1
|
Alqato S, Fadhl HAN, Al-Bawah N, Abdulgadir A, Mohamed Amine H, Alsomali RH, Taha M, Abduljabbar N, Al-Fadhel S, Saghir MA. Knowledge, Attitudes, and Practices Related to Cholera Outbreak Among Medical Students in Yemen: A Cross-Sectional Study. Cureus 2025; 17:e78885. [PMID: 40091953 PMCID: PMC11909617 DOI: 10.7759/cureus.78885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Background Cholera is a potentially life-threatening diarrheal disease if left untreated, transmitted via contaminated water or food, and linked mainly to poor sanitation. Yemen is facing a public health crisis with an increasing number of cases in 2024, underscoring the importance of improving awareness and the need for education to enhance prevention and management. Methods This observational cross-sectional study was conducted in July 2024. The data were collected via a self-administered online questionnaire. Inferential analysis included independent t-tests for comparing two groups and one-way ANOVA for multiple groups, with a statistical significance threshold of p<0.05. Results The study surveyed 412 Yemeni medical students, predominantly male (65.5%) and single (86.7%), with a mean age of 22.48±2.6 years. The mean knowledge score was 7.35±2.36, and significant knowledge gaps in recognizing the range of severity of the disease, risk factors, complications, and vaccine awareness exist. The mean attitude score was 11.45±2.13 out of 15, with 70% showing a positive attitude. The practices score was poor, with a mean of 4.32±2.18 out of 9, with low adherence to preventive measures such as washing and peeling fresh fruits and vegetables (<30%). Our analysis showed significant associations, with age positively correlating with knowledge (r=0.262; p<0.001) and attitudes (r=0.17; p<0.001), while females scored higher in practices (p=0.002). Academic year significantly influenced knowledge (p<0.001) and attitudes (p=0.003), with sixth-year students scoring the highest. Conclusion While the Yemeni medical students demonstrated moderate knowledge and a generally positive attitude toward cholera, significant gaps in preventive practices were noted. Addressing these gaps through targeted educational programs on disease prevention, transmission, and management is essential to strengthen students' preparedness and improve public health outcomes.
Collapse
Affiliation(s)
- Shahd Alqato
- Internal Medicine, Arab Medical Center, Amman, JOR
| | | | | | | | | | | | - Mazin Taha
- Surgery, Al-Fajr College of Science and Technology, Khartoum, SDN
| | | | | | - Mohammed A Saghir
- Graduate College, University of Bahri, Khartoum, SDN
- Medicine, Cairo University, Cairo, EGY
| |
Collapse
|
2
|
Tesfaye SH, Mamo A, Berihanu W, Elias S. Spatio-temporal patterns of cholera outbreak in rural settings of Ethiopia, 2023. Heliyon 2025; 11:e41962. [PMID: 39897781 PMCID: PMC11786676 DOI: 10.1016/j.heliyon.2025.e41962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Objectives The aim of this study was to assess the spatio-temporal pattern of cholera in rural settings of Ethiopia. Methods A spatiotemporal analysis of daily cholera cases in 59 Kebeles across 7 districts in the Gedeo zone from April 2 to November 18, 2023, obtained from the Gedeo Zone Health Department, was conducted. The global Moran's I statistic was used for spatial autocorrelation analysis, and the retrospective space-time scan statistic was used to analyze spatiotemporal clusters of cholera. Results Throughout the outbreak, 792 cholera cases were reported, corresponding to an annual incidence of 169.4 per 100,000 population. The spatial distribution showed strong autocorrelation, with a global Moran's I coefficient of 0.272 (P-value <0.001). Five statistically significant clusters were identified by space-time scan statistics using a discrete Poisson model. These identified clusters overlapped in time and had longer durations with a relatively high risk of cholera in the study areas. Conclusion The identification of high-risk clusters specific to rural settings forms the basis for rapid public health emergency response and resource allocation by prioritizing the significantly high-risk clusters to control and eventually eliminate cholera. There is room to improve the public health response to cholera outbreaks in the study settings.
Collapse
|
3
|
Jahan I, Ganbaatar B, Lee CW, Shin SH, Yang S. Antibacterial and antibiofilm features of mutSMAP-18 against Vibrio cholerae. Heliyon 2024; 10:e40108. [PMID: 39559243 PMCID: PMC11570489 DOI: 10.1016/j.heliyon.2024.e40108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Cholera continues to be a pointed global health issue, prominently in developing nations, where the disease's severe diarrheal symptoms pose substantial public health risks. With the escalating spread of antibiotic resistance among V. cholerae strains, alternative therapeutic approaches are imperative. Antimicrobial peptides are increasingly recognized for their potential, with research focusing on finding the most effective options. We explored the antibacterial and antibiofilm properties of analogues of sheep myeloid antimicrobial peptide-18 (SMAP-18) against V. cholerae in this investigation. Our prior research demonstrated that substituting glycine with alanine at different positions within SMAP-18 altered its structure and antimicrobial activity. Among these altered analogues, our focus was on a mutant variant (mutSMAP-18), characterized by glycine-to-alanine substitutions at positions 2, 7, and 13. Our results indicated that mutSMAP-18 exhibited heightened antimicrobial and antibiofilm activities against V. cholerae compared to SMAP-18. We conducted several mechanistic investigations to check the membrane integrity using DNA-binding dye, SYTOX Green or measuring calcein dye leakage and analyzing flow cytometry by fluorescence-activated cell sorting (FACScan). From these tests, we elucidated that SMAP-18 primarily functions intracellularly, while mutSMAP-18 targets the bacterial membrane. Additionally, scanning electron microscopy (SEM) images illustrated membrane disruption at lower concentrations for mutSMAP-18. Notably, mutSMAP-18 demonstrated significant antibiofilm properties against V. cholerae. Overall, these findings offer valuable perspectives for developing novel antibacterial therapies targeting the pathogenic V. cholerae.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Biomedical Sciences, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Byambasuren Ganbaatar
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sung-Heui Shin
- Department of Biomedical Sciences, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Microbiology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sungtae Yang
- Department of Biomedical Sciences, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Microbiology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| |
Collapse
|
4
|
Naghash Hoseini HS, Ahmadi TS, Mousavi Gargari SL, Nazarian S. IgY-mediated protection against Vibrio cholerae infection: Efficacy of avian antibodies targeting a chimeric recombinant protein. BIOIMPACTS : BI 2024; 15:30292. [PMID: 40161939 PMCID: PMC11954746 DOI: 10.34172/bi.30292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 04/02/2025]
Abstract
Introduction Vibrio cholerae, the etiologic pathogen of diarrheal disease, prevails mainly in developing countries, transmitted through contaminated water or food. The unique genetic makeup and remarkable competency has prompted intensive research to unravel the bacterium virulence properties. Egg yolk immunoglobulins (IgY) have emerged as innovative biotherapeutics for both passive immunotherapy and prophylactic strategies. Methods In the present study, we generated avian antibodies against a chimeric recombinant protein comprising OmpW-TcpA-CtxB (OTC) antigens from V. cholerae, and examined its efficacy against bacterial toxins and infection. The chimeric protein was expressed in E. coli BL21 (DE3) and purified using Ni-NTA affinity chromatography. Leghorn chickens were intramuscularly immunized with the recombinant protein and the purity of extracted IgYs was assessed through SDS-PAGE analysis. The immunoreactivity and specificity of anti-OTC-IgYs were evaluated through protein and whole-cell ELISA, and their ability to neutralize cholera toxin (CT) of V. cholerae was evaluated in Y1 cell line. Finally, the protective efficacy of orally administered anti-OTC-IgY was investigated in V. cholerae-infected infant mice. Results Anti-OTC-IgY successfully neutralized the cytotoxic effects of CT at a concentration of 250 µg/mL. Oral administration of two 100 µg doses of anti-OTC-IgY and resulted in 60% and 20% survival rates in suckling mice infected with LD and 10 LD of V. cholerae, respectively. Conclusion The anti-OTC-IgY antibodies exhibited significant immunoreactivity, toxin-neutralizing potency, and protective effects, establishing their potential as promising antimicrobials against the bacterial pathogenicity through passive immunotherapy.
Collapse
Affiliation(s)
| | - Tooba Sadat Ahmadi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| |
Collapse
|
5
|
Igere BE, Onohuean H, Iwu DC, Igbinosa EO. Polymyxin sensitivity/resistance cosmopolitan status, epidemiology and prevalence among O1/O139 and non-O1/non-O139 Vibrio cholerae: A meta-analysis. INFECTIOUS MEDICINE 2023; 2:283-293. [PMID: 38205176 PMCID: PMC10774663 DOI: 10.1016/j.imj.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 11/11/2023] [Indexed: 01/12/2024]
Abstract
Resistance/sensitivity to polymyxin-B (PB) antibiotic has been employed as one among other epidemiologically relevant biotyping-scheme for Vibrio cholerae into Classical/El Tor biotypes. However, recent studies have revealed some pitfalls bordering on PB-sensitivity/resistance (PBR/S) necessitating study. Current study assesses the PBR/S cosmopolitan prevalence, epidemiology/distribution among O1/O139 and nonO1/nonO139 V. cholerae strains. Relevant databases (Web of Science, Scopus and PubMed) were searched to retrieve data from environmental and clinical samples employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Random-effect-model (REM) and common-effect-model (CEM) of meta-analysis was performed to determine prevalence of PBR/S V. cholerae strains, describe the cosmopolitan epidemiological potentials and biotype relevance. Heterogeneity was determined by meta-regression and subgroup analyses. The pooled analyzed isolates from articles (7290), with sensitive and resistance are 2219 (30.44%) and 5028 (69.56%). Among these PB-sensitive strains, more than 1944 (26.67%) were O1 strains, 132 (1.81%) were nonO1 strains while mis-reported Classical biotype were 2080 (28.53) respectively indicating potential spread of variant/dual biotype. A significant PB-resistance was observed in the models (CEM = 0.66, 95% CI [0.65; 0.68], p-value = 0.001; REM = 0.83 [0.74; 0.90], p = 0.001) as both models had a high level of heterogeneity (I2 = 98.0%; d f = 33 2 = 1755.09 , Q p = 2.4932 ). Egger test (z = 5.4017, p < 0.0001) reveal publication bias by funnel plot asymmetry. The subgroup analysis for continents (Asia, Africa) and sources (acute diarrhea) revealed (98% CI (0.73; 0.93); 55% CI (0.20; 0.86)), and 92% CI (0.67; 0.98). The Epidemiological prevalence for El tor/variant/dual biotype showed 88% CI (0.78; 0.94) with O1 strains at 88% CI (0.78; 0.94). Such global prevalence, distribution/spread of phenotypes/genotypes necessitates updating the decades-long biotype classification scheme. An antibiotic stewardship in the post antibiotic era is suggestive/recommended. Also, there is need for holistic monitoring/evaluation of clinical/epidemiological relevance of the disseminating strains in endemic localities.
Collapse
Affiliation(s)
- Bright E. Igere
- Department of Biological Sciences, Microbiology Unit, Dennis Osadebay University, Asaba 320242, Nigeria
- Biotechnology and Emerging Environmental Infections Pathogens Research Group (BEEIPREG), Department of Biological Sciences, Microbiology Unit, Dennis Osadebay University, Asaba 320242, Nigeria
| | - Hope Onohuean
- Biopharmaceutics unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University Ishaka-Bushenyi Campus, Ishaka-Bushenyi 10101, Uganda
| | - Declan C. Iwu
- Department of Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Etinosa O. Igbinosa
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin 300213, Nigeria
| |
Collapse
|
6
|
Baothman OAS. Identifying therapeutic antibacterial peptides against Vibrio cholerae to inhibit the function of Na(+)-translocating NADH-quinone reductase. J Biomol Struct Dyn 2023; 42:12489-12504. [PMID: 37850460 DOI: 10.1080/07391102.2023.2270696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Vibrio cholerae is the bacteria responsible for cholera, which is a significant threat to many nations. Curing and treating this infection requires identification of the critical protein and development of a drug to inhibit its function. In this context, Na(+)-translocating NADH-quinone reductase was considered a potential therapeutic target. A library of antibacterial peptides with residue lengths of 50 was screened using a docking method, and the five most potent peptides were selected on the basis of a weighted score derived from solvent accessible surface area and docking score. To investigate the stability of the protein-peptide complex, a 100-ns molecular dynamics simulation was performed. These peptides targeted the native dimeric binding interface of Na(+)-transporting NADH-quinone reductase. This study evaluated the binding affinity and conformational stability of these peptides with the protein using different post-simulation metrics. A peptide, CCL28, exhibited steady RMSD characteristics; nonetheless, it modified the docked conformation but stabilized in the new conformation. This peptide also demonstrated the best performance in addressing the protein's native binding interface. It demonstrated a binding free energy of -120 kcal/mol with the protein. Principal component analysis (PCA) revealed that the first PC had the lowest conformational variation and the greatest coverage. Eventually, these peptides were also evaluated using steered molecular dynamics, and it was discovered that CCL28 had a greater maximum force than the other five peptides, at 1139.08 kJ/mol/nm. Targeting the native binding interface, we present a CCL28 peptide with a strong potential to block the biological activity of Vibrio cholerae's Na(+)-translocating NADH-quinone reductase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Othman A S Baothman
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Qadri H, Shah AH, Alkhanani M, Almilaibary A, Mir MA. Immunotherapies against human bacterial and fungal infectious diseases: A review. Front Med (Lausanne) 2023; 10:1135541. [PMID: 37122338 PMCID: PMC10140573 DOI: 10.3389/fmed.2023.1135541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Nations' ongoing struggles with a number of novel and reemerging infectious diseases, including the ongoing global health issue, the SARS-Co-V2 (severe acute respiratory syndrome coronavirus 2) outbreak, serve as proof that infectious diseases constitute a serious threat to the global public health. Moreover, the fatality rate in humans is rising as a result of the development of severe infectious diseases brought about by multiple drug-tolerant pathogenic microorganisms. The widespread use of traditional antimicrobial drugs, immunosuppressive medications, and other related factors led to the establishment of such drug resistant pathogenic microbial species. To overcome the difficulties commonly encountered by current infectious disease management and control processes, like inadequate effectiveness, toxicities, and the evolution of drug tolerance, new treatment solutions are required. Fortunately, immunotherapies already hold great potential for reducing these restrictions while simultaneously expanding the boundaries of healthcare and medicine, as shown by the latest discoveries and the success of drugs including monoclonal antibodies (MAbs), vaccinations, etc. Immunotherapies comprise methods for treating diseases that specifically target or affect the body's immune system and such immunological procedures/therapies strengthen the host's defenses to fight those infections. The immunotherapy-based treatments control the host's innate and adaptive immune responses, which are effective in treating different pathogenic microbial infections. As a result, diverse immunotherapeutic strategies are being researched more and more as alternative treatments for infectious diseases, leading to substantial improvements in our comprehension of the associations between pathogens and host immune system. In this review we will explore different immunotherapies and their usage for the assistance of a broad spectrum of infectious ailments caused by various human bacterial and fungal pathogenic microbes. We will discuss about the recent developments in the therapeutics against the growing human pathogenic microbial diseases and focus on the present and future of using immunotherapies to overcome these diseases. Graphical AbstractThe graphical abstract shows the therapeutic potential of different types of immunotherapies like vaccines, monoclonal antibodies-based therapies, etc., against different kinds of human Bacterial and Fungal microbial infections.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mustfa Alkhanani
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
8
|
Shrestha AB, Khatroth S, Malreddy A, Issa FA, Shrestha S, Shrestha S. Cholera amid COVID-19: Call from three nations; India, Bangladesh, and Nepal. Ann Med Surg (Lond) 2022; 84:104936. [PMCID: PMC9661447 DOI: 10.1016/j.amsu.2022.104936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/25/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
Covid-19 was a major pandemic of the 21st century that flinched away every individual worldwide. The extensive impact of this rapidly spreading deadly virus doomed the health care systems with the unexpected wave wreaked havoc leading to a global health crisis. It has been a high burden on the functioning existing medical system, overloads health professionals, disruption of the medical supply chain. The economy of the nations has been at losses with a significant slowing down in revenue growth over the past 2 years. After taking its toll, drawing away other diseases including cholera. The three developing nations; India, Bangladesh and Nepal, are now at the verge of facing an outbreak of Cholera. It is not surprising to hear cholera in this nation but the fact that its negligence due to Covid-19 pandemic and monkeypox along with a crumbled health system due to the pandemic has made these nations vulnerable for health crisis. Along with this three nations, cholera has made its way to different parts of this globe and it is high time that attention must be drawn towards it as mismanagement could even cause life.
Collapse
Affiliation(s)
| | | | | | | | | | - Shumneva Shrestha
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
9
|
Caigoy JC, Xedzro C, Kusalaruk W, Nakano H. Antibacterial, antibiofilm, and antimotility signatures of some natural antimicrobials against Vibrio cholerae. FEMS Microbiol Lett 2022; 369:6665928. [PMID: 35963648 DOI: 10.1093/femsle/fnac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae is an etiological cause of cholera and has been implicated in several epidemics. Exploration of the antimicrobial signatures of culinary spices has become an important industrial tool to suppress the growth of foodborne bacterial pathogens including Vibrio spp. The antibiofilm and antimotility activities of some selected natural antimicrobial agents were then evaluated. All the extracts showed vibriostatic activities with minimum inhibitory concentration (MIC) ranging from 0.1% to 0.4%. Cinnamon and black pepper demonstrated significant biofilm inhibition activity from 94.77% to 99.77% when administered at 100% MIC. Black pepper extract also demonstrated the highest biofilm inhibition activity against the established biofilms of V. cholerae O1 and O139. Cinnamon, calabash nutmeg, and black pepper significantly inhibited swimming and swarming motility by 85.51% to 94.87%. Sub-MICs (50% and 75%) of some extracts were also effective as an antibiofilm and antimotility agent against the tested strains. The findings of our study suggest the potential application of natural antimicrobial agents such as spices in food to inhibit biofilm formation and motility, which consequently mitigate the virulence and persistence of the pathogen in the food supply chain.
Collapse
Affiliation(s)
- Jant Cres Caigoy
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Christian Xedzro
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Waraporn Kusalaruk
- Department of Food Safety, School of Agriculture and Natural Resources, University of Phayao, 19 Moo 2 Tambon Maeka, Amphur Muang, Phayao 56000, Thailand
| | - Hiroyuki Nakano
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
10
|
Chowdhury F, Ross AG, Islam MT, McMillan NAJ, Qadri F. Diagnosis, Management, and Future Control of Cholera. Clin Microbiol Rev 2022; 35:e0021121. [PMID: 35726607 PMCID: PMC9491185 DOI: 10.1128/cmr.00211-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera, caused by Vibrio cholerae, persists in developing countries due to inadequate access to safe water, sanitation, and hygiene. There are approximately 4 million cases and 143,000 deaths each year due to cholera. The disease is transmitted fecally-orally via contaminated food or water. Severe dehydrating cholera can progress to hypovolemic shock due to the rapid loss of fluids and electrolytes, which requires a rapid infusion of intravenous (i.v.) fluids. The case fatality rate exceeds 50% without proper clinical management but can be less than 1% with prompt rehydration and antibiotics. Oral cholera vaccines (OCVs) serve as a major component of an integrated control package during outbreaks or within zones of endemicity. Water, sanitation, and hygiene (WaSH); health education; and prophylactic antibiotic treatment are additional components of the prevention and control of cholera. The World Health Organization (WHO) and the Global Task Force for Cholera Control (GTFCC) have set an ambitious goal of eliminating cholera by 2030 in high-risk areas.
Collapse
Affiliation(s)
- Fahima Chowdhury
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Allen G. Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia
| | - Md Taufiqul Islam
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Firdausi Qadri
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
11
|
Detzner J, Püttmann C, Pohlentz G, Müthing J. Ingenious Action of Vibrio cholerae Neuraminidase Recruiting Additional GM1 Cholera Toxin Receptors for Primary Human Colon Epithelial Cells. Microorganisms 2022; 10:microorganisms10061255. [PMID: 35744773 PMCID: PMC9227022 DOI: 10.3390/microorganisms10061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
For five decades it has been known that the pentamer of B subunits (choleragenoid) of the cholera toxin (CT) of Vibrio cholerae binds with high preference to the ganglioside GM1 (II3Neu5Ac-Gg4Cer). However, the exact structures of CT-binding GM1 lipoforms of primary human colon epithelial cells (pHCoEpiCs) have not yet been described in detail. The same holds true for generating further GM1 receptor molecules from higher sialylated gangliosides with a GM1 core through the neuraminidase of V. cholerae. To avoid the artificial incorporation of exogenous gangliosides from animal serum harboring GM1 and higher sialylated ganglio-series gangliosides, pHCoEpiCs were cultured in serum-free medium. Thin-layer chromatography overlay binding assays using a choleragenoid combined with electrospray ionization mass spectrometry revealed GM1 lipoforms with sphingosine (d18:1) as the sole sphingoid base linked to C14:0, C16:0, C18:0 or C20:0 fatty acyl chains forming the ceramide (Cer) moieties of the main choleragenoid-binding GM1 species. Desialylation of GD1a (IV3Neu5Ac,II3Neu5Ac-Gg4Cer) and GT1b (IV3Neu5Ac,II3(Neu5Ac)2-Gg4Cer) of pHCoEpiCs by V. cholerae neuraminidase was observed. GD1a-derived GM1 species with stable sphingosine (d18:1) and saturated fatty acyl chains varying in chain length from C16:0 up to C22:0 could be identified, indicating the ingenious interplay between CT and the neuraminidase of V. cholerae recruiting additional GM1 receptors of pHCoEpiCs.
Collapse
|
12
|
Ahmad Zamri N, Rusli MEF, Mohamad Yusof L, Rosli R. Immunization with a bicistronic DNA vaccine modulates systemic IFN-γ and IL-10 expression against Vibrio cholerae infection. J Med Microbiol 2022; 71. [PMID: 35635780 DOI: 10.1099/jmm.0.001536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Cholera is an acute enteric infection caused by Vibrio cholerae, particularly in areas lacking access to clean water. Despite the global effort to improve water quality in these regions, the burden of cholera in recent years has not yet declined. Interest has therefore extended in the use of bicistronic DNA vaccine encoding ctxB and tcpA genes of V. cholerae as a potential vaccine.Hypothesis/Gap Statement. The potential of a bicistronic DNA vaccine, pVAX-ctxB-tcpA has not been determined in vitro and in vivo.Aim. The goal of present study was to evaluate in vitro expression and in vivo potential of pVAX-ctxB-tcpA vaccine against V. cholerae.Methodology. The pVAX-ctxB-tcpA was transiently transfected into mammalian COS-7 cells, and the in vitro expression was assessed using fluorescence and Western blot analyses. Next, the vaccine was encapsulated into sodium alginate using water-in-oil emulsification and evaluated for its efficiency in different pH conditions. Subsequently, oral vaccination using en(pVAX-ctxB-tcpA) was performed in vivo. The animals were challenged with V. cholerae O1 El Tor after 2 weeks of vaccination using the Removable Intestinal Tie-Adult Rabbit Diarrhoea (RITARD) model. Following the infection challenge, the rabbits were monitored for evidence of symptoms, and analysed for systemic cytokine expression level (TNF-α, IFN-γ, IL-6 and IL-10) using quantitative real-time polymerase chain reaction.Results. The in vitro expression of pVAX-ctxB-tcpA was successfully verified via fluorescence and Western blot analyses. Meanwhile, in vivo analysis demonstrated that the en(pVAX-ctxB-tcpA) was able to protect the RITARD model against V. cholerae infection due to a lack of evidence on the clinical manifestations of cholera following bacterial challenge. Furthermore, the bicistronic group showed an upregulation of systemic IFN-γ and IL-10 following 12 days of vaccination, though not significant, suggesting the possible activation of both T-helper 1 and 2 types of response. However, upon bacterial challenge, the gene expression of all cytokines did not change.Conclusion. Our findings suggest that the bicistronic plasmid DNA vaccine, pVAX-ctxB-tcpA, showed a potential role in inducing immune response against cholera through upregulation of in vitro gene and protein expression as well as in vivo cytokine gene expression, particularly IFN-γ and IL-10.
Collapse
Affiliation(s)
- Najwa Ahmad Zamri
- Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Ehsan Fitri Rusli
- Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Loqman Mohamad Yusof
- Department of Companion Animal and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozita Rosli
- Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Igere BE, Okoh AI, Nwodo UU. Atypical and dual biotypes variant of virulent SA-NAG-Vibrio cholerae: an evidence of emerging/evolving patho-significant strain in municipal domestic water sources. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-021-01661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction and purpose
The recent cholera spread, new cases, and fatality continue to arouse concern in public health systems; however, interventions on control is at its peak yet statistics show continuous report. This study characterized atypical and patho-significant environmental Vibrio cholerae retrieved from ground/surface/domestic water in rural-urban-sub-urban locations of Amathole District municipality and Chris Hani District municipality, Eastern Cape Province, South Africa.
Methods
Domestic/surface water was sampled and 759 presumptive V. cholerae isolates were retrieved using standard microbiological methods. Virulence phenotypic test: toxin co-regulated pili (tcp), choleragen red, protease production, lecithinase production, and lipase test were conducted. Serotyping using polyvalent antisera (Bengal and Ogawa/Inaba/Hikojima) and molecular typing: 16SrRNA, OmpW, serogroup (Vc-O1/O139), biotype (tcpAClas/El Tor, HlyAClas/El Tor, rstRClas/El Tor, RS1, rtxA, rtxC), and virulence (ctxA, ctxB, zot, ace, cep, prt, toxR, hlyA) genes were targeted.
Result
Result of 16SrRNA typing confirmed 508 (66.9%) while OmpW detected/confirmed 61 (12.01%) V. cholerae strains. Phenotypic-biotyping scheme showed positive test to polymyxin B (68.9%), Voges proskauer (6.6%), and Bengal serology (11.5%). Whereas Vc-O1/O139 was negative, yet two of the isolates harbored the cholera toxin with a gene-type ctxB and hlyAClas: 2/61, revealing atypical/unusual/dual biotype phenotypic/genotypic features. Other potential atypical genotypes detected include rstR: 7/61, Cep: 15/61, ace: 20/61, hlyAElTor: 53/61, rtxA: 30/61, rtxC: 11/61, and prtV: 15/61 respectively.
Conclusion
Although additional patho-significant/virulent genotypes associated with epidemic/sporadic cholera cases were detected, an advanced, bioinformatics, and post-molecular evaluation is necessary. Such stride possesses potential to adequately minimize future cholera cases associated with dynamic/atypical environmental V. cholerae strains.
Collapse
|
14
|
Mourin M, Bhattacharjee A, Wai A, Hausner G, O'Neil J, Dibrov P. Pharmacophore-Based Screening & Modification of Amiloride Analogs for targeting the NhaP-type Cation-Proton Antiporter in Vibrio cholerae. Can J Microbiol 2021; 67:835-849. [PMID: 34224663 DOI: 10.1139/cjm-2021-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural and mutational analysis of Vc-NhaP2 identified a putative cation binding pocket formed by antiparallel extended regions of two transmembrane segments (TMSs V/XII) along with TMS VI. Molecular Dynamics (MD) simulations suggested that the flexibility of TMS-V/XII is crucial for the intra-molecular conformational events in Vc-NhaP2. In this study, we developed some putative Vc-NhaP2 inhibitors from Amiloride analogs (AAs). Molecular docking of the modified AAs revealed promising binding. The four selected drugs potentially interacted with functionally important amino acid residues located on the cytoplasmic side of TMS VI, the extended chain region of TMS V and TMS XII and the loop region between TMSs VIIII and IX. Molecular dynamics simulations revealed that binding of the selected drugs can potentially destabilize the Vc-NhaP2 and alters the flexibility of the functionally important TMS VI. The work presents the utility of in silico approaches for the rational identification of potential targets and drugs that could target NhaP2 cation proton antiporter to control Vibrio cholerae. The goal is to identify potential drugs that can be validated in future experiments.
Collapse
Affiliation(s)
- Muntahi Mourin
- University of Manitoba Faculty of Science, 124614, Microbiology, 66 chancellor drive, Winnipeg, Winnipeg, Manitoba, Canada, R3T 2N2;
| | - Arittra Bhattacharjee
- North South University, 54495, Biochemistry and Microbiology, Dhaka, Dhaka District, Bangladesh;
| | - Alvan Wai
- University of Manitoba, 8664, Winnipeg, Canada, R3T 2N2;
| | - Georg Hausner
- University of Manitoba, 8664, Buller Building 213, Buller Building 213, Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2;
| | - Joe O'Neil
- University of Manitoba, 8664, Chemistry, Winnipeg, Manitoba, Canada;
| | - Pavel Dibrov
- University of Manitoba Faculty of Science, 124614, Microbiology, Winnipeg, Manitoba, Canada;
| |
Collapse
|
15
|
Singh A, Gupta R, Dikid T, Saroha E, Sharma NC, Sagar S, Gupta S, Bindra S, Khasnobis P, Jain SK, Singh S. Cholera outbreak investigation, Bhadola, Delhi, India, April-May 2018. Trans R Soc Trop Med Hyg 2021; 114:762-769. [PMID: 32797205 DOI: 10.1093/trstmh/traa059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/30/2020] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In the Gangetic plains of India, including Delhi, cholera is endemic. On 10 May 2018, staff at the north Delhi district surveillance unit identified a laboratory-confirmed cholera outbreak when five people tested positive for Vibrio cholerae O1 Ogawa serotype in Bhadola. We investigated to identify risk factors and recommend prevention measures. METHODS We defined a case as ≥3 loose stools within 24 h in a Bhadola resident during 1 April-29 May 2018. We searched for cases house-to-house. In a 1 : 1 unmatched case control study, a control was defined as an absence of loose stools in a Bhadola resident during 1 April-29 May 2018. We selected cases and controls randomly. We tested stool samples for Vibrio cholerae by culture. We tested drinking water for fecal contamination. Using multivariable logistic regression we calculated adjusted ORs (aORs) with 95% CIs. RESULTS We identified 129 cases; the median age was 14.5 y, 52% were females, 27% were hospitalized and there were no deaths. Symptoms were abdominal pain (54%), vomiting (44%) and fever (29%). Among 90 cases and controls, the odds of illness were higher for drinking untreated municipal water (aOR=2.3; 95% CI 1.0 to 6.2) and not knowing about diarrhea transmission (aOR=4.9; 95% CI 1.0 to 21.1). Of 12 stool samples, 6 (50%) tested positive for Vibrio cholerae O1 Ogawa serotype. Of 15 water samples, 8 (53%) showed growth of fecal coliforms. CONCLUSIONS This laboratory-confirmed cholera outbreak associated with drinking untreated municipal water and lack of knowledge of diarrhea transmission triggered public health action in Bhadola, Delhi.
Collapse
Affiliation(s)
- Akhileshwar Singh
- Epidemiology Division, National Centre for Disease Control, Delhi-110054, India
| | - Rakesh Gupta
- Epidemiology Division, National Centre for Disease Control, Delhi-110054, India
| | - Tanzin Dikid
- Epidemiology Division, National Centre for Disease Control, Delhi-110054, India
| | - Ekta Saroha
- Divison of Global Health and Protection, US Centers for Disease Control and Prevention, New Delhi-110021, India
| | - Naresh Chand Sharma
- Laboratory Department, Maharishi Valmiki Infectious Diseases Hospital, Kingsway Camp, Delhi-110009, India
| | - Sanjay Sagar
- District Surveillance Unit District North, Delhi-110006, India
| | - Sudha Gupta
- Delhi Health Services, North Delhi, Delhi-110006, India
| | - Suneet Bindra
- Epidemiology Division, National Centre for Disease Control, Delhi-110054, India
| | - Pradeep Khasnobis
- Epidemiology Division, National Centre for Disease Control, Delhi-110054, India
| | - Sudhir Kumar Jain
- Epidemiology Division, National Centre for Disease Control, Delhi-110054, India
| | - Sujeet Singh
- Epidemiology Division, National Centre for Disease Control, Delhi-110054, India
| |
Collapse
|
16
|
Jana SK, Gucchait A, Paul S, Saha T, Acharya S, Hoque KM, Misra AK, Chatterjee BK, Chatterjee T, Chakrabarti P. Virstatin-Conjugated Gold Nanoparticle with Enhanced Antimicrobial Activity against the Vibrio cholerae El Tor Biotype. ACS APPLIED BIO MATERIALS 2021; 4:3089-3100. [DOI: 10.1021/acsabm.0c01483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Swapan Kumar Jana
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Arin Gucchait
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Susmita Paul
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tultul Saha
- Division of Molecular Pathophysiology, National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Somobrata Acharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kazi Mirajul Hoque
- Division of Molecular Pathophysiology, National Institute of Cholera & Enteric Diseases, P-33 CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Barun K. Chatterjee
- Department of Physics, Bose Institute, 93/1 A.P.C. Road, Kolkata 700009, India
| | - Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
17
|
Clinical and socio-environmental determinants of multidrug-resistant vibrio cholerae 01 in older children and adults in Bangladesh. Int J Infect Dis 2021; 105:436-441. [PMID: 33647514 PMCID: PMC8117161 DOI: 10.1016/j.ijid.2021.02.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives: Few studies have evaluated determinants of multidrug-resistant (MDR) Vibrio cholerae O1 in older children and adults. This study aimed to characterize the prevalence of MDR V. cholerae O1 and associated risk factors among patients over five years of age in Bangladesh. Methods: Stool culture and antimicrobial susceptibility testing were performed as a part of a larger study at Dhaka Hospital in Bangladesh from March 2019–March 2020. Univariate statistics and multiple logistic regression were used to assess the association between a range of variables and MDR V. cholerae O1. Results: MDR was found in 175 of 623 (28.1%) V. cholerae O1 isolates. High levels of resistance were found to erythromycin (99.2%), trimethoprim-sulfamethoxazole (99.7%), and ampicillin (88.9%), while susceptibility was high to tetracyclines (99.7%), azithromycin (99.2%), ciprofloxacin (99.8%), and cephalosporins (98.6%). MDR was associated with prior antibiotic use, longer transport time to hospital, higher income, non-flush toilet use, greater stool frequency, lower blood pressure, lower mid-upper arm circumference, and lower percent dehydration. Conclusions: MDR V. cholerae O1 was common among patients over five in an urban hospital in Bangladesh. Significant factors associated with MDR may be actionable in identifying patients with a high likelihood of MDR.
Collapse
|
18
|
Sharma S, Singh F. Backward bifurcation in a cholera model with a general treatment function. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AbstractWe consider a general cholera model with a nonlinear treatment function. The treatment function describes the saturated treatment scenario due to the limited availability of resources. The sufficient conditions for the existence of backward bifurcation have been obtained using the central manifold theory. At last, we illustrate the results by considering some special types of treatment functions.
Collapse
|
19
|
Selenium Nanoparticles Induce Potent Protective Immune Responses against Vibrio cholerae WC Vaccine in a Mouse Model. J Immunol Res 2021; 2020:8874288. [PMID: 33490291 PMCID: PMC7794041 DOI: 10.1155/2020/8874288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to evaluate the efficacy of selenium nanoparticle (an immune booster) and naloxone (an opioid receptor antagonist) as a new adjuvant in increasing immune responses against killed whole-cell Vibrio cholerae in a mouse cholera model. The Se NPs were synthesized and characterized by UV-visible, DLS, and zeta potential analysis. The SEM image confirmed the uniformity of spherical morphology of nanoparticle shape with 34 nm in size. The concentration of the Se NPs was calculated as 0.654 μg/ml in the ICP method. The cytotoxic activity of Se NPs on Caco-2 cells was assessed by the MTT assay and revealed 82.05% viability of cells after 24 h exposure with 100 μg/ml of Se NPs. Female BALB/C mice were orally immunized three times on days 0, 14, and 28, and challenge experiments were performed on immunized neonates with toxigenic V. cholerae. Administration of Se NP diet led to significant increase in V. cholerae-specific IgG and IgA responses in serum and saliva and caused protective immunity and 83.3% survival in challenge experiment against 1 LD50 V. cholerae in a group receiving diet of Se NPs compared with other groups including Dukoral vaccine. The IL-4 and IL-5 were significantly increased in response to WC+daily diet of Se NPs with or without naloxone. Naloxone proved no effect on IL-4 and IL-5 increase and is proposed as null in the cytokine and antibody production process. These results reveal that daily diet of Se NPs could efficiently induce immune cell effectors in both humoral and mucosal levels.
Collapse
|
20
|
Kambale RM, Nancy FI, Ngaboyeka GA, Kasengi JB, Bindels LB, Van der Linden D. Effects of probiotics and synbiotics on diarrhea in undernourished children: Systematic review with meta-analysis. Clin Nutr 2020; 40:3158-3169. [PMID: 33446418 DOI: 10.1016/j.clnu.2020.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/14/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Undernutrition predisposes children to a greater incidence and duration of diarrhea. No review and meta-analysis have yet been conducted to assess effectiveness of probiotics and synbiotics in undernourished children. AIMS To assess the effectiveness of probiotics and synbiotics on diarrhea in undernourished children. METHODS Randomized, double-blind, placebo-controlled trials evaluating the effects of probiotics and synbiotics on diarrhea in undernourished children were searched from 1990 to May 2020. Recommendations of the Cochrane Handbook and the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement were followed. RESULTS The systematic review identified 15 trials with 6986 patients. The meta-analysis revealed that treatment with probiotic or synbiotic reduced significantly both the duration of diarrhea [Weighted mean difference (WMD) = -1.05 day, 95% CI (-1.98, -0.11)] and the hospital stay duration [Standard mean difference (SMD) = -2.87 days, 95% CI (-5.33, -0.42)], especially in specific patient subsets. In both groups, similar rates of vomiting and nutritional recovery were observed. No probiotics or synbiotics-related adverse effects were reported. Subgroup analyses showed that probiotic and synbiotic treatment were more effective in reducing risk of diarrhea in outpatients [Risk ratio (RR) = 0.86, 95%CI (0.75-0.98)]. CONCLUSION This meta-analysis supports the potential beneficial roles of probiotics and synbiotics on diarrhea in undernourished children.
Collapse
Affiliation(s)
- Richard Mbusa Kambale
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium; Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo; General Pediatrics, Pediatric Department, Hôpital Provincial Général de Référence de Bukavu, Democratic Republic of Congo.
| | - Fransisca Isia Nancy
- Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo; General Pediatrics, Pediatric Department, Hôpital Provincial Général de Référence de Bukavu, Democratic Republic of Congo
| | - Gaylord Amani Ngaboyeka
- Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo; General Pediatrics, Pediatric Department, Hôpital Provincial Général de Référence de Bukavu, Democratic Republic of Congo
| | - Joe Bwija Kasengi
- Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo; General Pediatrics, Pediatric Department, Hôpital Provincial Général de Référence de Bukavu, Democratic Republic of Congo
| | - Laure B Bindels
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium; Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Dimitri Van der Linden
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium; Pediatric Infectious Diseases, General Pediatrics, Pediatric Department, Cliniques universitaires Saint Luc, Brussels, Belgium
| |
Collapse
|
21
|
Liang KYH, Orata FD, Islam MT, Nasreen T, Alam M, Tarr CL, Boucher YF. A Vibrio cholerae Core Genome Multilocus Sequence Typing Scheme To Facilitate the Epidemiological Study of Cholera. J Bacteriol 2020; 202:e00086-20. [PMID: 32540931 PMCID: PMC7685551 DOI: 10.1128/jb.00086-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022] Open
Abstract
Core genome multilocus sequence typing (cgMLST) has gained popularity in recent years in epidemiological research and subspecies-level classification. cgMLST retains the intuitive nature of traditional MLST but offers much greater resolution by utilizing significantly larger portions of the genome. Here, we introduce a cgMLST scheme for Vibrio cholerae, a bacterium abundant in marine and freshwater environments and the etiologic agent of cholera. A set of 2,443 core genes ubiquitous in V. cholerae were used to analyze a comprehensive data set of 1,262 clinical and environmental strains collected from 52 countries, including 65 newly sequenced genomes in this study. We established a sublineage threshold based on 133 allelic differences that creates clusters nearly identical to traditional MLST types, providing backwards compatibility to new cgMLST classifications. We also defined an outbreak threshold based on seven allelic differences that is capable of identifying strains from the same outbreak and closely related isolates that could give clues on outbreak origin. Using cgMLST, we confirmed the South Asian origin of modern epidemics and identified clustering affinity among sublineages of environmental isolates from the same geographic origin. Advantages of this method are highlighted by direct comparison with existing classification methods, such as MLST and single-nucleotide polymorphism-based methods. cgMLST outperforms all existing methods in terms of resolution, standardization, and ease of use. We anticipate this scheme will serve as a basis for a universally applicable and standardized classification system for V. cholerae research and epidemiological surveillance in the future. This cgMLST scheme is publicly available on PubMLST (https://pubmlst.org/vcholerae/).IMPORTANCE Toxigenic Vibrio cholerae isolates of the O1 and O139 serogroups are the causative agents of cholera, an acute diarrheal disease that plagued the world for centuries, if not millennia. Here, we introduce a core genome multilocus sequence typing scheme for V. cholerae Using this scheme, we have standardized the definition for subspecies-level classification, facilitating global collaboration in the surveillance of V. cholerae In addition, this typing scheme allows for quick identification of outbreak-related isolates that can guide subsequent analyses, serving as an important first step in epidemiological research. This scheme is also easily scalable to analyze thousands of isolates at various levels of resolution, making it an invaluable tool for large-scale ecological and evolutionary analyses.
Collapse
Affiliation(s)
- Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fabini D Orata
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Cheryl L Tarr
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Kayira TM, Nakano H. Antibacterial effects of plant extracts with hurdle technology against Vibrio cholerae. FEMS Microbiol Lett 2020; 367:5872481. [PMID: 32672823 DOI: 10.1093/femsle/fnaa119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
Vibrio cholerae is an etiological cause of cholera implicated in several pandemics. Antibacterial activity of plant extracts has been established. However, these extracts exhibit activity at a concentration that may alter organoleptic attributes of water and food, hence limiting their application. In this light, there is need to device ways of reducing plant extracts' effective levels in order to widen their application. Thus, this study was conducted to improve activities of plant ethanolic extracts through combination with other generally recognized as safe antimicrobials. Combination of plant extracts with sodium acetate (NaOAc) 0.4% at pH 7.0 reduced minimum inhibitory concentrations (MICs) of clove, lemon eucalyptus, rosemary and sage from 0.2 to 0.025%. At pH 6.4, combinations were more effective reducing MICs of clove, lemon eucalyptus, rosemary and sage from 0.2 to 0.0125% with NaOAc at 0.2%. At pH 7.0, the combination resulted in additive effect. Nevertheless, at pH 6.4, synergic effect was established. No interactive effect was observed with combinations involving glycine. Combination of plant extracts with NaOAc at mildly acidic pH creates a hurdle effect that may have potential application to control the growth of V. cholerae.
Collapse
Affiliation(s)
- Tabitha Mlowoka Kayira
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Japan 739-8528.,The Polytechnic, Physics and Biochemical Sciences Department, University of Malawi, P/bag, 303, Chichiri Blantyre 3, Malawi
| | - Hiroyuki Nakano
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Japan 739-8528
| |
Collapse
|
23
|
Mahboobi M, Mirnejad R, Sedighian H, Piranfar V, Imani Fooladi AA. Genetic Diversity of ctxB Gene Among Classical O1 and El Tor Strains of Vibrio cholerae using High-Resolution Melting Curve Analysis. IRANIAN JOURNAL OF PATHOLOGY 2020; 15:320-325. [PMID: 32944045 PMCID: PMC7477675 DOI: 10.30699/ijp.2020.127793.2393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/07/2020] [Indexed: 11/06/2022]
Abstract
Background & Objective: Vibrio cholerae is a natural inhabitant of the environment and causes severe diarrhea ailments (cholera) that affects thousands of people each year worldwide. The most important virulence factors of this pathogen are cholera toxin (cholera toxin CT) and Type IV pili (toxin co-regulated pili TCP), which are encoded within the genome of the filamentous bacteriophage CTXφ. In the present study, according to researchers’ report on genotypic variations of cholera toxin, we evaluated the sequence of ctxB subunit obtained from 100 strains of patients infected with cholera in Iran. Methods: The evaluation of genotype variations of cholera toxin was made by high-resolution melting curve analysis illustrating a single nucleotide change. Then, ctxB gene sequencing was performed. Through this analysis and the sequencing process, two standard samples were studied. Results: Using serologic tests, all the strains analyzed in this study were identified to be in O1 serotype. However, there have been differences in sequences of ctxB as some were similar to V. cholerae O1 biovar El Tor str. N16961 while others were similar to the genotype of V. cholerae ATCC 14035. We did not observe any particular pattern within the process of mutation. Conclusion: The analysis of the new samples of ctxB showed that they were potentially different. It seems that these complicated species were affected by a new genetic exchange of El Tor and classic genotypes.
Collapse
Affiliation(s)
- Mahdieh Mahboobi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Mirnejad
- Molecular Biology Research Center Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Vahhab Piranfar
- Research and Development Department, Farname Inc, Thornhill, Canada
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Chakrabarti AK, Biswas A, Tewari DN, Mondal PP, Dutta S. Phage Types of Vibrio cholerae 01 Biotype ElTor Strains Isolated from India during 2012-2017. J Glob Infect Dis 2020; 12:94-100. [PMID: 32773997 PMCID: PMC7384690 DOI: 10.4103/jgid.jgid_42_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/17/2019] [Accepted: 12/07/2019] [Indexed: 11/04/2022] Open
Abstract
Background Cholera is a primordial disease caused by Vibrio cholerae which existed from centuries in different parts of the world and still shows its periodic, endemic and epidemic presence. Thousands of cholera cases are reported from different parts of India and the disease remains endemic throughout the year. At present, we do not have enough knowledge about the phenotypic nature of the circulating V. cholerae strains in this part of the world. Objectives This study was carried out over a period of 6 years with the aim defer with the changes in the prevalence and distribution of biotypes, serotypes and phage types of V. cholerae clinical isolates from various endemic regions of the country to determine phenotypic characteristics of the circulating strains and also to predict the attributes of cholera strains responsible for causing significant outbreaks in future. Materials and Methods A total of 1882 V.cholerae O1 isolates from different cholera endemic areas of India were included in this study. V.cholerae strains which were identified as O1 biotype ElTor further analyzed for serotype and phage types using the standard methodologies. Polyvalent O1 and monospecific Inaba and Ogawa antisera were used for serotyping. A panel of five phages of Basu and Mukherjee phage typing scheme and five phages from the new phage typing scheme were used for phage typing analysis following standard methodology. Results Maximum numbers of strains were isolated from cholera-endemic states like Gujarat and Maharashtra. All the isolates were confirmed as V. cholerae O1 biotype ElTor and majority of them were serotype Ogawa (93.2%). New phage typing scheme resulted in almost 100% typeable V. cholerae O1 strains included in this study and phage type 27 was the predominant type. Although 80% of the strains used in this study were sensitive to all the vibrio phages, S5 phage was found most efficient in lysing cholera strains indicating its broader host range. Conclusion The current study identified phage type 27 as the most dominant type and serotype Ogawa was found continuous in circulation throughout the year which has caused recent cholera outbreaks in India during the past years. Phage sensitivity data propose an alternative cost-effective approach to prevent cholera outbreak by therapeutic uses of typing phages irrespective of origin or clonality of the strains.
Collapse
Affiliation(s)
- Alok Kumar Chakrabarti
- Division of Virology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Asim Biswas
- Division of Virology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Devendra Nath Tewari
- Division of Virology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Partha Pratim Mondal
- Division of Virology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR - National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
25
|
Orimbo EO, Oyugi E, Dulacha D, Obonyo M, Hussein A, Githuku J, Owiny M, Gura Z. Knowledge, attitude and practices on cholera in an arid county, Kenya, 2018: A mixed-methods approach. PLoS One 2020; 15:e0229437. [PMID: 32101587 PMCID: PMC7043758 DOI: 10.1371/journal.pone.0229437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/06/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cholera remains a public health problem in Kenya despite increased efforts to create awareness. Assessment of knowledge, attitude and practice (KAP) in the community is essential for the planning and implementation of preventive measures. We assessed cholera KAP in a community in Isiolo County, Kenya. METHODS This cross-sectional study involved a mixed-methods approach utilizing a questionnaire survey and focus group discussions (FGDs). Using multistage sampling with household as the secondary sampling unit, interviewers administered structured questionnaires to one respondent aged ≥18 years old per household. We created knowledge score by allotting one point for each correct response, considered any total score ≥ median score as high knowledge score, calculated descriptive statistics and used multivariate logistic regression to examine factors associated with high knowledge score. In FGDs, we randomly selected the participants aged ≥18 years and had lived in Isiolo for >1 year, conducted the FGDs using an interview guide and used content analysis to identify salient emerging themes. RESULTS We interviewed 428 participants (median age = 30 years; Q1 = 25, Q3 = 38) comprising 372 (86.9%) females. Of the 425/428 (99.3%) who had heard about cholera, 311/425 (73.2%) knew that it is communicable. Although 273/428 (63.8%) respondents knew the importance of treating drinking water, only 216/421 (51.3%) treated drinking water. Those with good defecation practice were 209/428 (48.8%). Respondents with high knowledge score were 227/428 (53.0%). Positive attitude (aOR = 2.88, 95% C.I = 1.34-6.20), treating drinking water (aOR = 2.21, 95% C.I = 1.47-3.33), age <36 years (aOR = 1.75, 95% C.I = 1.11-2.74) and formal education (aOR = 1.71, 95% C.I = 1.08-2.68) were independently associated with high knowledge score. FGDs showed poor latrine coverage, inadequate water treatment and socio-cultural beliefs as barriers to cholera prevention and control. CONCLUSIONS There was a high knowledge score on cholera with gaps in preventive practices. We recommend targeted health education to the old and uneducated persons and general strengthening of health education in the community.
Collapse
Affiliation(s)
- Erick Otieno Orimbo
- Field Epidemiology and Laboratory Training (FELTP) Kenya, Ministry of Health, Nairobi, Kenya
- County Government of Migori, Migori, Kenya
| | - Elvis Oyugi
- Field Epidemiology and Laboratory Training (FELTP) Kenya, Ministry of Health, Nairobi, Kenya
| | - Diba Dulacha
- Field Epidemiology and Laboratory Training (FELTP) Kenya, Ministry of Health, Nairobi, Kenya
| | - Mark Obonyo
- Field Epidemiology and Laboratory Training (FELTP) Kenya, Ministry of Health, Nairobi, Kenya
| | - Abubakar Hussein
- Field Epidemiology and Laboratory Training (FELTP) Kenya, Ministry of Health, Nairobi, Kenya
- Department of Health, County Government of Isiolo, Isiolo, Kenya
| | - Jane Githuku
- Field Epidemiology and Laboratory Training (FELTP) Kenya, Ministry of Health, Nairobi, Kenya
| | - Maurice Owiny
- Field Epidemiology and Laboratory Training (FELTP) Kenya, Ministry of Health, Nairobi, Kenya
| | - Zeinab Gura
- Field Epidemiology and Laboratory Training (FELTP) Kenya, Ministry of Health, Nairobi, Kenya
| |
Collapse
|
26
|
Lepuschitz S, Baron S, Larvor E, Granier SA, Pretzer C, Mach RL, Farnleitner AH, Ruppitsch W, Pleininger S, Indra A, Kirschner AKT. Phenotypic and Genotypic Antimicrobial Resistance Traits of Vibrio cholerae Non-O1/Non-O139 Isolated From a Large Austrian Lake Frequently Associated With Cases of Human Infection. Front Microbiol 2019; 10:2600. [PMID: 31781080 PMCID: PMC6857200 DOI: 10.3389/fmicb.2019.02600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae belonging to serogroups other than O1 and O139 are opportunistic pathogens which cause infections with a variety of clinical symptoms. Due to the increasing number of V. cholerae non-O1/non-O139 infections in association with recreational waters in the past two decades, they have received increasing attention in recent literature and by public health authorities. Since the treatment of choice is the administration of antibiotics, we investigated the distribution of antimicrobial resistance properties in a V. cholerae non-O1/non-O139 population in a large Austrian lake intensively used for recreation and in epidemiologically linked clinical isolates. In total, 82 environmental isolates - selected on the basis of comprehensive phylogenetic information - and nine clinical isolates were analyzed for their phenotypic antimicrobial susceptibility. The genomes of 46 environmental and eight clinical strains were screened for known genetic antimicrobial resistance traits in CARD and ResFinder databases. In general, antimicrobial susceptibility of the investigated V. cholerae population was high. The environmental strains were susceptible against most of the 16 tested antibiotics, except sulfonamides (97.5% resistant strains), streptomycin (39% resistant) and ampicillin (20.7% resistant). Clinical isolates partly showed additional resistance to amoxicillin-clavulanic acid. Genome analysis showed that crp, a regulator of multidrug efflux genes, and the bicyclomycin/multidrug efflux system of V. cholerae were present in all isolates. Nine isolates additionally carried variants of bla CARB-7 and bla CARB-9, determinants of beta-lactam resistance and six isolates carried catB9, a determinant of phenicol resistance. Three isolates had both bla CARB-7 and catB9. In 27 isolates, five out of six subfamilies of the MATE-family were present. For all isolates no genes conferring resistance to aminoglycosides, macrolides and sulfonamides were detected. The apparent lack of either known antimicrobial resistance traits or mobile genetic elements indicates that in cholera non-epidemic regions of the world, V. cholerae non-O1/non-O139 play a minor role as a reservoir of resistance in the environment. The discrepancies between the phenotypic and genome-based antimicrobial resistance assessment show that for V. cholerae non-O1/non-O139, resistance databases are currently inappropriate for an assessment of antimicrobial resistance. Continuous collection of both data over time may solve such discrepancies between genotype and phenotype in the future.
Collapse
Affiliation(s)
- Sarah Lepuschitz
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
- Research Division of Biochemical Technology, Institute of Chemical, Environmental and BioScience Engineering, Technische Universität Wien, Vienna, Austria
| | - Sandrine Baron
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Emeline Larvor
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Sophie A. Granier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougeres Laboratory, Fougeres, France
| | - Carina Pretzer
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
| | - Robert L. Mach
- Research Division of Biochemical Technology, Institute of Chemical, Environmental and BioScience Engineering, Technische Universität Wien, Vienna, Austria
| | - Andreas H. Farnleitner
- Research Division of Biochemical Technology, Institute of Chemical, Environmental and BioScience Engineering, Technische Universität Wien, Vienna, Austria
- Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Sonja Pleininger
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Alexander Indra
- Austrian Agency for Health and Food Safety (AGES), Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Alexander K. T. Kirschner
- Institute for Hygiene and Applied Immunology - Water Microbiology, Medical University Vienna, Vienna, Austria
- Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| |
Collapse
|
27
|
Machine Learning Model for Imbalanced Cholera Dataset in Tanzania. ScientificWorldJournal 2019; 2019:9397578. [PMID: 31427903 PMCID: PMC6683776 DOI: 10.1155/2019/9397578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/15/2019] [Accepted: 06/09/2019] [Indexed: 11/28/2022] Open
Abstract
Cholera epidemic remains a public threat throughout history, affecting vulnerable population living with unreliable water and substandard sanitary conditions. Various studies have observed that the occurrence of cholera has strong linkage with environmental factors such as climate change and geographical location. Climate change has been strongly linked to the seasonal occurrence and widespread of cholera through the creation of weather patterns that favor the disease's transmission, infection, and the growth of Vibrio cholerae, which cause the disease. Over the past decades, there have been great achievements in developing epidemic models for the proper prediction of cholera. However, the integration of weather variables and use of machine learning techniques have not been explicitly deployed in modeling cholera epidemics in Tanzania due to the challenges that come with its datasets such as imbalanced data and missing information. This paper explores the use of machine learning techniques to model cholera epidemics with linkage to seasonal weather changes while overcoming the data imbalance problem. Adaptive Synthetic Sampling Approach (ADASYN) and Principal Component Analysis (PCA) were used to the restore sampling balance and dimensional of the dataset. In addition, sensitivity, specificity, and balanced-accuracy metrics were used to evaluate the performance of the seven models. Based on the results of the Wilcoxon sign-rank test and features of the models, XGBoost classifier was selected to be the best model for the study. Overall results improved our understanding of the significant roles of machine learning strategies in health-care data. However, the study could not be treated as a time series problem due to the data collection bias. The study recommends a review of health-care systems in order to facilitate quality data collection and deployment of machine learning techniques.
Collapse
|
28
|
Jikal M, Riduan T, Aarifin R, Jeffree MS, Ahmed K. Cholera outbreak by Sea Gypsies in Sabah, Malaysia: A challenge in North Borneo. Int J Infect Dis 2019; 83:83-85. [PMID: 30986543 DOI: 10.1016/j.ijid.2019.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES In this study we investigated an outbreak of Vibrio cholera O1 Ogawa serotype, occurred during December 2014 in Kudat district, situated in Sabah state of the Malaysian part of Borneo. METHODS Active case detection and contact tracing were done at respective localities by house to house survey. Passive case detection was done among acute gastroenteritis patients attended at various health facilities. To determine the source, samples from food, water and environment were taken. A case control study was also done to determine the risk factors. RESULTS A total of 44 symptomatic and 34 asymptomatic cases from 19 localities were investigated. 39 cases were detected through passive case detection. Median age of cases was 23 years. All cases belonged to serogroup O1 and Ogawa serotype. The epidemiological investigation of time, place, and person identified that V. cholerae cross-transmission might have occurred in two fish markets and the fish-loading port. Circumstantial evidences indicated that cholera was possibly transmitted through contaminated sea foods. CONCLUSIONS We concluded that the life-style of Sea Gypsies is a challenge in cholera control; therefore vaccination might be an effective way to mitigate cholera in an outbreak prone area like Kudat.
Collapse
Affiliation(s)
| | - Tuan Riduan
- Kudat Area Health Office, Kudat, Sabah, Malaysia
| | | | - Mohammad Saffree Jeffree
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia; Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah.
| |
Collapse
|
29
|
Peterson KM, Gellings PS. Multiple intraintestinal signals coordinate the regulation of Vibrio cholerae virulence determinants. Pathog Dis 2018; 76:4791527. [PMID: 29315383 DOI: 10.1093/femspd/ftx126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is a Gram-negative motile bacterium capable of causing fatal pandemic disease in humans via oral ingestion of contaminated water or food. Within the human intestine, the motile vibrios must evade the innate host defense mechanisms, penetrate the mucus layer covering the small intestine, adhere to and multiply on the surface of the microvilli and cause disease via the action of cholera toxin. The explosive diarrhea associated with V. cholerae intestinal colonization leads to dissemination of the vibrios back into the environment to complete this phase of the life cycle. The host phase of the vibrio life cycle is made possible via the concerted action of a signaling cascade that controls the synthesis of V. cholerae colonization determinants. These virulence proteins are coordinately synthesized in response to specific host signals that are still largely undefined. A more complete understanding of the molecular events involved in the V. cholerae recognition of intraintestinal signals and the subsequent transcriptional response will provide important information regarding how pathogenic bacteria establish infection and provide novel methods for treating and/or preventing bacterial infections such as Asiatic cholera. This review will summarize what is currently known in regard to host intraintestinal signals that inform the complex ToxR regulatory cascade in order to coordinate in a spatial and temporal fashion virulence protein synthesis within the human small intestine.
Collapse
Affiliation(s)
- Kenneth M Peterson
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA 71130, USA
| | - Patrick S Gellings
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA 71130, USA
| |
Collapse
|
30
|
Learoyd TP, Gaut RM. Cholera: under diagnosis and differentiation from other diarrhoeal diseases. J Travel Med 2018; 25:S46-S51. [PMID: 29718439 DOI: 10.1093/jtm/tay017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Globally 1.4 billion people are at risk from cholera in countries where the disease is endemic, with an estimated 2.8 million cases annually. The disease is significantly under reported due to economic, social and political disincentives as well as poor laboratory resources and epidemiological surveillance in those regions. In addition, identification of cholera from other diarrhoeal causes is often difficult due to shared pathology and symptoms with few reported cases in travellers from Northern Europe. METHODS A search of PubMed and Ovid Medline for publications on cholera diagnosis from 2010 through 2017 was conducted. Search terms included were cholera, Rapid Diagnostic Test (RDT), multiplex PCR and diagnosis of diarrhoea. Studies were included if they are published in English, French or Spanish. RESULTS An increase of RDT study publications for diarrhoeal disease and attempted test validations were seen over the publication period. RDTs were noted as having varied selectivity and specificity, as well as associated costs and local resource requirements that can prohibit their use. CONCLUSIONS Despite opportunities to employ RDTs with high selectivity and specificity in epidemic areas, or in remote locations without access to health services, such tests are limited to surveillance use. This may represent a missed opportunity to discover the true global presence of Vibrio cholerae and its role in all cause diarrhoeal disease in underdeveloped countries and in travellers to those areas. The wider applicability of RDTs may also represent an opportunity in the wider management of traveller's diarrhoea.
Collapse
Affiliation(s)
- Tristan P Learoyd
- Valneva UK, Centaur House, Ancells Business Park, Ancells Road, Fleet, Hampshire GU51 2UJ, UK
| | - Rupert M Gaut
- Xnomics Ltd, Yarm Road, Eaglescliffe, Stockton-on-Tees TS16 9BJ, UK
| |
Collapse
|
31
|
Privett BR, Pellegrini M, Kovacikova G, Taylor RK, Skorupski K, Mierke D, Jon Kull F. Identification of a Small Molecule Activator for AphB, a LysR-Type Virulence Transcriptional Regulator in Vibrio cholerae. Biochemistry 2017; 56:3840-3849. [PMID: 28640592 PMCID: PMC5963692 DOI: 10.1021/acs.biochem.7b00337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AphB is a LysR-type transcriptional regulator (LTTR) that cooperates with a second transcriptional activator, AphA, at the tcpPH promoter to initiate expression of the virulence cascade in Vibrio cholerae. Because it is not yet known whether AphB responds to a natural ligand in V. cholerae that influences its ability to activate transcription, we used a computational approach to identify small molecules that influence its activity. In silico docking was used to identify potential ligands for AphB, and saturation transfer difference nuclear magnetic resonance was subsequently employed to access the validity of promising targets. We identified a small molecule, BP-15, that specifically binds the C-terminal regulatory domain of AphB and increases its activity. Interestingly, molecular docking predicts that BP-15 does not bind in the putative primary effector-binding pocket located at the interface of RD-I and RD-II as in other LTTRs, but rather at the dimerization interface. The information gained in this study helps us to further understand the mechanism by which transcriptional activation by AphB is regulated by suggesting that AphB has a secondary ligand binding site, as observed in other LTTRs. This study also lays the groundwork for the future design of inhibitory molecules to block the V. cholerae virulence cascade, thereby preventing the devastating symptoms of cholera infection.
Collapse
Affiliation(s)
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover NH 03755, USA
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover NH 03755, USA
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover NH 03755, USA
| | - Karen Skorupski
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover NH 03755, USA
| | - Dale Mierke
- Department of Chemistry, Dartmouth College, Hanover NH 03755, USA
| | - F. Jon Kull
- Department of Chemistry, Dartmouth College, Hanover NH 03755, USA
| |
Collapse
|
32
|
Disarming the enemy: targeting bacterial toxins with small molecules. Emerg Top Life Sci 2017; 1:31-39. [PMID: 33525814 DOI: 10.1042/etls20160013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
The rapid emergence of antibiotic-resistant bacterial strains has prompted efforts to find new and more efficacious treatment strategies. Targeting virulence factors produced by pathogenic bacteria has gained particular attention in the last few years. One of the inherent advantages of this approach is that it provides less selective pressure for the development of resistance mechanisms. In addition, antivirulence drugs could potentially be the answer for diseases in which the use of conventional antibiotics is counterproductive. That is the case for bacterial toxin-mediated diseases, in which the severity of the symptoms is a consequence of the exotoxins produced by the pathogen. Examples of these are haemolytic-uraemic syndrome produced by Shiga toxins, the profuse and dangerous dehydration caused by Cholera toxin or the life-threatening colitis occasioned by clostridial toxins. This review focuses on the recent advances on the development of small molecules with antitoxin activity against Enterohaemorrhagic Escherichia coli, Vibrio cholerae and Clostridium difficile given their epidemiological importance. The present work includes studies of small molecules with antitoxin properties that act directly on the toxin (direct inhibitors) or that act by preventing expression of the toxin (indirect inhibitors).
Collapse
|
33
|
Barrett KE. Rethinking cholera pathogenesis- No longer all in the same "camp". Virulence 2016; 7:751-3. [PMID: 27413815 PMCID: PMC5029295 DOI: 10.1080/21505594.2016.1212156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Affiliation(s)
- Kim E. Barrett
- Department of Medicine and Ph.D Program in Biomedical Sciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
34
|
Farhana I, Hossain ZZ, Tulsiani SM, Jensen PKM, Begum A. Survival of Vibrio cholerae O1 on fomites. World J Microbiol Biotechnol 2016; 32:146. [DOI: 10.1007/s11274-016-2100-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
|
35
|
Gupta PK, Pant ND, Bhandari R, Shrestha P. Cholera outbreak caused by drug resistant Vibrio cholerae serogroup O1 biotype ElTor serotype Ogawa in Nepal; a cross-sectional study. Antimicrob Resist Infect Control 2016; 5:23. [PMID: 27274815 PMCID: PMC4893239 DOI: 10.1186/s13756-016-0122-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cholera is a major cause of mortality and morbidity in underdeveloped countries including Nepal. Recently drug resistance in Vibrio cholerae has become a serious problem mainly in developing countries. The main objectives of our study were to investigate the occurrence of Vibrio cholerae in stool samples from patients with watery diarrhea and to determine the antimicrobial susceptibility patterns of V. cholerae isolates. METHODS A total of 116 stool samples from patients suffering from watery diarrhea during July to December 2012 were obtained from outbreak areas from all over Nepal. Alkaline peptone water and thiosulphate citrate bile salt sucrose agar (TCBS) were used to isolate the Vibrio cholerae. The isolates were identified with the help of colony morphology, Gram's staining, conventional biochemical testing, serotyping and biotyping. Antimicrobial susceptibility testing was performed by determining the minimum inhibitory concentration (MIC) by agar dilution method. RESULTS Vibrio cholerae was isolated from 26.72 % of total samples. All isolated Vibrio cholerae were confirmed to be Vibrio cholerae serogoup O1 biotype El Tor and serotype Ogawa. All isolates were resistant to ampicillin and cotrimoxazole. Twenty nine isolates were resistant toward two different classes of antibiotics, one strain was resistant to three different classes of antibiotics and one strain was resistant to four different classes of antibiotics. According to the definition of the multidrug resistant bacteria; 6.45 % of the strains of Vibrio cholerae were found to be multidrug resistant. CONCLUSIONS Cholera due to multidrug resistant Vibrio cholerae is also possible in Nepal. According to the antimicrobial susceptibility pattern of Vibrio cholerae in our study we recommend to use any antibiotics among tetracycline, doxycycline, levofloxacin, azithromycin, chloramphenicol and ciprofloxacin for preliminary treatment of cholera in Nepal.
Collapse
Affiliation(s)
- Pappu Kumar Gupta
- Department of microbiology, Kathmandu college of science and technology, Kathmandu, Nepal
| | - Narayan Dutt Pant
- Department of microbiology, Grande international hospital, Dhapasi Kathmandu, Nepal
| | | | - Padma Shrestha
- Department of microbiology, Kathmandu college of science and technology, Kathmandu, Nepal
| |
Collapse
|
36
|
Rabelo VW, Sampaio TF, Duarte LD, Lopes DHB, Abreu PA. Structure–activity relationship of a series of 1,2-dihydroquinoline analogues and binding mode with Vibrio cholerae dihydrofolate reductase. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Hajia M, Saboorian R, Rahbar M. Antimicrobial Resistance Patterns of Isolated Vibrio cholerae Strains. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2016. [DOI: 10.17795/ijep31719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
P21Waf1/Cip1 plays a critical role in furazolidone-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation. Food Chem Toxicol 2016; 88:1-12. [DOI: 10.1016/j.fct.2015.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/08/2015] [Accepted: 12/03/2015] [Indexed: 12/14/2022]
|
39
|
Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae. J Bacteriol 2015; 198:463-76. [PMID: 26553852 DOI: 10.1128/jb.00360-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/03/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. IMPORTANCE This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.
Collapse
|
40
|
A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP) of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice. PLoS Negl Trop Dis 2015; 9:e0003881. [PMID: 26154421 PMCID: PMC4495926 DOI: 10.1371/journal.pntd.0003881] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). METHODOLOGY Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization. PRINCIPLE FINDINGS Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model. CONCLUSION We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.
Collapse
|
41
|
Abstract
Cholera is a diarrhoeal disease that is caused by an intestinal bacterium, Vibrio cholerae. Recently an outbreak of cholera in Haiti brought public attention to this deadly disease. In this work, the goal of our differential equation model is to find an effective optimal vaccination strategy to minimize the disease related mortality and to reduce the associated costs. The effect of seasonality in pathogen transmission on vaccination strategies was investigated under several types of disease scenarios, including an endemic case and a new outbreak case. This model is an extension of a general water-borne pathogen model. This work involves the optimal control problem formulation, analysis and numerical simulations.
Collapse
Affiliation(s)
- URMI GHOSH-DASTIDAR
- Department of Mathematics, New York City College of Technology, CUNY, Namm 711, 300 Jay St., Brooklyn, NY 11201, USA
| | - SUZANNE LENHART
- Department of Mathematics, University of Tennessee Knoxville, TN 37996-1300, USA
| |
Collapse
|
42
|
Babu AS, Veluswamy SK, Arena R, Guazzi M, Lavie CJ. Virgin Coconut Oil and Its Potential Cardioprotective Effects. Postgrad Med 2015; 126:76-83. [DOI: 10.3810/pgm.2014.11.2835] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Thapa Shrestha U, Adhikari N, Maharjan R, Banjara MR, Rijal KR, Basnyat SR, Agrawal VP. Multidrug resistant Vibrio cholerae O1 from clinical and environmental samples in Kathmandu city. BMC Infect Dis 2015; 15:104. [PMID: 25888391 PMCID: PMC4350293 DOI: 10.1186/s12879-015-0844-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/19/2015] [Indexed: 11/21/2022] Open
Abstract
Background Cholera, an infectious disease caused by Vibrio cholerae, is a major public health problem and is a particularly burden in developing countries including Nepal. Although the recent worldwide outbreaks of cholera have been due to V. cholerae El Tor, the classical biotypes are still predominant in Nepal. Serogroup O1 of the V. cholerae classical biotype was the primary cause of a cholera outbreak in Kathmandu in 2012. Thus, this study was designed to know serotypes and biotypes of V. cholerae strains causing recent outbreak with reference to drug resistant patterns. Moreover, we also report the toxigenic strains of V. cholerae from both environmental and clinical specimens by detecting the ctx gene. Methods Twenty four V. cholerae (n = 22 from stool samples and n = 2 from water samples) isolated in this study were subjected to Serotyping and biotyping following the standard protocols as described previously. All of the isolates were tested for antimicrobial susceptibility patterns using the modified Kirby-Bauer disk diffusion method as recommended by CLSI guidelines. The screening of the ctx genes (ctxA2-B gene) were performed by PCR method using a pair of primers; C2F (5′-AGGTGTAAAATTCCTTGACGA-3′) and C2R (5′-TCCTCAGGGTATCCTTCATC-3′) to identify the toxigenic strains of V. cholerae. Results Among twenty four V. cholerae isolates, 91.7% were clinical and 8.3% were from water samples. Higher rate of V. cholerae infection was found among adults of aged group 20–30 years. All isolates were serogroups O1 of the V. cholerae classical biotype and sub serotype, Ogawa. All isolates were resistant to ampicillin, nalidixic acid and cotrimoxazole. 90.9% were resistant to erythromycin however, tetracycline was found to be the most effective drug for the isolates. All isolates were multidrug resistant (MDR) and possessed a ctx gene of approximately 400 base pairs indicating the toxigenic strains. Conclusion Hundred percent strains of V. cholerae were MDR possessing a ctx gene. It suggests that toxigenic strains be identified and proper antibiotic susceptibility testing be conducted. This will allow effective empirical therapy to be used to treat and control cholera.
Collapse
Affiliation(s)
- Upendra Thapa Shrestha
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Sanepa, Lalitpur, Nepal. .,Department of Microbiology, Kantipur College of Medical Science (KCMS), Sitapaila, KTM, Nepal.
| | - Nabaraj Adhikari
- Department of Microbiology, Kantipur College of Medical Science (KCMS), Sitapaila, KTM, Nepal.
| | - Rojina Maharjan
- Department of Microbiology, Kantipur College of Medical Science (KCMS), Sitapaila, KTM, Nepal.
| | - Megha R Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, KTM, Nepal.
| | - Komal R Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, KTM, Nepal.
| | - Shital R Basnyat
- Department of Microbiology, Kantipur College of Medical Science (KCMS), Sitapaila, KTM, Nepal.
| | - Vishwanath P Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Sanepa, Lalitpur, Nepal.
| |
Collapse
|
44
|
Furazolidone induces apoptosis through activating reactive oxygen species-dependent mitochondrial signaling pathway and suppressing PI3K/Akt signaling pathway in HepG2 cells. Food Chem Toxicol 2015; 75:173-86. [DOI: 10.1016/j.fct.2014.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/30/2014] [Accepted: 11/22/2014] [Indexed: 12/21/2022]
|
45
|
Jones JL, Lüdeke CHM, Bowers JC, DeRosia-Banick K, Carey DH, Hastback W. Abundance of Vibrio cholerae, V. vulnificus, and V. parahaemolyticus in oysters (Crassostrea virginica) and clams (Mercenaria mercenaria) from Long Island sound. Appl Environ Microbiol 2014; 80:7667-72. [PMID: 25281373 PMCID: PMC4249230 DOI: 10.1128/aem.02820-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/26/2014] [Indexed: 11/20/2022] Open
Abstract
Vibriosis is a leading cause of seafood-associated morbidity and mortality in the United States. Typically associated with consumption of raw or undercooked oysters, vibriosis associated with clam consumption is increasingly being reported. However, little is known about the prevalence of Vibrio spp. in clams. The objective of this study was to compare the levels of Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus in oysters and clams harvested concurrently from Long Island Sound (LIS). Most probable number (MPN)-real-time PCR methods were used for enumeration of total V. cholerae, V. vulnificus, V. parahaemolyticus, and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus. V. cholerae was detected in 8.8% and 3.3% of oyster (n = 68) and clam (n = 30) samples, with levels up to 1.48 and 0.48 log MPN/g in oysters and clams, respectively. V. vulnificus was detected in 97% and 90% of oyster and clam samples, with median levels of 0.97 and -0.08 log MPN/g, respectively. V. parahaemolyticus was detected in all samples, with median levels of 1.88 and 1.07 log MPN/g for oysters and clams, respectively. The differences between V. vulnificus and total and pathogenic V. parahaemolyticus levels in the two shellfish species were statistically significant (P < 0.001). These data indicate that V. vulnificus and total and pathogenic V. parahaemolyticus are more prevalent and are present at higher levels in oysters than in hard clams. Additionally, the data suggest differences in vibrio populations between shellfish harvested from different growing area waters within LIS. These results can be used to evaluate and refine illness mitigation strategies employed by risk managers and shellfish control authorities.
Collapse
Affiliation(s)
- Jessica L Jones
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
| | - Catharina H M Lüdeke
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA University of Hamburg, Hamburg School of Food Science, Hamburg, Germany
| | - John C Bowers
- FDA, Center for Food Safety and Applied Nutrition, Division of Public Health Informatics and Analytics, College Park, Maryland, USA
| | - Kristin DeRosia-Banick
- State of Connecticut, Department of Agriculture, Bureau of Aquaculture, Milford, Connecticut, USA
| | - David H Carey
- State of Connecticut, Department of Agriculture, Bureau of Aquaculture, Milford, Connecticut, USA
| | - William Hastback
- New York State, Department of Environmental Conservation, Bureau of Marine Resources, East Setauket, New York, USA
| |
Collapse
|
46
|
Aetiologies of diarrhoea in adults from urban and rural treatment facilities in Bangladesh. Epidemiol Infect 2014; 143:1377-87. [PMID: 25222698 DOI: 10.1017/s0950268814002283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The objective of our analysis was to describe the aetiology, clinical features, and socio-demographic background of adults with diarrhoea attending different urban and rural diarrhoeal disease hospitals in Bangladesh. Between January 2010 and December 2011, a total of 5054 adult diarrhoeal patients aged ⩾20 years were enrolled into the Diarrhoeal Disease Surveillance Systems at four different hospitals (two rural and two urban) of Bangladesh. Middle-aged [adjusted odds ratio (aOR) 0·28, 95% confidence interval (CI) 0·23-0·35, P < 0·001] and elderly (aOR 0·15, 95% CI 0·11-0·20, P < 0·001) patients were more likely to present to rural diarrhoeal disease facilities than urban ones. Vibrio cholerae was the most commonly isolated pathogen (16%) of the four pathogens tested followed by rotavirus (5%), enterotoxigenic Escherichia coli (ETEC) (4%), and Shigella (4%). Of these pathogens, V. cholerae (19% vs. 11%, P < 0·001), ETEC (9% vs. 4%, P < 0·001), and rotavirus (5% vs. 3%, P = 0·013) were more commonly detected from patients presenting to urban hospitals than rural hospitals, but Shigella was more frequently isolated from patients presenting to rural hospitals than urban hospitals (7% vs. 2%, P < 0·001). The isolation rate of Shigella was higher in the elderly than in younger adults (8% vs. 3%, P < 0·001). Some or severe dehydration was higher in urban adults than rural adults (P < 0·001). Our findings indicate that despite economic and other progress made, conditions facilitating transmission of V. cholerae and Shigella prevail in adults with diarrhoea in Bangladesh and further efforts are needed to control these infections.
Collapse
|
47
|
Mukherjee M, Kakarla P, Kumar S, Gonzalez E, Floyd JT, Inupakutika M, Devireddy AR, Tirrell SR, Bruns M, He G, Lindquist IE, Sundararajan A, Schilkey FD, Mudge J, Varela MF. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae.. ACTA ACUST UNITED AC 2014; 2:1-15. [PMID: 25722857 PMCID: PMC4338557 DOI: 10.7243/2052-7993-2-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae. Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence-related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations.
Collapse
Affiliation(s)
- Munmun Mukherjee
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Prathusha Kakarla
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Sanath Kumar
- QC Laboratory, Harvest and Post Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India
| | - Esmeralda Gonzalez
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Jared T Floyd
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Madhuri Inupakutika
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Amith Reddy Devireddy
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Selena R Tirrell
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Merissa Bruns
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Guixin He
- University of Massachusetts Lowell, Department of Clinical Laboratory and Nutritional Sciences, Lowell, MA 01854, USA
| | | | | | - Faye D Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, 87505, USA
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, 87505, USA
| | - Manuel F Varela
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| |
Collapse
|
48
|
Bias TE, Davanos E, Rahman SM, Venugopalan V. Impact of Gastric Acidity on the Acquisition of Cholera Post Gastric Bypass. Bariatr Surg Pract Patient Care 2013. [DOI: 10.1089/bari.2013.9977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tiffany E. Bias
- Department of Pharmacy, Hahnemann University Hospital, Philadelphia, Pennsylvania
| | - Evangelia Davanos
- Department of Clinical Pharmacotherapy, The Brooklyn Hospital Center, Brooklyn, New York
| | - Shafiqur M. Rahman
- Division of Infectious Diseases, The Brooklyn Hospital Center, Brooklyn, New York
| | - Veena Venugopalan
- Department of Clinical Pharmacotherapy, The Brooklyn Hospital Center, Brooklyn, New York
| |
Collapse
|
49
|
Pastor M, Pedraz JL, Esquisabel A. The state-of-the-art of approved and under-development cholera vaccines. Vaccine 2013; 31:4069-78. [PMID: 23845813 DOI: 10.1016/j.vaccine.2013.06.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022]
Abstract
Cholera remains a huge public health problem. Although in 1894, the first cholera vaccination was reported, an ideal vaccine that meets all the requirements of the WHO has not yet been produced. Among the different approaches used for cholera vaccination, attenuated vaccines represent a major category; these vaccines are beneficial in being able to induce a strong protective response after a single administration. However, they have possible negative effects on immunocompromised patient populations. Both the licensed CVD103-HgR and other vaccine approaches under development are detailed in this article, such as the Vibrio cholerae 638 vaccine candidate, Peru-15 or CholeraGarde(®) and the VA1.3, VA1.4, IEM 108 VCUSM2 and CVD 112 vaccine candidates. In another strategy, killed V. cholerae vaccines have been developed, including Dukoral(®), mORCAX(®) and Sanchol™. The killed vaccines are already sold, and they have successfully demonstrated their potential to protect populations in endemic areas or after natural disasters. However, these vaccines do not fulfill all the requirements of the WHO because they fail to confer long-term protection, are not suitable for children under two years, require more than a single dose and require a distribution chain with cold storage. Lastly, other vaccine strategies under development are summarized in this review. Among these strategies, vaccine candidates based on alternative drug delivery systems that have been reported lately in the literature are discussed, such as microparticles, proteoliposomes, LPS subunits, DNA vaccines and rice seeds containing toxin subunits. Preliminary results reported by many groups working on alternative delivery systems for cholera vaccines demonstrate the importance of new technologies in addressing old problems such as cholera. Although a fully ideal vaccine has not yet been designed, promising steps have been reported in the literature resulting in hope for the fight against cholera.
Collapse
Affiliation(s)
- M Pastor
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | | | | |
Collapse
|
50
|
Ferdous F, Das SK, Ahmed S, Farzana FD, Latham JR, Chisti MJ, Ud-Din AIMS, Azmi IJ, Talukder KA, Faruque ASG. Severity of diarrhea and malnutrition among under five-year-old children in rural Bangladesh. Am J Trop Med Hyg 2013; 89:223-8. [PMID: 23817334 DOI: 10.4269/ajtmh.12-0743] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Enteric pathogens are commonly associated with diarrhea among malnourished children. This study aimed to determine the association between the severity of diarrheal illnesses and malnutrition among under 5-year-old children. During 2010 and 2011, we studied 2,324 under 5-year-old diarrheal children with mild disease (MD) and moderate-to-severe disease (MSD) attending a hospital in Bangladesh. Children with MSD were more likely to be malnourished compared with children with MD (35% versus 24%, P < 0.001). In multivariate analysis, malnutrition (odds ratio [95% confidence interval] = 1.53 [1.22, 1.92]), age of the child (24-59 months; 1.67 [1.28, 2.19]), fever (1.65 [1.28, 2.12]), abdominal pain (1.87 [1.48, 2.37]), straining (5.93 [4.80, 7.33]), and infection with Shigella (3.26 [2.38, 4.46]) and Vibrio cholerae (2.21 [1.07, 4.58]) were shown to be significantly associated with MSD. Factors significantly associated with malnutrition were disease severity (1.56 [1.24, 1.95]), age (24-59 months; 1.75 [1.38, 2.22]), mother's schooling (1.54 [1.16, 2.04]), and monthly household income (1.71 [1.42, 2.07]). Childhood malnutrition was associated with dysentery and dehydrating diarrhea.
Collapse
Affiliation(s)
- Farzana Ferdous
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|