1
|
Wang K, Wang Z, Wang Z, Xie X, Zang L, Wang L, Che F. Stellera chamaejasme L. extracts in the treatment of glioblastoma cell lines: Biological verification based on a network pharmacology approach. Front Oncol 2022; 12:962970. [PMID: 36059675 PMCID: PMC9428724 DOI: 10.3389/fonc.2022.962970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background Stellera chamaejasme L (RXLD) has been demonstrated with good clinical effects and medicinal value in the treatment of cancer in vivo and in vitro. Specifically, RXLD can eliminate aggregation accumulation, which is depicted as a vital characteristic feature of intracranial tumors. The potential pharmacological mechanisms of anti-glioblastoma (GBM) have not been adequately identified. Methods The 3D structures of the chemical ingredients in RXLD were imported into the PharmMapper database to construct the pharmacophore models. The gene targets of GBM were obtained from databases. The pharmacophore-targets network and the protein-protein interactions (PPI) were constructed using the String database and were visualized by using Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were conducted using Bioconductor software. Cytoscape visualized the relationship of pathways and candidate genes to screen for key target genes. Software packages PyMOL, AutoDock, and Vina acquired the molecular docking results. In vitro experiments were undertaken to characterize RXLD extracts’ effects on A172 cell line proliferation, viability, apoptosis, cell cycle, cell wound healing, cell migration, reactive oxygen species generation, and mitochondrial membrane potential. The expression of core genes in the related pathways was detected by Western blotting. Results We identified 216 potential targets associated with GBM. The core components in RXLD were neochamaejasmin A, wikstrol A, isochamaejasmin, chamaejasmine, and subtoxin A. The undertaken GO enrichment analysis revealed that oxidative stress, cell proliferation, cell cycle, cell invasion, and cell migration were involved in the biological processes. The KEGG enrichment analysis revealed that the crucial pathway was MAPK pathway, while HRAS, PRKCB, MAPK9, CCND1, and TP53 were distributed in core locations. A total of seven RXLD pharmacophores demonstrated strong spontaneous docking activities with MAPK9. In vitro assays indicated that RXLD can induce apoptosis, block the cell cycle in the G2/M and S phases, inhibit cell migration via the Wnt/β-catenin pathway, and inhibited p62/Nrf2 pathway. Conclusions We speculate that the RAS/MAPK pathway might be an upstream pathway through which the RXLD exerts its anti-GBM effects and might be able to regulate further the Wnt/β-catenin, the oxidative stress, and the ferroptosis pathways.
Collapse
Affiliation(s)
- Kaiyue Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Linyi People’s Hospital, Shandong University, Linyi, China
| | - Zengyong Wang
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
| | - Zhiqiang Wang
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
| | - Lanlan Zang
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
- Clinical Pharmacological Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- *Correspondence: Lanlan Zang, ; Lijuan Wang, ; Fengyuan Che,
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
- Department of Hematology, Linyi People’s Hospital, Shandong University, Linyi, China
- *Correspondence: Lanlan Zang, ; Lijuan Wang, ; Fengyuan Che,
| | - Fengyuan Che
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Linyi People’s Hospital, Shandong University, Linyi, China
- Central Laboratory, Linyi People’s Hospital, Shandong University, Linyi, China
- Key Laboratory of Neurophysiology, Linyi, China
- Key Laboratory of Tumor Biology, Linyi, China
- *Correspondence: Lanlan Zang, ; Lijuan Wang, ; Fengyuan Che,
| |
Collapse
|
2
|
Neochamaejasmin A Induces Mitochondrial-Mediated Apoptosis in Human Hepatoma Cells via ROS-Dependent Activation of the ERK1/2/JNK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3237150. [PMID: 32411325 PMCID: PMC7201479 DOI: 10.1155/2020/3237150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/27/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022]
Abstract
The botanical constituents of Stellera chamaejasme Linn. exhibit various pharmacological and medicinal activities. Neochamaejasmin A (NCA), one main active constituent of S. chamaejasme, inhibits cell proliferation and induces cell apoptosis in several types of tumor cells. However, the antitumor effect of NCA on hepatocellular carcinoma cells is still unclear. In this study, NCA (36.9, 73.7, and 147.5 μM) significantly inhibited hepatoblastoma-derived HepG2 cell proliferation in a concentration-dependent manner. Hoechst 33258 staining and flow cytometry showed that apoptotic morphological changes were observed and the apoptotic rate was significantly increased in NCA-treated HepG2 cells, respectively. Additionally, the levels of Bax, cleaved caspase-3, and cytoplasmic cytochrome c were increased, while the level of Bcl-2 was decreased in NCA-treated HepG2 cells when compared with the control group. Moreover, we found that the reactive oxygen species (ROS) level was significantly higher and the mitochondrial membrane potential was remarkably lower in NCA-treated HepG2 cells than in the control group. Further studies demonstrated that the levels of p-JNK and p-ERK1/2 were significantly upregulated in NCA-treated HepG2 cells, and pretreatment with JNK and ERK1/2 inhibitors, SP600125 and PD0325901, respectively, suppressed NCA-induced cell apoptosis of HepG2 cells. In addition, NCA also significantly inhibited human hepatoma BEL-7402 cell proliferation and induced cell apoptosis through the ROS-mediated mitochondrial apoptotic pathway. These results implied that NCA induced mitochondrial-mediated cell apoptosis via ROS-dependent activation of the ERK1/2/JNK signaling pathway in HepG2 cells.
Collapse
|
3
|
Hwang D, Kim M, Park H, Jeong MI, Jung W, Kim B. Natural Products and Acute Myeloid Leukemia: A Review Highlighting Mechanisms of Action. Nutrients 2019; 11:nu11051010. [PMID: 31058874 PMCID: PMC6567155 DOI: 10.3390/nu11051010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Recent findings have shown great potential of alternative interventions such as immunotherapy and natural products for acute myeloid leukemia (AML). This study aims to review the anti-AML effect of various natural compounds. Natural compounds were classified into five groups: alkaloids, carotenoids, nitrogen-containing compounds, organosulfur compounds or phenolics based on each compound’s chemical properties. Fifty-eight studies were collected and reviewed in this article. Phenolics are the most abundant group to have an apoptotic effect over AML cells, while other groups have also shown significant apoptotic effects. Some compounds induced apoptosis by regulating unique mechanism like human telomerase reverse transcriptase (hTERT) or laminin receptor (67LR), while others modified caspases, poly (adp-ribose) polymerase (PARP) and p53. Further study is required to identify side-effects of potent compounds and the synergistic effects of combination of two or more natural compounds or existing conventional anti-AML drugs to treat this dreadful disease.
Collapse
Affiliation(s)
- Dongwon Hwang
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Minsun Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyejin Park
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Myung In Jeong
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Woojin Jung
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
4
|
Saraei R, Marofi F, Naimi A, Talebi M, Ghaebi M, Javan N, Salimi O, Hassanzadeh A. Leukemia therapy by flavonoids: Future and involved mechanisms. J Cell Physiol 2018; 234:8203-8220. [PMID: 30500074 DOI: 10.1002/jcp.27628] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are a varied family of phytonutrients (plant chemicals) usually are detected in fruits and vegetables. In this big family, there exist more than 10,000 members that is separated into six chief subtypes: isoflavonols, flavonoenes, flavones, flavonols, anthocyanins, and chalcones. The natural compounds, such as fruits, have visible positive effects in regulating of survival involved signaling pathways that performance as the regulator of cell survival, growth, and proliferation. Researchers have established that commonly consumption up flavonoids decreases incidence and development risk of certain cancers, especially leukemia. Flavonoids have been able to induce apoptosis and stimulate cell cycle arrest in cancer cells via different pathways. Similarly, they have antiangiogenesis and antimetastasis capability, which were shown in wide ranges of cancer cells, particularly, leukemia. It seems that flavonoid because of their widespread approval, evident safety and low rate of side effects, have hopeful anticarcinogenic potential for leukemia therapy. Based on the last decade reports, the most important acting mechanisms of these natural compounds in leukemia cells are stimulating of apoptosis pathways by upregulation of caspase 3, 8, 9 and poly ADP-ribose polymerase (PARP) and proapoptotic proteins, particularly Bax activation. As well, they can induce cell cycle arrest in target cells not only via increasing of activated levels of p21 and p53 but also by inhibition of cyclins and cyclin-dependent kinases. Furthermore, attenuation of neclear factor-κB and signal transducer and activator of transcription 3 activation, suppression of signaling pathway and downregulation of intracellular antiapoptotic proteins are other significant antileukemic function mechanism of flavonoids. Overall, it appears that flavonoids are promising and effective compounds in the field of leukemia therapy. In this review, we tried to accumulate and revise most promising flavonoids and finally declared their major working mechanisms in leukemia cells.
Collapse
Affiliation(s)
- Raedeh Saraei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Javan
- Department of Clinical Biochemistry and Laboratories Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Salimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Li YQ, Li CJ, Lv L, Cao QQ, Qian X, Li SW, Wang H, Zhao L. A UPLC-MS/MS method for simultaneous determination of five flavonoids from Stellera chamaejasme L. in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2018; 32:e4189. [PMID: 29328498 DOI: 10.1002/bmc.4189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/25/2017] [Accepted: 01/04/2018] [Indexed: 11/11/2022]
Abstract
Stellera chamaejasme L. has been used as a traditional Chinese medicine for the treatment of scabies, tinea, stubborn skin ulcers, chronic tracheitis, cancer and tuberculosis. A sensitive and selective ultra-high liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of five flavonoids (stelleranol, chamaechromone, neochamaejasmin A, chamaejasmine and isochamaejasmin) of S. chamaejasme L. in rat plasma. Chromatographic separation was accomplished on an Agilent Poroshell 120 EC-C18 column (2.1 × 100 mm, 2.7 μm) with gradient elution at a flow rate of 0.4 mL/min and the total analysis time was 7 min. The analytes were detected using multiple reaction monitoring in positive ionization mode. The samples were prepared by liquid-liquid extraction with ethyl acetate. The UPLC-MS/MS method was validated for specificity, linearity, sensitivity, accuracy and precision, recovery, matrix effect and stability. The validated method exhibited good linearity (r ≥ 0.9956), and the lower limits of quantification ranged from 0.51 to 0.64 ng/mL for five flavonoids. The intra- and inter-day precision were both <10.2%, and the accuracy ranged from -11.79 to 9.21%. This method was successfully applied to a pharmacokinetic study of five flavonoids in rats after oral administration of ethyl acetate extract of S. chamaejasme L.
Collapse
Affiliation(s)
- Yun-Qing Li
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Department of Pharmacy, The Children Hospital of Shanxi, Taiyuan, China
| | - Cheng-Jian Li
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qing-Qing Cao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xian Qian
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Si Wei Li
- Department of Pharmaceutical Science, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Hui Wang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Liang Zhao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Center of Health Management, Zhejiang Changtai Hospital, Zhuji, China
| |
Collapse
|
6
|
Wang X, Yao X, Fan S, Xiang C, Liu R, Feng J, Huang J, Liu S. A LY-15, a novel cyclic pentapeptide that inhibits B16 cell proliferation and migration and induces cell apoptosis. Oncol Lett 2018; 15:5887-5892. [PMID: 29552219 DOI: 10.3892/ol.2018.8023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023] Open
Abstract
Melanoma is highly resistant to most traditional treatments; therefore, its incidence and mortality rates are rapidly increasing. The effect of a novel sansalvamide A analogue named LY-15 on the growth and induction of apoptosis in B16 cancer cells was investigated in vitro. The inhibitory effects of LY-15 on B16 cells occurred in a concentration- and time-dependent manner. The B16 cells were cultured in various concentrations of LY-15 (5, 15 and 25 µM), and the ameliorating effect of LY-15 was evaluated using apoptotic protein markers B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3 and caspase-9. Furthermore, LY-15 effectively inhibited the B16 cell migration, increased the expressions levels of caspase-3, caspase-9 and the pro-apoptotic Bax, and reduced that of the anti-apoptotic Bcl-2. These findings suggested that LY-15 is a promising chemotherapeutic agent against melanoma by inducing apoptosis through the mitochondrial-associated death pathway. In addition, sansalvamide A analogue LY-15 may a significant therapeutic target for the treatment of malignant melanoma cancer.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Xiangli Yao
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Shiming Fan
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Chenshuang Xiang
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Runjiao Liu
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Juan Feng
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Jing Huang
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Shouxin Liu
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| |
Collapse
|
7
|
Preclinical evaluation of antitumor activity of the proteasome inhibitor MLN2238 (ixazomib) in hepatocellular carcinoma cells. Cell Death Dis 2018; 9:28. [PMID: 29348495 PMCID: PMC5833482 DOI: 10.1038/s41419-017-0195-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignancies and is an increasingly important cause of cancer death worldwide. Surgery, chemotherapy, and radiation therapy extend the 5-year survival limit in HCC patients by only 6%. Therefore, there is a need to develop new therapeutic approaches for the treatment of this disease. The orally bioavailable proteasome inhibitor MLN2238 (ixazomib) has been demonstrated to have anticancer activity. In the present study, we investigated the preclinical therapeutic efficacy of MLN2238 in HCC cells through in vitro and in vivo models, and examined its molecular mechanisms of action. MLN2238 inhibited cell viability in human HCC cells HepG2, Hep3B, and SNU475 in a time- and dose-dependent manner. Flow cytometry analysis demonstrated that MLN2238 induced G2/M cell cycle arrest and cellular apoptosis in HCC cells. Cell cycle arrest was associated with increased expression levels of p21 and p27. MLN2238-induced apoptosis was confirmed by caspase-3/7 activation, PARP cleavage and caspase-dependent β-catenin degradation. In addition, MLN2238 activated ER stress genes in HCC cells and increased the expression of the stress-inducible gene nuclear protein-1. Furthermore, MLN2238 treatment induced upregulation of myeloid cell leukemia-1 (Mcl-1) protein, and Mcl-1 knockdown sensitized HCC cells to MLN2238 treatment, suggesting the contribution of Mcl-1 expression to MLN2238 resistance. This result was also confirmed using the novel Mcl-1 small molecule inhibitor A1210477. Association of A1210477 and MLN2238 determined synergistic antitumor effects in HCC cells. Finally, in vivo orally administered MLN2238 suppressed tumor growth of Hep3B cells in xenograft models in nude mice. In conclusion, our results offer hope for a new therapeutic opportunity in the treatment of HCC patients.
Collapse
|
8
|
Wang L, Yang W, Wu S, Wang S, Kang C, Ma X, Li Y, Li C. Simultaneous determination of isochamaejasmin, neochamaejasmin A and aphnoretinin rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study of Stellera chamaejasme L. extract. Biomed Chromatogr 2017; 32:e4162. [PMID: 29235122 DOI: 10.1002/bmc.4162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 10/22/2017] [Accepted: 12/01/2017] [Indexed: 11/12/2022]
Abstract
Isochamaejasmin, neochamaejasmin A and daphnoretin derived from Stellera chamaejasme L. are important because of their reported anticancer properties. In this study, a sensitive UPLC-MS/MS method for the determination of isochamaejasmin, neochamaejasmin A and daphnoretin in rat plasma was developed. The analyte and IS were separated on an Acquity UPLC HSS T3 column (100 × 2.1 mm, 1.8 μm) using gradient elution with the mobile phase of aqueous solution (methanol-water, 1:99, v/v, containing 1 mm formic acid) and organic solution (methanol-water, 99:1, v/v, containing 1 mm formic acid) at a flow rate of 0.3 mL/min. Multiple reaction monitoring mode with negative electrospray ionization interface was carried out to detect the components. The method was validated in terms of specificity, linearity, accuracy, precision, stability, etc. Excellent linear behavior was observed over the certain concentration ranges with the correlation coefficient values >0.99. Intra- and inter-day precisions (RSD) were <6.7% and accuracy (RE) ranged from -7.0 to 12.0%. The validated method was successfully applied to investigate the pharmacokinetics of three chemical ingredients after oral administration of S. chamaejasme L. extract to rats.
Collapse
Affiliation(s)
- Ludi Wang
- College of Chemistry and Environmental Science, Hebei University, Hebei, China
| | - Wei Yang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyang Wu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuyao Wang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Kang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoli Ma
- College of Traditional Chinese Medicine, Hebei University, Hebei, China
| | - Yingfei Li
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuan Li
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Laboratory for DMPK Research of Herbal Medicines, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Xu T, Liu F, Luo Y, Zhu L, Niu J, Li G. Spontaneously hypertensive rats are sensitive to thoracic aorta damage induced by a hot and humid environment. Exp Ther Med 2017; 14:4383-4390. [PMID: 29067117 DOI: 10.3892/etm.2017.5050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to investigate the effect of a hot and humid environment on thoracic aorta damage in spontaneously hypertensive rats (SHRs). Wistar-Kyoto (WKY) rats were randomly divided into three groups (n=8 in each group): Control group (WKY-CN), heat exposure for 8 h group (WKY-8) and heat exposure for 24 h group (WKY-24). The CN group was exposed to room temperature (24°C); WKY-8 and WKY-24 group were exposed to heat (32°C) and 65% relative humidity for 8 and 24 h, respectively. Accordingly, SHRs were randomly divided into three groups (n=8 each group): SHR-CN, SHR-8 and SHR-24. After 7 days of heat exposure, the weight, food consumption and blood pressure of rats was measured. Noradrenaline (NA)-induced contraction of aorta rings was measured using an organ bath system, and vascular morphology was observed. Expression levels of apoptotic genes and proteins in the thoracic aorta were also measured. The experimental results indicated that, in the heat exposure environment, rat food intake was reduced. Rat weight was significantly increased in all groups except SHR-24 (all P<0.01 except SHR-8, P<0.05). Heat exposure significantly increased the blood pressure of rats in the WKY-24 (P<0.01 for systolic; P<0.05 for diastolic), SHR-8 and SHR-24 (all P<0.01) groups. This effect was more notable in SHR compared with WKY. NA-induced contraction of aorta rings significantly increased in the SHR-CN group, compared with the WKY-CN group (P<0.01). Heat exposure significantly elevated the NA-induced contraction in both 8 h groups compared with the CN groups (P<0.01). This effect was accompanied by structural damage to the thoracic aorta and increased expression of apoptotic genes and proteins. In conclusion, thoracic aorta damages in SHRs were more sensitive to heat exposure. The enhanced NA-induced contraction may have partly been due to increased apoptosis in the thoracic aorta.
Collapse
Affiliation(s)
- Tao Xu
- Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Fadong Liu
- Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yan Luo
- Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lingqin Zhu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guanghua Li
- Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
10
|
Ma WW, Xiao J, Song YF, Ding JH, Tan XJ, Song KK, Zhang MM. Effect and underlying mechanism of Bu-Shen-An-Tai recipe on ovarian apoptosis in mice with controlled ovarian hyperstimulation implantation dysfunction. ACTA ACUST UNITED AC 2017; 37:401-406. [PMID: 28585136 DOI: 10.1007/s11596-017-1747-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/04/2017] [Indexed: 12/19/2022]
Abstract
The effect and underlying mechanism of Bu-Shen-An-Tai recipe on ovarian apoptosis in mice with controlled ovarian hyperstimulation (COH) implantation dysfunction were studied. The COH implantation dysfunction model in mice was established by intraperitoneal injection of 7.5 IU pregnant mare's serum gonadotrophin (PMSG), followed by 7.5 IU human chorionic gonadotrophin (HCG) 48 h later. Then the female mice were mated with male at a ratio of 2:1 in the same cage at 6:00 p.m. The female mice from normal group were injected intraperitoneally with normal saline and mated at the corresponding time. Day 1 of pregnancy was recorded by examining its vaginal smears at 8:00 a.m. of the next day. Fifty successfully pregnant mice were equally randomly divided into 5 groups: normal control pregnant group (NC), COH implantation dysfunction model group (COH), low dosage of Bu-Shen-An-Tai recipe group (LOW), middle dosage of Bu-Shen-An-Tai recipe group (MID) and high dosage of Bu-Shen-An-Tai recipe group (HIGH). Then from day 1, the mice in different groups were respectively intragastrically given corresponding treatments at 9:00 a.m. for 5 consecutive days. The concentrations of 17β-estradiol (E2) and progesterone (P4) were determined by radioimmunoassay (RIA). The ultrastructural changes of ovarian tissues were observed by transmission electron microscope (TEM). The histopathological changes of ovarian tissues were observed by HE staining. The number of atretic follicles and pregnant corpus luteum were also recorded. TUNEL was applied to measure apoptotic cells of ovarian tissues. Western blotting was used to detect the protein expression of apoptosis- related factors like Bax, Bcl-2 and cleaved-caspase-3 in ovarian tissue of mice. The results showed that ovarian weight, the concentrations of E2 and P4, the number of atretic follicles and pregnant corpus luteum, as well as the apoptosis of granulosa cells were significantly increased in the COH group. The ultrastructures of ovarian tissues in the COH group showed that chromatin in granulosa cells was increased, agglutinated, aggregated or crescent-shaped. The focal cavitation and the typical apoptotic bodies could be seen in granulosa cells in the late stage of apoptosis. After the treatment with different doses of Bu-Shen-An-Tai recipe, the ultrastructural changes of ovarian granulosa cells apoptosis were dramatically improved and even disappeared under TEM. Visible mitochondria and mitochondrial cristae were increased and vacuoles were significantly reduced. The lipid dropltes were shown in a circluar or oval shape. The protein expression levels of Bax and cleaved-caspase-3 were decreased, and the expression of Bcl-2 protein was increased after treatment. It was concluded that Bu-Shen-An-Tai recipe can inhibit the apoptosis of ovarian granulosa cells, probably by up-regulating the protein expression of Bcl-2 and down-regulating Bax and cleaved-caspase-3, which contributes to the formation and maintenance of ovarian corpus luteum. It's helpful to promote the embryonic implantation, to reduce embryo loss and ultimately to improve the success rate of pregnancy.
Collapse
Affiliation(s)
- Wen-Wen Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Xiao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Fan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Hui Ding
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiu-Juan Tan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun-Kun Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming-Min Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Venkatarame Gowda Saralamma V, Lee HJ, Hong GE, Park HS, Yumnam S, Raha S, Lee WS, Kim EH, Sung NJ, Lee SJ, Heo JD, Kim GS. Korean Scutellaria baicalensis Georgi flavonoid extract induces mitochondrially mediated apoptosis in human gastric cancer AGS cells. Oncol Lett 2017; 14:607-614. [PMID: 28693212 PMCID: PMC5494645 DOI: 10.3892/ol.2017.6184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Korean Scutellaria baicalensis Georgi has been widely used in Korean folk medicines for its range of medicinal benefits, including its anticancer effect. The aim of the present study was to investigate the underlying molecular mechanism of action of a flavonoid extract from Korean Scutellaria baicalensis Georgi (FSB) on AGS human gastric cancer cells (gastric adenocarcinoma) in which FSB exhibits an anticancer effect. Treatment of AGS cells with FSB significantly inhibited cell viability in a concentration-dependent manner. Furthermore, FSB significantly increased the proportion of cells in sub-G1 phase, and Annexin V and Hoechst 33258 fluorescent staining confirmed the apoptotic cell death. Furthermore, western blotting results identified that treatment of AGS cells with FSB significantly downregulated the expression of caspase family members, namely procaspases 3 and 9, and poly(ADP-ribose) polymerase (PARP), and subsequently upregulated cleaved caspase 3 and cleaved PARP. It was observed that FSB treatment significantly decreased the mitochondrial membrane potential of AGS cells. In addition, the ratio of the mitochondrion-associated proteins B cell lymphoma 2-associated X protein and B cell lymphoma extra large was upregulated. The results of the present study provide novel insight into the underlying molecular mechanism of the anticancer effects of FSB on AGS human gastric cancer cells and indicate that FSB may be an alternative chemotherapeutic agent for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 660-701, Republic of Korea
| | - Ho Jeong Lee
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 660-701, Republic of Korea
| | - Gyeong Eun Hong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 660-701, Republic of Korea
| | - Hyeon Soo Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 660-701, Republic of Korea
| | - Silvia Yumnam
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 660-701, Republic of Korea
| | - Suchismita Raha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 660-701, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gajwa, Gyeongsangnam 660-702, Republic of Korea
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Gyeongsangnam 660-759, Republic of Korea
| | - Nak Ju Sung
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Gyeongsangnam 660-701, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Biological Resource Research Center, Korea Institute of Toxicology, Jinju, Gyeongsangnam 666-844, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Biological Resource Research Center, Korea Institute of Toxicology, Jinju, Gyeongsangnam 666-844, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam 660-701, Republic of Korea
| |
Collapse
|
12
|
Saralamma VVG, Kim EH, Lee HJ, Raha S, Lee WS, Heo JD, Lee SJ, Won CK, Kim GS. Flavonoids: A new generation molecule to stimulate programmed cell deaths in cancer cells. ACTA ACUST UNITED AC 2017. [DOI: 10.12729/jbtr.2017.18.1.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Ren J, Li G, Zhao W, Lin L, Ye T. Norcantharidin combined with ABT-737 for hepatocellular carcinoma: Therapeutic effects and molecular mechanisms. World J Gastroenterol 2016; 22:3962-3968. [PMID: 27099439 PMCID: PMC4823246 DOI: 10.3748/wjg.v22.i15.3962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the therapeutic effect of norcantharidin (NCTD) combined with ABT-737 on hepatocellular carcinoma cells and the molecular mechanism.
METHODS: Two hepatocellular carcinoma (HCC) cell lines, HepG2 and SMMC-7721, were selected. ABT-737 and NCTD were allocated into groups to be used alone or in combination. HepG2 and SMMC-7721 cells were cultured in vitro. Liver cancer cells in the logarithmic phase of growth were vaccinated and cultured to the cell wall stage; these cells were treated for 48 h with different concentrations of NCTD, or ABT-737, or NCTD combined with ABT-737. The cell proliferation inhibition rate was detected by methyl thiazolyl tetrazolium. The expression of Mcl in HCC cells was detected by Western Blotting, and the cells in each group after treatment had apoptosis detected by flow cytometry. The proliferation inhibition rate, the expression of Mcl-1 in cells and the apoptosis inducing effect of treatment were observed in each group, and the effect of NCTD on ABT-737 in the treatment of HCC and its mechanism of action were analyzed.
RESULTS: As the concentration of NCTD increased, the cell proliferation inhibition rate gradually decreased; and the treatment effect of ABT-737 1-3 μm combined with NCTD on cell proliferation inhibition was stronger than that of ABT-737 alone. The difference was statistically significant (P < 0.05). In observing the expression of Mcl-1 in cells after the treatment of different concentrations of NCTD, this was partially inhibited after treatment with NCTD 15 μm, and the expression of Mcl-1 was almost undetectable after treatment with NCTD 30 μm and 60 μm. The effect on inducing apoptosis with the treatment of ABT-737 or NCTD alone for 48 h was lower than that of the control group. The difference was not statistically significant (P > 0.05). The effect on inducing apoptosis in HepG2 and SMMC-7721 cells with the treatment of ABT-737 combined with NCTD for 48 h was greater than that of ABT-737 or NCTD alone. The difference was statistically significant (P < 0.05).
CONCLUSION: NCTD combined with ABT-737 has a positive role in the treatment of HCC, and it has great value in clinical research.
Collapse
|