1
|
Rahimian Y, Kheiri F, Faghani M. Evaluation the effect of dietary vitamin E, sesamin and thymoquinone bioactive compounds on immunological response, intestinal traits and MUC-2 gene expression in broiler Japanese quails ( Coturnix japonica). Anim Biotechnol 2024; 35:2259437. [PMID: 37729462 DOI: 10.1080/10495398.2023.2259437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The current study was performed to determine the effect of dietary vitamin E, sesamin and thymoquinone bioactive lignans derived from sesame and black seed on immunological response, intestinal traits and Mucin2 gene expression in broiler quails. Three hundred and fifty (one days-old) quails were allotted to seven dietary treatments with five replicates as an experimental randomized design study. Treatments were basal diet as a control, control +100 and +200 mg of vitamin E, sesamin and thymoquinone per each kg of diet respectively. At 35 d of age, two quails from each pen were chosen, weighted, slaughtered, eviscerated and lymphoid organ relative weights were measured. Anti-body titers against Newcastle disease (ND), Sheep red blood cell (SRBC), and infectious bronchitis virus (IBV) and Avian influenza (AI) vaccination were determined. The serum activities of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and serum antioxidant activates such as superoxide dismutase (SOD),glutathione peroxidase(GPX), catalase (CAT) and total antioxidant capacity (TAC) were examined. The cell mediated immunity by dinitrochlorobenzene (DNCB) and phytohemagglutinin (PHA) challenges were assessed. The microflora populations of ileum, morphological traits of jejunum and mucin2 gene expression were analyzed. Data showed that the lymphoid organ (thymus, spleen and Bursa) relative weights and antibody titer against HI, AI, SRBC and IB vaccination were increased compared to the control (p ≤ 0.05). Serum activities of ALP, ALT and AST were decreased under influences of dietary treatments (p ≤ 0.05). The serum antioxidant activates of GPX,SOD,CAT and TAC were increased and Increasing in mean skin thickness after DNCB challenge and decrease wing web swelling response to PHA mitojen injection were observed (p ≤ 0.05). Salmonella enterica, E-coli and Coliforms colonies were decrease and Lactobacillus colonies increased instead (p ≤ 0.05). The villus height and surface, crypt depth and goblet cells density were increased compared to the control (p ≤ 0.05). The expression of MUC2 gene increased under influnces of vitamin E, sesamin and thymoquinone supplemented diets (p ≤ 0.05).
Collapse
Affiliation(s)
- Yaser Rahimian
- Department of Animal Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Farshid Kheiri
- Department of Animal Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mostafa Faghani
- Department of Animal Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
2
|
Kumar A, Bajaj P, Singh B, Paul K, Sharma P, Mehra S, Robin, Kaur P, Jasrotia S, Kumar P, Rajat, Singh V, Tuli HS. Sesamol as a potent anticancer compound: from chemistry to cellular interactions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4961-4979. [PMID: 38180556 DOI: 10.1007/s00210-023-02919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Sesamol (SM), a well-known component isolated from sesame seeds (Sesamum indicum), used in traditional medicines in treating numerous ailments. However, numerous molecular investigations revealed the various mechanisms behind its activity, emphasizing its antiproliferative, anti-inflammatory, and apoptosis-inducing properties, preventing cancer cell spread to distant organs. In several cells derived from various malignant tissues, SM-regulated signal transduction pathways and cellular targets have been identified. This review paper comprehensively describes the anticancer properties of SM and SM-viable anticancer drugs. Additionally, the interactions of this natural substance with standard anticancer drugs are examined, and the benefits of using nanotechnology in SM applications are explored. This makes SM a prime example of how ethnopharmacological knowledge can be applied to the development of contemporary drugs.
Collapse
Affiliation(s)
- Ajay Kumar
- University Center for Research & Development (UCRD), Biotechnology Engineering & Food Technology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| | - Payal Bajaj
- Advanced Eye Center, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Kapil Paul
- Kanya Maha Vidyalaya, Jalandhar, 144004, Punjab, India
| | - Pooja Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sukanya Mehra
- P.G. Department of Science, Khalsa College For Women, Amritsar, 143001, Punjab, India
| | - Robin
- Regional Water Testing Laboratory, Department of Water Supply and Sanitation, Agilent Technologies India Pvt. Ltd., Amritsar, Punjab, India
| | - Pardeep Kaur
- Post Graduate Department of Botany, Khalsa College, Amritsar, Punjab, India
| | - Shivam Jasrotia
- Department of Biosciences, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Parveen Kumar
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Rajat
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali, 160071, India
| | - Vipourpreet Singh
- Coast Mountain College, Prince Rupert, British Columbia, V8J3S8, Canada
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| |
Collapse
|
3
|
Majdalawieh AF, Ahari SH, Yousef SM, Nasrallah GK. Sesamol: A lignan in sesame seeds with potent anti-inflammatory and immunomodulatory properties. Eur J Pharmacol 2023; 960:176163. [PMID: 37925135 DOI: 10.1016/j.ejphar.2023.176163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Inflammation is associated with the development and progression of a plethora of diseases including joint, metabolic, neurological, hepatic, and renal disorders. Sesamol, derived from the seeds of Sesamum indicum L., has received considerable attention due to its well-documented multipotent phytotherapeutic effects, including its anti-inflammatory and immunomodulatory properties. However, to date, no comprehensive review has been established to highlight or summarize the anti-inflammatory and immunomodulatory properties of sesamol. Herein, we aim to address this gap in the literature by presenting a thorough review encapsulating evidence surrounding the range of inflammatory mediators and cytokines shown to be targeted by sesamol in modulating its anti-inflammatory actions against a range of inflammatory disorders. Additionally, evidence highlighting the role that sesamol has in modulating components of adaptive immunity including cellular immune responses and Th1/Th2 balance is underscored. Moreover, the molecular mechanisms and the signaling pathways underlying such effects are also highlighted. Findings indicate that this seemingly potent lignan mediates its anti-inflammatory actions, at least in part, via suppression of various pro-inflammatory cytokines like IL-1β and TNFα, and downregulation of a multitude of signaling pathways including NF-κB and MAPK. In conclusion, we anticipate that sesamol may be employed in future therapeutic regimens to aid in more effective drug development to alleviate immune-related and inflammatory conditions.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Sogand H Ahari
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Sarah M Yousef
- Department of Psychology, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Keni R, Nayak PG, Kumar N, Kishore A, Alnasser SM, Begum F, Gourishetti K, Nandakumar K. Sesamol combats diabetogenic effects of atorvastatin through GLUT-4 expression and improved pancreatic viability. 3 Biotech 2023; 13:377. [PMID: 37885753 PMCID: PMC10597939 DOI: 10.1007/s13205-023-03784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
Statin-associated diabetes (SAD) is an issue that has come to light after a series of recent clinical trials that has led to the issue of a black box warning for statins by the US FDA. However, the benefit of statin outweighs its risk. Nevertheless, experiments have been conducted to identify the mechanism by which statins aggravate the risk of diabetes only in a select population who bear the risk factors of obesity, sedentary lifestyle, hypertension, and other associated risk factors of lifestyle disorders. In this study, the possibility of utilization of a phyto-molecule, sesamol, for its ability to combat statin-associated diabetes using atorvastatin as the agent of choice has been explored. MMP assay and western blot was conducted to investigate the effects of atorvastatin on apoptotic cascade with sesamol as a protective agent was conducted in MIN-6 cells. Effect of the combination was tested in L6 cells with 2-NBDG uptake assay and as well as western blot for GLUT-4. A diet-induced hypercholesterolemia model was developed in an in vivo model animals and treated with atorvastatin and sesamol with histopathological analysis being carried out to evaluate the apoptotic markers and GLUT-4 presence. It was found that sesamol can combat pancreatic beta cell apoptosis via the internal apoptotic pathway activated by atorvastatin. With regards to muscle cells, sesamol could improve the GLUT-4 vesical production, but not improve glucose uptake which is inhibited by atorvastatin. These findings are further confirmed by animal studies. These findings indicate that sesamol can serve as a prototype molecule for further development and investigation of similar compounds to tackle SAD.
Collapse
Affiliation(s)
- Raghuvir Keni
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Pawan Ganesh Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, District Vaishali, Hajipur, Bihar 844102 India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, 51452 Saudi Arabia
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
5
|
Majdalawieh AF, Eltayeb AE, Abu-Yousef IA, Yousef SM. Hypolipidemic and Anti-Atherogenic Effects of Sesamol and Possible Mechanisms of Action: A Comprehensive Review. Molecules 2023; 28:molecules28083567. [PMID: 37110801 PMCID: PMC10146572 DOI: 10.3390/molecules28083567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Sesamol is a phenolic lignan isolated from Sesamum indicum seeds and sesame oil. Numerous studies have reported that sesamol exhibits lipid-lowering and anti-atherogenic properties. The lipid-lowering effects of sesamol are evidenced by its effects on serum lipid levels, which have been attributed to its potential for significantly influencing molecular processes involved in fatty acid synthesis and oxidation as well as cholesterol metabolism. In this review, we present a comprehensive summary of the reported hypolipidemic effects of sesamol, observed in several in vivo and in vitro studies. The effects of sesamol on serum lipid profiles are thoroughly addressed and evaluated. Studies highlighting the ability of sesamol to inhibit fatty acid synthesis, stimulate fatty acid oxidation, enhance cholesterol metabolism, and modulate macrophage cholesterol efflux are outlined. Additionally, the possible molecular pathways underlying the cholesterol-lowering effects of sesamol are presented. Findings reveal that the anti-hyperlipidemic effects of sesamol are achieved, at least in part, by targeting liver X receptor α (LXRα), sterol regulatory element binding protein-1 (SREBP-1), and fatty acid synthase (FAS) expression, as well as peroxisome proliferator-activated receptor α (PPARα) and AMP activated protein kinase (AMPK) signaling pathways. A detailed understanding of the molecular mechanisms underlying the anti-hyperlipidemic potential of sesamol is necessary to assess the possibility of utilizing sesamol as an alternative natural therapeutic agent with potent hypolipidemic and anti-atherogenic properties. Research into the optimal sesamol dosage that may bring about such favorable hypolipidemic effects should be further investigated, most importantly in humans, to ensure maximal therapeutic benefit.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Aaram E Eltayeb
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Sarah M Yousef
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
6
|
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. PLANTS (BASEL, SWITZERLAND) 2023; 12:1168. [PMID: 36904028 PMCID: PMC10005287 DOI: 10.3390/plants12051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Monteros MJM, Galdeano CM, Balcells MF, Weill R, De Paula JA, Perdigón G, Cazorla SI. Probiotic lactobacilli as a promising strategy to ameliorate disorders associated with intestinal inflammation induced by a non-steroidal anti-inflammatory drug. Sci Rep 2021; 11:571. [PMID: 33436961 PMCID: PMC7803994 DOI: 10.1038/s41598-020-80482-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Damage to the small intestine caused by non-steroidal anti-inflammatory drugs (NSAIDs) occurs more frequently than in the upper gastrointestinal tract, is more difficult to diagnose and no effective treatments exist. Hence, we investigated whether probiotics can control the onset of this severe condition in a murine model of intestinal inflammation induced by the NSAID, indomethacin. Probiotic supplementation to mice reduce the body weight loss, anemia, shortening of the small intestine, cell infiltration into the intestinal tissue and the loss of Paneth and Goblet cells associated with intestinal inflammation. Furthermore, a high antimicrobial activity in the intestinal fluids of mice fed with probiotics compared to animals on a conventional diet was elicited against several pathogens. Interestingly, probiotics dampened the oxidative stress and several local and systemic markers of an inflammatory process, as well as increased the secretion of IL-10 by regulatory T cells. Even more importantly, probiotics induced important changes in the large intestine microbiota characterized by an increase in anaerobes and lactobacilli, and a significant decrease in total enterobacteria. We conclude that oral probiotic supplementation in NSAID-induced inflammation increases intestinal antimicrobial activity and reinforces the intestinal epithelial barrier in order to avoid pathogens and commensal invasion and maintain intestinal homeostasis.
Collapse
Affiliation(s)
- María José Martínez Monteros
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | - Carolina Maldonado Galdeano
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - María Florencia Balcells
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | | | | | - Gabriela Perdigón
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina
| | - Silvia Inés Cazorla
- Laboratorio de Inmunología, Centro de Referencia Para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Chacabuco 145 - (T4000ILC), Tucumán, Argentina.
- Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina.
| |
Collapse
|
8
|
Zhao B, Xia B, Li X, Zhang L, Liu X, Shi R, Kou R, Liu Z, Liu X. Sesamol Supplementation Attenuates DSS-Induced Colitis via Mediating Gut Barrier Integrity, Inflammatory Responses, and Reshaping Gut Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10697-10708. [PMID: 32893621 DOI: 10.1021/acs.jafc.0c04370] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sesamol, a liposoluble lignan extract, has already been proved to possess potent anti-inflammatory properties, and it could also regulate gut dysfunction. The purpose of the present research is to explore the protective effect of sesamol on colitis mice. In the current research, sesamol treatment (100 mg/kg bodyweight/day) for 6 weeks inhibited the dextran sulphate sodium (DSS)-induced bodyweight loss of mice. Transmission electron microscopy and hematoxylin and eosin staining results showed that the DSS-induced histopathological changes of mice were also recovered by sesamol supplementation. In addition, DSS-induced inflammatory responses were inhibited by sesamol supplementation via the NF-κB signaling pathway in mice colon. Moreover, sesamol treatment prevented gut barrier damages by enhancing the expression of tight junction proteins (occludin, claudin-1, and ZO-1) and recovering the loss of gut mucus layer. Furthermore, sesamol supplementation also increased the short-chain fatty acid (SCFAs) contents of acetate, propionate, and butyrate. Furthermore, sesamol supplementation changed the gut microbiome structure by enhancing the relative abundance of Coprococcuscus, Butyricicoccus, Odoribacter, and AF12 in colitis mice. In conclusion, sesamol could effectively ameliorate DSS-induced colitis by promoting gut microecology.
Collapse
Affiliation(s)
- Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaohan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Li Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoning Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Rongwei Kou
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Bosebabu B, Cheruku SP, Chamallamudi MR, Nampoothiri M, Shenoy RR, Nandakumar K, Parihar VK, Kumar N. An Appraisal of Current Pharmacological Perspectives of Sesamol: A Review. Mini Rev Med Chem 2020; 20:988-1000. [DOI: 10.2174/1389557520666200313120419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
Sesame (Sesamum indicum L.) seeds have been authenticated for its medicinal value in both
Chinese and Indian systems of medicine. Its numerous potential nutritional benefits are attributed to its
main bioactive constituents, sesamol. As a result of those studies, several molecular mechanisms are
emerging describing the pleiotropic biological effects of sesamol. This review summarized the most
interesting in vitro and in vivo studies on the biological effects of sesamol. The present work summarises
data available from Pubmed and Scopus database. Several molecular mechanisms have been elucidated
describing the pleiotropic biological effects of sesamol. Its major therapeutic effects have been
elicited in managing oxidative and inflammatory conditions, metabolic syndrome and mood disorders.
Further, compelling evidence reflected the ability of sesamol in inhibiting proliferation of the inflammatory
cell, prevention of invasion and angiogenesis via affecting multiple molecular targets and
downstream mechanisms. Sesamol is a safe, non‐toxic chemical that mediates anti‐inflammatory
effects by down‐regulating the transcription of inflammatory markers such as cytokines, redox status,
protein kinases, and enzymes that promote inflammation. In addition, sesamol also induces apoptosis
in cancer cells via mitochondrial and receptor‐mediated pathways, as well as activation of caspase cascades.
In the present review, several pharmacological effects of sesamol are summarised namely, antioxidant,
anti-cancer, neuroprotective, cardioprotective, anti-inflammatory, hypolipidemic, radioprotective,
anti-aging, anti-ulcer, anti-dementia, anti-depressant, antiplatelet, anticonvulsant, anti-anxiolytic,
wound healing, cosmetic (skin whitening), anti-microbial, matrix metalloproteinase (MMPs) inhibition,
hepatoprotective activity and other biological effects. Here we have summarized the proposed
mechanism behind these pharmacological effects.
Collapse
Affiliation(s)
- Bellamkonda Bosebabu
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Vipan K. Parihar
- Department of Radiation Oncology, University of California, Irvine, CA 92697- 2695, United States
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
10
|
Anti-Inflammatory and Anticancer Properties of Bioactive Compounds from Sesamum indicum L.-A Review. Molecules 2019; 24:molecules24244426. [PMID: 31817084 PMCID: PMC6943436 DOI: 10.3390/molecules24244426] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
The use of foodstuff as natural medicines has already been established through studies demonstrating the pharmacological activities that they exhibit. Knowing the nutritional and pharmacological significance of foods enables the understanding of their role against several diseases. Among the foods that can potentially be considered as medicine, is sesame or Sesamum indicum L., which is part of the Pedaliaceae family and is composed of its lignans such as sesamin, sesamol, sesaminol and sesamolin. Its lignans have been widely studied and are known to possess antiaging, anticancer, antidiabetes, anti-inflammatory and antioxidant properties. Modern chronic diseases, which can transform into clinical diseases, are potential targets of these lignans. The prime example of chronic diseases is rheumatic inflammatory diseases, which affect the support structures and the organs of the body and can also develop into malignancies. In line with this, studies emphasizing the anti-inflammatory and anticancer activities of sesame have been discussed in this review.
Collapse
|
11
|
Yuan T, Chu C, Shi R, Cui T, Zhang X, Zhao Y, Shi X, Hui Y, Pan J, Qian R, Dai X, Liu Z, Liu X. ApoE-Dependent Protective Effects of Sesamol on High-Fat Diet-Induced Behavioral Disorders: Regulation of the Microbiome-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6190-6201. [PMID: 31117496 DOI: 10.1021/acs.jafc.9b01436] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sesamol, an antioxidant lignan from sesame oil, possesses neuroprotective bioactivities. The present work was aimed to elucidate the systemic protective effects of sesamol on cognitive deficits and to determine the possible link between gut and brain. Wildtype and ApoE-/- mice were treated with a high-fat diet and sesamol (0.05%, w/v, in drinking water) for 10 weeks. Behavioral tests including Morris-water maze, Y-maze, and elevated plus maze tests indicated that sesamol could only improve cognitive deficits and anxiety behaviors in wildtype. Consistently, sesamol improved synapse ultrastructure and inhibited Aβ accumulation in an ApoE-dependent manner. Moreover, sesamol prevented dietary-induced gut barrier damages and systemic inflammation. Sesamol also reshaped gut microbiome and improved the generation of microbial metabolites short-chain fatty acids. To summarize, this study revealed that the possible mechanism of neuroprotective effects of sesamol might be ApoE-dependent, and its beneficial effects on gut microbiota/metabolites could be translated into neurodegenerative diseases treatment.
Collapse
Affiliation(s)
- Tian Yuan
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Chuanqi Chu
- School of Food Science and Technology , Jiangnan University , Wuxi , China
| | - Rubing Shi
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Tianlin Cui
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Xinglin Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Yihang Zhao
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Xu Shi
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Yan Hui
- Department of Food Science , University of Copenhagen , Copenhagen , Denmark
| | - Junru Pan
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Rui Qian
- Food Analysis and Development Center , Beijing ZhiYunDa Technology, Co., LTD. , Beijing , China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture , BGI-Shenzhen , Shenzhen , China
| | - Zhigang Liu
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| | - Xuebo Liu
- College of Food Science and Engineering , Northwest A&F University , Yangling , China
| |
Collapse
|
12
|
Majdalawieh AF, Mansour ZR. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur J Pharmacol 2019; 855:75-89. [PMID: 31063773 DOI: 10.1016/j.ejphar.2019.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Sesamol is a natural phenolic compound and a major lignan isolated from sesame seeds (Sesamum indicum) and sesame oil. The therapeutic potential of sesamol was investigated intensively, and there is compelling evidence that sesamol acts as a metabolic regulator that possesses antioxidant, anti-mutagenic, anti-hepatotoxic, anti-inflammatory, anti-aging, and chemopreventive properties. Various studies have reported that sesamol exerts potent anti-cancer effects. Herein, we provide a comprehensive review that summarizes the in vitro and in vivo anti-cancer activity of sesamol in several cancer cell lines and animal models. The protective role that sesamol plays against oxidative stress through its radical scavenging ability and lipid peroxidation lowering potential is analyzed. The ability of sesamol to regulate apoptosis and various stages of the cell cycle is also outlined. Moreover, the signaling pathways that sesamol seems to target to execute its antioxidant, anti-inflammatory, and pro-apoptotic/anti-proliferative roles are discussed. The signaling pathways that sesamol targets include the p53, MAPK, JNK, PI3K/AKT, TNFα, NF-κB, PPARγ, caspase-3, Nrf2, eNOS, and LOX pathways. The mechanisms of action that sesamol executes to deliver its anti-cancer effects are delineated. In sum, there is ample evidence suggesting that sesamol possesses potent anti-cancer properties in vitro and in vivo. A thorough understanding of the molecular targets of sesamol and the mechanisms of action underlying its anti-cancer effects is necessary for possible employment of sesamol as a chemotherapeutic agent in cancer prevention and therapy.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Zeenah R Mansour
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
14
|
Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 2015; 6:617-639. [PMID: 26520808 PMCID: PMC4637335 DOI: 10.1016/j.redox.2015.10.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. Major biomarkers used for evaluation of antioxidant therapy were MPO, TBARS/MDA and glutathione levels. Challenges were identified for the yet poor use of antioxidant therapy in IBD. This review stimulates the investigation of alternative and efficacious antioxidant therapies.
Collapse
|
15
|
Kondamudi PK, Kovelamudi H, Nayak PG, Rao MC, Shenoy RR. Curcumin half analog modulates interleukin-6 and tumor necrosis factor-alpha in inflammatory bowel disease. Pharmacogn Mag 2015; 11:S296-302. [PMID: 26664018 PMCID: PMC4653340 DOI: 10.4103/0973-1296.165991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/18/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The present study was aimed at examining the effect of dehydrozingerone (DHZ), half analogue of curcumin which is the active constituent of turmeric (Curcuma longa) in the di-nitrochlorobenzene (DNCB) induced model for inflammatory bowel disease (IBD). MATERIALS AND METHODS Male Wistar rats (200-220 g) were divided into four groups (n = 6). Chemical induction of IBD was done by sensitizing with 300 µL of 20 g/L of DNCB (in acetone) onto the nape of rats for 14 days followed by intra-colonic instillation of 250 µL of DNCB (0.1% DNCB in 50% alcohol) solution on day 15. Rats in Group 1 (normal control) and Group 2 (DNCB control) were treated with vehicle. Rats in Group 3 were treated with DHZ (100 mg/kg, p.o.; 8 days) and Group 4 animals were treated with sulfasalazine (SS) (100 mg/kg, p.o.; 8 days). On 24(th) day, the rats were killed, colon removed and the macroscopic, biochemical, and histopathological evaluations were performed. RESULTS The levels of myeloperoxidase, thiobarbituric acid reactive substrate, and nitrite increased significantly (P < 0.05) in the DNCB group whereas reduced significantly in the DHZ and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Interleukin-6, tumor necrosis factor-alpha level was significantly high in the DNCB group. CONCLUSION These findings show that DHZ can be a promising molecule for the treatment of IBD.
Collapse
Affiliation(s)
- Phani Krishna Kondamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Hemalatha Kovelamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Mallikarjuna Chamallamudi Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal - 576104, Karnataka, India
| |
Collapse
|
16
|
Wan Y, Li H, Fu G, Chen X, Chen F, Xie M. The relationship of antioxidant components and antioxidant activity of sesame seed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2571-8. [PMID: 25472416 DOI: 10.1002/jsfa.7035] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/16/2014] [Accepted: 12/02/2014] [Indexed: 05/27/2023]
Abstract
Although sesame seed oil contains high levels of unsaturated fatty acids and even a small amount of free fatty acids in its unrefined flavored form, it shows markedly greater stability than other dietary vegetable oils. The good stability of sesame seed oil against autoxidation has been ascribed not only to its inherent lignans and tocopherols but also to browning reaction products generated when sesame seeds are roasted. Also, there is a strong synergistic effect among these components. The lignans in sesame seed oil can be categorized into two types, i.e. inherent lignans (sesamin, sesamolin) and lignans mainly formed during the oil production process (sesamol, sesamolinol, etc.). The most abundant tocopherol in sesame seed oil is γ-tocopherol. This article reviews the antioxidant activities of lignans and tocopherols as well as the browning reaction and its products in sesame seed and/or its oil. It is concluded that the composition and structure of browning reaction products and their impacts on sesame ingredients need to be further studied to better explain the remaining mysteries of sesame oil.
Collapse
Affiliation(s)
- Yin Wan
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Huixiao Li
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xueyang Chen
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Feng Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
17
|
Investigation of sesamol on myeloperoxidase and colon morphology in acetic acid-induced inflammatory bowel disorder in albino rats. ScientificWorldJournal 2014; 2014:802701. [PMID: 24616646 PMCID: PMC3926374 DOI: 10.1155/2014/802701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/20/2013] [Indexed: 12/14/2022] Open
Abstract
Background. Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of gastrointestinal tract of immune, genetic, and environmental origin. In the present study, we examined the effects of sesamol (SES), which is the active constituent of sesame oil in the acetic acid (AA) induced model for IBD in rats. Methods. The groups were divided into normal control, AA control, SES, and sulfasalazine (SS). On day 7, the rats were killed, colon was removed, and the macroscopic, biochemical, and histopathological evaluations were performed. Results. The levels of MPO, TBARS, and tissue nitrite increased significantly (P < 0.05) in the AA group whereas they reduced significantly in the SES and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Conclusions. The mucosal protective effects of sesamol in IBD are due to its potential to reduce the myeloperoxidase and nitrite content.
Collapse
|