1
|
Saxena S, Rosas-Salazar C. Diagnosing Asthma in Children. Respir Care 2025. [PMID: 40267168 DOI: 10.1089/respcare.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Despite being the most common chronic lung disease in children, asthma continues to be frequently misdiagnosed in the pediatric population. The recommendations to establish a diagnosis of asthma in school-aged children have evolved over time, but there are still important discrepancies between published guidelines. Furthermore, preschool-aged children are often unable to perform objective testing, so the diagnosis of asthma remains a clinical one in the first several years of life, and there is still debate on the criteria and nomenclature to be used in this age group. In this review, we first discuss the definition and misdiagnosis of asthma in children. We then assess and compare published guidelines that outline how to establish the diagnosis of asthma in school-aged children. We also discuss the necessary steps to diagnose preschool-aged children with this disease. Last, we outline unanswered questions and opportunities for research in this field.
Collapse
Affiliation(s)
- Shikha Saxena
- Dr. Saxena is affiliated with University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christian Rosas-Salazar
- Dr. Rosas-Salazar is affiliated with Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025:S1933-0219(25)00029-7. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
3
|
Peng B, Ye W, Liu S, Jiang Y, Meng Z, Guo M, Zhi L, Chang X, Shao L. Sex differences in asthma: omics evidence and future directions. Front Genet 2025; 16:1560276. [PMID: 40110046 PMCID: PMC11920188 DOI: 10.3389/fgene.2025.1560276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Asthma is a common and complex heterogeneous disease, with prevalence and severity varying across different age groups and sexes. Over the past few decades, with the development of high-throughput technologies, various "omics" analyses have emerged and been applied to asthma research, providing us with significant opportunities to study the genetic mechanisms underlying asthma. However, despite these advancements, the differences and specificities in the genetic mechanisms of asthma between sexes remain to be fully explored. Moreover, clinical guidelines have yet to incorporate or recommend sex-specific asthma management based on high-quality omics evidence. In this article, we review recent omics-level findings on sex differ-ences in asthma and discuss how to better integrate these multidimensional findings to generate further insights and advance the precision and effectiveness of asthma treatment.
Collapse
Affiliation(s)
- Bichen Peng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Weiyi Ye
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuai Liu
- Agricultural Products Quality and Safety Center of Ji'nan, Jinan, Shandong, China
| | - Yue Jiang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziang Meng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miao Guo
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lili Zhi
- Department of Allergy, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiao Chang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Lei Shao
- Department of infectious Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Nagao Y, Fujimoto M, Tian Y, Kameyama S, Hattori K, Hidese S, Kunugi H, Kanai Y, Arai E. Genome-wide DNA methylation profiling of blood samples from patients with major depressive disorder: correlation with symptom heterogeneity. J Psychiatry Neurosci 2025; 50:E112-E124. [PMID: 40174930 PMCID: PMC11975397 DOI: 10.1503/jpn.240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/28/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Alterations in DNA, such as DNA methylation, may be key molecular events involved in the development of major depressive disorder (MDD). We sought to clarify correlations between DNA methylation profiles and symptom heterogeneity among patients with MDD. METHODS We conducted a genome-wide DNA methylation analysis of blood samples from patients with MDD and controls, using the Infinium MethylationEPIC BeadChip. RESULTS We analyzed 283 blood samples, including 141 from an initial cohort (69 patients with MDD, 72 controls) and 142 from a second validation cohort (67 patients with MDD, 75 controls). After adjustment for age, sex, and blood cell heterogeneity, DNA methylation status at 2699 CpG sites tended to differ between patients with MDD and controls in both the initial and second cohorts. Hierarchical clustering of patients based on DNA methylation status at these 2699 CpG sites revealed a significant correlation with scores for GRID-Hamilton Depression Rating Scale (GRID-HAMD) items (depressed mood, guilt, early insomnia, middle insomnia, work and activities, psychic anxiety, loss of appetite, general somatic symptoms, and total score), suggesting the feasibility of severity diagnostics based on blood DNA methylation testing. Pathway over-representation analysis revealed that genes whose DNA methylation status was correlated with epigenetic clustering were accumulated in molecular pathways involved in various cellular functions, especially nerve development. For PLEKHD1, STK10, and FOXK1, DNA methylation levels were inversely correlated with expression levels in the Clinical Proteomic Tumor Analysis Consortium database. DNA hypomethylation of PLEKHD1, STK10, and FOXK1 was correlated with higher GRID-HAMD scores in both cohorts. LIMITATIONS Although we performed marker exploration using 2 cohorts including 283 participants, the heterogeneity of the molecular mechanisms operating in MDD might necessitate a larger cohort for establishment of criteria with sufficient diagnostic impact. CONCLUSION These findings indicate that the DNA methylation status of specific genes may correlate with the severity of MDD symptoms, and that genome-wide DNA methylation analysis of blood samples would be useful for clarifying the DNA methylation profiles related to symptom heterogeneity.
Collapse
Affiliation(s)
- Yukiko Nagao
- From the Department of Pathology, Keio University School of Medicine (Nagao, Fujimoto, Tian, Kameyama, Kanai, Arai); the Department of Mental Disorder Research, National Institute of Neuroscience, National Center for Neurology and Psychiatry (Hattori, Hidese, Kunugi); the Department of Bioresources, Medical Genome Center, National Center for Neurology and Psychiatry, Tokyo, Japan (Hattori)
| | - Mao Fujimoto
- From the Department of Pathology, Keio University School of Medicine (Nagao, Fujimoto, Tian, Kameyama, Kanai, Arai); the Department of Mental Disorder Research, National Institute of Neuroscience, National Center for Neurology and Psychiatry (Hattori, Hidese, Kunugi); the Department of Bioresources, Medical Genome Center, National Center for Neurology and Psychiatry, Tokyo, Japan (Hattori)
| | - Ying Tian
- From the Department of Pathology, Keio University School of Medicine (Nagao, Fujimoto, Tian, Kameyama, Kanai, Arai); the Department of Mental Disorder Research, National Institute of Neuroscience, National Center for Neurology and Psychiatry (Hattori, Hidese, Kunugi); the Department of Bioresources, Medical Genome Center, National Center for Neurology and Psychiatry, Tokyo, Japan (Hattori)
| | - Shinichi Kameyama
- From the Department of Pathology, Keio University School of Medicine (Nagao, Fujimoto, Tian, Kameyama, Kanai, Arai); the Department of Mental Disorder Research, National Institute of Neuroscience, National Center for Neurology and Psychiatry (Hattori, Hidese, Kunugi); the Department of Bioresources, Medical Genome Center, National Center for Neurology and Psychiatry, Tokyo, Japan (Hattori)
| | - Kotaro Hattori
- From the Department of Pathology, Keio University School of Medicine (Nagao, Fujimoto, Tian, Kameyama, Kanai, Arai); the Department of Mental Disorder Research, National Institute of Neuroscience, National Center for Neurology and Psychiatry (Hattori, Hidese, Kunugi); the Department of Bioresources, Medical Genome Center, National Center for Neurology and Psychiatry, Tokyo, Japan (Hattori)
| | - Shinsuke Hidese
- From the Department of Pathology, Keio University School of Medicine (Nagao, Fujimoto, Tian, Kameyama, Kanai, Arai); the Department of Mental Disorder Research, National Institute of Neuroscience, National Center for Neurology and Psychiatry (Hattori, Hidese, Kunugi); the Department of Bioresources, Medical Genome Center, National Center for Neurology and Psychiatry, Tokyo, Japan (Hattori)
| | - Hiroshi Kunugi
- From the Department of Pathology, Keio University School of Medicine (Nagao, Fujimoto, Tian, Kameyama, Kanai, Arai); the Department of Mental Disorder Research, National Institute of Neuroscience, National Center for Neurology and Psychiatry (Hattori, Hidese, Kunugi); the Department of Bioresources, Medical Genome Center, National Center for Neurology and Psychiatry, Tokyo, Japan (Hattori)
| | - Yae Kanai
- From the Department of Pathology, Keio University School of Medicine (Nagao, Fujimoto, Tian, Kameyama, Kanai, Arai); the Department of Mental Disorder Research, National Institute of Neuroscience, National Center for Neurology and Psychiatry (Hattori, Hidese, Kunugi); the Department of Bioresources, Medical Genome Center, National Center for Neurology and Psychiatry, Tokyo, Japan (Hattori)
| | - Eri Arai
- From the Department of Pathology, Keio University School of Medicine (Nagao, Fujimoto, Tian, Kameyama, Kanai, Arai); the Department of Mental Disorder Research, National Institute of Neuroscience, National Center for Neurology and Psychiatry (Hattori, Hidese, Kunugi); the Department of Bioresources, Medical Genome Center, National Center for Neurology and Psychiatry, Tokyo, Japan (Hattori)
| |
Collapse
|
5
|
Forno E. Integrating genomics as clinical biomarkers in pediatric pulmonology. Pediatr Pulmonol 2025; 60 Suppl 1:S66-S67. [PMID: 39360873 PMCID: PMC11921082 DOI: 10.1002/ppul.27308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 03/20/2025]
Abstract
Respiratory diseases often result from complex interactions between an individual's genetic predisposition and their exposure to various environmental and other risk factors. Here we will briefly review how various types of "omics", particularly epigenomics and transcriptomics, hold promise for translation into clinical biomarkers in pediatric pulmonary medicine, using asthma and cystic fibrosis as examples.
Collapse
Affiliation(s)
- Erick Forno
- Department of PediatricsIndiana University School of Medicine and Riley Hospital for ChildrenIndianapolisIndianaUSA
| |
Collapse
|
6
|
Yue M, Gaietto K, Han YY, Rosser FJ, Xu Z, Qoyawayma C, Acosta-Perez E, Canino G, Forno E, Chen W, Celedón JC. Transcriptomic Profiles in Nasal Epithelium and Asthma Endotypes in Youth. JAMA 2025; 333:307-318. [PMID: 39745770 PMCID: PMC11775736 DOI: 10.1001/jama.2024.22684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/07/2024] [Indexed: 01/29/2025]
Abstract
Importance T helper 2 (T2) cells and T helper 17 (T17) cells are CD4+ T cell subtypes involved in asthma. Characterizing asthma endotypes based on these cell types in diverse groups is important for developing effective therapies for youths with asthma. Objective To identify asthma endotypes in school-aged youths aged 6 to 20 years by examining the distribution and characteristics of transcriptomic profiles in nasal epithelium. Design, Setting, and Participants Cross-sectional analysis of nasal epithelial samples from 3 studies of youths with asthma aged 6 to 20 years: Stress and Treatment Response in Puerto Rican and African American Children with Asthma (STAR; N = 156), Epigenetic Variation and Childhood Asthma in Puerto Ricans (EVA-PR; N = 237), and Vitamin D Kids Asthma (VDKA; N = 66). Main Outcomes and Measures The primary outcome was nasal epithelial transcription profiles of 3 T2 and 5 T17 pathway genes. Clinical characteristics, total and allergen-specific immunoglobulin E (IgE), blood eosinophils, and lung function were compared across profiles in all studies. Results Mean ages for STAR, EVA-PR, and VDKA participants were 14.2, 15.4, and 10.3 years, respectively. The percentage of female participants ranged from 41% to 53.2% across studies. The predominant race or ethnicity was Puerto Rican in EVA-PR (100%) and Black or African American in STAR (71.8%) and VDKA (57.6%). Three transcriptomic profiles were identified: high T2 expression (T2HIGH), high T17 expression (T17HIGH), and low expression of both pathways (T2LOW/T17LOW). Across studies, T2HIGH was present in 23% to 29% of participants, T17HIGH in 35% to 47%, and T2LOW/T17LOW in 30% to 38%. In each study, median total IgE and blood eosinophils for the T2HIGH profile was higher than for the T2LOW profiles (IgE, 584-869 vs 105-382 IU/mL; eosinophils, 343-560 vs 164-413 cells/mL). Of the participants in all profiles, at least 50% had 1 or more positive allergen-specific IgEs. A differential expression meta-analysis identified 3516 and 2494 differentially expressed genes for the T2HIGH and T17HIGH profiles, respectively. The T17HIGH profile was associated with interleukin 17 and neutrophil signaling pathways and the T2HIGH profile was associated with interleukin 13 signaling pathways. Conclusions and Relevance Nasal transcriptomic profiles consistent with T2-high, T17-high, and T2-low/T17-low endotypes occurred in similar proportions across 3 studies of predominantly racially and ethnically minoritized youths with asthma. Most participants had T2-low asthma endotypes and sensitization to 1 or more allergens was common among these endotypes.
Collapse
Affiliation(s)
- Molin Yue
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kristina Gaietto
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yueh Ying Han
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Franziska J. Rosser
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhongli Xu
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher Qoyawayma
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Glorisa Canino
- Behavioral Sciences Research Institute, San Juan, Puerto Rico
- Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
8
|
Yue M, Weiner DJ, Gaietto KM, Rosser FJ, Qoyawayma CM, Manni ML, Myerburg MM, Pilewski JM, Celedón JC, Chen W, Forno E. Nasal Epithelium Transcriptomics Predict Clinical Response to Elexacaftor/Tezacaftor/Ivacaftor. Am J Respir Cell Mol Biol 2024; 71:730-739. [PMID: 39028582 PMCID: PMC11622631 DOI: 10.1165/rcmb.2024-0103oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024] Open
Abstract
Elexacaftor/tezacaftor/ivacaftor (ETI) has had a substantial positive impact for people living with cystic fibrosis (pwCF). However, there can be substantial variability in efficacy, and we lack adequate biomarkers to predict individual response. We thus aimed to identify transcriptomic profiles in nasal respiratory epithelium that predict clinical response to ETI treatment. We obtained nasal epithelial samples from pwCF before ETI initiation and performed a transcriptome-wide analysis of baseline gene expression to predict changes in forced expiratory volume in 1 second (ΔFEV1), year's best FEV1 (ΔybFEV1), and body mass index (ΔBMI). Using the top differentially expressed genes, we generated transcriptomic risk scores (TRSs) and evaluated their predictive performance. The study included 40 pwCF ≥6 years of age (mean, 27.7 [SD, 15.1] years; 40% female). After ETI initiation, FEV1 improved by ≥5% in 22 (61.1%) participants, and ybFEV1 improved by ≥5% in 19 (50%). TRSs were constructed using top overexpressed and underexpressed genes for each outcome. Adding the ΔFEV1 TRS to a model with age, sex, and baseline FEV1 increased the area under the receiver operating characteristic curve (AUC) from 0.41 to 0.88, the ΔybFEV1 TRS increased the AUC from 0.51 to 0.88, and the ΔBMI TRS increased the AUC from 0.46 to 0.92. Average accuracy was thus ∼85% in predicting the response to the three outcomes. Results were similar in models further adjusted for F508del zygosity and previous CFTR modulator use. In conclusion, we identified nasal epithelial transcriptomic profiles that help accurately predict changes in FEV1 and BMI with ETI treatment. These novel TRSs could serve as predictive biomarkers for clinical response to modulator treatment in pwCF.
Collapse
Affiliation(s)
- Molin Yue
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
| | - Daniel J. Weiner
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Kristina M. Gaietto
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Franziska J. Rosser
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Christopher M. Qoyawayma
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
| | - Michelle L. Manni
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Michael M. Myerburg
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Joseph M. Pilewski
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Juan C. Celedón
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Wei Chen
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Erick Forno
- Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, and
- Cystic Fibrosis Center, University of Pittsburgh, Pittsburgh, Pennsylvania; and
- Pediatric Pulmonology, Allergy, and Sleep Medicine, School of Medicine and Riley Hospital for Children, Indiana University, Indianapolis, Indiana
| |
Collapse
|
9
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
10
|
Van Asselt AJ, Beck JJ, Finnicum CT, Johnson BN, Kallsen N, Viet S, Huizenga P, Ligthart L, Hottenga JJ, Pool R, der Zee AHMV, Vijverberg SJ, de Geus E, Boomsma DI, Ehli EA, van Dongen J. Epigenetic signatures of asthma: a comprehensive study of DNA methylation and clinical markers. Clin Epigenetics 2024; 16:151. [PMID: 39488688 PMCID: PMC11531182 DOI: 10.1186/s13148-024-01765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Asthma, a complex respiratory disease, presents with inflammatory symptoms in the lungs, blood, and other tissues. We investigated the relationship between DNA methylation and 35 clinical markers of asthma. METHODS The Illumina Infinium EPIC v1 methylation array was used to evaluate 742,442 CpGs in whole blood from 319 participants from 94 families. They were part of the Netherlands Twin Register from families with at least one member suffering from severe asthma. Repeat blood samples were taken after 10 years from 182 individuals. Principal component analysis on the clinical asthma markers yielded ten principal components (PCs) that explained 92.8% of the total variance. We performed epigenome-wide association studies (EWAS) for each of the ten PCs correcting for familial structure and other covariates. RESULTS 221 unique CpGs reached genome-wide significance at timepoint 1 after Bonferroni correction. PC7, which correlated with loadings of eosinophil counts and immunoglobulin levels, accounted for the majority of associations (204). Enrichment analysis via the EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with epigenetic data at a second timepoint identified 49 significant CpGs. EWAS Atlas enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-related traits. Comparing the estimates of all the significant associations identified across the two time points yielded a correlation of 0.81. CONCLUSION We identified 270 unique CpGs that were associated with PC scores generated from 35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was present between effect sizes at the 2 timepoints. Most associations were identified for PC7, which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs have previous associations in earlier studies of asthma and asthma-related traits. The results point to a robust DNA methylation profile as a new, stable biomarker for asthma.
Collapse
Affiliation(s)
- Austin J Van Asselt
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA.
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Jeffrey J Beck
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Casey T Finnicum
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Brandon N Johnson
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Noah Kallsen
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Sarah Viet
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Patricia Huizenga
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Lannie Ligthart
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S J Vijverberg
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eco de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erik A Ehli
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Mishra PE, Han YY, Hill K, Rosser FJ, Forno E, Acosta-Pérez E, Canino G, Celedón JC. Persistent cat ownership and asthma in a longitudinal study of Puerto Rican youth. Ann Allergy Asthma Immunol 2024; 133:545-549.e2. [PMID: 38925527 PMCID: PMC11605777 DOI: 10.1016/j.anai.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Epidemiologic studies have reported conflicting findings for cat or dog exposure and childhood asthma. No study has evaluated whether persistent pet exposure from early life to school age is associated with asthma or allergic sensitization in youth. OBJECTIVE To evaluate whether persistent ownership of a cat or a dog throughout childhood is associated with asthma in Puerto Rican youth, a group disproportionately affected with asthma. METHODS Prospective study of 384 youth who completed a baseline visit at ages 6 to 14 years and a second visit at ages 9 to 20 years. Persistent cat or dog ownership was defined as ownership of a cat or a dog in early life (during pregnancy or the first year of life) at either study visit (at school age). An allergen-specific IgE result was considered positive if more than or equal to 0.35 IU/mL. Logistic regression was used for the multivariable analysis of asthma and allergic sensitization. RESULTS In an analysis adjusting for household income, family history of atopy, persistent overweight or obesity, a persistent unhealthy diet, the time interval between study visits, and other covariates, persistent cat ownership was significantly associated with 68% reduced odds of asthma (95% CI for odds ratio = 0.11-0.92) but not with any allergic sensitization or sensitization to cat allergen. In contrast, persistent dog ownership was not significantly associated with asthma or allergic sensitization. CONCLUSION Among school-aged Puerto Rican youth followed for an average of 5 years, persistent cat ownership from early life to school age was inversely associated with asthma.
Collapse
Affiliation(s)
- Pooja E Mishra
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yueh-Ying Han
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyla Hill
- Department of Public Health Education, North Carolina Central University, Durham, North Carolina
| | - Franziska J Rosser
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
12
|
Branch MC, Weber M, Li MY, Flora P, Ezhkova E. Overview of chromatin regulatory processes during surface ectodermal development and homeostasis. Dev Biol 2024; 515:30-45. [PMID: 38971398 PMCID: PMC11317222 DOI: 10.1016/j.ydbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.
Collapse
Affiliation(s)
- Meagan C Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng-Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Liao Y, Cavalcante RG, Waller JB, Deng F, Scruggs AM, Huang YJ, Atasoy U, Chen Y, Huang SK. Differences in the DNA methylome of T cells in adults with asthma of varying severity. Clin Epigenetics 2024; 16:139. [PMID: 39380119 PMCID: PMC11459694 DOI: 10.1186/s13148-024-01750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity are less well-defined. OBJECTIVE To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. METHODS Peripheral blood T cells from 35 adults with asthma in Beijing, China, were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. RESULTS Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. CONCLUSION These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to differences in clinical indices of asthma.
Collapse
Affiliation(s)
- Yixuan Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Raymond G Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan B Waller
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ulus Atasoy
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, No.49, Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 6301 MSRB III, 1150 W Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Herrera-Luis E, Martin-Almeida M, Pino-Yanes M. Asthma-Genomic Advances Toward Risk Prediction. Clin Chest Med 2024; 45:599-610. [PMID: 39069324 PMCID: PMC11284279 DOI: 10.1016/j.ccm.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Asthma is a common complex airway disease whose prediction of disease risk and most severe outcomes is crucial in clinical practice for adequate clinical management. This review discusses the latest findings in asthma genomics and current obstacles faced in moving forward to translational medicine. While genome-wide association studies have provided valuable insights into the genetic basis of asthma, there are challenges that must be addressed to improve disease prediction, such as the need for diverse representation, the functional characterization of genetic variants identified, variant selection for genetic testing, and refining prediction models using polygenic risk scores.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205, USA.
| | - Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna 38200, Tenerife, Spain
| |
Collapse
|
15
|
Zhu B, Zhang Z, Leung SY, Fan X. NetMIM: network-based multi-omics integration with block missingness for biomarker selection and disease outcome prediction. Brief Bioinform 2024; 25:bbae454. [PMID: 39288230 PMCID: PMC11407451 DOI: 10.1093/bib/bbae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Compared with analyzing omics data from a single platform, an integrative analysis of multi-omics data provides a more comprehensive understanding of the regulatory relationships among biological features associated with complex diseases. However, most existing frameworks for integrative analysis overlook two crucial aspects of multi-omics data. Firstly, they neglect the known dependencies among biological features that exist in highly credible biological databases. Secondly, most existing integrative frameworks just simply remove the subjects without full omics data to handle block missingness, resulting in decreasing statistical power. To overcome these issues, we propose a network-based integrative Bayesian framework for biomarker selection and disease outcome prediction based on multi-omics data. Our framework utilizes Dirac spike-and-slab variable selection prior to identifying a small subset of biomarkers. The incorporation of gene pathway information improves the interpretability of feature selection. Furthermore, with the strategy in the FBM (stand for "full Bayesian model with missingness") model where missing omics data are augmented via a mechanistic model, our framework handles block missingness in multi-omics data via a data augmentation approach. The real application illustrates that our approach, which incorporates existing gene pathway information and includes subjects without DNA methylation data, results in more interpretable feature selection results and more accurate predictions.
Collapse
Affiliation(s)
- Bencong Zhu
- Department of Statistics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhen Zhang
- Department of Statistics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Xiaodan Fan
- Department of Statistics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
16
|
Van Asselt AJ, Beck JJ, Johnson BN, Finnicum CT, Kallsen N, Viet S, Huizenga P, Ligthart L, Hottenga JJ, Pool R, Maitland-van der Zee AH, Vijverberg SJ, de Geus E, Boomsma DI, Ehli EA, van Dongen J. Epigenetic Signatures of Asthma: A Comprehensive Study of DNA Methylation and Clinical Markers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310829. [PMID: 39108502 PMCID: PMC11302610 DOI: 10.1101/2024.07.22.24310829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Background Asthma, a complex respiratory disease, presents with inflammatory symptoms in the lungs, blood, and other tissues. We investigated the relationship between DNA methylation and 35 clinical markers of asthma. The Illumina Infinium EPIC v1 methylation array was used to evaluate 742,442 CpGs in whole blood samples from 319 participants. They were part of the Netherlands Twin Register from families with at least one member suffering from severe asthma. Repeat blood samples were taken after 10 years from 182 of these individuals. Principal component analysis (PCA) on the clinical markers yielded ten principal components (PCs) that explained 92.8% of the total variance. We performed epigenome-wide association studies (EWAS) for each of the ten PCs correcting for familial structure and other covariates. Results 221 unique CpGs reached genome-wide significance at timepoint 1 (T1) after Bonferroni correction. PC7 accounted for the majority of associations (204), which correlated with loadings of eosinophil counts and immunoglobulin levels. Enrichment analysis via the EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with epigenetic data at a second timepoint (T2) identified 49 significant CpGs. EWAS Atlas enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-related traits. Comparing the estimates of all the significant associations identified across the two time points (271 in total) yielded a correlation of 0.81. Conclusion We identified 270 unique CpGs that were associated with PC scores generated from 35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was present between effect sizes at the 2 timepoints. Most associations were identified for PC7, which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs have previous associations in earlier studies of asthma and asthma-related traits. The results point to using this robust DNA methylation profile as a new, stable biomarker for asthma.
Collapse
|
17
|
Zhang P, Zheng Z, Sun H, Gao T, Xiao X. A review of common influencing factors and possible mechanisms associated with allergic diseases complicating tic disorders in children. Front Pediatr 2024; 12:1360420. [PMID: 38957776 PMCID: PMC11218626 DOI: 10.3389/fped.2024.1360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past few decades, the incidence of childhood allergic diseases has increased globally, and their impact on the affected child extends beyond the allergy itself. There is evidence of an association between childhood allergic diseases and the development of neurological disorders. Several studies have shown a correlation between allergic diseases and tic disorders (TD), and allergic diseases may be an important risk factor for TD. Possible factors influencing the development of these disorders include neurotransmitter imbalance, maternal anxiety or depression, gut microbial disorders, sleep disturbances, maternal allergic status, exposure to tobacco, and environmental factors. Moreover, gut microbial disturbances, altered immunological profiles, and DNA methylation in patients with allergic diseases may be potential mechanisms contributing to the development of TD. An in-depth investigation of the relationship between allergic diseases and TD in children will be important for preventing and treating TD.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Zhimin Zheng
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Hao Sun
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Tieying Gao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Xuwu Xiao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
18
|
Liao Y, Cavalcante R, Waller J, Deng F, Scruggs A, Huang Y, Atasoy U, Chen Y, Huang S. Differences in the DNA Methylome of T cells in Adults With Asthma of Varying Severity. RESEARCH SQUARE 2024:rs.3.rs-4476948. [PMID: 38946998 PMCID: PMC11213176 DOI: 10.21203/rs.3.rs-4476948/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background DNA methylation plays a critical role in asthma development, but differences in DNA methylation among adults with varying asthma severity or asthma endotypes are less well-defined. Objective To examine how DNA methylomic patterns differ among adults with asthma based on asthma severity and airway inflammation. Methods Peripheral blood T cells from 35 adults with asthma in Beijing, China were serially collected over time (130 samples total) and analyzed for global DNA methylation using the Illumina MethylationEPIC Array. Differential methylation was compared among subjects with varying airway inflammation and severity, as measured by fraction of exhaled nitric oxide, forced expiratory volume in one second (FEV1), and Asthma Control Test (ACT) scores. Results Significant differences in DNA methylation were noted among subjects with different degrees of airway inflammation and asthma severity. These differences in DNA methylation were annotated to genes that were enriched in pathways related to asthma or T cell function and included gene ontology categories related to MHC class II assembly, T cell activation, interleukin (IL)-1, and IL-12. Genes related to P450 drug metabolism, glutathione metabolism, and developmental pathways were also differentially methylated in comparisons between subjects with high vs low FEV1 and ACT. Notable genes that were differentially methylated based on asthma severity included RUNX3, several members of the HLA family, AGT, PTPRC, PTPRJ, and several genes downstream of the JAK2 and TNF signaling pathway. Conclusion These findings demonstrate how adults with asthma of varying severity possess differences in peripheral blood T cell DNA methylation that contribute to the phenotype and severity of their overall disease.
Collapse
|
19
|
Gaietto K, Han YY, Rosser FJ, Acosta-Pérez E, Forno E, Canino G, Celedón JC. Socioeconomic status, diet, and recurrent severe asthma exacerbations in Puerto Rican youth. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100220. [PMID: 38375461 PMCID: PMC10875262 DOI: 10.1016/j.jacig.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 02/21/2024]
Abstract
Background Why Puerto Rican youths have higher rates of severe asthma exacerbations (SAEs) than their non-Hispanic White peers is unclear. Objective We aimed to identify risk factors associated with recurrent SAEs in Puerto Rican youths with asthma. Methods We performed cross-sectional and longitudinal analyses of recurrent SAEs in 209 Puerto Rican youths with asthma who participated in 2 cross-sectional studies approximately 5.2 years apart: the Puerto Rico Genetics of Asthma and Lifestyle study (visit 1, participants aged 6-14 years) and the Epigenetic Variation and Childhood Asthma in Puerto Ricans study (visit 2, participants aged 9-20 years). Recurrent SAEs were defined as at least 2 SAEs in the previous year. Results Of the youths in our study, there were 80 (38.3%) and 47 (22.4%) with recurrent SAEs at visit 1 and visit 2, respectively, and 31 participants (14.8%) had persistent recurrent SAEs (ie, recurrent SAEs at both visits). In multivariable analyses, low household income was significantly associated with 2.4 to 12.3 times increased odds of recurrent SAEs in all analyses, with stronger longitudinal associations. Low parental education level, nonprivate or employer-based health insurance, overweight or obesity, residential proximity to a major road, and low or moderate level of outdoor activity were each significantly associated with recurrent SAEs in at least 1 analysis. Further, persistence of low parental numeracy level, low household income, and an unhealthy diet were each associated with persistent recurrent SAEs. Conclusion In this study of Puerto Rican youths with asthma, persistence of low parental numeracy level, a low household income, and an unhealthy diet were associated with persistent recurrent SAEs. Our findings support policies promoting equity and healthy lifestyles for Puerto Rican children and their families.
Collapse
Affiliation(s)
- Kristina Gaietto
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa
| | - Yueh-Ying Han
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa
| | - Franziska J. Rosser
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan C. Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa
| |
Collapse
|
20
|
Varricchi G, Brightling CE, Grainge C, Lambrecht BN, Chanez P. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J 2024; 63:2301619. [PMID: 38609094 PMCID: PMC11024394 DOI: 10.1183/13993003.01619-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
Asthma is a chronic, heterogeneous disease of the airways, often characterised by structural changes known collectively as airway remodelling. In response to environmental insults, including pathogens, allergens and pollutants, the epithelium can initiate remodelling via an inflammatory cascade involving a variety of mediators that have downstream effects on both structural and immune cells. These mediators include the epithelial cytokines thymic stromal lymphopoietin, interleukin (IL)-33 and IL-25, which facilitate airway remodelling through cross-talk between epithelial cells and fibroblasts, and between mast cells and airway smooth muscle cells, as well as through signalling with immune cells such as macrophages. The epithelium can also initiate airway remodelling independently of inflammation in response to the mechanical stress present during bronchoconstriction. Furthermore, genetic and epigenetic alterations to epithelial components are believed to influence remodelling. Here, we review recent advances in our understanding of the roles of the epithelium and epithelial cytokines in driving airway remodelling, facilitated by developments in genetic sequencing and imaging techniques. We also explore how new and existing therapeutics that target the epithelium and epithelial cytokines could modify airway remodelling.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher E. Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Bart N. Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| |
Collapse
|
21
|
Yang M, Wang M, Zhao X, Xu F, Liang S, Wang Y, Wang N, Sambou ML, Jiang Y, Dai J. DNA methylation marker identification and poly-methylation risk score in prediction of healthspan termination. Epigenomics 2024; 16:461-472. [PMID: 38482663 DOI: 10.2217/epi-2023-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Aim: To elucidate the epigenetic consequences of DNA methylation in healthspan termination (HST), considering the current limited understanding. Materials & methods: Genetically predicted DNA methylation models were established (n = 2478). These models were applied to genome-wide association study data on HST. Then, a poly-methylation risk score (PMRS) was established in 241,008 individuals from the UK Biobank. Results: Of the 63,046 CpGs from the prediction models, 13 novel CpGs were associated with HST. Furthermore, people with high PMRSs showed higher HST risk (hazard ratio: 1.18; 95% CI: 1.13-1.25). Conclusion: The study indicates that DNA methylation may influence HST by regulating the expression of genes (e.g., PRMT6, CTSK). PMRSs have a promising application in discriminating subpopulations to facilitate early prevention.
Collapse
Affiliation(s)
- Meiqi Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyu Zhao
- Department of Statistics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feifei Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shuang Liang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yifan Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Nanxi Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Muhammed Lamin Sambou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center for Cancer Personalized Medicine & China International Cooperation Center for Environment & Human Health, Gusu School, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Collaborative Innovation Center for Cancer Personalized Medicine & China International Cooperation Center for Environment & Human Health, Gusu School, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
22
|
Yue M, Tao S, Gaietto K, Chen W. Omics approaches in asthma research: Challenges and opportunities. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:1-9. [PMID: 39170962 PMCID: PMC11332849 DOI: 10.1016/j.pccm.2024.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 08/23/2024]
Abstract
Asthma, a chronic respiratory disease with a global prevalence of approximately 300 million individuals, presents a significant societal and economic burden. This multifaceted syndrome exhibits diverse clinical phenotypes and pathogenic endotypes influenced by various factors. The advent of omics technologies has revolutionized asthma research by delving into the molecular foundation of the disease to unravel its underlying mechanisms. Omics technologies are employed to systematically screen for potential biomarkers, encompassing genes, transcripts, methylation sites, proteins, and even the microbiome components. This review provides an insightful overview of omics applications in asthma research, with a special emphasis on genetics, transcriptomics, epigenomics, and the microbiome. We explore the cutting-edge methods, discoveries, challenges, and potential future directions in the realm of asthma omics research. By integrating multi-omics and non-omics data through advanced statistical techniques, we aspire to advance precision medicine in asthma, guiding diagnosis, risk assessment, and personalized treatment strategies for this heterogeneous condition.
Collapse
Affiliation(s)
- Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Shiyue Tao
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kristina Gaietto
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Wei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
23
|
Guo X, Bai Y, Jia X, Wu P, Luo L, Wang J, Li H, Guo H, Li J, Guo Z, Yun K, Gao C, Yan J. DNA methylation profiling reveals potential biomarkers of β-lactams induced fatal anaphylactic shock. Forensic Sci Int 2024; 356:111943. [PMID: 38290418 DOI: 10.1016/j.forsciint.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Anaphylaxis is a serious reaction of systemic hypersensitivity with that rapid onset and sudden death. Drug hypersensitivity, particularly induced by β-lactams, is one of the most frequent causes of anaphylaxis in adults. But identification of anaphylactic shock, in forensic sciences recently, is difficult, because it mainly depends on nonspecific characteristic morphological changes, as well as exclusion and circumstantial evidence. Here, we detected DNA methylation signatures of β-lactams-induced fatal anaphylactic shock with the Illumina Infinium Human Methylation EPIC BeadChip, to screen potential forensic biomarkers and reveal the molecular mechanisms of drug-induced anaphylaxis with fatal shock and sudden death. Our results indicated that DNA methylation was associated with β-lactams-induced fatal anaphylactic shock, in which the hypomethylation played a vital role. We found that 1459 differentially methylated positions (DMPs) were mainly involved in β-lactams-induced fatal anaphylactic shock by regulating MAPK and other signaling pathways. 18 DNA methylation signatures that could separate β-lactams-induced anaphylactic shock from healthy individuals were identified. The altered methylation of DMPs can affect the transcription of corresponding genes and promote β-lactams-induced fatal anaphylactic shock. The results suggest that DNA methylation can detect forensic identification markers of drug-induced anaphylaxis with fatal shock and sudden death, and it is an effective method for the forensic diagnosis.
Collapse
Affiliation(s)
- Xiangjie Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China; Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China.
| | - Yaqin Bai
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao Jia
- College of Pharmacy, Nankai University, Tianjin, China
| | - Peng Wu
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Luo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiaqi Wang
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Li
- Institute of Forensic Science of China, Beijing, China
| | - Hualin Guo
- China Astronaut Research and Training Center, Beijing, China
| | - Jianguo Li
- Shanxi Key Laboratory of Drug Toxicology and Drug for Radiation Injury, China Institute for Radiation Protection, Taiyuan, ShanXi, China
| | - Zhongyuan Guo
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keming Yun
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cairong Gao
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Jiangwei Yan
- Department of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
24
|
Shorey-Kendrick LE, McEvoy CT, Milner K, Harris J, Brownsberger J, Tepper RS, Park B, Gao L, Vu A, Morris CD, Spindel ER. Improvements in lung function following vitamin C supplementation to pregnant smokers are associated with buccal DNA methylation at 5 years of age. Clin Epigenetics 2024; 16:35. [PMID: 38413986 PMCID: PMC10900729 DOI: 10.1186/s13148-024-01644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND We previously reported in the "Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function" randomized clinical trial (RCT) that vitamin C (500 mg/day) supplementation to pregnant smokers is associated with improved respiratory outcomes that persist through 5 years of age. The objective of this study was to assess whether buccal cell DNA methylation (DNAm), as a surrogate for airway epithelium, is associated with vitamin C supplementation, improved lung function, and decreased occurrence of wheeze. METHODS We conducted epigenome-wide association studies (EWAS) using Infinium MethylationEPIC arrays and buccal DNAm from 158 subjects (80 placebo; 78 vitamin C) with pulmonary function testing (PFT) performed at the 5-year visit. EWAS were performed on (1) vitamin C treatment, (2) forced expiratory flow between 25 and 75% of expired volume (FEF25-75), and (3) offspring wheeze. Models were adjusted for sex, race, study site, gestational age at randomization (≤ OR > 18 weeks), proportion of epithelial cells, and latent covariates in addition to child length at PFT in EWAS for FEF25-75. We considered FDR p < 0.05 as genome-wide significant and nominal p < 0.001 as candidates for downstream analyses. Buccal DNAm measured in a subset of subjects at birth and near 1 year of age was used to determine whether DNAm signatures originated in utero, or emerged with age. RESULTS Vitamin C treatment was associated with 457 FDR significant (q < 0.05) differentially methylated CpGs (DMCs; 236 hypermethylated; 221 hypomethylated) and 53 differentially methylated regions (DMRs; 26 hyper; 27 hypo) at 5 years of age. FEF25-75 was associated with one FDR significant DMC (cg05814800), 1,468 candidate DMCs (p < 0.001), and 44 DMRs. Current wheeze was associated with 0 FDR-DMCs, 782 candidate DMCs, and 19 DMRs (p < 0.001). In 365/457 vitamin C FDR significant DMCs at 5 years of age, there was no significant interaction between time and treatment. CONCLUSIONS Vitamin C supplementation to pregnant smokers is associated with buccal DNA methylation in offspring at 5 years of age, and most methylation signatures appear to be persistent from the prenatal period. Buccal methylation at 5 years was also associated with current lung function and occurrence of wheeze, and these functionally associated loci are enriched for vitamin C associated loci. Clinical trial registration ClinicalTrials.gov, NCT01723696 and NCT03203603.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Cindy T McEvoy
- Department of Pediatrics, Pape Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kristin Milner
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julia Harris
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julie Brownsberger
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Robert S Tepper
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byung Park
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Annette Vu
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Cynthia D Morris
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| |
Collapse
|
25
|
Dessie EY, Ding L, Mersha TB. Integrative analysis identifies gene signatures mediating the effect of DNA methylation on asthma severity and lung function. Clin Epigenetics 2024; 16:15. [PMID: 38245772 PMCID: PMC10800055 DOI: 10.1186/s13148-023-01611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/02/2023] [Indexed: 01/22/2024] Open
Abstract
DNA methylation (DNAm) changes play a key role in regulating gene expression in asthma. To investigate the role of epigenetics and transcriptomics change in asthma, we used publicly available DNAm (asthmatics, n = 96 and controls, n = 46) and gene expression (asthmatics, n = 79 and controls, n = 39) data derived from bronchial epithelial cells (BECs). We performed differential methylation/expression and weighted co-methylation/co-expression network analyses to identify co-methylated and co-expressed modules associated with asthma severity and lung function. For subjects with both DNAm and gene expression data (asthmatics, n = 79 and controls, n = 39), machine-learning technique was used to prioritize CpGs and differentially expressed genes (DEGs) for asthma risk prediction, and mediation analysis was used to uncover DEGs that mediate the effect of DNAm on asthma severity and lung function in BECs. Finally, we validated CpGs and their associated DEGs and the asthma risk prediction model in airway epithelial cells (AECs) dataset. The asthma risk prediction model based on 18 CpGs and 28 DEGs showed high accuracy in both the discovery BEC dataset with area under the receiver operating characteristic curve (AUC) = 0.99 and the validation AEC dataset (AUC = 0.82). Genes in the three co-methylated and six co-expressed modules were enriched in multiple pathways including WNT/beta-catenin signaling and notch signaling. Moreover, we identified 35 CpGs correlated with DEGs in BECs, of which 17 CpGs including cg01975495 (SERPINE1), cg10528482 (SLC9A3), cg25477769 (HNF1A) and cg26639146 (CD9), cg17945560 (TINAGL1) and cg10290200 (FLNC) were replicated in AECs. These DEGs mediate the association between DNAm and asthma severity and lung function. Overall, our study investigated the role of DNAm and gene expression change in asthma and provided an insight into the mechanisms underlying the effects of DNA methylation on asthma, asthma severity and lung function.
Collapse
Affiliation(s)
- Eskezeia Y Dessie
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Wortinger LA, Stavrum AK, Shadrin AA, Szabo A, Rukke SH, Nerland S, Smelror RE, Jørgensen KN, Barth C, Andreou D, Weibell MA, Djurovic S, Andreassen OA, Thoresen M, Ursini G, Agartz I, Le Hellard S. Divergent epigenetic responses to perinatal asphyxia in severe mental disorders. Transl Psychiatry 2024; 14:16. [PMID: 38191519 PMCID: PMC10774425 DOI: 10.1038/s41398-023-02709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Epigenetic modifications influenced by environmental exposures are molecular sources of phenotypic heterogeneity found in schizophrenia and bipolar disorder and may contribute to shared etiopathogenetic mechanisms of these two disorders. Newborns who experienced perinatal asphyxia have suffered reduced oxygen delivery to the brain around the time of birth, which increases the risk of later psychiatric diagnosis. This study aimed to investigate DNA methylation in blood cells for associations with a history of perinatal asphyxia, a neurologically harmful condition occurring within the biological environment of birth. We utilized prospective data from the Medical Birth Registry of Norway to identify incidents of perinatal asphyxia in 643 individuals with schizophrenia or bipolar disorder and 676 healthy controls. We performed an epigenome wide association study to distinguish differentially methylated positions associated with perinatal asphyxia. We found an interaction between methylation and exposure to perinatal asphyxia on case-control status, wherein having a history of perinatal asphyxia was associated with an increase of methylation in healthy controls and a decrease of methylation in patients on 4 regions of DNA important for brain development and function. The differentially methylated regions were observed in genes involved in oligodendrocyte survival and axonal myelination and functional recovery (LINGO3); assembly, maturation and maintenance of the brain (BLCAP;NNAT and NANOS2) and axonal transport processes and neural plasticity (SLC2A14). These findings are consistent with the notion that an opposite epigenetic response to perinatal asphyxia, in patients compared with controls, may contribute to molecular mechanisms of risk for schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Anne-Kristin Stavrum
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Alexey A Shadrin
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Runar Elle Smelror
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dimitrios Andreou
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Melissa A Weibell
- TIPS-Network for Clinical Research in Psychosis, Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway
- Faculty of Health, Network for Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Srdjan Djurovic
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Marianne Thoresen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Neonatal Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
27
|
Xu Z, Forno E, Sun Y, Manni ML, Han YY, Kim S, Yue M, Vonk JM, Kersten ETM, Acosta-Perez E, Canino G, Koppelman GH, Chen W, Celedón JC. Nasal epithelial gene expression and total IgE in children and adolescents with asthma. J Allergy Clin Immunol 2024; 153:122-131. [PMID: 37742934 PMCID: PMC10842443 DOI: 10.1016/j.jaci.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Little is known about nasal epithelial gene expression and total IgE in youth. OBJECTIVE We aimed to identify genes whose nasal epithelial expression differs by total IgE in youth, and group them into modules that could be mapped to airway epithelial cell types. METHODS We conducted a transcriptome-wide association study of total IgE in 469 Puerto Ricans aged 9 to 20 years who participated in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study, separately in all subjects and in those with asthma. We then attempted to replicate top findings for each analysis using data from 3 cohorts. Genes with a Benjamini-Hochberg-adjusted P value of less than .05 in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study and a P value of less than .05 in the same direction of association in 1 or more replication cohort were considered differentially expressed genes (DEGs). DEGs for total IgE in subjects with asthma were further dissected into gene modules using coexpression analysis, and such modules were mapped to specific cell types in airway epithelia using public single-cell RNA-sequencing data. RESULTS A higher number of DEGs for total IgE were identified in subjects with asthma (n = 1179 DEGs) than in all subjects (n = 631 DEGs). In subjects with asthma, DEGs were mapped to 11 gene modules. The top module for positive correlation with total IgE was mapped to myoepithelial and mucus secretory cells in lower airway epithelia and was regulated by IL-4, IL5, IL-13, and IL-33. Within this module, hub genes included CDH26, FETUB, NTRK2, CCBL1, CST1, and CST2. Furthermore, an enrichment analysis showed overrepresentation of genes in signaling pathways for synaptogenesis, IL-13, and ferroptosis, supporting interactions between interleukin- and acetylcholine-induced responses. CONCLUSIONS Our findings for nasal epithelial gene expression support neuroimmune coregulation of total IgE in youth with asthma.
Collapse
Affiliation(s)
- Zhongli Xu
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Michelle L Manni
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Yueh Ying Han
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Soyeon Kim
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Molin Yue
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elin T M Kersten
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute of Puerto Rico, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute of Puerto Rico, University of Puerto Rico, San Juan, Puerto Rico; Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Wei Chen
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
28
|
Brown AP, Parameswaran S, Cai L, Elston S, Pham C, Barski A, Weirauch MT, Ji H. TET1 regulates responses to house dust mite by altering chromatin accessibility, DNA methylation, and gene expression in airway epithelial cells. RESEARCH SQUARE 2023:rs.3.rs-3726852. [PMID: 38168374 PMCID: PMC10760239 DOI: 10.21203/rs.3.rs-3726852/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Previous studies have identified TET1 as a potential key regulator of genes linked to asthma. TET1 has been shown to transcriptionally respond to house dust mite extract, an allergen known to directly cause allergic asthma development, and regulate the expression of genes involved in asthma. How TET1 regulates expression of these genes, however, is unknown. TET1 is a DNA demethylase; therefore, most prior research on TET1-based gene regulation has focused on how TET1 affects methylation. However, TET1 can also interact directly with transcription factors and histone modifiers to regulate gene expression. Understanding how TET1 regulates expression to contribute to allergic responses and asthma development thus requires a comprehensive approach. To this end, we measured mRNA expression, DNA methylation, chromatin accessibility and histone modifications in control and TET1 knockdown human bronchial epithelial cells treated or untreated with house dust mite extract. Results Throughout our analyses, we detected strong similarities between the effects of TET1 knockdown alone and the effects of HDM treatment alone. One especially striking pattern was that both TET1 knockdown and HDM treatment generally led to decreased chromatin accessibility at largely the same genomic loci. Transcription factor enrichment analyses indicated that altered chromatin accessibility following the loss of TET1 may affect, or be affected by, CTCF and CEBP binding. TET1 loss also led to changes in DNA methylation, but these changes were generally in regions where accessibility was not changing. Conclusions TET1 regulates gene expression through different mechanisms (DNA methylation and chromatin accessibility) in different parts of the genome in the airway epithelial cells, which mediates inflammatory responses to allergen. Collectively, our data suggest novel molecular mechanisms through which TET1 regulates critical pathways following allergen challenges and contributes to the development of asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Ji
- University of California Davis
| |
Collapse
|
29
|
Lima DDS, de Morais RV, Rechenmacher C, Michalowski MB, Goldani MZ. Epigenetics, hypersensibility and asthma: what do we know so far? Clinics (Sao Paulo) 2023; 78:100296. [PMID: 38043345 DOI: 10.1016/j.clinsp.2023.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 12/05/2023] Open
Abstract
In this review, we describe recent advances in understanding the relationship between epigenetic changes, especially DNA methylation (DNAm), with hypersensitivity and respiratory disorders such as asthma in childhood. It is clearly described that epigenetic mechanisms can induce short to long-term changes in cells, tissues, and organs. Through the growing number of studies on the Origins of Health Development and Diseases, more and more data exist on how environmental and genomic aspects in early life can induce allergies and asthma. The lack of biomarkers, standardized assays, and access to more accessible tools for data collection and analysis are still a challenge for future studies. Through this review, the authors draw a panorama with the available information that can assist in the establishment of an epigenetic approach for the risk analysis of these pathologies.
Collapse
Affiliation(s)
- Douglas da Silva Lima
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rahuany Velleda de Morais
- Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ciliana Rechenmacher
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mariana Bohns Michalowski
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Serviço de Oncologia Pediátrica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Marcelo Zubaran Goldani
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Pediatria Translacional, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
30
|
Mishra PE, Melén E, Koppelman GH, Celedón JC. T2-low asthma in school-aged children: unacknowledged and understudied. THE LANCET. RESPIRATORY MEDICINE 2023; 11:1044-1045. [PMID: 38030372 PMCID: PMC11627064 DOI: 10.1016/s2213-2600(23)00369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Pooja E Mishra
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Erik Melén
- Department of Clinical Science and Education, Karolinska Institute, Stockholm, Sweden; Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology and GRIAC Research Institute, Groningen, The Netherlands
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
31
|
Kim S, Qin Y, Park HJ, Yue M, Xu Z, Forno E, Chen W, Celedón JC. Methyl-TWAS: A powerful method for in silico transcriptome-wide association studies (TWAS) using long-range DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566586. [PMID: 38014125 PMCID: PMC10680683 DOI: 10.1101/2023.11.10.566586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In silico transcriptome-wide association studies (TWAS) are commonly used to test whether expression of specific genes is linked to a complex trait. However, genotype-based in silico TWAS such as PrediXcan, exhibit low prediction accuracy for a majority of genes because genotypic data lack tissue- and disease-specificity and are not affected by the environment. Because methylation is tissue-specific and, like gene expression, can be modified by environment or disease status, methylation should predict gene expression with more accuracy than SNPs. Therefore, we propose Methyl-TWAS, the first approach that utilizes long-range methylation markers to impute gene expression for in silico TWAS through penalized regression. Methyl-TWAS 1) predicts epigenetically regulated/associated expression (eGReX), which incorporates tissue-specific expression and both genetically- (GReX) and environmentally-regulated expression to identify differentially expressed genes (DEGs) that could not be identified by genotype-based methods; and 2) incorporates both cis- and trans- CpGs, including various regulatory regions to identify DEGs that would be missed using cis- methylation only. Methyl-TWAS outperforms PrediXcan and two other methods in imputing gene expression in the nasal epithelium, particularly for immunity-related genes and DEGs in atopic asthma. Methyl-TWAS identified 3,681 (85.2%) of the 4,316 DEGs identified in a previous TWAS of atopic asthma using measured expression, while PrediXcan could not identify any gene. Methyl-TWAS also outperforms PrediXcan for expression imputation as well as in silico TWAS in white blood cells. Methyl-TWAS is a valuable tool for in silico TWAS, leveraging a growing body of publicly available genome-wide DNA methylation data for a variety of human tissues.
Collapse
Affiliation(s)
- Soyeon Kim
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yidi Qin
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hyun Jung Park
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhongli Xu
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C. Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Konrad H, Jürgens L, Hartung B, Poetsch M. More than just blood, saliva, or sperm-setup of a workflow for body fluid identification by DNA methylation analysis. Int J Legal Med 2023; 137:1683-1692. [PMID: 37535091 PMCID: PMC10567870 DOI: 10.1007/s00414-023-03069-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
The determination of cellular origin of DNA is a useful method in forensic genetics and complements identification of the DNA donor by STR analysis, since it could provide helpful information for the reconstruction of crime scenes and verify or disprove the descriptions of involved people. There already exist several rapid/pre-tests for several secretions (blood, sperm secretion, saliva, and urine), RNA-based expression analyses (blood, menstrual blood, saliva, vaginal secretion, nasal secretion, and sperm secretion), or specific CpG methylation analyses (nasal blood, blood, saliva, vaginal secretion, nasal secretion, and sperm secretion) for determining the cell type.To identify and to discriminate seven different body fluids and mixtures thereof in a simple workflow from each other, assays based on specific methylation patterns at several CpGs combined with pre-/rapid tests were set up in this study. For each of the seven secretions listed above, we selected the CpG marker achieving the highest possible discrimination (out of 30 markers tested). Validation studies confirmed a definite identification for saliva, vaginal secretion, and semen secretion in 100% of samples as well as discrimination from all other secretions. Moreover, the unambiguously correctly determined proportion of nasal samples, blood and menstrual blood varied between 61% (nasal blood) and 85% (nasal secretion).In summary, our workflow proved to be an easy and useful tool in forensic analysis for the identification and discrimination of seven different body fluids often found at a crime scene.
Collapse
Affiliation(s)
- Helen Konrad
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Leandra Jürgens
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Benno Hartung
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| |
Collapse
|
33
|
Melén E, Lambrecht BN, Lloyd CM, Rothenberg ME, Kabashima K, Luciani F, Coquet JM, Ober C, Nawijn MC, Platts-Mills T, von Mutius E. A conversation on allergy: recognizing the past and looking to the future. Immunol Cell Biol 2023; 101:936-946. [PMID: 37688499 DOI: 10.1111/imcb.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Allergy is an ever-evolving group of disorders, which includes asthma, atopic dermatitis, rhinitis and food allergies and that currently affects over 1 billion people worldwide. This group of disorders has exploded in incidence since around the start of the 20th century, implying that genetics is not solely responsible for its development but that environmental factors have an important role. Here, Fabio Luciani and Jonathan Coquet, in their role as editors at Immunology & Cell Biology, asked nine prominent researchers in the field of allergy to define the term 'allergy', discuss the role of genetics and the environment, nominate the most important discoveries of the past decade and describe the best strategies to combat allergy at the population level going forward.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Clare M Lloyd
- National Heart & Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fabio Luciani
- UNSW Sydney, School of Medical Sciences, Kirby Institute, Sydney, NSW, Australia
| | - Jonathan M Coquet
- Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, GRIAC Research Institute, Groningen, The Netherlands
| | | | - Erika von Mutius
- Ludwig Maximilians University Munich, Institute of Asthma and Allergy Prevention at Helmholtz Centre Munich, Munich, Germany
| |
Collapse
|
34
|
Kim S, Xu Z, Forno E, Qin Y, Park HJ, Yue M, Yan Q, Manni ML, Acosta-Pérez E, Canino G, Chen W, Celedón JC. Cis- and trans-eQTM analysis reveals novel epigenetic and transcriptomic immune markers of atopic asthma in airway epithelium. J Allergy Clin Immunol 2023; 152:887-898. [PMID: 37271320 PMCID: PMC10592527 DOI: 10.1016/j.jaci.2023.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Expression quantitative trait methylation (eQTM) analyses uncover associations between DNA methylation markers and gene expression. Most eQTM analyses of complex diseases have focused on cis-eQTM pairs (within 1 megabase). OBJECTIVES This study sought to identify cis- and trans-methylation markers associated with gene expression in airway epithelium from youth with and without atopic asthma. METHODS In this study, the investigators conducted both cis- and trans-eQTM analyses in nasal (airway) epithelial samples from 158 Puerto Rican youth with atopic asthma and 100 control subjects without atopy or asthma. The investigators then attempted to replicate their findings in nasal epithelial samples from 2 studies of children, while also examining whether their results in nasal epithelium overlap with those from an eQTM analysis in white blood cells from the Puerto Rican subjects. RESULTS This study identified 9,108 cis-eQTM pairs and 2,131,500 trans-eQTM pairs. Trans-associations were significantly enriched for transcription factor and microRNA target genes. Furthermore, significant cytosine-phosphate-guanine sites (CpGs) were differentially methylated in atopic asthma and significant genes were enriched for genes differentially expressed in atopic asthma. In this study, 50.7% to 62.6% of cis- and trans-eQTM pairs identified in Puerto Rican youth were replicated in 2 smaller cohorts at false discovery rate-adjusted P < .1. Replicated genes in the trans-eQTM analysis included biologically plausible asthma-susceptibility genes (eg, HDC, NLRP3, ITGAE, CDH26, and CST1) and are enriched in immune pathways. CONCLUSIONS Studying both cis- and trans-epigenetic regulation of airway epithelial gene expression can identify potential causal and regulatory pathways or networks for childhood asthma. Trans-eQTM CpGs may regulate gene expression in airway epithelium through effects on transcription factor and microRNA target genes.
Collapse
Affiliation(s)
- Soyeon Kim
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Zhongli Xu
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Yidi Qin
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Hyun Jung Park
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, NY
| | - Michelle L Manni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
35
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
36
|
Song YP, Tang MF, Leung ASY, Tao KP, Chan OM, Wong GWK, Chan PKS, Chan RWY, Leung TF. Interactive effects between CDHR3 genotype and rhinovirus species for diagnosis and severity of respiratory tract infections in hospitalized children. Microbiol Spectr 2023; 11:e0118123. [PMID: 37750685 PMCID: PMC10581227 DOI: 10.1128/spectrum.01181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Rhinovirus (RV) is the leading pathogen causing childhood wheezing, with rhinovirus C (RV-C) species reported to cause asthma exacerbation. Allele A of single-nucleotide polymorphism (SNP) CDHR3_rs6967330 upregulates epithelial expression of RV-C receptors which results in more severe asthma exacerbations in children. Nevertheless, there are limited data on interactions between CDHR3 variants and their impact on severity of RV-related pediatric respiratory tract infections (RTIs). Medical records of RV-related RTIs in children aged below 18 years who were hospitalized in two public hospitals in 2015-2016 were independently reviewed by two paediatricians. Archived nasopharyngeal aspirates were retrieved for RV detection and sequencing as well as CDHR3 genotyping. HaploView v.5.0 and generalized multifactor dimensionality reduction (GMDR) analysis were employed for haplotypic assignment and gene-environment interaction analyses. Among 1019 studied cases, our results confirmed the relationship between RV-C species and more severe RTIs. Besides the top risk variant rs6967330-A, we identified rs140154310-T to be associated with RV-C susceptibility under the additive model [odds ratio (OR) 2.53, 95% CI 1.15-5.56; P = 0.021]. Rs140154310 was associated with wheezing illness (OR 2.38, 95% CI 1.12-5.04; P = 0.024), with such association being stronger in subjects who wheezed due to RV-C infections (OR 2.71, 95% CI 1.32-5.58; P = 0.007). Haplotype GAG constructed from rs4730125, rs6967330, and rs73195665 was associated with increased risk of RV-C infection (OR 1.71, 95% CI 1.11-2.65; P = 0.016) and oxygen supplementation (OR 1.93, 95% CI 1.13-3.30; P = 0.016). GMDR analyses revealed epistatic interaction between rs140154310 and rs6967330 of CDHR3 for RV-C infection (P = 0.001), RV-C-associated lower RTI (P = 0.004), and RV-C-associated wheeze (P = 0.007). There was synergistic gene-environmental interaction between rs3887998 and RV-C for more severe clinical outcomes (P < 0.001). To conclude, rs140154310-T is another risk variant for RV-C susceptibility and more severe RTIs. Synergistic epistatic interaction is found between CDHR3 SNPs and RV-C for RTI severity, which is likely mediated by susceptibility to RV-C. Haplotypic analysis and GMDR should be included in identifying prediction models of CDHR3 for childhood asthma and RTIs. IMPORTANCE This case-control study investigated the interaction between CDHR3 genotypes and rhinovirus (RV) species on disease severity in Hong Kong children hospitalized for respiratory tract infection (RTI). There were synergistic effects between RV-C and CDHR3 SNPs for RTI severity, which was mainly driven by RV-C. Specifically, rs6967330 and rs140154310 alone and their epistatic interaction were associated with RV-C-related and severe RTIs in our subjects. Therefore, genotyping of CDHR3 SNPs may help physicians formulate prediction models for severity of RV-associated RTIs.
Collapse
Affiliation(s)
- Yu P. Song
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Man F. Tang
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Agnes S. Y. Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin P. Tao
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
- The Chinese University of Hong Kong-University Medical Center Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Oi M. Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gary W. K. Wong
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Paul K. S. Chan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Renee W. Y. Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
- The Chinese University of Hong Kong-University Medical Center Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting F. Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
- The Chinese University of Hong Kong-University Medical Center Utrecht Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Zhu Z, Li Y, Freishtat RJ, Celedón JC, Espinola JA, Harmon B, Hahn A, Camargo CA, Liang L, Hasegawa K. Epigenome-wide association analysis of infant bronchiolitis severity: a multicenter prospective cohort study. Nat Commun 2023; 14:5495. [PMID: 37679381 PMCID: PMC10485022 DOI: 10.1038/s41467-023-41300-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Bronchiolitis is the most common lower respiratory infection in infants, yet its pathobiology remains unclear. Here we present blood DNA methylation data from 625 infants hospitalized with bronchiolitis in a 17-center prospective study, and associate them with disease severity. We investigate differentially methylated CpGs (DMCs) for disease severity. We characterize the DMCs based on their association with cell and tissues types, biological pathways, and gene expression. Lastly, we also examine the relationships of severity-related DMCs with respiratory and immune traits in independent cohorts. We identify 33 DMCs associated with severity. These DMCs are differentially methylated in blood immune cells. These DMCs are also significantly enriched in multiple tissues (e.g., lung) and cells (e.g., small airway epithelial cells), and biological pathways (e.g., interleukin-1-mediated signaling). Additionally, these DMCs are associated with respiratory and immune traits (e.g., asthma, lung function, IgE levels). Our study suggests the role of DNA methylation in bronchiolitis severity.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yijun Li
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Vasileva D, Greenwood CMT, Daley D. A Review of the Epigenetic Clock: Emerging Biomarkers for Asthma and Allergic Disease. Genes (Basel) 2023; 14:1724. [PMID: 37761864 PMCID: PMC10531327 DOI: 10.3390/genes14091724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
DNA methylation (DNAm) is a dynamic, age-dependent epigenetic modification that can be used to study interactions between genetic and environmental factors. Environmental exposures during critical periods of growth and development may alter DNAm patterns, leading to increased susceptibility to diseases such as asthma and allergies. One method to study the role of DNAm is the epigenetic clock-an algorithm that uses DNAm levels at select age-informative Cytosine-phosphate-Guanine (CpG) dinucleotides to predict epigenetic age (EA). The difference between EA and calendar age (CA) is termed epigenetic age acceleration (EAA) and reveals information about the biological capacity of an individual. Associations between EAA and disease susceptibility have been demonstrated for a variety of age-related conditions and, more recently, phenotypes such as asthma and allergic diseases, which often begin in childhood and progress throughout the lifespan. In this review, we explore different epigenetic clocks and how they have been applied, particularly as related to childhood asthma. We delve into how in utero and early life exposures (e.g., smoking, air pollution, maternal BMI) result in methylation changes. Furthermore, we explore the potential for EAA to be used as a biomarker for asthma and allergic diseases and identify areas for further study.
Collapse
Affiliation(s)
- Denitsa Vasileva
- Centre for Heart Lung Innovation, University of British Columbia and Saint Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
| | - Celia M. T. Greenwood
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada;
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC H3A 0G4, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Denise Daley
- Centre for Heart Lung Innovation, University of British Columbia and Saint Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
- Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
39
|
Gaietto K, Han YY, Forno E, Acosta-Pérez E, Marsland A, Miller GE, Rosser FJ, Chen W, Canino G, Celedón JC. Exposure to violence and asthma in Puerto Rican youth with high Th2 immunity. Pediatr Pulmonol 2023; 58:2289-2297. [PMID: 37191387 PMCID: PMC10858999 DOI: 10.1002/ppul.26483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/22/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Little is known about the determinants of asthma among youth with high T helper 2 (Th2) immunity. We hypothesized that exposure to violence (ETV) and violence-related distress are associated with asthma in children and adolescents with high Th2 immunity. METHODS We analyzed data from Puerto Ricans with high Th2 immunity aged 9-20 years in the Puerto Rico Genetics of Asthma and Lifestyle (PR-GOAL) and the Epigenetic Variation of Childhood Asthma in Puerto Ricans (EVA-PR) studies, and in a prospective study (PROPRA). High Th2-immunity was defined as ≥1 positive allergen-specific IgE and/or a total IgE ≥ 100 IU/mL and/or an eosinophil count ≥ 150 cells/μL. Asthma was defined as physician-diagnosed asthma and current wheeze. ETV and violence-related distress were assessed with the validated ETV Scale and Checklist of Children's Distress Symptoms (CCDS) questionnaires, respectively. RESULTS In multivariable analyses, each 1-point increment in ETV score was significantly associated with 1.13-1.17 times increased odds of asthma in PR-GOAL and in EVA-PR (both at p ≤ 0.01), and each 1-point increment in CCDS score was significantly associated with 1.53-1.54 increased odds of asthma in PR-GOAL and in EVA-PR (both at p ≤ 0.03). Further, a persistently high ETV score was significantly associated with asthma in PROPRA (odds ratio [OR] = 2.83, 95% confidence interval [CI] = 1.10-7.29). Similar results were obtained in a sensitivity analysis using an eosinophil count ≥ 300 cells/μL instead of ≥150 cells/μL to define high Th2 immunity. CONCLUSIONS ETV during childhood is associated with increased risk of persistent or new-onset asthma in youth with high Th2 immunity.
Collapse
Affiliation(s)
- Kristina Gaietto
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yueh-Ying Han
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Anna Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory E. Miller
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Franziska J. Rosser
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan C. Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Zhang C, Zhang H, Tang Q, Zhang J, Wang S, Xie Z, Jiang W. Allergic Rhinitis as an Independent Risk Factor for Postoperative Recurrence of Children Chronic Sinusitis. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1207. [PMID: 37508704 PMCID: PMC10378190 DOI: 10.3390/children10071207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
(1) Background: The recurrence rate of childhood recurrent sinusitis varies widely between 12% and 50%, with the postoperative recurrence risk factors remaining largely unidentified. We sought to enhance the understanding of chronic rhinosinusitis (CRS) via a retrospective observational childhood cohort. (2) Methods: The study recruited 125 cases. Demographic data and univariate and multivariate logistic regression analyses were conducted to investigate potential risk factors of childhood recurrent sinusitis following functional endoscopic sinus surgery (FESS). (3) Results: A postoperative recurrence rate of 21.6% was determined. Among the participants, 21 cases presented a history of allergic rhinitis (AR), with the remaining 104 cases being AR-free. A significantly heightened recurrence rate was noted in those bearing a history of AR compared to their counterparts devoid of such history (p < 0.000). The fully adjusted logistic regression model indicated a 21.04-fold increased risk of postoperative recurrence in childhood CRS bearing a history of AR compared to those without an AR history (p = 0.000), highlighting the history of AR as an independent risk factor for postoperative childhood recurrent sinusitis (p = 0.001); (4) Conclusions: The data implicate AR as an independent risk factor for postoperative childhood recurrent sinusitis.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Kaifu District, Changsha 410008, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hua Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Kaifu District, Changsha 410008, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qingping Tang
- Department of Rehabilitation, Brain Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha 410008, China
| | - Junyi Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Kaifu District, Changsha 410008, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuo Wang
- Department of Pediatric, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhihai Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Kaifu District, Changsha 410008, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Kaifu District, Changsha 410008, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
41
|
Morin A, Thompson EE, Helling BA, Shorey-Kendrick LE, Faber P, Gebretsadik T, Bacharier LB, Kattan M, O'Connor GT, Rivera-Spoljaric K, Wood RA, Barnes KC, Mathias RA, Altman MC, Hansen K, McEvoy CT, Spindel ER, Hartert T, Jackson DJ, Gern JE, McKennan CG, Ober C. A functional genomics pipeline to identify high-value asthma and allergy CpGs in the human methylome. J Allergy Clin Immunol 2023; 151:1609-1621. [PMID: 36754293 PMCID: PMC10859971 DOI: 10.1016/j.jaci.2022.12.828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND DNA methylation of cytosines at cytosine-phosphate-guanine (CpG) dinucleotides (CpGs) is a widespread epigenetic mark, but genome-wide variation has been relatively unexplored due to the limited representation of variable CpGs on commercial high-throughput arrays. OBJECTIVES To explore this hidden portion of the epigenome, this study combined whole-genome bisulfite sequencing with in silico evidence of gene regulatory regions to design a custom array of high-value CpGs. This study focused on airway epithelial cells from children with and without allergic asthma because these cells mediate the effects of inhaled microbes, pollution, and allergens on asthma and allergic disease risk. METHODS This study identified differentially methylated regions from whole-genome bisulfite sequencing in nasal epithelial cell DNA from a total of 39 children with and without allergic asthma of both European and African ancestries. This study selected CpGs from differentially methylated regions, previous allergy or asthma epigenome-wide association studies (EWAS), or genome-wide association study loci, and overlapped them with functional annotations for inclusion on a custom Asthma&Allergy array. This study used both the custom and EPIC arrays to perform EWAS of allergic sensitization (AS) in nasal epithelial cell DNA from children in the URECA (Urban Environment and Childhood Asthma) birth cohort and using the custom array in the INSPIRE [Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure] birth cohort. Each CpG on the arrays was assigned to its nearest gene and its promotor capture Hi-C interacting gene and performed expression quantitative trait methylation (eQTM) studies for both sets of genes. RESULTS Custom array CpGs were enriched for intermediate methylation levels compared to EPIC CpGs. Intermediate methylation CpGs were further enriched among those associated with AS and for eQTMs on both arrays. CONCLUSIONS This study revealed signature features of high-value CpGs and evidence for epigenetic regulation of genes at AS EWAS loci that are robust to race/ethnicity, ascertainment, age, and geography.
Collapse
Affiliation(s)
- Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | | | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Pieter Faber
- Genomics Core, University of Chicago, Chicago, Ill
| | - Tebeb Gebretsadik
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Mass
| | | | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | | | | | - Matthew C Altman
- Systems Immunology Division, Benaroya Research Institute Systems, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash
| | - Kasper Hansen
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Cindy T McEvoy
- Department of Pediatrics, Oregon Health and Science University, Portland, Ore
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Tina Hartert
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Chris G McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pa.
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| |
Collapse
|
42
|
Perez-Garcia J, Herrera-Luis E, Li A, Mak ACY, Huntsman S, Oh SS, Elhawary JR, Eng C, Beckman KB, Hu D, Lorenzo-Diaz F, Lenoir MA, Rodriguez-Santana J, Zaitlen N, Villar J, Borrell LN, Burchard EG, Pino-Yanes M. Multi-omic approach associates blood methylome with bronchodilator drug response in pediatric asthma. J Allergy Clin Immunol 2023; 151:1503-1512. [PMID: 36796456 DOI: 10.1016/j.jaci.2023.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Albuterol is the drug most widely used as asthma treatment among African Americans despite having a lower bronchodilator drug response (BDR) than other populations. Although BDR is affected by gene and environmental factors, the influence of DNA methylation is unknown. OBJECTIVE This study aimed to identify epigenetic markers in whole blood associated with BDR, study their functional consequences by multi-omic integration, and assess their clinical applicability in admixed populations with a high asthma burden. METHODS We studied 414 children and young adults (8-21 years old) with asthma in a discovery and replication design. We performed an epigenome-wide association study on 221 African Americans and replicated the results on 193 Latinos. Functional consequences were assessed by integrating epigenomics with genomics, transcriptomics, and environmental exposure data. Machine learning was used to develop a panel of epigenetic markers to classify treatment response. RESULTS We identified 5 differentially methylated regions and 2 CpGs genome-wide significantly associated with BDR in African Americans located in FGL2 (cg08241295, P = 6.8 × 10-9) and DNASE2 (cg15341340, P = 7.8 × 10-8), which were regulated by genetic variation and/or associated with gene expression of nearby genes (false discovery rate < 0.05). The CpG cg15341340 was replicated in Latinos (P = 3.5 × 10-3). Moreover, a panel of 70 CpGs showed good classification for those with response and nonresponse to albuterol therapy in African American and Latino children (area under the receiver operating characteristic curve for training, 0.99; for validation, 0.70-0.71). The DNA methylation model showed similar discrimination as clinical predictors (P > .05). CONCLUSIONS We report novel associations of epigenetic markers with BDR in pediatric asthma and demonstrate for the first time the applicability of pharmacoepigenetics in precision medicine of respiratory diseases.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Annie Li
- Department of Medicine, University of California, San Francisco, Calif
| | - Angel C Y Mak
- Department of Medicine, University of California, San Francisco, Calif
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, Calif
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Celeste Eng
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Donglei Hu
- Department of Medicine, University of California, San Francisco, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), ULL, Santa Cruz de Tenerife, Spain
| | | | | | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Calif; Department of Computational Medicine, University of California, Los Angeles, Calif
| | - Jesús Villar
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr Negrín, Las Palmas de Gran Canaria, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Luisa N Borrell
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, ULL, La Laguna, Spain.
| |
Collapse
|
43
|
Gutwein A, Han YY, Colón-Semidey A, Alvarez M, Acosta-Pérez E, Forno E, Canino G, Apter A, Celedón JC. Low parental numeracy and severe asthma exacerbations in a prospective study of Puerto Rican youth. Ann Allergy Asthma Immunol 2023; 130:791-796.e2. [PMID: 36893909 PMCID: PMC10247399 DOI: 10.1016/j.anai.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Numeracy is the mathematical knowledge required to understand and act on instructions from health care providers. Whether persistently low parental numeracy is linked to childhood asthma exacerbations is unknown. OBJECTIVE To evaluate whether low parental numeracy at 2 time points is associated with asthma exacerbations and worse lung function in Puerto Rican youth. METHODS Prospective study of 225 youth with asthma in San Juan (PR) who participated in 2 visits approximately 5.3 years apart, with the first at ages 6 to 14 years and the second at ages 9 to 20 years. Parental numeracy was assessed with a modified version of the Asthma Numeracy Questionnaire (score range = 0-3 points), and persistently low parental numeracy was defined as a score less than or equal to 1 point at both visits. Asthma exacerbation outcomes included more than or equal to 1 emergency department (ED) visit, more than or equal to 1 hospitalization, and more than or equal to 1 severe exacerbation (≥1 ED visit or ≥1 hospitalization) for asthma in the year before the second visit. Spirometry was conducted using an EasyOne spirometer (NDD Medical Technologies, Andover, Massachusetts). RESULTS In an analysis adjusting for age, sex, parental education, use of inhaled corticosteroids, and the time between study visits, persistently low parental numeracy was associated with more than or equal to 1 ED visit for asthma (odds ratio [ORs], 2.17; 95% confidence interval [CI], 1.10-4.26), more than or equal to 1 hospitalization for asthma (OR, 3.92; 95% CI, 1.42-10.84), and more than or equal to 1 severe asthma exacerbation (OR, 1.99; 95% CI, 1.01-3.87) in the year before the follow-up visit. Persistently low parental numeracy was not significantly associated with change in lung function measures. CONCLUSION Persistently low parental numeracy is associated with asthma exacerbation outcomes in Puerto Rican youth.
Collapse
Affiliation(s)
- Amanda Gutwein
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yueh-Ying Han
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Angel Colón-Semidey
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Maria Alvarez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Andrea Apter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
44
|
Konrad H, Lawniczek J, Bajramjan C, Weber L, Bajanowski T, Poetsch M. Knife wound or nosebleed-where does the blood at the crime scene come from? Int J Legal Med 2023:10.1007/s00414-023-03012-2. [PMID: 37148347 PMCID: PMC10247842 DOI: 10.1007/s00414-023-03012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Secretion analysis is a useful tool in forensic genetics, since it establishes the (cellular) origin of the DNA prior in addition to the identification of the DNA donor. This information can be crucial for the construction of the crime sequence or verification of statements of people involved in the crime. For some secretions, rapid/pretests already exist (blood, semen, urine, and saliva) or can be determined via published methylation analyses or expression analyses (blood, saliva vaginal secretions, menstrual blood, and semen). To discriminate nasal secretion/blood from other secretions (like oral mucosa/saliva, blood, vaginal secretion, menstrual blood, and seminal fluid), assays based on specific methylation patterns at several CpGs were set up in this study. Out of an initial 54 different CpG markers tested, two markers showed a specific methylation value for nasal samples: N21 and N27 with a methylation mean value of 64.4% ± 17.6% and 33.2% ± 8.7%, respectively. Although identification or discrimination was not possible for all nasal samples (due to partial overlap in methylation values to other secretions), 63% and 26% of the nasal samples could be unambiguously identified and distinguished from the other secretions using the CpG marker N21 and N27, respectively. In combination with a blood pretest/rapid test, a third marker (N10) was able to detect nasal cells in 53% of samples. Moreover, the employment of this pretest increases the proportion of identifiable or discriminable nasal secretion samples using marker N27 to 68%. In summary, our CpG assays proved to be promising tools in forensic analysis for the detection of nasal cells in samples from a crime scene.
Collapse
Affiliation(s)
- Helen Konrad
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Janina Lawniczek
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Christine Bajramjan
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Lisa Weber
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Thomas Bajanowski
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany
| | - Micaela Poetsch
- Institute of Legal Medicine, University Hospital Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| |
Collapse
|
45
|
Kienhorst S, van Aarle MHD, Jöbsis Q, Bannier MAGE, Kersten ETG, Damoiseaux J, van Schayck OCP, Merkus PJFM, Koppelman GH, van Schooten FJ, Smolinska A, Dompeling E. The ADEM2 project: early pathogenic mechanisms of preschool wheeze and a randomised controlled trial assessing the gain in health and cost-effectiveness by application of the breath test for the diagnosis of asthma in wheezing preschool children. BMC Public Health 2023; 23:629. [PMID: 37013496 PMCID: PMC10068201 DOI: 10.1186/s12889-023-15465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The prevalence of asthma-like symptoms in preschool children is high. Despite numerous efforts, there still is no clinically available diagnostic tool to discriminate asthmatic children from children with transient wheeze at preschool age. This leads to potential overtreatment of children outgrowing their symptoms, and to potential undertreatment of children who turn out to have asthma. Our research group developed a breath test (using GC-tof-MS for VOC-analysis in exhaled breath) that is able to predict a diagnosis of asthma at preschool age. The ADEM2 study assesses the improvement in health gain and costs of care with the application of this breath test in wheezing preschool children. METHODS This study is a combination of a multi-centre, parallel group, two arm, randomised controlled trial and a multi-centre longitudinal observational cohort study. The preschool children randomised into the treatment arm of the RCT receive a probability diagnosis (and corresponding treatment recommendations) of either asthma or transient wheeze based on the exhaled breath test. Children in the usual care arm do not receive a probability diagnosis. Participants are longitudinally followed up until the age of 6 years. The primary outcome is disease control after 1 and 2 years of follow-up. Participants of the RCT, together with a group of healthy preschool children, also contribute to the parallel observational cohort study developed to assess the validity of alternative VOC-sensing techniques and to explore numerous other potential discriminating biological parameters (such as allergic sensitisation, immunological markers, epigenetics, transcriptomics, microbiomics) and the subsequent identification of underlying disease pathways and relation to the discriminative VOCs in exhaled breath. DISCUSSION The potential societal and clinical impact of the diagnostic tool for wheezing preschool children is substantial. By means of the breath test, it will become possible to deliver customized and high qualitative care to the large group of vulnerable preschool children with asthma-like symptoms. By applying a multi-omics approach to an extensive set of biological parameters we aim to explore (new) pathogenic mechanisms in the early development of asthma, creating potentially interesting targets for the development of new therapies. TRIAL REGISTRATION Netherlands Trial Register, NL7336, Date registered 11-10-2018.
Collapse
Affiliation(s)
- Sophie Kienhorst
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Moniek H D van Aarle
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Quirijn Jöbsis
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel A G E Bannier
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elin T G Kersten
- Department of Paediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, and GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Onno C P van Schayck
- Department of Family Medicine, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Peter J F M Merkus
- Department of Paediatric Pulmonology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gerard H Koppelman
- Department of Paediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, and GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederik-Jan van Schooten
- Department Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Edward Dompeling
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
46
|
The upper-airway microbiome as a biomarker of asthma exacerbations despite inhaled corticosteroid treatment. J Allergy Clin Immunol 2023; 151:706-715. [PMID: 36343772 DOI: 10.1016/j.jaci.2022.09.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The response to inhaled corticosteroids (ICS) in asthma is affected by the interplay of several factors. Among these, the role of the upper-airway microbiome has been scarcely investigated. We aimed to evaluate the association between the salivary, pharyngeal, and nasal microbiome with asthma exacerbations despite receipt of ICS. METHODS Samples from 250 asthma patients from the Genomics and Metagenomics of Asthma Severity (GEMAS) study treated with ICS were analyzed. Control/case subjects were defined by the absence/presence of asthma exacerbations in the past 6 months despite being treated with ICS. The bacterial microbiota was profiled by sequencing the V3-V4 region of the 16S rRNA gene. Differences between groups were assessed by PERMANOVA and regression models adjusted for potential confounders. A false discovery rate (FDR) of 5% was used to correct for multiple comparisons. Classification models of asthma exacerbations despite ICS treatment were built with machine learning approaches based on clinical, genetic, and microbiome data. RESULTS In nasal and saliva samples, case subjects had lower bacterial diversity (Richness, Shannon, and Faith indices) than control subjects (.007 ≤ P ≤ .037). Asthma exacerbations accounted for 8% to 9% of the interindividual variation of the salivary and nasal microbiomes (.003 ≤ P ≤ .046). Three, 4, and 11 bacterial genera from the salivary, pharyngeal, and nasal microbiomes were differentially abundant between groups (4.09 × 10-12 ≤ FDR ≤ 0.047). Integrating clinical, genetic, and microbiome data showed good discrimination for the development of asthma exacerbations despite receipt of ICS (AUCtraining: 0.82 and AUCvalidation: 0.77). CONCLUSION The diversity and composition of the upper-airway microbiome are associated with asthma exacerbations despite ICS treatment. The salivary microbiome has a potential application as a biomarker of asthma exacerbations despite receipt of ICS.
Collapse
|
47
|
Wu Y, Xu R, Li S, Ming Wong E, Southey MC, Hopper JL, Abramson MJ, Li S, Guo Y. Epigenome-wide association study of short-term temperature fluctuations based on within-sibship analyses in Australian females. ENVIRONMENT INTERNATIONAL 2023; 171:107655. [PMID: 36476687 DOI: 10.1016/j.envint.2022.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Temperature fluctuations can affect human health independent of the effect of mean temperature. However, no study has evaluated whether short-term temperature fluctuations could affect DNA methylation. METHODS Peripheral blood DNA methylation for 479 female siblings of 130 families were analysed. Gridded daily temperatures data were obtained, linked to each participant's home address, and used to calculate nine different metrics of short-term temperature fluctuations: temperature variabilities (TVs) within the day of blood draw and preceding one to seven days (TV 0-1 to TV 0-7), diurnal temperature range (DTR), and temperature change between neighbouring days (TCN). Within-sibship design was used to perform epigenome-wide association analyses, adjusting for daily mean temperatures, and other important covariates (e.g., smoking, alcohol use, cell-type proportions). Differentially methylated regions (DMRs) were further identified. Multiple-testing comparisons with a significant threshold of 0.01 for cytosine-guanine dinucleotides (CpGs) and 0.05 for DMRs were applied. RESULTS Among 479 participants (mean age ± SD, 56.4 ± 7.9 years), we identified significant changes in methylation levels in 14 CpGs and 70 DMRs associated with temperature fluctuations. Almost all identified CpGs were associated with exposure to temperature fluctuations within three days. Differentially methylated signals were mapped to 68 genes that were linked to human diseases such as cancer (e.g., colorectal carcinoma, breast carcinoma, and metastatic neoplasms) and mental disorder (e.g., schizophrenia, mental depression, and bipolar disorder). The top three most significantly enriched gene ontology terms were Response to bacterium (TV 0-3), followed by Hydrolase activity, acting on ester bonds (TCN), and Oxidoreductase activity (TV 0-3). CONCLUSIONS Short-term temperature fluctuations were associated with differentially methylated signals across the human genome, which provides evidence on the potential biological mechanisms underlying the health impact of temperature fluctuations. Future studies are needed to further clarify the roles of DNA methylation in diseases associated with temperature fluctuations.
Collapse
Affiliation(s)
- Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC 3010, Australia; Cancer Epidemiology Division, Cancer Council Victoria, VIC 3004, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shuai Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
48
|
Nasal DNA methylation at three CpG sites predicts childhood allergic disease. Nat Commun 2022; 13:7415. [PMID: 36456559 PMCID: PMC9715628 DOI: 10.1038/s41467-022-35088-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Childhood allergic diseases, including asthma, rhinitis and eczema, are prevalent conditions that share strong genetic and environmental components. Diagnosis relies on clinical history and measurements of allergen-specific IgE. We hypothesize that a multi-omics model could accurately diagnose childhood allergic disease. We show that nasal DNA methylation has the strongest predictive power to diagnose childhood allergy, surpassing blood DNA methylation, genetic risk scores, and environmental factors. DNA methylation at only three nasal CpG sites classifies allergic disease in Dutch children aged 16 years well, with an area under the curve (AUC) of 0.86. This is replicated in Puerto Rican children aged 9-20 years (AUC 0.82). DNA methylation at these CpGs additionally detects allergic multimorbidity and symptomatic IgE sensitization. Using nasal single-cell RNA-sequencing data, these three CpGs associate with influx of T cells and macrophages that contribute to allergic inflammation. Our study suggests the potential of methylation-based allergy diagnosis.
Collapse
|
49
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
50
|
Melén E, Koppelman GH, Vicedo-Cabrera AM, Andersen ZJ, Bunyavanich S. Allergies to food and airborne allergens in children and adolescents: role of epigenetics in a changing environment. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:810-819. [PMID: 35985346 DOI: 10.1016/s2352-4642(22)00215-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases affect millions of children and adolescents worldwide. In this Review, we focus on allergies to food and airborne allergens and provide examples of prevalence trends during a time when climate change is of increasing concern. Profound environmental changes have affected natural systems in terms of biodiversity loss, air pollution, and climate. We discuss the potential links between these changes and allergic diseases in children, and the clinical implications. Several exposures of relevance for allergic disease also correlate with epigenetic changes such as DNA methylation. We propose that epigenetics could be a promising tool by which exposures and hazards related to a changing environment can be captured. Epigenetics might also provide promising biomarkers and help to elucidate the mechanisms related to allergic disease initiation and progress.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology and Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, Netherlands
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | | | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|