diseases. Altering the susceptibility genes that promote pathogen compatibility via CRISPR/Cas9-mediated gene editing technology has become a new strategy for developing disease-resistant wheat varieties. Calcineurin B-like protein (CBL)-interacting protein kinases (CIPKs) has been demonstrated to be involved in defence responses during plant-pathogen interactions. However, whether wheat CIPK functions as susceptibility factor is still unclear. Here, we isolated a CIPK homoeologue gene TaCIPK14 from wheat. Knockdown of TaCIPK14 significantly increased wheat resistance to Pst, whereas overexpression of TaCIPK14 resulted in enhanced wheat susceptibility to Pst by decreasing different aspects of the defence response, including accumulation of ROS and expression of pathogenesis-relative genes. We generated wheat Tacipk14 mutant plants by simultaneous modification of the three homoeologues of wheat TaCIPK14 via CRISPR/Cas9 technology. The Tacipk14 mutant lines expressed race-nonspecific (RNS) broad-spectrum resistance (BSR) to Pst. Moreover, no significant difference was found in agronomic yield traits between Tacipk14 mutant plants and Fielder control plants under greenhouse and field conditions. These results demonstrate that TaCIPK14 acts as an important susceptibility factor in wheat response to Pst, and knockout of TaCIPK14 represents a powerful strategy for generating new disease-resistant wheat varieties with BSR to Pst.
Collapse
Affiliation(s)
- Fuxin He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Ce Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Huilin Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Shuxin Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Guosen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Cuiping Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiumei Yu
- Technological Innovation Centre for Biological Control of Crop Diseases and Insect Pests of Hebei ProvinceHebei Agricultural UniversityBaodingHebeiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
9
|
Sun C, Zhu L, Cao L, Qi H, Liu H, Zhao F, Han X. PKS5 Confers Cold Tolerance by Controlling Stomatal Movement and Regulating Cold-Responsive Genes in Arabidopsis. Life (Basel) 2022; 12:life12101633. [PMID: 36295068 PMCID: PMC9605660 DOI: 10.3390/life12101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cold stress limits plant growth and development; however, the precise mechanisms underpinning plant acclimation to cold stress remain largely unknown. In this study, the Ser/Thr protein kinase SOS2-LIKE PROTEIN KINASE5 (PKS5) was shown to play a positive role in plant responses to cold stress. A PKS5 loss-of-function mutant (pks5-1) exhibited elevated sensitivity to cold stress, as well as a lower survival rate and increased ion leakage. Conversely, PKS5 gain-of-function mutants (pks5-3, pks5-4) were more tolerant to cold stress and exhibited higher survival rates and decreased ion leakage. Stomatal aperture analysis revealed that stomatal closure was slower during the first 25 min after cold exposure in pks5-1 compared to wild-type, whereas pks5-3 and pks5-4 displayed accelerated stomatal closure over the same time period. Further stomatal aperture analysis under an abscisic acid (ABA) treatment showed slower closure in pks5-1 and more rapid closure in pks5-3 and pks5-4. Finally, expression levels of cold-responsive genes were regulated by PKS5 under cold stress conditions, while cold stress and ABA treatment can regulate PKS5 expression. Taken together, these results suggest that PKS5 plays a positive role in short-term plant acclimation to cold stress by regulating stomatal aperture, possibly via ABA pathways, and in long-term acclimation by regulating cold-responsive genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuli Han
- Correspondence: ; Tel.: +86-533-2781-329; Fax: +86-533-3188-608
| |
Collapse
|
10
|
Gu Y, Li G, Wang P, Guo Y, Li J. A simple and precise method (Y2H-in-frame-seq) improves yeast two-hybrid screening with cDNA libraries. J Genet Genomics 2021; 49:595-598. [PMID: 34864215 DOI: 10.1016/j.jgg.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Yinghui Gu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guannan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ping Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Ma Y, Chen Q, He J, Cao J, Liu Z, Wang J, Yang Y. The kinase CIPK14 functions as a negative regulator of plant immune responses to Pseudomonas syringae in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111017. [PMID: 34620426 DOI: 10.1016/j.plantsci.2021.111017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
As a critical second messenger in plants, Ca2+ is involved in numerous biological processes including biotic and abiotic stress responses. The CBL-interacting protein kinases, known as CIPKs, are essential components in Ca2+-mediated signal transduction pathways. Here, we found that CIPK14 plays a role in the process of regulating immune response in Arabidopsis. The CIPK14 loss-of-function mutants exhibited enhanced resistance to the P. syringae, whereas CIPK14 overexpression plants were more susceptible to bacterial pathogen. Enhanced resistance in cipk14 mutants were accompanied by increased accumulation of SA and elevated expression of defense marker genes (PR1, EDS1, EDS5, ICS1). Overexpression of CIPK14 suppressed Pst DC3000, Pst DC3000 hrcC and flg22 induced generation of ROS and callose deposition. As compared with wild type plants, the expression levels of MPK3/6-dependent PTI marker genes (FRK1, CYP81F2, WAK2, FOX) were up-regulated in cipk14 mutants but down-regulated in CIPK14 overexpression plants after flg22 and elf18 treatment. Additionally, both loss-of-function and gain-of-function of CIPK14 significantly altered the phosphorylation status of MPK3/6 under flg22 treatment, suggesting that CIPK14 is a general modulator of plant immunity at both transcriptional and post-transcriptional level. Taken together, our results uncover that CIPK14 acts as a negative regulator in plant immune response.
Collapse
Affiliation(s)
- Yanlin Ma
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiaoqiao Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiahan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jing Cao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
12
|
Chen J, Zhang J, Kong M, Freeman A, Chen H, Liu F. More stories to tell: NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1, a salicylic acid receptor. PLANT, CELL & ENVIRONMENT 2021; 44:1716-1727. [PMID: 33495996 DOI: 10.1111/pce.14003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) plays pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. Tremendous progress has been made in the field of SA biosynthesis and SA signaling pathways over the past three decades. Among the key immune players in SA signaling pathway, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) functions as a master regulator of SA-mediated plant defense. The function of NPR1 as an SA receptor has been controversial; however, after years of arguments among several laboratories, NPR1 has finally been proven as one of the SA receptors. The function of NPR1 is strictly regulated via post-translational modifications and transcriptional regulation that were recently found. More recent advances in NPR1 biology, including novel functions of NPR1 and the structure of SA receptor proteins, have brought this field forward immensely. Therefore, based on these recent discoveries, this review acts to provide a full picture of how NPR1 functions in plant immunity and how NPR1 gene and NPR1 protein are regulated at multiple levels. Finally, we also discuss potential challenges in future studies of SA signaling pathway.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Jingyi Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Mengmeng Kong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Lab of Biocontrol & Bacterial Molecular Biology, Nanjing, China
| | - Andrew Freeman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
13
|
Kankanala P, Jones P, Nandety RS, Jacobson DA, Mysore KS. Plasticity of Phymatotrichopsis omnivora infection strategies is dependent on host and nonhost plant responses. PLANT, CELL & ENVIRONMENT 2020; 43:1084-1101. [PMID: 31930733 PMCID: PMC7154777 DOI: 10.1111/pce.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Necrotrophic fungi constitute the largest group of plant fungal pathogens that cause heavy crop losses worldwide. Phymatotrichopsis omnivora is a broad host, soil-borne necrotrophic fungal pathogen that infects over 2,000 dicotyledonous plants. The molecular basis of such broad host range is unknown. We conducted cell biology and transcriptomic studies in Medicago truncatula (susceptible), Brachypodium distachyon (resistant/nonhost), and Arabidopsis thaliana (partially resistant) to understand P. omnivora virulence mechanisms. We performed defence gene analysis, gene enrichments, and correlational network studies during key infection stages. We identified that P. omnivora infects the susceptible plant as a traditional necrotroph. However, it infects the partially resistant plant as a hemi-biotroph triggering salicylic acid-mediated defence pathways in the plant. Further, the infection strategy in partially resistant plants is determined by the host responses during early infection stages. Mutant analyses in A. thaliana established the role of small peptides PEP1 and PEP2 in defence against P. omnivora. The resistant/nonhost B. distachyon triggered stress responses involving sugars and aromatic acids. Bdwat1 mutant analysis identified the role of cell walls in defence. This is the first report that describes the plasticity in infection strategies of P. omnivora providing insights into broad host range.
Collapse
Affiliation(s)
| | - Piet Jones
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
- Bredesen Center for Interdisciplinary StudiesUniversity of Tennessee KnoxvilleKnoxvilleTennessee
| | | | - Daniel A. Jacobson
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTennessee
- Bredesen Center for Interdisciplinary StudiesUniversity of Tennessee KnoxvilleKnoxvilleTennessee
| | | |
Collapse
|
14
|
Dahmani MA, Desrut A, Moumen B, Verdon J, Mermouri L, Kacem M, Coutos-Thévenot P, Kaid-Harche M, Bergès T, Vriet C. Unearthing the Plant Growth-Promoting Traits of Bacillus megaterium RmBm31, an Endophytic Bacterium Isolated From Root Nodules of Retama monosperma. FRONTIERS IN PLANT SCIENCE 2020; 11:124. [PMID: 32174934 PMCID: PMC7055178 DOI: 10.3389/fpls.2020.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/28/2020] [Indexed: 05/27/2023]
Abstract
Plants live in association with complex populations of microorganisms, including Plant Growth-Promoting Rhizobacteria (PGPR) that confer to plants an improved growth and enhanced stress tolerance. This large and diverse group includes endophytic bacteria that are able to colonize the internal tissues of plants. In the present study, we have isolated a nonrhizobial species from surface sterilized root nodules of Retama monosperma, a perennial leguminous species growing in poor and high salinity soils. Sequencing of its genome reveals this endophytic bacterium is a Bacillus megaterium strain (RmBm31) that possesses a wide range of genomic features linked to plant growth promotion. Furthermore, we show that RmBm31 is able to increase the biomass and positively modify the root architecture of seedlings of the model plant species Arabidopsis thaliana both in physical contact with its roots and via the production of volatile organic compounds. Lastly, we investigated the molecular mechanisms implicated in RmBm31 plant beneficial effects by carrying out a transcriptional analysis on a comprehensive set of phytohormone-responsive marker genes. Altogether, our results demonstrate that RmBm31 displays plant growth-promoting traits of potential interest for agricultural applications.
Collapse
Affiliation(s)
- Malika Affaf Dahmani
- Laboratoire des Productions, Valorisation végétales et microbiennes (LP2VM), Département de biotechnologies, Faculté SNV, Université des Sciences et de la Technologie d’Oran-Mohammed BOUDIAF (USTO M.B), Oran, Algéria
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS EA7349, Université de Poitiers, Poitiers, France
| | - Antoine Desrut
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Julien Verdon
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Lamia Mermouri
- Laboratoire des Productions, Valorisation végétales et microbiennes (LP2VM), Département de biotechnologies, Faculté SNV, Université des Sciences et de la Technologie d’Oran-Mohammed BOUDIAF (USTO M.B), Oran, Algéria
| | - Mourad Kacem
- Département de Biotechnologie, Faculté SNV, Université d’Oran Ahmed Ben Bella, Oran, Algéria
| | - Pierre Coutos-Thévenot
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Meriem Kaid-Harche
- Laboratoire des Productions, Valorisation végétales et microbiennes (LP2VM), Département de biotechnologies, Faculté SNV, Université des Sciences et de la Technologie d’Oran-Mohammed BOUDIAF (USTO M.B), Oran, Algéria
| | - Thierry Bergès
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS EA7349, Université de Poitiers, Poitiers, France
| | - Cécile Vriet
- Laboratoire Ecologie et Biologie des Interactions (EBI), UMR CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
15
|
Cao FY, Khan M, Taniguchi M, Mirmiran A, Moeder W, Lumba S, Yoshioka K, Desveaux D. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:187-198. [PMID: 31148337 DOI: 10.1111/tpj.14425] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/05/2018] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
The phytopathogen Pseudomonas syringae delivers into host cells type III secreted effectors (T3SEs) that promote virulence. One virulence mechanism employed by T3SEs is to target hormone signaling pathways to perturb hormone homeostasis. The phytohormone abscisic acid (ABA) influences interactions between various phytopathogens and their plant hosts, and has been shown to be a target of P. syringae T3SEs. In order to provide insight into how T3SEs manipulate ABA responses, we generated an ABA-T3SE interactome network (ATIN) between P. syringae T3SEs and Arabidopsis proteins encoded by ABA-regulated genes. ATIN consists of 476 yeast-two-hybrid interactions between 97 Arabidopsis ABA-regulated proteins and 56 T3SEs from four pathovars of P. syringae. We demonstrate that T3SE interacting proteins are significantly enriched for proteins associated with transcription. In particular, the ETHYLENE RESPONSIVE FACTOR (ERF) family of transcription factors is highly represented. We show that ERF105 and ERF8 displayed a role in defense against P. syringae, supporting our overall observation that T3SEs of ATIN converge on proteins that influence plant immunity. In addition, we demonstrate that T3SEs that interact with a large number of ABA-regulated proteins can influence ABA responses. One of these T3SEs, HopF3Pph6 , inhibits the function of ERF8, which influences both ABA-responses and plant immunity. These results provide a potential mechanism for how HopF3Pph6 manipulates ABA-responses to promote P. syringae virulence, and also demonstrate the utility of ATIN as a resource to study the ABA-T3SE interface.
Collapse
Affiliation(s)
- Feng Y Cao
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Madiha Khan
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Masatoshi Taniguchi
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Armand Mirmiran
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Keiko Yoshioka
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Vï Lz R, Kim SK, Mi J, Mariappan KG, Siodmak A, Al-Babili S, Hirt H. A Chimeric IDD4 Repressor Constitutively Induces Immunity in Arabidopsis via the Modulation of Salicylic Acid and Jasmonic Acid Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1536-1555. [PMID: 30989238 DOI: 10.1093/pcp/pcz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
INDETERMINATE DOMAIN (IDD)/BIRD proteins belong to a highly conserved plant-specific group of transcription factors with dedicated functions in plant physiology and development. Here, we took advantage of the chimeric repressor gene-silencing technology (CRES-T, SRDX) to widen our view on the role of IDD4/IMPERIAL EAGLE and IDD family members in plant immunity. The hypomorphic idd4SRDX lines are compromised in growth and show a robust autoimmune phenotype. Hormonal measurements revealed the concomitant accumulation of salicylic acid and jasmonic acid suggesting that IDDs are involved in regulating the metabolism of these biotic stress hormones. The analysis of immunity-pathways showed enhanced activation of immune MAP kinase-signaling pathways, the accumulation of hydrogen peroxide and spontaneous programmed cell death. The transcriptome of nonelicited idd4SRDX lines can be aligned to approximately 40% of differentially expressed genes (DEGs) in flg22-treated wild-type plants. The pattern of DEGs implies IDDs as pivotal repressors of flg22-dependent gene induction. Infection experiments showed the increased resistance of idd4SRDX lines to Pseudomonas syringae and Botrytis cinerea implying a function of IDDs in defense adaptation to hemibiotrophs and necrotrophs. Genome-wide IDD4 DNA-binding studies (DAP-SEQ) combined with DEG analysis of idd4SRDX lines identified IDD4-regulated functional gene clusters that contribute to plant growth and development. In summary, we discovered that the expression of idd4SRDX activates a wide range of defense-related traits opening up the possibility to apply idd4SRDX as a powerful tool to stimulate innate immunity in engineered crops.
Collapse
Affiliation(s)
- Ronny Vï Lz
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna Siodmak
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Universit� Paris-Sud, Universit� Evry, Universit� Paris-Saclay, B�timent 630, Orsay, France
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca 2+ and ROS signaling in plant immune response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:343-354. [PMID: 31128705 DOI: 10.1016/j.plantsci.2019.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/20/2023]
Abstract
Second messengers are cellular chemicals that act as "language codes", allowing cells to pass outside information to the cell interior. The cells then respond through triggering downstream reactions, including transcriptional reprograming to affect appropriate adaptive responses. The spatiotemporal patterning of these stimuli-induced signal changes has been referred to as a "signature", which is detected, decoded, and transmitted to elicit these downstream cellular responses. Recent studies have suggested that dynamic changes in second messengers, such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO), serve as signatures for both intracellular signaling and cell-to-cell communications. These second messenger signatures work in concert with physical signal signatures (such as electrical and hydraulic waves) to create a "lock and key" mechanism that triggers appropriate response to highly varied stresses. In plants, detailed information of how these signatures deploy their downstream signaling networks remains to be elucidated. Recent evidence suggests a mutual interplay between Ca2+ and ROS signaling has important implications for fine-tuning cellular signaling networks in plant immunity. These two signaling mechanisms amplify each other and this interaction may be a critical element of their roles in information processing for plant defense responses.
Collapse
Affiliation(s)
- Matthew J Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - B W Poovaiah
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
18
|
Ma Y, Cao J, Chen Q, He J, Liu Z, Wang J, Li X, Yang Y. The Kinase CIPK11 Functions as a Negative Regulator in Drought Stress Response in Arabidopsis. Int J Mol Sci 2019; 20:ijms20102422. [PMID: 31100788 PMCID: PMC6566343 DOI: 10.3390/ijms20102422] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Drought is a major limiting factor for plant growth and crop productivity. Many Calcineurin B-like interacting protein kinases (CIPKs) play crucial roles in plant adaptation to environmental stresses. It is particularly essential to find the phosphorylation targets of CIPKs and to study the underlying molecular mechanisms. In this study, we demonstrate that CIPK11 acts as a novel component to modulate drought stress in plants. The overexpression of CIPK11 (CIPK11OE) in Arabidopsis resulted in the decreased tolerance of plant to drought stress. When compared to wild type plants, CIPK11OE plants exhibited higher leaf water loss and higher content of reactive oxygen species (ROS) after drought treatment. Additionally, a yeast two hybrid screening assay by using CIPK11 as a bait captures Di19-3, a Cys2/His2-type zinc-finger transcription factor that is involved in drought stress, as a new interactor of CIPK11. Biochemical analysis revealed that CIPK11 interacted with Di19-3 in vivo and it was capable of phosphorylating Di19-3 in vitro. Genetic studies revealed that the function of CIPK11 in regulating drought stress was dependent on Di19-3. The transcripts of stress responsive genes, such as RAB18, RD29A, RD29B, and DREB2A were down-regulated in the CIPK11OE plants. Whereas overexpression of CIPK11 in di19-3 mutant background, expression levels of those marker genes were not significantly altered. Taken together, our results demonstrate that CIPK11 partly mediates the drought stress response by regulating the transcription factor Di19-3.
Collapse
Affiliation(s)
- Yanlin Ma
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jing Cao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Qiaoqiao Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jiahan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
Liu P, Guo J, Zhang R, Zhao J, Liu C, Qi T, Duan Y, Kang Z, Guo J. TaCIPK10 interacts with and phosphorylates TaNH2 to activate wheat defense responses to stripe rust. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:956-968. [PMID: 30451367 PMCID: PMC6587807 DOI: 10.1111/pbi.13031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 05/18/2023]
Abstract
Calcineurin B-like interacting protein kinase (CIPKs) has been shown to be required for biotic stress tolerance of plants in plant-pathogen interactions. However, the roles of CIPKs in immune signalling of cereal crops and an in-depth knowledge of substrates of CIPKs in response to biotic stress are under debate. In this study, we identified and cloned a CIPK homologue gene TaCIPK10 from wheat. TaCIPK10 was rapidly induced by Puccinia striiformis f. sp. tritici (Pst) inoculation and salicylic acid (SA) treatment. In vitro phosphorylation assay demonstrated that the kinase activity of TaCIPK10 is regulated by Ca2+ and TaCBL4. Knockdown TaCIPK10 significantly reduced wheat resistance to Pst, whereas TaCIPK10 overexpression resulted in enhanced wheat resistance to Pst by the induction of defense response in different aspects, including hypersensitive cell death, ROS accumulation and pathogenesis-relative genes expression. Moreover, TaCIPK10 physically interacted with and phosphorylated TaNH2, which was homologous to AtNPR3/4. Silencing of TaNH2 in wheat resulted in enhanced susceptibility to the avirulent Pst race, CYR23, indicating its positive role in wheat resistance. Our results demonstrate that TaCIPK10 positively regulate wheat resistance to Pst as molecular links between of Ca2+ and downstream components of defense response and TaCIPK10 interacts with and phosphorylates TaNH2 to regulate wheat resistance to Pst.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruiming Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jiaxin Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
20
|
Hake K, Romeis T. Protein kinase-mediated signalling in priming: Immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. PLANT, CELL & ENVIRONMENT 2019; 42:904-917. [PMID: 30151921 DOI: 10.1111/pce.13429] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 05/03/2023]
Abstract
"Priming" in plant phytopathology describes a phenomenon where the "experience" of primary infection by microbial pathogens leads to enhanced and beneficial protection of the plant against secondary infection. The plant is able to establish an immune memory, a state of systemic acquired resistance (SAR), in which the information of "having been attacked" is integrated with the action of "being prepared to defend when it happens again." Accordingly, primed plants are often characterized by faster and stronger activation of immune reactions that ultimately result in a reduction of pathogen spread and growth. Prerequisites for SAR are (a) the initiation of immune signalling subsequent to pathogen recognition, (b) a rapid defence signal propagation from a primary infected local site to uninfected distal parts of the plant, and (c) a switch into an immune signal-dependent establishment and subsequent long-lasting maintenance of phytohormone salicylic acid-based systemic immunity. Here, we provide a summary on protein kinases that contribute to these three conceptual aspects of "priming" in plant phytopathology, complemented by data addressing the role of protein kinases crucial for immune signal initiation also for signal propagation and SAR.
Collapse
Affiliation(s)
- Katharina Hake
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
21
|
Völz R, Kim SK, Mi J, Rawat AA, Veluchamy A, Mariappan KG, Rayapuram N, Daviere JM, Achard P, Blilou I, Al-Babili S, Benhamed M, Hirt H. INDETERMINATE-DOMAIN 4 (IDD4) coordinates immune responses with plant-growth in Arabidopsis thaliana. PLoS Pathog 2019; 15:e1007499. [PMID: 30677094 PMCID: PMC6345439 DOI: 10.1371/journal.ppat.1007499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD)/ BIRD proteins are a highly conserved plant-specific family of transcription factors which play multiple roles in plant development and physiology. Here, we show that mutation in IDD4/IMPERIAL EAGLE increases resistance to the hemi-biotrophic pathogen Pseudomonas syringae, indicating that IDD4 may act as a repressor of basal immune response and PAMP-triggered immunity. Furthermore, the idd4 mutant exhibits enhanced plant-growth indicating IDD4 as suppressor of growth and development. Transcriptome comparison of idd4 mutants and IDD4ox lines aligned to genome-wide IDD4 DNA-binding studies revealed major target genes related to defense and developmental-biological processes. IDD4 is a phospho-protein that interacts and becomes phosphorylated on two conserved sites by the MAP kinase MPK6. DNA-binding studies of IDD4 after flg22 treatment and with IDD4 phosphosite mutants show enhanced binding affinity to ID1 motif-containing promoters and its function as a transcriptional regulator. In contrast to the IDD4-phospho-dead mutant, the IDD4 phospho-mimicking mutant shows altered susceptibility to PstDC3000, salicylic acid levels and transcriptome reprogramming. In summary, we found that IDD4 regulates various hormonal pathways thereby coordinating growth and development with basal immunity.
Collapse
Affiliation(s)
- Ronny Völz
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Soon-Kap Kim
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anamika A Rawat
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alaguraj Veluchamy
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Michel Daviere
- Institut de biologie moléculaire des plantes, CNRS-Université de Strasbourg 12 Rue Général Zimmer, Strasbourg cedex, France
| | - Patrick Achard
- Institut de biologie moléculaire des plantes, CNRS-Université de Strasbourg 12 Rue Général Zimmer, Strasbourg cedex, France
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Moussa Benhamed
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d'Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Backer R, Naidoo S, van den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:102. [PMID: 30815005 PMCID: PMC6381062 DOI: 10.3389/fpls.2019.00102] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 05/04/2023]
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related NPR1-like proteins are a functionally similar, yet surprisingly diverse family of transcription co-factors. Initially, NPR1 in Arabidopsis was identified as a positive regulator of systemic acquired resistance (SAR), paralogs NPR3 and NPR4 were later shown to be negative SAR regulators. The mechanisms involved have been the subject of extensive research and debate over the years, during which time a lot has been uncovered. The known roles of this protein family have extended to include influences over a broad range of systems including circadian rhythm, endoplasmic reticulum (ER) resident proteins and the development of lateral organs. Recently, important advances have been made in understanding the regulatory relationship between members of the NPR1-like protein family, providing new insight regarding their interactions, both with each other and other defense-related proteins. Most importantly the influence of salicylic acid (SA) on these interactions has become clearer with NPR1, NPR3, and NPR4 being considered bone fide SA receptors. Additionally, post-translational modification of NPR1 has garnered attention during the past years, adding to the growing regulatory complexity of this protein. Furthermore, growing interest in NPR1 overexpressing crops has provided new insights regarding the role of NPR1 in both biotic and abiotic stresses in several plant species. Given the wealth of information, this review aims to highlight and consolidate the most relevant and influential research in the field to date. In so doing, we attempt to provide insight into the mechanisms and interactions which underly the roles of the NPR1-like proteins in plant disease responses.
Collapse
Affiliation(s)
- Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Noëlani van den Berg,
| |
Collapse
|
23
|
Pedley KF, Pandey AK, Ruck A, Lincoln LM, Whitham SA, Graham MA. Rpp1 Encodes a ULP1-NBS-LRR Protein That Controls Immunity to Phakopsora pachyrhizi in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:120-133. [PMID: 30303765 DOI: 10.1094/mpmi-07-18-0198-fi] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phakopsora pachyrhizi is the causal agent of Asian soybean rust. Susceptible soybean plants infected by virulent isolates of P. pachyrhizi are characterized by tan-colored lesions and erumpent uredinia on the leaf surface. Germplasm screening and genetic analyses have led to the identification of seven loci, Rpp1 to Rpp7, that provide varying degrees of resistance to P. pachyrhizi (Rpp). Two genes, Rpp1 and Rpp1b, map to the same region on soybean chromosome 18. Rpp1 is unique among the Rpp genes in that it confers an immune response (IR) to avirulent P. pachyrhizi isolates. The IR is characterized by a lack of visible symptoms, whereas resistance provided by Rpp1b to Rpp7 results in red-brown foliar lesions. Rpp1 maps to a region spanning approximately 150 kb on chromosome 18 between markers Sct_187 and Sat_064 in L85-2378 (Rpp1), an isoline developed from Williams 82 and PI 200492 (Rpp1). To identify Rpp1, we constructed a bacterial artificial chromosome library from soybean accession PI 200492. Sequencing of the Rpp1 locus identified three homologous nucleotide binding site-leucine rich repeat (NBS-LRR) candidate resistance genes between Sct_187 and Sat_064. Each candidate gene is also predicted to encode an N-terminal ubiquitin-like protease 1 (ULP1) domain. Cosilencing of the Rpp1 candidates abrogated the immune response in the Rpp1 resistant soybean accession PI 200492, indicating that Rpp1 is a ULP1-NBS-LRR protein and plays a key role in the IR.
Collapse
Affiliation(s)
- Kerry F Pedley
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Ajay K Pandey
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
- 3 Iowa State University, Department of Plant Pathology and Microbiology, Ames, IA 50011, U.S.A
| | - Amy Ruck
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Lori M Lincoln
- 2 USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, U.S.A.; and
| | - Steven A Whitham
- 3 Iowa State University, Department of Plant Pathology and Microbiology, Ames, IA 50011, U.S.A
| | - Michelle A Graham
- 2 USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, U.S.A.; and
| |
Collapse
|
24
|
Zhang B, Li P, Su T, Li P, Xin X, Wang W, Zhao X, Yu Y, Zhang D, Yu S, Zhang F. BrRLP48, Encoding a Receptor-Like Protein, Involved in Downy Mildew Resistance in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2018; 9:1708. [PMID: 30532761 PMCID: PMC6265505 DOI: 10.3389/fpls.2018.01708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/02/2018] [Indexed: 05/23/2023]
Abstract
Downy mildew, caused by Hyaloperonospora parasitica, is a major disease of Brassica rapa that causes large economic losses in many B. rapa-growing regions of the world. The genotype used in this study was based on a double haploid population derived from a cross between the Chinese cabbage line BY and a European turnip line MM, susceptible and resistant to downy mildew, respectively. We initially located a locus Br-DM04 for downy mildew resistance in a region about 2.7 Mb on chromosome A04, which accounts for 22.3% of the phenotypic variation. Using a large F2 mapping population (1156 individuals) we further mapped Br-DM04 within a 160 kb region, containing 17 genes encoding proteins. Based on sequence annotations for these genes, four candidate genes related to disease resistance, BrLRR1, BrLRR2, BrRLP47, and BrRLP48 were identified. Overexpression of both BrRLP47 and BrRLP48 using a transient expression system significantly enhanced the downy mildew resistance of the susceptible line BY. But only the leaves infiltrated with RNAi construct of BrRLP48 could significantly reduce the disease resistance in resistant line MM. Furthermore, promoter sequence analysis showed that one salicylic acid (SA) and two jasmonic acid-responsive transcript elements were found in BrRLP48 from the resistant line, but not in the susceptible one. Real-time PCR analysis showed that the expression level of BrRLP48 was significantly induced by inoculation with downy mildew or SA treatment in the resistant line MM. Based on these findings, we concluded that BrRLP48 was involved in disease resistant response and the disease-inducible expression of BrRLP48 contributed to the downy mildew resistance. These findings led to a new understanding of the mechanisms of resistance and lay the foundation for marker-assisted selection to improve downy mildew resistance in Brassica rapa.
Collapse
Affiliation(s)
- Bin Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Pan Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
25
|
Moon SJ, Park HJ, Kim TH, Kang JW, Lee JY, Cho JH, Lee JH, Park DS, Byun MO, Kim BG, Shin D. OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS One 2018; 13:e0206910. [PMID: 30444888 PMCID: PMC6239283 DOI: 10.1371/journal.pone.0206910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
How plants defend themselves from microbial infection is one of the most critical issues for sustainable crop production. Some TGA transcription factors belonging to bZIP superfamily can regulate disease resistance through NPR1-mediated immunity mechanisms in Arabidopsis. Here, we examined biological roles of OsTGA2 (grouped into the same subclade as Arabidopsis TGAs) in bacterial leaf blight resistance. Transcriptional level of OsTGA2 was accumulated after treatment with salicylic acid, methyl jasmonate, and Xathomonas oryzae pv. Oryzae (Xoo), a bacterium causing serious blight of rice. OsTGA2 formed homo- and hetero-dimer with OsTGA3 and OsTGA5 and interacted with rice NPR1 homologs 1 (NH1) in rice. Results of quadruple 9-mer protein-binding microarray analysis indicated that OsTGA2 could bind to TGACGT DNA sequence. Overexpression of OsTGA2 increased resistance of rice to bacterial leaf blight, although overexpression of OsTGA3 resulted in disease symptoms similar to wild type plant upon Xoo infection. Overexpression of OsTGA2 enhanced the expression of defense related genes containing TGA binding cis-element in the promoter such as AP2/EREBP 129, ERD1, and HOP1. These results suggest that OsTGA2 can directly regulate the expression of defense related genes and increase the resistance of rice against bacterial leaf blight disease.
Collapse
Affiliation(s)
- Seok-Jun Moon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Tae-Heon Kim
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ju-Won Kang
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ji-Yoon Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jun-Hyun Cho
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Dong-Soo Park
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Myung-Ok Byun
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Beom-Gi Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Dongjin Shin
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Liu P, Duan Y, Liu C, Xue Q, Guo J, Qi T, Kang Z, Guo J. The calcium sensor TaCBL4 and its interacting protein TaCIPK5 are required for wheat resistance to stripe rust fungus. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4443-4457. [PMID: 29931351 DOI: 10.1093/jxb/ery227] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Calcineurin B-like proteins (CBLs) act as Ca2+ sensors to activate specific protein kinases, namely CBL-interacting protein kinases (CIPKs). Recent research has demonstrated that the CBL-CIPK complex is not only required for abiotic stress signaling, but is also probably involved in biotic stress perception. However, the role of this complex in immune signaling, including pathogen perception, is unknown. In this study, we isolated one signaling component of the TaCBL-TaCIPK complex (TaCBL4-TaCIPK5) and characterized its role in the interaction between wheat (Triticum aestivum) and Puccinia striiformis f. sp. tritici (Pst, stripe rust fungus). Among all TaCBLs in wheat, TaCBL4 mRNA accumulation markedly increased after infection by Pst. Silencing of TaCBL4 resulted in enhanced susceptibility to avirulent Pst infection. In addition, screening determined that TaCIPK5 physically interacted with TaCBL4 in planta and positively contributed to wheat resistance to Pst. Moreover, the disease resistance phenotype of TaCBL4 and TaCIPK5 co-silenced plants was consistent with that of single-knockdown plants. The accumulation of reactive oxygen species (ROS) was significantly altered in all silenced plants during Pst infection. Together these findings demonstrate that the TaCBL4-TaCIPK5 complex positively modulates wheat resistance in a ROS-dependent manner, and provide new insights into the roles of CBL-CIPK in wheat.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yinghui Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qinghe Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
27
|
Molecular Mechanisms for Microbe Recognition and Defense by the Red Seaweed Laurencia dendroidea. mSphere 2017; 2:mSphere00094-17. [PMID: 29242829 PMCID: PMC5717322 DOI: 10.1128/msphere.00094-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/08/2017] [Indexed: 01/26/2023] Open
Abstract
Marine bacteria are part of the healthy microbiota associated with seaweeds, but some species, such as Vibrio spp., are frequently associated with disease outbreaks, especially in economically valuable cultures. In this context, the ability of seaweeds to recognize microbes and, when necessary, activate defense mechanisms is essential for their survival. However, studies dedicated to understanding the molecular components of the immune response in seaweeds are rare and restricted to indirect stimulus. This work provides an unprecedentedly large-scale evaluation of the transcriptional changes involved in microbe recognition, cellular signaling, and defense in the red seaweed Laurencia dendroidea in response to the marine bacterium Vibrio madracius. By expanding knowledge about seaweed-bacterium interactions and about the integrated defensive system in seaweeds, this work offers the basis for the development of tools to increase the resistance of cultured seaweeds to bacterial infections. The ability to recognize and respond to the presence of microbes is an essential strategy for seaweeds to survive in the marine environment, but understanding of molecular seaweed-microbe interactions is limited. Laurencia dendroidea clones were inoculated with the marine bacterium Vibrio madracius. The seaweed RNA was sequenced, providing an unprecedentedly high coverage of the transcriptome of Laurencia, and the gene expression levels were compared between control and inoculated samples after 24, 48, and 72 h. Transcriptomic changes in L. dendroidea in the presence of V. madracius include the upregulation of genes that participate in signaling pathways described here for the first time as a response of seaweeds to microbes. Genes coding for defense-related transcription activators, reactive oxygen species metabolism, terpene biosynthesis, and energy conversion pathways were upregulated in inoculated samples of L. dendroidea, indicating an integrated defensive system in seaweeds. This report contributes significantly to the current knowledge about the molecular mechanisms involved in the highly dynamic seaweed-bacterium interactions. IMPORTANCE Marine bacteria are part of the healthy microbiota associated with seaweeds, but some species, such as Vibrio spp., are frequently associated with disease outbreaks, especially in economically valuable cultures. In this context, the ability of seaweeds to recognize microbes and, when necessary, activate defense mechanisms is essential for their survival. However, studies dedicated to understanding the molecular components of the immune response in seaweeds are rare and restricted to indirect stimulus. This work provides an unprecedentedly large-scale evaluation of the transcriptional changes involved in microbe recognition, cellular signaling, and defense in the red seaweed Laurencia dendroidea in response to the marine bacterium Vibrio madracius. By expanding knowledge about seaweed-bacterium interactions and about the integrated defensive system in seaweeds, this work offers the basis for the development of tools to increase the resistance of cultured seaweeds to bacterial infections.
Collapse
|
28
|
Sanyal SK, Rao S, Mishra LK, Sharma M, Pandey GK. Plant Stress Responses Mediated by CBL-CIPK Phosphorylation Network. Enzymes 2016; 40:31-64. [PMID: 27776782 DOI: 10.1016/bs.enz.2016.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At any given time and location, plants encounter a flood of environmental stimuli. Diverse signal transduction pathways sense these stimuli and generate a diverse array of responses. Calcium (Ca2+) is generated as a second messenger due to these stimuli and is responsible for transducing the signals downstream in the pathway. A large number of Ca2+ sensor-responder components are responsible for Ca2+ signaling in plants. The sensor-responder complexes calcineurin B-like protein (CBL) and CBL-interacting protein kinases (CIPKs) are pivotal players in Ca2+-mediated signaling. The CIPKs are the protein kinases and hence mediate signal transduction mainly by the process of protein phosphorylation. Elaborate studies conducted in Arabidopsis have shown the involvement of CBL-CIPK complexes in abiotic and biotic stresses, and nutrient deficiency. Additionally, studies in crop plants have also indicated their role in the similar responses. In this chapter, we review the current literature on the CBL and CIPK network, shedding light into the enzymatic property and mechanism of action of CBL-CIPK complexes. We also summarize various reports on the functional modulation of the downstream targets by the CBL-CIPK modules across all plant species.
Collapse
Affiliation(s)
- S K Sanyal
- University of Delhi South Campus, New Delhi, India
| | - S Rao
- University of Delhi South Campus, New Delhi, India
| | - L K Mishra
- University of Delhi South Campus, New Delhi, India
| | - M Sharma
- University of Delhi South Campus, New Delhi, India
| | - G K Pandey
- University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
29
|
Posttranslational Modifications of NPR1: A Single Protein Playing Multiple Roles in Plant Immunity and Physiology. PLoS Pathog 2016; 12:e1005707. [PMID: 27513560 PMCID: PMC4981451 DOI: 10.1371/journal.ppat.1005707] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
30
|
Phukan UJ, Jeena GS, Shukla RK. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:760. [PMID: 27375634 PMCID: PMC4891567 DOI: 10.3389/fpls.2016.00760] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/17/2016] [Indexed: 05/17/2023]
Abstract
Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research.
Collapse
|
31
|
Zhou X, Hao H, Zhang Y, Bai Y, Zhu W, Qin Y, Yuan F, Zhao F, Wang M, Hu J, Xu H, Guo A, Zhao H, Zhao Y, Cao C, Yang Y, Schumaker KS, Guo Y, Xie CG. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE5. PLANT PHYSIOLOGY 2015; 168:659-76. [PMID: 25858916 PMCID: PMC4453773 DOI: 10.1104/pp.114.255455] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/04/2015] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-related protein kinase3-type protein kinase, SOS2-like protein kinase5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, abscisic acid-insensitive5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-like calcium binding proteins) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Xiaona Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Hongmei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yuguo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yili Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Wenbo Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yunxia Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Feifei Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Feiyi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Mengyao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Jingjiang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Hong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Aiguang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Huixian Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Cuiling Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yongqing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Karen S Schumaker
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| | - Chang Gen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China (X.Z., H.H., Y.B., W.Z., F.Y., M.W., J.H., H.X., A.G., H.Z., C.C., C.G.X.);State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Yu.Z., Y.Q., F.Z., Ya.Z., Y.Y., Y.G.); andSchool of Plant Sciences, University of Arizona, Tucson, Arizona 85721 (K.S.S.)
| |
Collapse
|
32
|
Yan S, Dong X. Perception of the plant immune signal salicylic acid. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:64-8. [PMID: 24840293 PMCID: PMC4143455 DOI: 10.1016/j.pbi.2014.04.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 04/24/2014] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) plays a central role in plant innate immunity. The diverse functions of this simple phenolic compound suggest that plants may have multiple SA receptors. Several SA-binding proteins have been identified using biochemical approaches. However, genetic evidence supporting that they are the bona fide SA receptors has not been forthcoming. Mutant screens revealed that NPR1 is a master regulator of SA-mediated responses. Although NPR1 cannot bind SA in a conventional ligand-binding assay, its homologs NPR3 and NPR4 bind SA and function as SA receptors. During pathogen challenge, the SA gradient generated at the infection site is sensed by NPR3 and NPR4, which serve as the adaptors for the Cullin 3-based E3 ubiquitin ligase to regulate NPR1 degradation. Consequently, NPR1 is degraded at the infection site to remove its inhibition on effector-triggered cell death and defense, whereas NPR1 accumulates in neighboring cells to promote cell survival and SA-mediated resistance.
Collapse
Affiliation(s)
- Shunping Yan
- Howard Hughes Medical Institute - Gordon and Betty Moore Foundation, Department of Biology, P.O. Box 90338, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute - Gordon and Betty Moore Foundation, Department of Biology, P.O. Box 90338, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
33
|
Bakshi M, Oelmüller R. WRKY transcription factors: Jack of many trades in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e27700. [PMID: 24492469 PMCID: PMC4091213 DOI: 10.4161/psb.27700] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 05/18/2023]
Abstract
WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Amity Institute of Microbial Technology; Amity University; Noida, UP, India
- Institute of Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| | - Ralf Oelmüller
- Institute of Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| |
Collapse
|
34
|
Yuan F, Wang M, Hao H, Zhang Y, Zhao H, Guo A, Xu H, Zhou X, Xie CG. Negative regulation of abscisic acid signaling by the Brassica oleracea ABI1 ortholog. Biochem Biophys Res Commun 2013; 442:202-8. [DOI: 10.1016/j.bbrc.2013.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 12/15/2022]
|
35
|
BolOST1, an ortholog of Open Stomata 1 with alternative splicing products in Brassica oleracea, positively modulates drought responses in plants. Biochem Biophys Res Commun 2013; 442:214-20. [PMID: 24269232 DOI: 10.1016/j.bbrc.2013.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 11/22/2022]
Abstract
Open Stomata 1 (OST1), an ABA-activated sucrose non-fermenting 1 (SNF1)-related protein kinase, is critical for plant drought responses. We investigated the functions of two splicing isoforms of the OST1 ortholog in Brassica oleracea (BolOST1). BolOST1 expression was found to be dramatically induced by drought and high-salt stress, and the ectopic expression of BolOST1 restored the drought-sensitive phenotype of ost1. Subcellular localization revealed that BolOST1 is localized in both the nucleus and cytoplasm. BolOST1 was also demonstrated to phosphorylate the N-terminal fragment of ABI5 (ABA Insensitive 5, ABI5-N). A firefly luciferase complementation assay revealed that BolOST1 interacts with both BolABI5 and an ABI1 ortholog in B. oleracea (BolABI1). Overall, these results suggest that BolOST1 is a functional SnRK2-type protein kinase and that the early ABA signaling network may be conserved between Arabidopsis and cabbage.
Collapse
|
36
|
Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 2013; 96:144-57. [PMID: 23856562 DOI: 10.1016/j.biochi.2013.07.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) cleaves, in a Ca(2+)-dependent manner, phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) into diacylglycerol (DAG) and inositol triphosphate (IP3). PI-PLCs are multidomain proteins that are structurally related to the PI-PLCζs, the simplest animal PI-PLCs. Like these animal counterparts, they are only composed of EF-hand, X/Y and C2 domains. However, plant PI-PLCs do not have a conventional EF-hand domain since they are often truncated, while some PI-PLCs have no EF-hand domain at all. Despite this simple structure, plant PI-PLCs are involved in many essential plant processes, either associated with development or in response to environmental stresses. The action of PI-PLCs relies on the mediators they produce. In plants, IP3 does not seem to be the sole active soluble molecule. Inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) also transmit signals, thus highlighting the importance of coupling PI-PLC action with inositol-phosphate kinases and phosphatases. PI-PLCs also produce a lipid molecule, but plant PI-PLC pathways show a peculiarity in that the active lipid does not appear to be DAG but its phosphorylated form, phosphatidic acid (PA). Besides, PI-PLCs can also act by altering their substrate levels. Taken together, plant PI-PLCs show functional differences when compared to their animal counterparts. However, they act on similar general signalling pathways including calcium homeostasis and cell phosphoproteome. Several important questions remain unanswered. The cross-talk between the soluble and lipid mediators generated by plant PI-PLCs is not understood and how the coupling between PI-PLCs and inositol-kinases or DAG-kinases is carried out remains to be established.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
37
|
Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. Tell me more: roles of NPRs in plant immunity. TRENDS IN PLANT SCIENCE 2013; 18:402-11. [PMID: 23683896 DOI: 10.1016/j.tplants.2013.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Plants and animals maintain evolutionarily conserved innate immune systems that give rise to durable resistances. Systemic acquired resistance (SAR) confers plant-wide immunity towards a broad spectrum of pathogens. Numerous studies have revealed that NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR) is a key regulator of SAR. Here, we review the mechanisms of NPR1 action in concert with its paralogues NPR3 and NPR4 and other SAR players. We provide insights into the mechanisms of salicylic acid (SA) perception. We discuss the binding of NPR3 and NPR4 with SA that modulates NPR1 coactivator capacity, leading to diverse immune outputs. Finally, we highlight the function of NPR1 as a bona fide SA receptor and propose a possible model of SA perception in planta.
Collapse
|
38
|
Mou S, Liu Z, Guan D, Qiu A, Lai Y, He S. Functional analysis and expressional characterization of rice ankyrin repeat-containing protein, OsPIANK1, in basal defense against Magnaporthe oryzae attack. PLoS One 2013; 8:e59699. [PMID: 23555750 PMCID: PMC3608567 DOI: 10.1371/journal.pone.0059699] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/17/2013] [Indexed: 11/18/2022] Open
Abstract
The ankyrin repeat-containing protein gene OsPIANK1 (AK068021) in rice (Oryza sativa L.) was previously shown to be upregulated following infection with the rice leaf blight pathogen Xanthomonas oryzae pv oryzae (Xoo). In this study, we further characterized the role of OsPIANK1 in basal defense against Magnaporthe oryzae (M.oryzae) by 5' deletion analysis of its promoter and overexpression of the gene. The promoter of OsPIANK1 with 1,985 bps in length was sufficient to induce the OsPIANK1 response to inoculation with M.oryzae and to exogenous application of methyl jasmonate (MeJA) or salicylic acid (SA), but not to exogenous application of abscisic acid (ABA). A TCA-element present in the region between -563 bp and -249 bp may be responsible for the OsPIANK1 response to both M.oryzae infection and exogenous SA application. The JERE box, CGTCA-box, and two MYB binding sites locating in the region between -1985 bp and -907 bp may be responsible for the response of OsPIANK1 to exogenous MeJA. OsPIANK1 expression was upregulated after inoculation with M.oryzae and after treatment with exogenous SA and MeJA. Overexpression of OsPIANK1 enhanced resistance of rice to M.oryzae, although it did not confer complete resistance. The enhanced resistance to M.oryzae was accompanied by enhanced transcriptional expression of SA- and JA-dependent genes such as NH1, WKRY13, PAL, AOS2, PR1b, and PR5. This evidence suggests that OsPIANK1 acted as a positive regulator in rice basal defense mediated by SA- and JA-signaling pathways.
Collapse
Affiliation(s)
- Shaoliang Mou
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhiqin Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Deyi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan Lai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuilin He
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
39
|
Zhou X, Yuan F, Wang M, Guo A, Zhang Y, Xie CG. Molecular characterization of an ABA insensitive 5 orthologue in Brassica oleracea. Biochem Biophys Res Commun 2013; 430:1140-6. [DOI: 10.1016/j.bbrc.2012.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
40
|
Tena G, Boudsocq M, Sheen J. Protein kinase signaling networks in plant innate immunity. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:519-29. [PMID: 21704551 PMCID: PMC3191242 DOI: 10.1016/j.pbi.2011.05.006] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/28/2011] [Accepted: 05/30/2011] [Indexed: 05/18/2023]
Abstract
In plants and animals, innate immunity is triggered through pattern recognition receptors (PRRs) in response to microbe-associated molecular patterns (MAMPs) to provide the first line of inducible defense. Plant receptor protein kinases (RPKs) represent the main plasma membrane PRRs perceiving diverse MAMPs. RPKs also recognize secondary danger-inducible plant peptides and cell-wall signals. Both types of RPKs trigger rapid and convergent downstream signaling networks controlled by calcium-activated PKs and mitogen-activated PK (MAPK) cascades. These PK signaling networks serve specific and overlapping roles in controlling the activities and synthesis of a plethora of transcription factors (TFs), enzymes, hormones, peptides and antimicrobial chemicals, contributing to resistance against bacteria, oomycetes and fungi.
Collapse
Affiliation(s)
- Guillaume Tena
- Department of Genetics, Harvard Medical School, Massachusetts General Hospital, MA 02114, USA
| | | | | |
Collapse
|