1
|
Chakraborty M, Banerjee D, Mukherjee S, Karati D. Exploring the advancement of polymer-based nano-formulations for ocular drug delivery systems: an explicative review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Gadziński P, Froelich A, Wojtyłko M, Białek A, Krysztofiak J, Osmałek T. Microneedle-based ocular drug delivery systems - recent advances and challenges. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1167-1184. [PMID: 36348935 PMCID: PMC9623140 DOI: 10.3762/bjnano.13.98] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Eye diseases and injuries constitute a significant clinical problem worldwide. Safe and effective delivery of drugs to the eye is challenging mostly due to the presence of ocular barriers and clearance mechanisms. In everyday practice, the traditional eye drops, gels and ointments are most often used. Unfortunately, they are usually not well tolerated by patients due to the need for frequent use as well as the discomfort during application. Therefore, novel drug delivery systems with improved biopharmaceutical properties are a subject of ongoing scientific investigations. Due to the developments in microtechnology, in recent years, there has been a remarkable advance in the development of microneedle-based systems as an alternative, non-invasive form for administering drugs to the eye. This review summarizes the latest achievements in the field of obtaining microneedle ocular patches. In the manuscript, the most important manufacturing technologies, microneedle classification, and the research studies related to ophthalmic application of microneedles are presented. Finally, the most important advantages and drawbacks, as well as potential challenges related to the unique anatomy and physiology of the eye are summarized and discussed.
Collapse
Affiliation(s)
- Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Antoni Białek
- Student Research Group of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Julia Krysztofiak
- Student Research Group of Pharmaceutical Technology, Poznan University of Medical Sciences
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences
| |
Collapse
|
3
|
González-Cela-Casamayor MA, López-Cano JJ, Bravo-Osuna I, Andrés-Guerrero V, Vicario-de-la-Torre M, Guzmán-Navarro M, Benítez-del-Castillo JM, Herrero-Vanrell R, Molina-Martínez IT. Novel Osmoprotective DOPC-DMPC Liposomes Loaded with Antihypertensive Drugs as Potential Strategy for Glaucoma Treatment. Pharmaceutics 2022; 14:pharmaceutics14071405. [PMID: 35890300 PMCID: PMC9317418 DOI: 10.3390/pharmaceutics14071405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a group of chronic irreversible neuropathies that affect the retina and the optic nerve. It is considered one of the leading causes of blindness in the world. Although it can be due to various causes, the most important modifiable risk factor is the elevated intraocular pressure (IOP). In this case, the treatment of choice consists of instilling antihypertensive formulations on the ocular surface. The chronicity of the pathology, together with the low bioavailability of the drugs that are applied on the ocular surface, make it necessary to instill the formulations very frequently, which is associated, in many cases, with the appearance of dry eye disease (DED). The objective of this work is the design of topical ocular formulations capable of treating glaucoma and, at the same time, preventing DED. For this, two liposome formulations, loaded with brimonidine or with travoprost, were Tadeveloped using synthetic phospholipids and enriched by the addition of compounds with osmoprotective activity. The proposed formulations not only presented physicochemical characteristics (size, pH, osmolarity, surface tension, and viscosity) and encapsulation efficiency values (EE% of 24.78% and ≥99.01% for brimonidine and travoprost, respectively) suitable for ocular surface administration, but also showed good tolerance in human corneal and conjunctival cell cultures, as well as an in vitro osmoprotective activity. The hypotensive effect of both liposomal formulations was evaluated in normotensive albino New Zealand rabbits, showing a faster and longer lasting reduction of intraocular pressure in comparison to the corresponding commercialized products used as control. According to these results, the hypotensive liposomal formulations combined with osmoprotective agents would result in a very promising platform for the treatment of glaucoma and the simultaneous protection of the ocular surface.
Collapse
Affiliation(s)
- Miriam Ana González-Cela-Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Manuel Guzmán-Navarro
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Facultad de Farmacia, Universidad de Alcalá, 28801 Madrid, Spain;
| | - José Manuel Benítez-del-Castillo
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Ocular Surface and Inflammation Unit (USIO), Departamento de Inmunología, Oftalmología y OLR, Hospital Clínico San Carlos, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (R.H.-V.); (I.T.M.-M.)
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (R.H.-V.); (I.T.M.-M.)
| |
Collapse
|
4
|
González Cela Casamayor MA, López Cano JJ, Andrés Guerrero V, Herrero Vanrell R, Benítez Del Castillo JM, Molina Martínez IT. A novel osmoprotective liposomal formulation from synthetic phospholipids to reduce in vitro hyperosmolar stress in dry eye treatments. J Liposome Res 2022:1-12. [PMID: 35706400 DOI: 10.1080/08982104.2022.2087083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dry eye disease (DED) is a worldwide, multifactorial disease mainly caused by a deficit in tear production or increased tear evaporation with an increase in tear osmolarity and inflammation. This causes discomfort and there is a therapeutic need to restore the homeostasis of the ocular surface. The aim of the present work was to develop a biodegradable and biocompatible liposomal formulation from the synthetic phospholipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) that is able to reduce the effects of hypertonic stress by helping to restore the lipid layer of the tear film. Liposomes were made using the lipid film hydration method with synthetic phospholipids (10 mg/mL) with and without 0.2% HPMC. They were characterised in terms of size, osmolarity, pH, surface tension, and viscosity. Additionally, the in vitro toxicity of the formulation at 1 and 4 h in human corneal epithelial cells (hTERT-HCECs) and human conjunctival cells (IM-HConEpiC) was determined. Furthermore, osmoprotective activity was tested in a corneal model of hyperosmolar stress. In vivo acute tolerance testing was also carried out in albino New Zealand rabbits by topical application of the ophthalmic formulations every 30 min for 6 h. All the assayed formulations showed suitable physicochemical characteristics for ocular surface administration. The liposomal formulations were well-tolerated in cell cultures and showed osmoprotective activity in a hyperosmolar model. No alterations or discomfort were reported when they were topically administered in rabbits. According to the results, the osmoprotective liposomal formulations developed in this work are promising candidates for the treatment of DED.
Collapse
Affiliation(s)
- Miriam Ana González Cela Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain
| | - José Javier López Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain
| | - Vanessa Andrés Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Rocío Herrero Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - José Manuel Benítez Del Castillo
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Ocular Surface and Inflammation Unit (USIO), Departamento de Inmunología, Oftalmología y OLR, Hospital Clínico San Carlos, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain
| | - Irene Teresa Molina Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM); IdISSC, Madrid, Spain.,University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
5
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
6
|
Pishavar E, Luo H, Bolander J, Atala A, Ramakrishna S. Nanocarriers, Progenitor Cells, Combinational Approaches, and New Insights on the Retinal Therapy. Int J Mol Sci 2021; 22:1776. [PMID: 33579019 PMCID: PMC7916765 DOI: 10.3390/ijms22041776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Progenitor cells derived from the retinal pigment epithelium (RPECs) have shown promise as therapeutic approaches to degenerative retinal disorders including diabetic retinopathy, age-related macular degeneration and Stargardt disease. However, the degeneration of Bruch's membrane (BM), the natural substrate for the RPE, has been identified as one of the major limitations for utilizing RPECs. This degeneration leads to decreased support, survival and integration of the transplanted RPECs. It has been proposed that the generation of organized structures of nanofibers, in an attempt to mimic the natural retinal extracellular matrix (ECM) and its unique characteristics, could be utilized to overcome these limitations. Furthermore, nanoparticles could be incorporated to provide a platform for improved drug delivery and sustained release of molecules over several months to years. In addition, the incorporation of tissue-specific genes and stem cells into the nanostructures increased the stability and enhanced transfection efficiency of gene/drug to the posterior segment of the eye. This review discusses available drug delivery systems and combination therapies together with challenges associated with each approach. As the last step, we discuss the application of nanofibrous scaffolds for the implantation of RPE progenitor cells with the aim to enhance cell adhesion and support a functionally polarized RPE monolayer.
Collapse
Affiliation(s)
- Elham Pishavar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran;
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Johanna Bolander
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Antony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
7
|
Barbosa-Alfaro D, Andrés-Guerrero V, Fernandez-Bueno I, García-Gutiérrez MT, Gil-Alegre E, Molina-Martínez IT, Pastor-Jimeno JC, Herrero-Vanrell R, Bravo-Osuna I. Dexamethasone PLGA Microspheres for Sub-Tenon Administration: Influence of Sterilization and Tolerance Studies. Pharmaceutics 2021; 13:pharmaceutics13020228. [PMID: 33562155 PMCID: PMC7915986 DOI: 10.3390/pharmaceutics13020228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Many diseases affecting the posterior segment of the eye require repeated intravitreal injections with corticosteroids in chronic treatments. The periocular administration is a less invasive route attracting considerable attention for long-term therapies. In the present work, dexamethasone-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres (Dx-MS) were prepared using the oil-in-water (O/W) emulsion solvent evaporation technique. MS were characterized in terms of mean particle size and particle size distribution, external morphology, polymer integrity, drug content, and in vitro release profiles. MS were sterilized by gamma irradiation (25 kGy), and dexamethasone release profiles from sterilized and non-sterilized microspheres were compared by means of the similarity factor (f2). The mechanism of drug release before and after irradiation exposure of Dx-MS was identified using appropriate mathematical models. Dexamethasone release was sustained in vitro for 9 weeks. The evaluation of the in vivo tolerance was carried out in rabbit eyes, which received a sub-Tenon injection of 5 mg of sterilized Dx-MS (20–53 µm size containing 165.6 ± 3.6 µg Dx/mg MS) equivalent to 828 µg of Dx. No detectable increase in intraocular pressure was reported, and clinical and histological analysis of the ocular tissues showed no adverse events up to 6 weeks after the administration. According to the data presented in this work, the sub-Tenon administration of Dx-MS could be a promising alternative to successive intravitreal injections for the treatment of chronic diseases of the back of the eye.
Collapse
Affiliation(s)
- Deyanira Barbosa-Alfaro
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
| | - Ivan Fernandez-Bueno
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
| | | | - Esther Gil-Alegre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
| | - José Carlos Pastor-Jimeno
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
- Department of Ophthalmology, Hospital Clínico Universitario of Valladolid, 47003 Valladolid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
- Correspondence:
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
| |
Collapse
|
8
|
López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Herrero-Vanrell R, Molina-Martínez IT. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin Drug Deliv 2021; 18:819-847. [PMID: 33412914 DOI: 10.1080/17425247.2021.1872542] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of ophthalmic formulations able to deliver hydrophilic and hydrophobic drugs to the inner structures of the eye and restore the preocular tear film has been a leading topic of discussion over the last few years. In this sense, liposomes represent a suitable strategy to achieve these objectives in ocular drug delivery.Areas covered: Knowledge of the different physiological and anatomical eye structures, and specially the ocular surface are critical to better understanding and comprehending the characteristics required for the development of topical ophthalmic liposomal formulations. In this review, several features of liposomes are discussed such as the main materials used for their fabrication, basic structure and preparation methods, from already established to novel techniques, allowing the control and design of special characteristics. Besides, physicochemical properties, purification processes and strategies to overcome delivery or encapsulation challenges are also presented. Expert opinion: Regarding ocular drug delivery of liposomes, there are some features that can be redesigned. Specific biocompatible and biodegradable materials presenting therapeutic properties, such as lipidic compounds or polymers significantly change the way of tackling ophthalmic diseases. Besides, liposomes entail an effective, safe and versatile strategy for the treatment of diseases in the clinical practice.
Collapse
Affiliation(s)
- José Javier López-Cano
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Miriam Ana González-Cela-Casamayor
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Vanessa Andrés-Guerrero
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| | - Irene Teresa Molina-Martínez
- Department of Pharmaceutics and Food Technology, Complutense University, Madrid, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (Idissc), Madrid Spain
| |
Collapse
|
9
|
Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, Lobo GP, Valapala M, Kerur N, Passaglia CL, Mohapatra SS, Biswal MR. Emerging Nano-Formulations and Nanomedicines Applications for Ocular Drug Delivery. NANOMATERIALS 2021; 11:nano11010173. [PMID: 33445545 PMCID: PMC7828028 DOI: 10.3390/nano11010173] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Ocular diseases can deteriorate vision to the point of blindness and thus can have a major impact on the daily life of an individual. Conventional therapies are unable to provide absolute therapy for all ocular diseases due to the several limitations during drug delivery across the blood-retinal barrier, making it a major clinical challenge. With recent developments, the vast number of publications undergird the need for nanotechnology-based drug delivery systems in treating ocular diseases. The tool of nanotechnology provides several essential advantages, including sustained drug release and specific tissue targeting. Additionally, comprehensive in vitro and in vivo studies have suggested a better uptake of nanoparticles across ocular barriers. Nanoparticles can overcome the blood-retinal barrier and consequently increase ocular penetration and improve the bioavailability of the drug. In this review, we aim to summarize the development of organic and inorganic nanoparticles for ophthalmic applications. We highlight the potential nanoformulations in clinical trials as well as the products that have become a commercial reality.
Collapse
Affiliation(s)
- Dawin Khiev
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Zeinab A. Mohamed
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Riddhi Vichare
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Ryan Paulson
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
| | - Sofia Bhatia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Glenn P. Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Mallika Valapala
- School of Optometry, Indiana University, Bloomington, IN 47401, USA;
| | - Nagaraj Kerur
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | | | - Shyam S. Mohapatra
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Manas R. Biswal
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-8333
| |
Collapse
|
10
|
Kiss EL, Berkó S, Gácsi A, Kovács A, Katona G, Soós J, Csányi E, Gróf I, Harazin A, Deli MA, Balogh GT, Budai-Szűcs M. Development and Characterization of Potential Ocular Mucoadhesive Nano Lipid Carriers Using Full Factorial Design. Pharmaceutics 2020; 12:pharmaceutics12070682. [PMID: 32698334 PMCID: PMC7408368 DOI: 10.3390/pharmaceutics12070682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
Generally, topically applied eye drops have low bioavailability due to short residence time and low penetration of the drug. The aim of the present study was to incorporate dexamethasone (DXM) into nano lipid carriers (NLC), which contain mucoadhesive polymer, in order to increase the bioavailability of the drug. A 23 factorial experimental design was applied, in which the three factors were the polymer, the DXM, and the emulsifier concentrations. The samples were analyzed for particle size, zeta potential, polydispersity index, and Span value. The significant factors were identified. The biocompatibility of the formulations was evaluated with human corneal toxicity tests and immunoassay analysis. The possible increase in bioavailability was analyzed by means of mucoadhesivity, in vitro drug diffusion, and different penetration tests, such as in vitro cornea PAMPA model, human corneal cell penetration, and ex vivo porcine corneal penetration using Raman mapping. The results indicated that DXM can be incorporated in stable mucoadhesive NLC systems, which are non-toxic and do not have any harmful effect on cell junctions. Mucoadhesive NLCs can create a depot on the surface of the cornea, which can predict improved bioavailability.
Collapse
Affiliation(s)
- Eszter L. Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Attila Gácsi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Judit Soós
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Korányi Fasor 10-11, H-6720 Szeged, Hungary;
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary; (I.G.); (A.H.); (M.A.D.)
- Doctoral School of Biology, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary; (I.G.); (A.H.); (M.A.D.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary; (I.G.); (A.H.); (M.A.D.)
| | - György T. Balogh
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rakpart 3, 1111 Budapest, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (E.L.K.); (S.B.); (A.G.); (A.K.); (G.K.); (E.C.)
- Correspondence:
| |
Collapse
|
11
|
Development, characterization, and anti-leishmanial activity of topical amphotericin B nanoemulsions. Drug Deliv Transl Res 2020; 10:1552-1570. [DOI: 10.1007/s13346-020-00821-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zhang W, Kantaria T, Zhang Y, Kantaria T, Kobauri S, Tugushi D, Brücher V, Katsarava R, Eter N, Heiduschka P. Biodegradable Nanoparticles Based on Pseudo-Proteins Show Promise as Carriers for Ophthalmic Drug Delivery. J Ocul Pharmacol Ther 2020; 36:421-432. [PMID: 32639222 DOI: 10.1089/jop.2019.0148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose: Drug delivery to treat ocular diseases still is a challenge in ophthalmology. One way to achieve drug delivery that is investigated currently is topical administration of drug-loaded polymeric nanoparticles (NPs) that are able to penetrate ocular barriers. The purpose of this study was optimal preparation of NPs made from pseudo-proteins and evaluation of their ability to penetrate ocular tissues. Methods: Biodegradable NPs of various types were prepared by nanoprecipitation of pseudo-protein composed of l-leucine (L), 1,6-hexanediol (6), and sebacic acid (8) (8L6). Arginine-based cationic polyester amides 8R6 and comb-like polyester amide containing lateral PEG-2000 chains along with 8L6 anchoring fragments in the backbones were used to construct positively charged and PEGylated NPs. They were loaded with fluorescein diacetate (FDA) or rhodamine 6G (Rh6G) as fluorescent probes. Suspensions of the NPs were given to cultivated microglial cells and retinal pigment epithelial (RPE) cells as well as topically on eyes of C57BL/6 mice. Penetration of NPs into the eyes was checked by fluorescence analysis. Results: NPs were prepared, and their properties were characterized. Cultured microglial cells and RPE cells took up the NPs. After topical administration, penetration of NPs into the cornea of the eyes was clearly seen. Small amounts of fluorescent dyes were also found in the lens, the retina, and the sclera depending on the type of NPs. Conclusions: The results showed that the new NPs penetrate ocular tissues after topical administration and are internalized by the cells. This raises confidence that the NPs may be useful carriers of therapeutic agents for ocular delivery.
Collapse
Affiliation(s)
- Wenliang Zhang
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Yahan Zhang
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Tengiz Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Sophio Kobauri
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - David Tugushi
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Viktoria Brücher
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi, Georgia
| | - Nicole Eter
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| | - Peter Heiduschka
- Research Lab of the Department of Ophthalmology, University of Münster Medical School, Münster, Germany
| |
Collapse
|
13
|
Esteban-Pérez S, Andrés-Guerrero V, López-Cano JJ, Molina-Martínez I, Herrero-Vanrell R, Bravo-Osuna I. Gelatin Nanoparticles-HPMC Hybrid System for Effective Ocular Topical Administration of Antihypertensive Agents. Pharmaceutics 2020; 12:E306. [PMID: 32231033 PMCID: PMC7238113 DOI: 10.3390/pharmaceutics12040306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
The increment in ocular drug bioavailability after topical administration is one of the main challenges in pharmaceutical technology. For several years, different strategies based on nanotechnology, hydrogels or implants have been evaluated. Nowadays, the tolerance of ophthalmic preparations has become a critical issue and it is essential to the use of well tolerated excipients. In the present work, we have explored the potential of gelatin nanoparticles (GNPs) loaded with timolol maleate (TM), a beta-adrenergic blocker widely used in the clinic for glaucoma treatment and a hybrid system of TM-GNPs included in a hydroxypropyl methylcellulose (HPMC) viscous solution. The TM- loaded nanoparticles (mean particle size of 193 ± 20 nm and drug loading of 0.291 ± 0.019 mg TM/mg GNPs) were well tolerated both in vitro (human corneal cells) and in vivo. The in vivo efficacy studies performed in normotensive rabbits demonstrated that these gelatin nanoparticles were able to achieve the same hypotensive effect as a marketed formulation (0.5% TM) containing a 5-fold lower concentration of the drug. When comparing commercial and TM-GNPs formulations with the same TM dose, nanoparticles generated an increased efficacy with a significant (p < 0.05) reduction of intraocular pressure (IOP) (from 21% to 30%) and an augmentation of 1.7-fold in the area under the curve (AUC)(0-12h). On the other hand, the combination of timolol-loaded nanoparticles (TM 0.1%) and the viscous polymer HPMC 0.3%, statistically improved the IOP reduction up to 30% (4.65 mmHg) accompanied by a faster time of maximum effect (tmax = 1 h). Furthermore, the hypotensive effect was extended for four additional hours, reaching a pharmacological activity that lasted 12 h after a single instillation of this combination, and leading to an AUC(0-12h) 2.5-fold higher than the one observed for the marketed formulation. According to the data presented in this work, the use of hybrid systems that combine well tolerated gelatin nanoparticles and a viscous agent could be a promising alternative in the management of high intraocular pressure in glaucoma.
Collapse
Affiliation(s)
- Sergio Esteban-Pérez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Irene Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (S.E.-P.); (V.A.-G.); (J.J.L.-C.); (I.M.-M.); (R.H.-V.)
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) San Carlos Clinical Hospital, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Calle Profesor Martín Lagos, s/n, 28040 Madrid, Spain
| |
Collapse
|
14
|
|
15
|
Betzler de Oliveira de Siqueira L, Matos APDS, Cardoso VDS, Villanova JCO, Guimarães BDCLR, Dos Santos EP, Beatriz Vermelho A, Santos-Oliveira R, Ricci Junior E. Clove oil nanoemulsion showed potent inhibitory effect against Candida spp. NANOTECHNOLOGY 2019; 30:425101. [PMID: 31290755 DOI: 10.1088/1361-6528/ab30c1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Increasing resistance to current fungicides is a clinical problem that leads to the need for new treatment strategies. Clove oil (CO) has already been described as having antifungal action. However, it should not be applied directly to the skin as it may be irritating. One option for CO delivery and suitable topical application would be nanoemulsions (NEs). NEs have advantages such as decreased irritant effects and lower dose use. The purpose of this work was the development of NEs containing CO and in vitro evaluation against Candida albicans and Candida glabrata. The NEs were produced by an ultrasonic processor with different proportions of CO and Pluronic® F-127. In order to determine the best composition and ultrasound amplitude, an experimental design was performed. For the evaluation, droplet size and polydispersity index (PdI) were used. After the stability study, in vitro activity against C. albicans and C. glabrata was evaluated. NEs selected for the stability study, with diameter <40 nm and PdI <0.2, remained stable for 420 d. Activity against Candida spp. was improved when the CO was nanoemulsified, for it possibly leads to a better interaction between the active and the microorganisms, mainly in C. albicans.
Collapse
|
16
|
Esteban-Pérez S, Bravo-Osuna I, Andrés-Guerrero V, Molina-Martínez IT, Herrero-Vanrell R. Trojan Microparticles Potential for Ophthalmic Drug Delivery. Curr Med Chem 2019; 27:570-582. [PMID: 31486746 DOI: 10.2174/0929867326666190905150331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022]
Abstract
The administration of drugs to treat ocular disorders still remains a technological challenge in this XXI century. Although there is an important arsenal of active molecules useful to treat ocular diseases, ranging from classical compounds to biotechnological products, currenty, no ideal delivery system is able to profit all their therapeutic potential. Among the Intraocular Drug Delivery Systems (IODDS) proposed to overcome some of the most important limitations, microsystems and nanosystems have raised high attention. While microsystems are able to offer long-term release after intravitreal injection, nanosystems can protect the active compound from external environment (reducing their clearance) and direct it to its target tissues. In recent years, some researchers have explored the possibility of combining micro and nanosystems in "Nanoparticle-in-Microparticle (NiMs)" systems or "trojan systems". This excellent idea is not exempt of technological problems, remains partially unsolved, especially in the case of IODDS. The objective of the present review is to show the state of art concerning the design, preparation and characterization of trojan microparticles for drug delivery and to remark their potential and limitations as IODDS, one of the most important challenges faced by pharmaceutical technology at the moment.
Collapse
Affiliation(s)
- Sergio Esteban-Pérez
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Irene Bravo-Osuna
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain.,Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Irene T Molina-Martínez
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Rocío Herrero-Vanrell
- Complutense University, InnOftal Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramon y Cajal s/n, Madrid 28040, Spain
| |
Collapse
|
17
|
Gómez-Ballesteros M, Andrés-Guerrero V, Parra FJ, Marinich J, de-Las-Heras B, Molina-Martínez IT, Vázquez-Lasa B, San Román J, Herrero-Vanrell R. Amphiphilic Acrylic Nanoparticles Containing the Poloxamer Star Bayfit® 10WF15 as Ophthalmic Drug Carriers. Polymers (Basel) 2019; 11:E1213. [PMID: 31331090 PMCID: PMC6680529 DOI: 10.3390/polym11071213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Topical application of drops containing ocular drugs is the preferred non-invasive route to treat diseases that affect the anterior segment of the eye. However, the formulation of eye drops is a major challenge for pharmacists since the access of drugs to ocular tissues is restricted by several barriers. Acetazolamide (ACZ) is a carbonic anhydrase inhibitor used orally for the treatment of ocular hypertension in glaucoma. However, large ACZ doses are needed which results in systemic side effects. Recently, we synthesized copolymers based on 2-hydroxyethyl methacrylate (HEMA) and a functionalized three-arm poloxamer star (Bayfit-MA). The new material (HEMA/Bayfit-MA) was engineered to be transformed into nanoparticles without the use of surfactants, which represents a significant step forward in developing new ophthalmic drug delivery platforms. Acetazolamide-loaded nanocarriers (ACZ-NPs) were prepared via dialysis (224 ± 19 nm, -17.2 ± 0.4 mV). The in vitro release rate of ACZ was constant over 24 h (cumulative delivery of ACZ: 83.3 ± 8.4%). Following standard specifications, ACZ-NPs were not cytotoxic in vitro in cornea, conjunctiva, and macrophages. In normotensive rabbits, ACZ-NPs generated a significant intraocular pressure reduction compared to a conventional solution of ACZ (16.4% versus 9.6%) with the same dose of the hypotensive drug (20 µg). In comparison to previously reported studies, this formulation reduced intraocular pressure with a lower dose of ACZ. In summary, HEMA:Bayfit-MA nanoparticles may be a promising system for ocular topical treatments, showing an enhanced ocular bioavailability of ACZ after a single instillation on the ocular surface.
Collapse
Affiliation(s)
- Miguel Gómez-Ballesteros
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
| | - Francisco Jesús Parra
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain
| | - Jorge Marinich
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Beatriz de-Las-Heras
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Irene Teresa Molina-Martínez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, and CIBER-BBN, 28006 Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), IdISSC, 28040 Madrid, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
18
|
Gómez-Ballesteros M, López-Cano JJ, Bravo-Osuna I, Herrero-Vanrell R, Molina-Martínez IT. Osmoprotectants in Hybrid Liposome/HPMC Systems as Potential Glaucoma Treatment. Polymers (Basel) 2019; 11:polym11060929. [PMID: 31141875 PMCID: PMC6631938 DOI: 10.3390/polym11060929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/11/2023] Open
Abstract
The combination of acetazolamide-loaded nano-liposomes and Hydroxypropyl methylcellulose (HPMC) with similar components to the preocular tear film in an osmoprotectant media (trehalose and erythritol) is proposed as a novel strategy to increase the ocular bioavailability of poorly soluble drugs. Ophthalmic formulations based on acetazolamide-loaded liposomes, dispersed in the osmoprotectant solution (ACZ-LP) or in combination with HPMC (ACZ-LP-P) were characterized and in vivo evaluated. The pH and tonicity of both formulations resulted in physiological ranges. The inclusion of HPMC produced an increment in viscosity (from 0.9 to 4.7 mPa·s. 64.9 ± 2.6% of acetazolamide initially included in the formulation was retained in vesicles. In both formulations, a similar onset time (1 h) and effective time periods were observed (7 h) after a single instillation (25 μL) in normotensive rabbits' eyes. The AUC0-8h of the ACZ-LP-P was 1.5-fold higher than of ACZ-LP (p < 0.001) and the maximum hypotensive effect resulted in 1.4-fold higher (p < 0.001). In addition, the formulation of ACZ in the hybrid liposome/HPMC system produced a 30.25-folds total increment in ocular bioavailability, compared with the drug solution. Excellent tolerance in rabbits' eyes was confirmed during the study.
Collapse
Affiliation(s)
- Miguel Gómez-Ballesteros
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
| | - José Javier López-Cano
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
| | - Irene Bravo-Osuna
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid 28040, Spain.
| | - Rocío Herrero-Vanrell
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid 28040, Spain.
| | - Irene Teresa Molina-Martínez
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
- Ocular Pathology National Net (OFTARED) of the Institute of Health Carlos III, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid 28040, Spain.
| |
Collapse
|
19
|
Arranz-Romera A, Esteban-Pérez S, Garcia-Herranz D, Aragón-Navas A, Bravo-Osuna I, Herrero-Vanrell R. Combination therapy and co-delivery strategies to optimize treatment of posterior segment neurodegenerative diseases. Drug Discov Today 2019; 24:1644-1653. [PMID: 30928691 DOI: 10.1016/j.drudis.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Neurodegenerative diseases affecting the posterior segment of the eye are one of the major causes of irreversible blindness worldwide. The pathogenesis of these retinal pathologies is characterized by a multifactorial etiology, involving the complex interaction of different apoptotic mechanisms, suggesting that effective treatments will require a multimodal approach. Thus, combination therapy based on the potential synergistic activities of drugs with different mechanisms of action is currently receiving considerable attention. Here, we summarize several kinds of strategy for the co-administration of different drugs to the posterior segment of the eye, highlighting those that involve co-delivery from multiloaded drug delivery systems.
Collapse
Affiliation(s)
- Alicia Arranz-Romera
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Research Group (UCM 920415), Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain; Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared) e Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Sergio Esteban-Pérez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Research Group (UCM 920415), Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain; Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared) e Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - David Garcia-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Research Group (UCM 920415), Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain; Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared) e Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Alba Aragón-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Research Group (UCM 920415), Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain; Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared) e Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Research Group (UCM 920415), Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain; Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared) e Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal), Research Group (UCM 920415), Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Madrid, Spain; Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared) e Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain.
| |
Collapse
|
20
|
Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 2017; 6:686-707. [PMID: 27766598 DOI: 10.1007/s13346-016-0336-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Efficient treatment of ocular diseases can be achieved thanks to the proper use of ophthalmic formulations based on emerging pharmaceutical approaches. Among them, microtechnology and nanotechnology strategies are of great interest in the development of novel drug delivery systems to be used for ocular therapy. The location of the target site in the eye as well as the ophthalmic disease will determine the route of administration (topical, intraocular, periocular, and suprachoroidal administration) and the most adequate device. In this review, we discuss the use of colloidal pharmaceutical systems (nanoparticles, liposomes, niosomes, dendrimers, and microemulsions), microparticles (microcapsules and microspheres), and hybrid systems (combination of different strategies) in the treatment of ophthalmic diseases. Emphasis has been placed in the therapeutic significance of each drug delivery system for clinical translation.
Collapse
|
21
|
Zhao M, Rodríguez-Villagra E, Kowalczuk L, Le Normand M, Berdugo M, Levy-Boukris R, El Zaoui I, Kaufmann B, Gurny R, Bravo-Osuna I, Molina-Martínez IT, Herrero-Vanrell R, Behar-Cohen F. Tolerance of high and low amounts of PLGA microspheres loaded with mineralocorticoid receptor antagonist in retinal target site. J Control Release 2017; 266:187-197. [PMID: 28947395 DOI: 10.1016/j.jconrel.2017.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
Mineralocorticoid receptor (MR) contributes to retinal/choroidal homeostasis. Excess MR activation has been shown to be involved in pathogenesis of central serous chorioretinopathy (CSCR). Systemic administration of MR antagonist (MRA) reduces subretinal fluid and choroidal vasodilation, and improves the visual acuity in CSCR patients. To achieve long term beneficial effects in the eye while avoiding systemic side-effects, we propose the use of biodegradable spironolactone-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (MSs). In this work we have evaluated the ocular tolerance of MSs containing spironolactone in rat' eyes. As previous step, we have also studied the tolerance of the commercial solution of canrenoate salt, active metabolite of spironolactone. PLGA MSs allowed in vitro sustained release of spironolactone for 30days. Rat eyes injected with high intravitreous concentration of PLGA MSs (10mg/mL) unloaded and loaded with spironolactone maintained intact retinal lamination at 1month. However enhanced glial fibrillary acidic protein immunostaining and activated microglia/macrophages witness retinal stress were observed. ERG also showed impaired photoreceptor function. Intravitreous PLGA MSs concentration of 2mg/mL unloaded and loaded with spironolactone resulted well tolerated. We observed reduced microglial/macrophage activation in rat retina compared to high concentration of MSs with normal retinal function according to ERG. Spironolactone released from low concentration of MSs was active in the rat retina. Low concentration of spironolactone-loaded PLGA MSs could be a safe therapeutic choice for chorioretinal disorders in which illicit MR activation could be pathogenic.
Collapse
Affiliation(s)
- Min Zhao
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Esther Rodríguez-Villagra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain
| | | | - Manon Le Normand
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marianne Berdugo
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Rinath Levy-Boukris
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Ikram El Zaoui
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Béatrice Kaufmann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Irene Bravo-Osuna
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain
| | - Irene T Molina-Martínez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain.
| | - Francine Behar-Cohen
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; University of Lausanne, Switzerland
| |
Collapse
|
22
|
Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, Wang Y. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm 2015; 495:738-49. [PMID: 26383838 DOI: 10.1016/j.ijpharm.2015.09.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 12/30/2022]
Abstract
In recent years, nanosuspension has been considered effective in the delivery of water-soluble drugs. One of the main challenges to effective drug delivery is designing an appropriate nanosuspension preparation approach with low energy input and erosion contamination, such as the bottom-up method. This review focuses on bottom-up technologies for preparation of nanosuspensions. The features and advantages of drug nanosuspension, including bottom-up methods as well as the corresponding characterization techniques, solidification methods, and drug delivery dosage forms, are discussed in detail. Certain limitations of commercial nanosuspension products are also reviewed.
Collapse
Affiliation(s)
- Juan Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China
| | - Xiaoguang Li
- Hospital, Qilu University of Technology, Jinan 250353, Shandong, PR China
| | - Huanxin Zhao
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, PR China
| | - Yuqi Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China
| | - Lulu Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China.
| | - Shushu Tian
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China
| | - Yancai Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, PR China
| |
Collapse
|
23
|
Malakooti N, Alexander C, Alvarez-Lorenzo C. Imprinted Contact Lenses for Sustained Release of Polymyxin B and Related Antimicrobial Peptides. J Pharm Sci 2015; 104:3386-94. [PMID: 26094884 DOI: 10.1002/jps.24537] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/07/2015] [Accepted: 05/15/2015] [Indexed: 12/29/2022]
Abstract
The aim of this work was to develop drug-soft contact lens combination products suitable for controlled release of antimicrobial peptides on the ocular surface. Incorporation of functional monomers and the application of molecular imprinting techniques were explored to endow 2-hydroxyethyl methacrylate (HEMA) hydrogels with the ability to load and to sustain the release of polymyxin B and vancomycin. Various HEMA-drug-functional monomer-cross-linker molar ratios were evaluated to prepare polymyxin B imprinted and non-imprinted hydrogels. Acrylic acid-functionalized and imprinted hydrogels loaded greater amounts of polymyxin B and led to more sustained release profiles, in comparison with non-functionalized and non-imprinted networks. Polymyxin B-loaded hydrogels showed good biocompatibility in hen's egg test-chorioallantoic membrane tests. Functionalized hydrogels also loaded vancomycin and sustained its release, but the imprinting effect was only exhibited with polymyxin B, as demonstrated in rebinding tests. Microbiological assays carried out with Pseudomonas aeruginosa allowed identification of the most suitable hydrogel composition for efficient bacteria eradication; some hydrogels being able to stand several continued challenges against this important bacterial pathogen.
Collapse
Affiliation(s)
- Negin Malakooti
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain.,School of Pharmacy, Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Cameron Alexander
- School of Pharmacy, Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
24
|
The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies. Prog Retin Eye Res 2014; 42:27-43. [DOI: 10.1016/j.preteyeres.2014.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/19/2022]
|