1
|
Parrish R, Kheir F. Genomic classifier: biomarker for progression in interstitial lung disease. ERJ Open Res 2025; 11:01013-2024. [PMID: 40337333 PMCID: PMC12053892 DOI: 10.1183/23120541.01013-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 05/09/2025] Open
Abstract
Genomic classifier might serve as a biomarker for disease progression in fibrotic interstitial lung disease https://bit.ly/3YuGjoF.
Collapse
Affiliation(s)
- Raymond Parrish
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Fayez Kheir
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Chung A, Oh A, Durant C, Watson R, Channick J, Fishbein G, Pourzand L, Kim S, Ronaghi R, Oh S, Kim G, Weigt SS. Progression of interstitial lung disease after the Envisia Genomic Classifier. ERJ Open Res 2025; 11:00784-2024. [PMID: 40337340 PMCID: PMC12053734 DOI: 10.1183/23120541.00784-2024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/18/2024] [Indexed: 05/09/2025] Open
Abstract
Background Interstitial lung disease (ILD) represents a heterogenous group of diseases that have substantial morbidity and mortality. The Envisia Genomic Classifier (EGC) is a test that analyses RNA derived from transbronchial biopsy (TBBx) samples to make a positive or negative genomic usual interstitial pneumonitis (UIP) designation. Our study assesses the ability for the EGC to predict progression of disease, with a longer duration of follow-up than previous studies. Methods Patients referred for cryobiopsy for outpatient workup of ILD concurrently had TBBx and EGC testing performed. We performed a retrospective analysis to assess differences in progression of disease between EGC-positive and negative patients, applying Kaplan-Meier survival analysis and log-rank tests. Confidence in ILD diagnosis before and after the EGC result was also noted, and the difference in confidence levels was assessed by a Wilcoxon signed-rank test. Results 82 patient cases were analysed. EGC-positive patients had a shorter progression-free survival (PFS) than EGC-negative patients, (p<0.0001), with 622 versus 1487 median PFS days respectively. EGC-positive patients also had worse progression in the subsets of patients with "indeterminate for UIP" computed tomography (CT) (p=0.0052), "alternative diagnosis" CT (p=0.0144) and non-idiopathic pulmonary fibrosis ILD diagnosis (p=0.0157). Additionally, EGC increased the diagnostic confidence level (p<0.0001). Conclusion EGC positivity predicts worse ILD progression over a sustained follow-up period. The ability to predict worse prediction early in the ILD course without the need for surgical biopsy would have significant clinical impact.
Collapse
Affiliation(s)
- Augustine Chung
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Immunology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Andrea Oh
- Department of Radiologic Sciences, Division of Cardiothoracic Imaging, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Catherine Durant
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Immunology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Richard Watson
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Immunology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Jessica Channick
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Immunology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Greg Fishbein
- Department of Anatomic Pathology, Division of Thoracic Pathology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Lila Pourzand
- Department of Radiologic Sciences, Division of Cardiothoracic Imaging, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Sharon Kim
- College of Letters and Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Reza Ronaghi
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Immunology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Scott Oh
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Immunology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Grace Kim
- Department of Radiologic Sciences, Division of Cardiothoracic Imaging, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - S. Sam Weigt
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Immunology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Tharwani A, Ribeiro Neto ML. Updates in Diagnostic Tools for ILD. J Clin Med 2025; 14:2924. [PMID: 40363955 PMCID: PMC12072319 DOI: 10.3390/jcm14092924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Interstitial lung disease (ILD) is a group of diffuse parenchymal disorders, which are diagnosed in many cases by multidisciplinary discussion (MDD). In some cases, diagnosis can be challenging, and the addition of histopathology can increase diagnostic confidence. The tools to obtain a histopathological sample to diagnose ILD are expanding. In this review, we will discuss the various modalities, their sensitivities and specificities, and procedural complication rates. In this review, we conducted a comprehensive review of literature focusing on emerging and established diagnostic tools for ILD. A systematic search of peer-reviewed publications was performed using PubMed with a focus on clinical trials, retrospective and prospective cohort studies, and systematic reviews. The key diagnostic modalities in focus were genomic classifier (GC), transbronchial cryobiopsy (TBLC), surgical lung biopsy (SLB), endobronchial ultrasound cryobiopsy (EBUS-C), genetic testing, and speckled transthoracic echocardiography (STE). Data extracted from these studies focused on diagnostic yield, specificity, sensitivity, and procedural complication rate. Genomic classifier, a gene-based molecular diagnostic tool, has a high specificity for histological usual interstitial pneumonia (UIP). However, in cases of a negative result, it often results in a need for further invasive sampling by TBLC or SLB. TBLC results in a larger histological sample, which can increase diagnostic yield and increase diagnostic confidence at MDD. Recent prospective trials have compared this modality with SLB and found 63-77% interobserver agreement between pathologists. SLB remains the gold standard with diagnostic yields reported to be more than 90%. EBUS-C has shown promising results increasing diagnostic yield in patients with suspected sarcoidosis or lymphoma. All diagnostic modalities have procedural complications with most common being pneumothorax, bleeding and, rarely, death. Advancements in diagnostic tools for interstitial lung disease (ILD) have significantly improved accuracy. Even though surgical lung biopsy remains the gold standard, the alternative modalities are promising and provide a promising yield with a lower procedural risk.
Collapse
Affiliation(s)
| | - Manuel L. Ribeiro Neto
- Department of Pulmonary Medicine, Integrated Hospital Care Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
4
|
Cadham CJ, Reicher J, Muelly M, Hutton DW. Cost-effectiveness of novel diagnostic tools for idiopathic pulmonary fibrosis in the United States. BMC Health Serv Res 2025; 25:385. [PMID: 40089758 PMCID: PMC11909868 DOI: 10.1186/s12913-025-12506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
OBJECTIVES Novel non-invasive machine learning algorithms may improve accuracy and reduce the need for biopsy when diagnosing idiopathic pulmonary fibrosis (IPF). We conducted a cost-effectiveness analysis of diagnostic strategies for IPF. METHODS We developed a decision analytic model to evaluate diagnostic strategies for IPF in the United States. To assess the full spectrum of costs and benefits, we compared four interventions: a machine learning diagnostic algorithm, a genomic classifier, a biopsy-all strategy, and a treat-all strategy. The analysis was conducted from the health sector perspective with a lifetime horizon. The primary outcome measures were costs, Quality-Adjusted Life-Years (QALYs) gained, and Incremental Cost-Effectiveness Ratios (ICERs) based on the average of 10,000 probabilistic runs of the model. RESULTS Compared to a biopsy-all strategy the machine learning algorithm and genomic classifer reduced diagnostic-related costs by $14,876 and $3,884, respectively. Use of the machine learning algorithm consistently reduced diagnostic costs. When including downstream treatment costs and benefits of anti-fibrotic treatment, the machine learning algorithm had an ICER of $331,069 per QALY gained compared to the biopsy-all strategy. The genomic classifier had a higher ICER of $390,043 per QALY gained, while the treat-all strategy had the highest ICER of $3,245,403 per QALY gained. Results were sensitive to changes in various input parameters including IPF treatment costs, sensitivity and specificity of novel screening tools, and the rate of additional diagnostics following inconclusive results. High treatment costs were found to drive overall cost regardless of the diagnostic method. As treatment costs lowered, the supplemental diagnostic tools became increasingly cost-effective. CONCLUSIONS Novel tools for diagnosing IPF reduced diagnostic costs, while overall incremental cost-effectiveness ratios were high due to treatment costs. New IPF diagnosis approaches may become more favourable with lower-cost treatments for IPF.
Collapse
Affiliation(s)
- Christopher J Cadham
- Department of Health Management and Policy, School of Public Health, University of Michigan, 1420 Washington Heights, Ann Arbor, MI, 48109-2013, USA.
| | | | | | - David W Hutton
- Department of Health Management and Policy, School of Public Health, University of Michigan, 1420 Washington Heights, Ann Arbor, MI, 48109-2013, USA
| |
Collapse
|
5
|
Liu H, Shen J, He C. Advances in idiopathic pulmonary fibrosis diagnosis and treatment. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2025; 3:12-21. [PMID: 40226606 PMCID: PMC11993042 DOI: 10.1016/j.pccm.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Indexed: 04/15/2025]
Abstract
Significant advances have been made in diagnosing and treating idiopathic pulmonary fibrosis (IPF) in the last decade. The incidence and prevalence of IPF are increasing, and morbidity and mortality remain high despite the two Food and Drug Administration (FDA)-approved medications, pirfenidone and nintedanib. Hence, there is an urgent need to develop new diagnostic tools and effective therapeutics to improve early, accurate diagnosis of IPF and halt or reverse the progression of fibrosis with a better safety profile. New diagnostic tools such as transbronchial cryobiopsy and genomic classifier require less tissue and generally have good safety profiles, and they have been increasingly utilized in clinical practice. Advances in artificial intelligence-aided diagnostic software are promising, but challenges remain. Both pirfenidone and nintedanib focus on growth factor-activated pathways to inhibit fibroblast activation. Novel therapies targeting different pathways and cell types (immune and epithelial cells) are being investigated. Biomarker-based personalized medicine approaches are also in clinical trials. This review aims to summarize recent diagnostic and therapeutic development in IPF.
Collapse
Affiliation(s)
- Hongli Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jiaxi Shen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77024, USA
| |
Collapse
|
6
|
Spagnolo P, Kaner RJ, Raghu G. Genomic classifier for usual interstitial pneumonia combined with bronchoalveolar lavage cellular profile: potential use in the clinical management of new onset ILD? Eur Respir J 2025; 65:2500151. [PMID: 40147857 DOI: 10.1183/13993003.00151-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 03/29/2025]
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Robert J Kaner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ganesh Raghu
- Center for ILD, Department of Medicine, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Kam MLW, Tjong ELH, Chaudhary S, Koelsch TL, Pryor JB, Koslow M, Mohning MP, Solomon JJ, Huie TJ, Swigris JJ, Fernández Pérez ER. Development and validation of a clinical, CT, genomic classifier and BAL scoring system for diagnosing idiopathic pulmonary fibrosis. Eur Respir J 2025; 65:2401077. [PMID: 39819571 DOI: 10.1183/13993003.01077-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The utility of incorporating a usual interstitial pneumonia (UIP) genomic classifier (GC) and bronchoalveolar lavage (BAL) cell count analysis alongside traditional clinical-imaging assessment in aiding in the multidisciplinary diagnosis of idiopathic pulmonary fibrosis (IPF) in patients with a non-definite high-resolution computed tomography (HRCT) UIP pattern is uncertain. METHODS We reviewed consecutive adult patients presenting with fibrotic interstitial lung disease (fILD) and a non-definite HRCT UIP pattern who underwent BAL and GC. The initial fILD diagnoses were re-evaluated after bronchoscopy and a final multidisciplinary consensus diagnosis was provided. We created a clinical score by analysing fILD clinical characteristics, GC and BAL results from 139 National Jewish Health patients and validated it at the University of Arizona (n=52). A multivariable model was developed and assessed using receiver operating characteristic curves. RESULTS 43/139 (31%) and 29/52 (56%) patients in the derivation and validation cohort, respectively, were diagnosed with IPF after bronchoscopy, and 85/139 (61%) and 32/52 (61%) had a change in treatment, respectively. Compared to non-IPF, IPF patients had a similar progression-free survival (hazard ratio 1.50, 95% CI 0.76-2.95). The final model assigned a score to eight predictors: age, sex, HRCT probable UIP pattern, exposures, connective tissue disease signs/symptoms, Velcro crackles, GC results and BAL lymphocyte and macrophage counts. The final score demonstrated an area under the curve of 0.90 (95% CI 0.85-0.95) in the derivation cohort and 0.91 (95% CI 0.83-0.99) in the validation cohort. CONCLUSION The clinical-HRCT-BAL-GC IPF score may accurately estimate the post-test probability of IPF in patients with a non-definite HRCT UIP pattern.
Collapse
Affiliation(s)
- Michelle Li Wei Kam
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Interstitial Lung Disease Center, National Jewish Health, Denver, CO, USA
| | - Elysia L H Tjong
- Department of Internal Medicine, University of Arizona, Tucson, AZ, USA
| | - Sachin Chaudhary
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Joseph B Pryor
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Colorado, Denver, CO, USA
| | - Matthew Koslow
- Interstitial Lung Disease Center, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Michael P Mohning
- Interstitial Lung Disease Center, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Joshua J Solomon
- Interstitial Lung Disease Center, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Tristan J Huie
- Interstitial Lung Disease Center, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Jeffrey J Swigris
- Interstitial Lung Disease Center, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Evans R Fernández Pérez
- Interstitial Lung Disease Center, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
8
|
Kim SJ, Cecchini MJ, Woo E, Jayawardena N, Passos DT, Dick FA, Mura M. Spatially resolved gene expression profiles of fibrosing interstitial lung diseases. Sci Rep 2024; 14:26470. [PMID: 39488596 PMCID: PMC11531500 DOI: 10.1038/s41598-024-77469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Fibrosing interstitial lung diseases (ILDs) encompass a diverse range of scarring disorders that lead to progressive lung failure. Previous gene expression profiling studies focused on idiopathic pulmonary fibrosis (IPF) and bulk tissue samples. We employed digital spatial profiling to gain new insights into the spatial resolution of gene expression across distinct lung microenvironments (LMEs) in IPF, chronic hypersensitivity pneumonitis (CHP) and non-specific interstitial pneumonia (NSIP). We identified differentially expressed genes between LMEs within each condition, and across histologically similar regions between conditions. Uninvolved regions in IPF and CHP were distinct from normal controls, and displayed potential therapeutic targets. Hallmark LMEs of each condition retained distinct gene signatures, but these could not be reproduced in matched lung tissue samples. Based on these profiles and unsupervised clustering, we grouped previously unclassified ILD cases into NSIP or CHP. Overall, our work uniquely dissects gene expression profiles between LMEs within and across different types of fibrosing ILDs.
Collapse
Affiliation(s)
- Seung J Kim
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada.
- London Health Sciences Research Institute, London, ON, Canada.
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Elissa Woo
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Nathashi Jayawardena
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
| | - Daniel T Passos
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
- Verspeeten Family Cancer Centre, London, ON, Canada
| | - Frederick A Dick
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Health Sciences Research Institute, London, ON, Canada
- Verspeeten Family Cancer Centre, London, ON, Canada
| | - Marco Mura
- Interstitial Lung Disease Research Laboratory, Lawson Health Research Institute, London, ON, Canada
- Division of Respirology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
9
|
Huang Y, Ma SF, Oldham JM, Adegunsoye A, Zhu D, Murray S, Kim JS, Bonham C, Strickland E, Linderholm AL, Lee CT, Paul T, Mannem H, Maher TM, Molyneaux PL, Strek ME, Martinez FJ, Noth I. Machine Learning of Plasma Proteomics Classifies Diagnosis of Interstitial Lung Disease. Am J Respir Crit Care Med 2024; 210:444-454. [PMID: 38422478 PMCID: PMC11351805 DOI: 10.1164/rccm.202309-1692oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024] Open
Abstract
Rationale: Distinguishing connective tissue disease-associated interstitial lung disease (CTD-ILD) from idiopathic pulmonary fibrosis (IPF) can be clinically challenging. Objectives: To identify proteins that separate and classify patients with CTD-ILD and those with IPF. Methods: Four registries with 1,247 patients with IPF and 352 patients with CTD-ILD were included in analyses. Plasma samples were subjected to high-throughput proteomics assays. Protein features were prioritized using recursive feature elimination to construct a proteomic classifier. Multiple machine learning models, including support vector machine, LASSO (least absolute shrinkage and selection operator) regression, random forest, and imbalanced Random Forest, were trained and tested in independent cohorts. The validated models were used to classify each case iteratively in external datasets. Measurements and Main Results: A classifier with 37 proteins (proteomic classifier 37 [PC37]) was enriched in the biological process of bronchiole development and smooth muscle proliferation and immune responses. Four machine learning models used PC37 with sex and age score to generate continuous classification values. Receiver operating characteristic curve analyses of these scores demonstrated consistent areas under the curve of 0.85-0.90 in the test cohort and 0.94-0.96 in the single-sample dataset. Binary classification demonstrated 78.6-80.4% sensitivity and 76-84.4% specificity in the test cohort and 93.5-96.1% sensitivity and 69.5-77.6% specificity in the single-sample classification dataset. Composite analysis of all machine learning models confirmed 78.2% (194 of 248) accuracy in the test cohort and 82.9% (208 of 251) in the single-sample classification dataset. Conclusions: Multiple machine learning models trained with large cohort proteomic datasets consistently distinguished CTD-ILD from IPF. Many of the identified proteins are involved in immune pathways. We further developed a novel approach for single-sample classification, which could facilitate honing the differential diagnosis of ILD in challenging cases and improve clinical decision making.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Daisy Zhu
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Susan Murray
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John S. Kim
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Catherine Bonham
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Emma Strickland
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Angela L. Linderholm
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Davis, California
| | - Cathryn T. Lee
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Tessy Paul
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Hannah Mannem
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Toby M. Maher
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- Keck Medicine of the University of Southern California, Los Angeles, California; and
| | | | - Mary E. Strek
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | | | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
10
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
11
|
Shao G, Thöne P, Kaiser B, Lamprecht B, Lang D. Functional Improvement at One Year in Fibrotic Interstitial Lung Diseases-Prognostic Value of Baseline Biomarkers and Anti-Inflammatory Therapies. Diagnostics (Basel) 2024; 14:1544. [PMID: 39061678 PMCID: PMC11275397 DOI: 10.3390/diagnostics14141544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The clinical spectrum of fibrotic interstitial lung diseases (ILDs) is highly heterogeneous. We aimed to evaluate the prognostic value of widely available baseline biomarkers for the improvement of lung function in patients with fibrotic ILDs. METHODS This registry-based study included 142 patients with fibrotic ILDs as defined by the presence of reticulation, traction bronchiectasis or honeycombing on initial high-resolution computed tomography (HRCT). Functional improvement at 1 year was defined as a relative increase of 5% in forced vital capacity (FVC) or of 10% in diffusion capacity for carbon monoxide (DLCO). The prognostic value of baseline biomarkers was evaluated for all patients and the subgroup with anti-inflammatory treatment. RESULTS At one year, 44 patients showed improvement while 73 showed disease progression. Multivariate analyses found prognostic significance for age < 60 years (OR 5.4; 95%CI 1.9-15.4; p = 0.002), lactate dehydrogenase (LDH) >250 U/L (OR 2.5; 95%CI 1.1-5.8; p = 0.043) and blood monocyte count < 0.8 G/L (OR 3.5; 95%CI 1.1-11.3; p = 0.034). In 84 patients undergoing anti-inflammatory treatment, multivariate analysis revealed age < 60 years (OR 8.5 (95%CI 2.1-33.4; p = 0.002) as the only significant variable. CONCLUSION Younger age, a higher LDH and lower blood monocyte count predicted functional improvement in fibrotic ILD patients, while in those treated with anti-inflammatory drugs, only age had significant implications.
Collapse
Affiliation(s)
- Guangyu Shao
- Kepler University Hospital, 4020 Linz, Austria (D.L.)
- Faculty of Medicine, Johannes Kepler University, 4040 Linz, Austria
| | - Paul Thöne
- Faculty of Medicine, Johannes Kepler University, 4040 Linz, Austria
| | | | - Bernd Lamprecht
- Kepler University Hospital, 4020 Linz, Austria (D.L.)
- Faculty of Medicine, Johannes Kepler University, 4040 Linz, Austria
| | - David Lang
- Kepler University Hospital, 4020 Linz, Austria (D.L.)
- Faculty of Medicine, Johannes Kepler University, 4040 Linz, Austria
| |
Collapse
|
12
|
Liu M, Zhang Y, Deng L, Pan L, Lu X, Yue R, Niu D, Li S, Sun C, Yao J. Disorders of fatty acid metabolism and imbalance in the ratio of monounsaturated fatty acids promote the development of pulmonary fibrosis. Int Immunopharmacol 2024; 139:112671. [PMID: 39003929 DOI: 10.1016/j.intimp.2024.112671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Although some studies suggested that metabolic abnormalities may contribute to the development of pulmonary fibrosis, there are no studies that have reported a clear causal relationship between them, and the aim of this study was to explore the causal relationship between plasma metabolites and pulmonary fibrosis using Mendelian randomization (MR) combined with metabolomics analysis. METHODS Firstly, we explored the causal relationship between 1400 metabolites and pulmonary fibrosis using MR analysis, and detected plasma metabolites in mice with pulmonary fibrosis using metabolomics technology, thus validating the results of MR analysis. In addition, we again used MR to explore the causal relationship between the results of the differential metabolite KEGG in metabolomics and pulmonary fibrosis. RESULTS A total of 52 metabolites were screened for association with pulmonary fibrosis in the MR analysis of 1400 plasma metabolites with pulmonary fibrosis, based on P < 0.05 for the IVW method, with consistent OR directions for all methods. Four of them were validated in the plasma of mice with pulmonary fibrosis, namely carnitine c18:2 levels (negative correlation), Glutamine degradant levels (positive correlation), Propionylcarnitine (c3) levels (negative correlation), carnitine to palmitoylcarnitine (c16) ratio (negative correlation). In addition, KEGG analysis of plasma differential metabolites revealed that the signaling pathway of biosynthetic of unsaturated fatty acids was most affected in mice with pulmonary fibrosis, and MR analysis showed that imbalance in the ratio of monounsaturated fatty acids was significantly associated with pulmonary fibrosis. CONCLUSIONS Our study suggests that abnormal fatty acid levels due to reduced levels of carnitine-like metabolites, and an imbalance in the ratio of monounsaturated, promote the development of pulmonary fibrosis. This study reveals the marker metabolites and metabolic pathways affecting the development of pulmonary fibrosis to provide a basis for the development of new drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Mingfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | | | - Linkui Deng
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Rujing Yue
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China.
| |
Collapse
|
13
|
Marcoux V, Lok SD, Mondal P, Assayag D, Fisher JH, Shapera S, Morisset J, Manganas H, Fell CD, Hambly N, Cox PG, Kolb M, Gershon AS, To T, Sadatsafavi M, Khalil N, Wong AW, Wilcox PG, Ryerson CJ, Vu T, Johannson KA. Impact of surgical lung biopsy on lung function and survival in patients with idiopathic pulmonary fibrosis in a multi-centre registry cohort. Respirology 2024; 29:596-604. [PMID: 38436522 DOI: 10.1111/resp.14695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Establishing an accurate and timely diagnosis of idiopathic pulmonary fibrosis (IPF) is essential for appropriate management and prognostication. In some cases, surgical lung biopsy (SLB) is performed but carries non-negligible risk. The objective of this retrospective study was to determine if SLB is associated with accelerated lung function decline in patients with IPF using the Canadian Registry for Pulmonary Fibrosis. METHODS Linear mixed models and Cox proportional hazards regression models were used to compare decline in forced vital capacity (FVC)%, diffusion capacity of the lung (DLCO%) and risk of death or lung transplantation between SLB and non-SLB patients. Adjustments were made for baseline age, sex, smoking history, antifibrotic use, and lung function. A similar analysis compared lung function changes 12 months pre- and post-SLB. RESULTS A total of 81 SLB patients and 468 non-SLB patients were included. In the SLB group, the post-biopsy annual FVC% decline was 2.0% (±0.8) in unadjusted, and 2.1% (±0.8) in adjusted models. There was no difference in FVC% decline, DLCO% decline, or time to death or lung transplantation between the two groups, in adjusted or unadjusted models (all p-values >0.07). In the pre-post SLB group, no differences were identified in FVC% decline in unadjusted or adjusted models (p = 0.07 for both). CONCLUSION No association between SLB and lung function decline or risk of death or lung transplantation was identified in this multi-centre study of patients with IPF.
Collapse
Affiliation(s)
- Veronica Marcoux
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Stacey D Lok
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Prosanta Mondal
- Department of Community Health & Epidemiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Deborah Assayag
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jolene H Fisher
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shane Shapera
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Julie Morisset
- Department of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Hélène Manganas
- Department of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Charlene D Fell
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nathan Hambly
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - P Gerard Cox
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Andrea S Gershon
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Teresa To
- The Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohsen Sadatsafavi
- Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nasreen Khalil
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alyson W Wong
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Pearce G Wilcox
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Thao Vu
- Population Health, Quality and Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | - Kerri A Johannson
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Selman M, Pardo A. Idiopathic Pulmonary Fibrosis: From Common Microscopy to Single-Cell Biology and Precision Medicine. Am J Respir Crit Care Med 2024; 209:1074-1081. [PMID: 38289233 DOI: 10.1164/rccm.202309-1573pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/29/2024] [Indexed: 05/02/2024] Open
Affiliation(s)
- Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico; and
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
15
|
Enomoto N. Relationship between idiopathic interstitial pneumonias (IIPs) and connective tissue disease-related interstitial lung disease (CTD-ILD): A narrative review. Respir Investig 2024; 62:465-480. [PMID: 38564878 DOI: 10.1016/j.resinv.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
While idiopathic interstitial pneumonia (IIP) centering on idiopathic pulmonary fibrosis (IPF) is the most prevalent interstitial lung disease (ILD), especially in the older adult population, connective tissue disease (CTD)-related ILD is the second most prevalent ILD. The pathogenesis of IPF is primarily fibrosis, whereas that of other ILDs, particularly CTD-ILD, is mainly inflammation. Therefore, a precise diagnosis is crucial for selecting appropriate treatments, such as antifibrotic or immunosuppressive agents. In addition, some patients with IIP have CTD-related features, such as arthritis and skin eruption, but do not meet the criteria for any CTD, this is referred to as interstitial pneumonia with autoimmune features (IPAF). IPAF is closely associated with idiopathic nonspecific interstitial pneumonia (iNSIP) and cryptogenic organizing pneumonia (COP). Furthermore, patients with iNSIP or those with NSIP with OP overlap frequently develop polymyositis/dermatomyositis after the diagnosis of IIP. Acute exacerbation of ILD, the most common cause of death, occurs more frequently in patients with IPF than in those with other ILDs. Although acute exacerbation of CTD-ILD occurs at a low rate of incidence, patients with rheumatoid arthritis, microscopic polyangiitis, or systemic sclerosis experience more acute exacerbation of CTD-ILD than those with other CTD. In this review, the features of each IIP, focusing on CTD-related signatures, are summarized, and the pathogenesis and appropriate treatments to improve the prognoses of patients with various ILDs are discussed.
Collapse
Affiliation(s)
- Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan; Health Administration Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
16
|
Ahmad Y, Mooney J, Allen IE, Seaman J, Kalra A, Muelly M, Reicher J. A Machine Learning System to Indicate Diagnosis of Idiopathic Pulmonary Fibrosis Non-Invasively in Challenging Cases. Diagnostics (Basel) 2024; 14:830. [PMID: 38667475 PMCID: PMC11049625 DOI: 10.3390/diagnostics14080830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Radiologic usual interstitial pneumonia (UIP) patterns and concordant clinical characteristics define a diagnosis of idiopathic pulmonary fibrosis (IPF). However, limited expert access and high inter-clinician variability challenge early and pre-invasive diagnostic sensitivity and differentiation of IPF from other interstitial lung diseases (ILDs). We investigated a machine learning-driven software system, Fibresolve, to indicate IPF diagnosis in a heterogeneous group of 300 patients with interstitial lung disease work-up in a retrospective analysis of previously and prospectively collected registry data from two US clinical sites. Fibresolve analyzed cases at the initial pre-invasive assessment. An Expert Clinical Panel (ECP) and three panels of clinicians with varying experience analyzed the cases for comparison. Ground Truth was defined by separate multi-disciplinary discussion (MDD) with the benefit of surgical pathology results and follow-up. Fibresolve met both pre-specified co-primary endpoints of sensitivity superior to ECP and significantly greater specificity (p = 0.0007) than the non-inferior boundary of 80.0%. In the key subgroup of cases with thin-slice CT and atypical UIP patterns (n = 124), Fibresolve's diagnostic yield was 53.1% [CI: 41.3-64.9] (versus 0% pre-invasive clinician diagnostic yield in this group), and its specificity was 85.9% [CI: 76.7-92.6%]. Overall, Fibresolve was found to increase the sensitivity and diagnostic yield for IPF among cases of patients undergoing ILD work-up. These results demonstrate that in combination with standard clinical assessment, Fibresolve may serve as an adjunct in the diagnosis of IPF in a pre-invasive setting.
Collapse
Affiliation(s)
- Yousef Ahmad
- Department of Pulmonary and Critical Care, University of Cincinnati Medical Center, 231 Albert Sabin Way, ML 0564, Cincinnati, OH 45267-0564, USA
| | - Joshua Mooney
- Stanford Health Care, Department of Pulmonary, Allergy, and Critical Care Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Isabel E. Allen
- Department of Epidemiology & Biostatistics, University of California San Francisco, 550 16th Street, 2nd Floor, San Francisco, CA 94158-2549, USA
| | - Julia Seaman
- Bay View Analytics, 6924 Thornhill Dr, Oakland, CA 94611, USA;
| | - Angad Kalra
- IMVARIA, 2930 Domingo Ave #1496, Berkeley, CA 94705, USA
| | - Michael Muelly
- IMVARIA, 2930 Domingo Ave #1496, Berkeley, CA 94705, USA
| | - Joshua Reicher
- IMVARIA, 2930 Domingo Ave #1496, Berkeley, CA 94705, USA
| |
Collapse
|
17
|
Menezes V, Pollock C, Ferraro P, Nasir B, Leduc C, Morisset J, Liberman M. Defining Optimal Settings for Lung Cryobiopsy in End-Stage Pulmonary Disease. A Human, Ex Vivo, Diseased Lung Clinical Trial. J Bronchology Interv Pulmonol 2024; 31:188-198. [PMID: 37975519 DOI: 10.1097/lbr.0000000000000948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/14/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND To evaluate optimal settings of probe size, freezing time, and distance to the pleura that influence the size and quality of biopsy specimens during transbronchial lung cryobiopsies in ESPD. METHODS We prospectively recruited 17 patients undergoing lung transplantation. We created a nonperfused ex vivo bronchoscopy setting to perform multiple cryobiopsies with different probe sizes (1.7, 1.9, and 2.4 mm), freezing times (3, 5, 7, 10, 20, 30 seconds), and probe distance from pleura (5, 10, and 20 mm). Alveolated pulmonary parenchyma area≥50% in histology was considered a good quality biopsy, with a minimum procedural artifact. We used logistic regression to identify independent parameters as risk factors for histologic adequacy. RESULTS A total of 545 cryobiopsies were obtained from 34 explanted lungs after pneumonectomy for lung transplantation. The mean maximum diameter of the specimen achieved with the 1.7 probe was larger (13.5 mm) than those obtained with 1.9 and 2.4 mm probes (11.3 and 10.7 mm, P= 0.07). More pleural macroscopic damage and pleural tissue in histology occurred with the 2.4 mm probe ( P <0.001). There was no difference in the quality of specimens between the different freezing times and the distance from the pleura. CONCLUSIONS Freezing time and distance from the pleura did not affect the histologic quality for diagnosing ESPD in severely damaged lungs. Smaller cryoprobe size did not negatively affect sample adequacy.
Collapse
Affiliation(s)
- Vanessa Menezes
- Division of Thoracic Surgery, Centre Hospitalier de l' Université de Montreal (CHUM), CHUM Endoscopic Tracheo-bronchial and Oesophageal Center (CETOC)
| | - Clare Pollock
- Division of Thoracic Surgery, Centre Hospitalier de l' Université de Montreal (CHUM), CHUM Endoscopic Tracheo-bronchial and Oesophageal Center (CETOC)
| | - Pasquale Ferraro
- Division of Thoracic Surgery, Centre Hospitalier de l' Université de Montreal (CHUM), CHUM Endoscopic Tracheo-bronchial and Oesophageal Center (CETOC)
| | - Basil Nasir
- Division of Thoracic Surgery, Centre Hospitalier de l' Université de Montreal (CHUM), CHUM Endoscopic Tracheo-bronchial and Oesophageal Center (CETOC)
| | - Charles Leduc
- Department of Pathology, Centre Hospitalier de l' Université de Montreal (CHUM)
| | - Julie Morisset
- Division of Pulmonology, Centre Hospitalier de l' Université de Montreal (CHUM), Montreal, Quebec, Canada
| | - Moishe Liberman
- Division of Thoracic Surgery, Centre Hospitalier de l' Université de Montreal (CHUM), CHUM Endoscopic Tracheo-bronchial and Oesophageal Center (CETOC)
| |
Collapse
|
18
|
Lucà S, Pagliuca F, Perrotta F, Ronchi A, Mariniello DF, Natale G, Bianco A, Fiorelli A, Accardo M, Franco R. Multidisciplinary Approach to the Diagnosis of Idiopathic Interstitial Pneumonias: Focus on the Pathologist's Key Role. Int J Mol Sci 2024; 25:3618. [PMID: 38612431 PMCID: PMC11011777 DOI: 10.3390/ijms25073618] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Idiopathic Interstitial Pneumonias (IIPs) are a heterogeneous group of the broader category of Interstitial Lung Diseases (ILDs), pathologically characterized by the distortion of lung parenchyma by interstitial inflammation and/or fibrosis. The American Thoracic Society (ATS)/European Respiratory Society (ERS) international multidisciplinary consensus classification of the IIPs was published in 2002 and then updated in 2013, with the authors emphasizing the need for a multidisciplinary approach to the diagnosis of IIPs. The histological evaluation of IIPs is challenging, and different types of IIPs are classically associated with specific histopathological patterns. However, morphological overlaps can be observed, and the same histopathological features can be seen in totally different clinical settings. Therefore, the pathologist's aim is to recognize the pathologic-morphologic pattern of disease in this clinical setting, and only after multi-disciplinary evaluation, if there is concordance between clinical and radiological findings, a definitive diagnosis of specific IIP can be established, allowing the optimal clinical-therapeutic management of the patient.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| | - Francesca Pagliuca
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| | - Fabio Perrotta
- Department of Translational Medical Science, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (F.P.); (D.F.M.); (A.B.)
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Science, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (F.P.); (D.F.M.); (A.B.)
| | - Giovanni Natale
- Division of Thoracic Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia, 2, 80138 Naples, Italy; (G.N.); (A.F.)
| | - Andrea Bianco
- Department of Translational Medical Science, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (F.P.); (D.F.M.); (A.B.)
| | - Alfonso Fiorelli
- Division of Thoracic Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia, 2, 80138 Naples, Italy; (G.N.); (A.F.)
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| |
Collapse
|
19
|
Ali SO, Castellani C, Benn BS. Transbronchial Lung Cryobiopsy Performed with Cone Beam Computed Tomography Guidance Versus Fluoroscopy: A Retrospective Cohort Review. Lung 2024; 202:73-81. [PMID: 38129333 DOI: 10.1007/s00408-023-00663-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Determining the cause of interstitial lung disease (ILD) remains challenging. While surgical lung biopsy remains the gold standard approach, risks associated with it may be prohibitive. Transbronchial lung cryobiopsy (TBLC) is a minimally invasive alternative with an improved safety profile and acceptable diagnostic accuracy. We retrospectively assessed whether the use of Cone Beam computed tomography guidance for TBLC (TBLC-CBCT) improves safety and diagnostic yield compared to performing TBLC with fluoroscopic guidance (TBLC-F). METHODS A retrospective cohort review of 120 patients presenting for evaluation of newly diagnosed ILD was performed. Demographic data, pulmonary function test values, chest imaging pattern, procedural information, and final multidisciplinary discussion (MDD) diagnosis were recorded. RESULTS 62 patients underwent TBLC-F and 58 underwent TBLC-CBCT. Patients undergoing TBLC-CBCT were older (67.86 ± 10.97 vs 61.45 ± 12.77 years, p = 0.004) and had a higher forced vital capacity percent predicted (73.80 ± 17.32% vs 66.00 ± 17.45%, p = 0.03) compared to the TBLC-F group. The average probe-to-pleura distance was 5.1 ± 2.3 mm in the TBLC-CBCT group with 4.0 ± 0.3 CBCT spins performed. Pneumothorax occurred more often in the TBLC-F group (n = 6, 9.7%) compared to the TBLC-CBCT group (n = 1, 1.7%, p = 0.06). Grade 2 bleeding only occurred in the TBLC-F group (n = 4, 6.5%). A final MDD diagnosis was obtained in 89% (n = 57) of TBLC-F patients and 95% (n = 57) of TBLC-CBCT patients. CONCLUSIONS TBLC-CBCT appears to be safer compared to TBLC-F with both approaches facilitating an MDD diagnosis. Further studies from multiple institutions randomizing patients to each modality are needed to confirm these findings.
Collapse
Affiliation(s)
- Syed O Ali
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carson Castellani
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bryan S Benn
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
20
|
Smith ML, Mino-Kenudson M, Butterfield RJ, Dacic S, Colby TV, Churg A, Beasley MB, Hariri LP. Pulmonary Pathology Society Survey on Practice Approaches in the Histologic Diagnosis of Fibrotic Interstitial Lung Disease: Consensus and Opportunities. Arch Pathol Lab Med 2024; 148:168-177. [PMID: 37226833 DOI: 10.5858/arpa.2022-0530-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2023] [Indexed: 05/26/2023]
Abstract
CONTEXT.— The pathologic diagnosis of usual interstitial pneumonia (UIP) remains a challenging area, and application of histologic UIP guidelines has proved difficult. OBJECTIVE.— To understand current practice approaches by pulmonary pathologists for the histologic diagnosis of UIP and other fibrotic interstitial lung diseases (ILDs). DESIGN.— The Pulmonary Pathology Society (PPS) ILD Working Group developed and sent a 5-part survey on fibrotic ILD electronically to the PPS membership. RESULTS.— One hundred sixty-one completed surveys were analyzed. Of the respondents, 89% reported using published histologic features in clinical guidelines for idiopathic pulmonary fibrosis (IPF) in their pathologic diagnosis; however, there was variability in reporting terminology, quantity and quality of histologic features, and the use of guideline categorization. Respondents were very likely to have access to pulmonary pathology colleagues (79%), pulmonologists (98%), and radiologists (94%) to discuss cases. Half of respondents reported they may alter their pathologic diagnosis based on additional clinical and radiologic history if it is pertinent. Airway-centered fibrosis, granulomas, and types of inflammatory infiltrates were considered important, but there was poor agreement on how these features are defined. CONCLUSIONS.— There is significant consensus among the PPS membership on the importance of histologic guidelines/features of UIP. There are unmet needs for (1) consensus and standardization of diagnostic terminology and incorporation of recommended histopathologic categories from the clinical IPF guidelines into pathology reports, (2) agreement on how to incorporate into the report relevant clinical and radiographic information, and (3) defining the quantity and quality of features needed to suggest alternative diagnoses.
Collapse
Affiliation(s)
- Maxwell L Smith
- From the Departments of Laboratory Medicine and Pathology (Smith, Colby)
| | - Mari Mino-Kenudson
- the Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston (Mino-Kenudson, Hariri)
| | | | - Sanja Dacic
- the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dacic)
| | - Thomas V Colby
- From the Departments of Laboratory Medicine and Pathology (Smith, Colby)
| | - Andrew Churg
- the Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada (Churg)
| | - Mary Beth Beasley
- the Department of Pathology, Mount Sinai Health System, Icahn School of Medicine, New York, New York (Beasley)
| | - Lida P Hariri
- the Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston (Mino-Kenudson, Hariri)
| |
Collapse
|
21
|
Gesthalter YB, Channick CL. Interventional Pulmonology: Extending the Breadth of Thoracic Care. Annu Rev Med 2024; 75:263-276. [PMID: 37827195 DOI: 10.1146/annurev-med-050922-060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Interventional pulmonary medicine has developed as a subspecialty focused on the management of patients with complex thoracic disease. Leveraging minimally invasive techniques, interventional pulmonologists diagnose and treat pathologies that previously required more invasive options such as surgery. By mitigating procedural risk, interventional pulmonologists have extended the reach of care to a wider pool of vulnerable patients who require therapy. Endoscopic innovations, including endobronchial ultrasound and robotic and electromagnetic bronchoscopy, have enhanced the ability to perform diagnostic procedures on an ambulatory basis. Therapeutic procedures for patients with symptomatic airway disease, pleural disease, and severe emphysema have provided the ability to palliate symptoms. The combination of medical and procedural expertise has made interventional pulmonologists an integral part of comprehensive care teams for patients with oncologic, airway, and pleural needs. This review surveys key areas in which interventional pulmonologists have impacted the care of thoracic disease through bronchoscopic intervention.
Collapse
Affiliation(s)
- Yaron B Gesthalter
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA;
| | - Colleen L Channick
- Division of Pulmonary, Critical Care Medicine, Clinical Immunology, and Allergy, Department of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA;
| |
Collapse
|
22
|
Kondoh Y. Challenges in the diagnosis of interstitial lung disease. Respir Investig 2024; 62:75-76. [PMID: 37952289 DOI: 10.1016/j.resinv.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Japan.
| |
Collapse
|
23
|
Yi ES, Wawryko P, Ryu JH. Diagnosis of interstitial lung diseases: from Averill A. Liebow to artificial intelligence. J Pathol Transl Med 2024; 58:1-11. [PMID: 38229429 DOI: 10.4132/jptm.2023.11.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024] Open
Abstract
Histopathologic criteria of usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) were defined over the years and endorsed by leading organizations decades after Dr. Averill A. Liebow first coined the term UIP in the 1960s as a distinct pathologic pattern of fibrotic interstitial lung disease. Novel technology and recent research on interstitial lung diseases with genetic component shed light on molecular pathogenesis of UIP/IPF. Two antifibrotic agents introduced in the mid-2010s opened a new era of therapeutic approaches to UIP/IPF, albeit contentious issues regarding their efficacy, side effects, and costs. Recently, the concept of progressive pulmonary fibrosis was introduced to acknowledge additional types of progressive fibrosing interstitial lung diseases with the clinical and pathologic phenotypes comparable to those of UIP/IPF. Likewise, some authors have proposed a paradigm shift by considering UIP as a stand-alone diagnostic entity to encompass other fibrosing interstitial lung diseases that manifest a relentless progression as in IPF. These trends signal a pendulum moving toward the tendency of lumping diagnoses, which poses a risk of obscuring potentially important information crucial to both clinical and research purposes. Recent advances in whole slide imaging for digital pathology and artificial intelligence technology could offer an unprecedented opportunity to enhance histopathologic evaluation of interstitial lung diseases. However, current clinical practice trends of moving away from surgical lung biopsies in interstitial lung disease patients may become a limiting factor in this endeavor as it would be difficult to build a large histopathologic database with correlative clinical data required for artificial intelligence models.
Collapse
Affiliation(s)
- Eunhee S Yi
- Division of Anatomic Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Paul Wawryko
- Division of Anatomic Pathology, Mayo Clinic Arizona, Arizona, FL, USA
| | - Jay H Ryu
- Division of Pulmonary and Critical Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| |
Collapse
|
24
|
Wang B, Gao Y, Sun L, Xue M, Wang M, Zhang Z, Zhang L, Zhang H. Inhaled pulmonary surfactant biomimetic liposomes for reversing idiopathic pulmonary fibrosis through synergistic therapeutic strategy. Biomaterials 2023; 303:122404. [PMID: 37992600 DOI: 10.1016/j.biomaterials.2023.122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) stands as a highly heterogeneous and deadly lung disease, yet the available treatment options remain limited. Combining myofibroblast inhibition with ROS modulation in damaged AECs offers a comprehensive strategy to halt IPF progression, but delivering drugs separately to these cell types is challenging. Inspired by the successful application of pulmonary surfactant (PS) replacement therapy in lung disease treatment, we have developed PS nano-biomimetic liposomes (PSBs) to utilize its natural transport pathway for targeting AECs while reducing lung tissue clearance. In this collaborative pulmonary drug delivery system, PSBs composed of DPPC/POPG/DPPG/CHO (20:9:5:4) were formulated for inhalation. These PSBs loaded with ROS-scavenger astaxanthin (AST) and anti-fibrosis drug pirfenidone (PFD) were aerosolized for precise quantification and mimicking patient inhalation. Through aerosol inhalation, the lipid membrane of PSBs gradually fused with natural PS, enabling AST delivery to AECs by hitchhiking with PS circulation. Simultaneously, PFD was released within the PS barrier, effectively penetrating lung tissue to exert therapeutic effects. In vivo results have shown that PSBs offer numerous therapeutic advantages in mice with IPF, particularly in terms of lung function recovery. This approach addresses the challenges of drug delivery to specific lung cells and offers potential benefits for IPF patients.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China
| | - Yiwen Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lulu Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Meng Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingjin Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, China.
| |
Collapse
|
25
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
26
|
Handa T. The potential role of artificial intelligence in the clinical practice of interstitial lung disease. Respir Investig 2023; 61:702-710. [PMID: 37708636 DOI: 10.1016/j.resinv.2023.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Artificial intelligence (AI) is being widely applied in the field of medicine, in areas such as drug discovery, diagnostic support, and assistance with medical practice. Among these, medical imaging is an area where AI is expected to make a significant contribution. In Japan, as of November 2022, 23 AI medical devices have received regulatory approval; all these devices are related to image analysis. In interstitial lung diseases, technologies have been developed that use AI to analyze high-resolution computed tomography and pathological images, and gene expression patterns in tissue taken from transbronchial lung biopsies to assist in the diagnosis of idiopathic pulmonary fibrosis. Some of these technologies are already being used in clinical practice in the United States. AI is expected to reduce the burden on physicians, improve reproducibility, and advance personalized medicine. Obtaining sufficient data for diseases with a small number of patients is difficult. Additionally, certain issues must be addressed in order for AI to be applied in healthcare. These issues include taking responsibility for the AI results output, updating software after the launch of technology, and adapting to new imaging technologies. Establishing research infrastructures such as large-scale databases and common platforms is important for the development of AI technology: their use requires an understanding of the characteristics and limitations of the systems. CLINICAL TRIAL REGISTRATION: Not applicable.
Collapse
Affiliation(s)
- Tomohiro Handa
- Department of Advanced Medicine for Respiratory Failure and Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
Amati F, Spagnolo P, Ryerson CJ, Oldham JM, Gramegna A, Stainer A, Mantero M, Sverzellati N, Lacedonia D, Richeldi L, Blasi F, Aliberti S. Walking the path of treatable traits in interstitial lung diseases. Respir Res 2023; 24:251. [PMID: 37872563 PMCID: PMC10594881 DOI: 10.1186/s12931-023-02554-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Interstitial lung diseases (ILDs) are complex and heterogeneous diseases. The use of traditional diagnostic classification in ILD can lead to suboptimal management, which is worsened by not considering the molecular pathways, biological complexity, and disease phenotypes. The identification of specific "treatable traits" in ILDs, which are clinically relevant and modifiable disease characteristics, may improve patient's outcomes. Treatable traits in ILDs may be classified into four different domains (pulmonary, aetiological, comorbidities, and lifestyle), which will facilitate identification of related assessment tools, treatment options, and expected benefits. A multidisciplinary care team model is a potential way to implement a "treatable traits" strategy into clinical practice with the aim of improving patients' outcomes. Multidisciplinary models of care, international registries, and the use of artificial intelligence may facilitate the implementation of the "treatable traits" approach into clinical practice. Prospective studies are needed to test potential therapies for a variety of treatable traits to further advance care of patients with ILD.
Collapse
Affiliation(s)
- Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Gramegna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Marco Mantero
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Nicola Sverzellati
- Unit of Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Donato Lacedonia
- Department of Medical and Occupational Sciences, Institute of Respiratory Disease, Università degli Studi di Foggia, Foggia, Italy
| | - Luca Richeldi
- Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Blasi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- IRCCS Humanitas Research Hospital, Respiratory Unit, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
28
|
Amati F, Bongiovanni G, Tonutti A, Motta F, Stainer A, Mangiameli G, Aliberti S, Selmi C, De Santis M. Treatable Traits in Systemic Sclerosis. Clin Rev Allergy Immunol 2023; 65:251-276. [PMID: 37603199 DOI: 10.1007/s12016-023-08969-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/22/2023]
Abstract
Systemic sclerosis (SSc) is a chronic systemic disease within the spectrum of connective tissue diseases, specifically characterized by vascular abnormalities and inflammatory and fibrotic involvement of the skin and internal organs resulting in high morbidity and mortality. The clinical phenotype of SSc is heterogeneous, and serum autoantibodies together with the extent of skin involvement have a predictive value in the risk stratification. Current recommendations include an organ-based management according to the predominant involvement with only limited individual factors included in the treatment algorithm. Similar to what has been proposed for other chronic diseases, we hypothesize that a "treatable trait" approach based on relevant phenotypes and endotypes could address the unmet needs in SSc stratification and treatment to maximize the outcomes. We provide herein a comprehensive review and a critical discussion of the literature regarding potential treatable traits in SSc, focusing on established and candidate biomarkers, with the purpose of setting the bases for a precision medicine-based approach. The discussion, structured based on the organ involvement, allows to conjugate the pathogenetic mechanisms of tissue injury with the proposed predictors, particularly autoantibodies and other serum biomarkers. Ultimately, we are convinced that precision medicine is the ideal guide to manage a complex condition such as SSc for which available treatments are largely unsatisfactory.
Collapse
Affiliation(s)
- Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gabriele Bongiovanni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giuseppe Mangiameli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
29
|
Karampitsakos T, Juan-Guardela BM, Tzouvelekis A, Herazo-Maya JD. Precision medicine advances in idiopathic pulmonary fibrosis. EBioMedicine 2023; 95:104766. [PMID: 37625268 PMCID: PMC10469771 DOI: 10.1016/j.ebiom.2023.104766] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous, unpredictable and ultimately lethal chronic lung disease. Over the last decade, two anti-fibrotic agents have been shown to slow disease progression, however, both drugs are administered uniformly with minimal consideration of disease severity and inter-individual molecular, genetic, and genomic differences. Advances in biological understanding of disease endotyping and the emergence of precision medicine have shown that "a one-size-fits-all approach" to the management of chronic lung diseases is no longer appropriate. While precision medicine approaches have revolutionized the management of other diseases such as lung cancer and asthma, the implementation of precision medicine in IPF clinical practice remains an unmet need despite several reports demonstrating a large number of diagnostic, prognostic and theragnostic biomarker candidates in IPF. This review article aims to summarize our current knowledge of precision medicine in IPF and highlight barriers to translate these research findings into clinical practice.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
30
|
Sanduzzi Zamparelli S, Sanduzzi Zamparelli A, Bocchino M. The Evolving Concept of the Multidisciplinary Approach in the Diagnosis and Management of Interstitial Lung Diseases. Diagnostics (Basel) 2023; 13:2437. [PMID: 37510180 PMCID: PMC10378270 DOI: 10.3390/diagnostics13142437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Interstitial lung diseases (ILDs) are a group of heterogeneous diseases characterized by inflammation and/or fibrosis of the lung interstitium, leading to a wide range of clinical manifestations and outcomes. Over the years, the literature has demonstrated the increased diagnostic accuracy and confidence associated with a multidisciplinary approach (MDA) in assessing diseases involving lung parenchyma. This approach was recently emphasized by the latest guidelines from the American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Latin American Thoracic Association for the diagnosis of ILDs. METHODS In this review, we will discuss the role, composition, and timing of multidisciplinary diagnosis (MDD) concerning idiopathic pulmonary fibrosis, connective tissue disease associated with ILDs, hypersensitive pneumonia, and idiopathic pneumonia with autoimmune features, based on the latest recommendations for their diagnosis. RESULTS The integration of clinical, radiological, histopathological, and, often, serological data is crucial in the early identification and management of ILDs, improving patient outcomes. Based on the recent endorsement of transbronchial cryo-biopsy in idiopathic pulmonary fibrosis guidelines, an MDA helps guide the choice of the sampling technique, obtaining the maximum diagnostic performance, and avoiding the execution of more invasive procedures such as a surgical lung biopsy. A multidisciplinary team should include pulmonologists, radiologists, pathologists, and, often, rheumatologists, being assembled regularly to achieve a consensus diagnosis and to review cases in light of new features. CONCLUSIONS The literature highlighted that an MDA is essential to improve the accuracy and reliability of ILD diagnosis, allowing for the early optimization of therapy and reducing the need for invasive procedures. The multidisciplinary diagnosis of ILDs is an ongoing and dynamic process, often referred to as a "working diagnosis", involving the progressive integration and re-evaluation of clinical, radiological, and histological features.
Collapse
Affiliation(s)
| | - Alessandro Sanduzzi Zamparelli
- Department of Clinical Medicine and Surgery, Section of Respiratory Diseases, University Federico II, Azienda Ospedaliera dei Colli-Monaldi Hospital, 80131 Naples, Italy
- Staff of UNESCO Chair for Health Education and Sustainable Development, University Federico II, 80131 Naples, Italy
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery, Section of Respiratory Diseases, University Federico II, Azienda Ospedaliera dei Colli-Monaldi Hospital, 80131 Naples, Italy
| |
Collapse
|
31
|
Pandya SM, Pandya AP, Fels Elliott DR, Hamblin MJ. Hypersensitivity Pneumonitis: Updates in Evaluation, Management, and Ongoing Dilemmas. Immunol Allergy Clin North Am 2023; 43:245-257. [PMID: 37055087 DOI: 10.1016/j.iac.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Hypersensitivity pneumonitis (HP) is a heterogenous disease entity characterized by an aberrant immune response to inhalational antigens. Disease modification hinges on early antigen remediation with a goal to attenuate immune dysregulation. Disease severity and progression are mediated by an interface between degree, type and chronicity of exposure, genetic predisposition, and biochemical properties of the inducing agent. Guidelines have provided a standardized approach; however, decision-making remains with many clinical dilemmas. The delineation of fibrotic and nonfibrotic HP is crucial to identify the differences in clinical trajectories, and further clinical trials are needed to understand optimal therapeutic strategies.
Collapse
Affiliation(s)
- Sahil M Pandya
- University of Kansas Medical Center, 4000 Cambridge Street, Mail Stop 3007, Kansas City, KS 66160, USA.
| | - Aarti P Pandya
- Children's Mercy Hospital, 3101 Broadway Boulevard, Kansas City, MO 64111, USA
| | | | - Mark J Hamblin
- University of Kansas Medical Center, 4000 Cambridge Street, Mail Stop 3007, Kansas City, KS 66160, USA
| |
Collapse
|
32
|
Goobie GC, Guler SA. The alternative approach: genomic classifiers for prognostication in interstitial lung disease. Eur Respir J 2023; 61:61/4/2300033. [PMID: 37003611 DOI: 10.1183/13993003.00033-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Gillian C Goobie
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Healthcare, University of British Columbia, Vancouver, BC, Canada
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sabina A Guler
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Chaudhary S, Weigt SS, Ribeiro Neto ML, Benn BS, Pugashetti JV, Keith R, Chand A, Oh S, Kheir F, Ramalingam V, Solomon JJ, Harper R, Lasky JA, Oldham JM. Interstitial lung disease progression after genomic usual interstitial pneumonia testing. Eur Respir J 2023; 61:2201245. [PMID: 36549706 PMCID: PMC10288658 DOI: 10.1183/13993003.01245-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND A genomic classifier for usual interstitial pneumonia (gUIP) has been shown to predict histological UIP with high specificity, increasing diagnostic confidence for idiopathic pulmonary fibrosis (IPF). Whether those with positive gUIP classification exhibit a progressive, IPF-like phenotype remains unknown. METHODS A pooled, retrospective analysis of patients who underwent clinically indicated diagnostic bronchoscopy with gUIP testing at seven academic medical centres across the USA was performed. We assessed the association between gUIP classification and 18-month progression-free survival (PFS) using Cox proportional hazards regression. PFS was defined as the time from gUIP testing to death from any cause, lung transplant, ≥10% relative decline in forced vital capacity (FVC) or censoring at the time of last available FVC measure. Longitudinal change in FVC was then compared between gUIP classification groups using a joint regression model. RESULTS Of 238 consecutive patients who underwent gUIP testing, 192 had available follow-up data and were included in the analysis, including 104 with positive gUIP classification and 88 with negative classification. In multivariable analysis, positive gUIP classification was associated with reduced PFS (hazard ratio 1.58, 95% CI 0.86-2.92; p=0.14), but this did not reach statistical significance. Mean annual change in FVC was -101.8 mL (95% CI -142.7- -60.9 mL; p<0.001) for those with positive gUIP classification and -73.2 mL (95% CI -115.2- -31.1 mL; p<0.001) for those with negative classification (difference 28.7 mL, 95% CI -83.2-25.9 mL; p=0.30). CONCLUSIONS gUIP classification was not associated with differential rates of PFS or longitudinal FVC decline in a multicentre interstitial lung disease cohort undergoing bronchoscopy as part of the diagnostic evaluation.
Collapse
Affiliation(s)
- Sachin Chaudhary
- Division of Pulmonary and Critical Care Medicine, University of Arizona, Tucson, AZ, USA
| | - S Sam Weigt
- Division of Pulmonary and Critical Care Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Bryan S Benn
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Janelle Vu Pugashetti
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Sacramento, CA, USA
| | - Rebecca Keith
- Division of Pulmonary and Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Arista Chand
- Division of Pulmonary and Critical Care Medicine, University of Arizona, Tucson, AZ, USA
| | - Scott Oh
- Division of Pulmonary and Critical Care Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Fayez Kheir
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vijaya Ramalingam
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Northeast Georgia Physicians Group
| | - Joshua J Solomon
- Division of Pulmonary and Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Richart Harper
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Sacramento, CA, USA
| | - Joseph A Lasky
- Division of Pulmonary and Critical Care Medicine, Tulane University, New Orleans, LA, USA
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Kreuter M, Behr J, Bonella F, Costabel U, Gerber A, Hamer OW, Heussel CP, Jonigk D, Krause A, Koschel D, Leuschner G, Markart P, Nowak D, Pfeifer M, Prasse A, Wälscher J, Winter H, Kabitz HJ. [Consensus guideline on the interdisciplinary diagnosis of interstitial lung diseases]. Pneumologie 2023; 77:269-302. [PMID: 36977470 DOI: 10.1055/a-2017-8971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The evaluation of a patient with interstitial lung disease (ILD) includes assessment of clinical, radiological, and often histopathological data. As there were no specific recommendations to guide the evaluation of patients under the suspicion of an ILD within the German practice landscape, this position statement from an interdisciplinary panel of ILD experts provides guidance related to the diagnostic modalities which should be used in the evaluation of ILD. This includes clinical assessment rheumatological evaluation, radiological examinations, histopathologic sampling and the need for a final discussion in a multidisciplinary team.
Collapse
Affiliation(s)
- Michael Kreuter
- Universitäres Lungenzentrum Mainz, Abteilungen für Pneumologie, ZfT, Universitätsmedizin Mainz und Pneumologie, Beatmungs- und Schlafmedizin, Marienhaus Klinikum Mainz
- Zentrum für interstitielle und seltene Lungenerkrankungen, Thoraxklinik, Universitätsklinikum Heidelberg und Klinik für Pneumologie, Klinikum Ludwigsburg
- Deutsches Zentrum für Lungenforschung
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, LMU Klinikum der Universität München
- Deutsches Zentrum für Lungenforschung
| | - Francesco Bonella
- Zentrum für interstitielle und seltene Lungenerkrankungen, Ruhrlandklinik, Universitätsmedizin Essen
| | - Ulrich Costabel
- Zentrum für interstitielle und seltene Lungenerkrankungen, Ruhrlandklinik, Universitätsmedizin Essen
| | - Alexander Gerber
- Rheumazentrum Halensee, Berlin und Institut für Arbeits- Sozial- und Umweltmedizin, Goetheuniversität Frankfurt am Main
| | - Okka W Hamer
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg und Abteilung für Radiologie, Klinik Donaustauf, Donaustauf
| | - Claus Peter Heussel
- Diagnostische und interventionelle Radiologie, Thoraxklinik Heidelberg, Universitätsklinikum Heidelberg
- Deutsches Zentrum für Lungenforschung
| | - Danny Jonigk
- Institut für Pathologie, Medizinische Hochschule Hannover und Institut für Pathologie, RWTH Universitätsklinikum Aachen
- Deutsches Zentrum für Lungenforschung
| | - Andreas Krause
- Abteilung für Rheumatologie, klinische Immunologie und Osteologie, Immanuel Krankenhaus Berlin
| | - Dirk Koschel
- Abteilung für Innere Medizin und Pneumologie, Fachkrankenhaus Coswig, Lungenzentrum, Coswig und Bereich Pneumologie der Medizinischen Klinik, Carl Gustav Carus Universitätsklinik, Dresden
| | - Gabriela Leuschner
- Medizinische Klinik und Poliklinik V, LMU Klinikum der Universität München
- Deutsches Zentrum für Lungenforschung
| | - Philipp Markart
- Medizinische Klinik V, Campus Fulda, Universitätsmedizin Marburg und Medizinische Klinik und Poliklinik, Universitätsklinikum Gießen
- Deutsches Zentrum für Lungenforschung
| | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, LMU Klinikum, München
| | - Michael Pfeifer
- Klinik für Pneumologie und konservative Intensivmedizin, Krankenhaus Barmherzige Brüder Regensburg
| | - Antje Prasse
- Klinik für Pneumologie und Infektionsmedizin, Medizinische Hochschule Hannover und Abteilung für Fibroseforschung, Fraunhofer ITEM
- Deutsches Zentrum für Lungenforschung
| | - Julia Wälscher
- Zentrum für interstitielle und seltene Lungenerkrankungen, Ruhrlandklinik, Universitätsmedizin Essen
| | - Hauke Winter
- Abteilung für Thoraxchirurgie, Thoraxklinik, Universität Heidelberg, Heidelberg
- Deutsches Zentrum für Lungenforschung
| | - Hans-Joachim Kabitz
- II. Medizinische Klinik, Pneumologie und Internistische Intensivmedizin, Klinikum Konstanz, GLKN, Konstanz
| |
Collapse
|
35
|
Berger K, Kaner RJ. Diagnosis and Pharmacologic Management of Fibrotic Interstitial Lung Disease. Life (Basel) 2023; 13:599. [PMID: 36983755 PMCID: PMC10055741 DOI: 10.3390/life13030599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Interstitial lung disease is an umbrella term that encompasses a spectrum of parenchymal lung pathologies affecting the gas exchanging part of the lung. While many of these disease entities are not fibrotic in nature, a number can lead to pulmonary fibrosis which may or may not progress over time. Idiopathic pulmonary fibrosis is the prototypical, progressive fibrotic interstitial lung disease, which can lead to worsening hypoxemic respiratory failure and mortality within a number of years from the time of diagnosis. The importance of an accurate and timely diagnosis of interstitial lung diseases, which is needed to inform prognosis and guide clinical management, cannot be overemphasized. Developing a consensus diagnosis requires the incorporation of a variety of factors by a multidisciplinary team, which then may or may not determine a need for tissue sampling. Clinical management can be challenging given the heterogeneity of disease behavior and the paucity of controlled trials to guide decision making. This review addresses current paradigms and recent updates in the diagnosis and pharmacologic management of these fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Kristin Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
36
|
Tanner L, Single AB, Bhongir RKV, Heusel M, Mohanty T, Karlsson CAQ, Pan L, Clausson CM, Bergwik J, Wang K, Andersson CK, Oommen RM, Erjefält JS, Malmström J, Wallner O, Boldogh I, Helleday T, Kalderén C, Egesten A. Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model. Nat Commun 2023; 14:643. [PMID: 36746968 PMCID: PMC9902543 DOI: 10.1038/s41467-023-36314-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Interstitial lung diseases such as idiopathic pulmonary fibrosis (IPF) are caused by persistent micro-injuries to alveolar epithelial tissues accompanied by aberrant repair processes. IPF is currently treated with pirfenidone and nintedanib, compounds which slow the rate of disease progression but fail to target underlying pathophysiological mechanisms. The DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) has significant roles in the modulation of inflammation and metabolic syndromes. Currently, no pharmaceutical solutions targeting OGG1 have been utilized in the treatment of IPF. In this study we show Ogg1-targeting siRNA mitigates bleomycin-induced pulmonary fibrosis in male mice, highlighting OGG1 as a tractable target in lung fibrosis. The small molecule OGG1 inhibitor, TH5487, decreases myofibroblast transition and associated pro-fibrotic gene expressions in fibroblast cells. In addition, TH5487 decreases levels of pro-inflammatory mediators, inflammatory cell infiltration, and lung remodeling in a murine model of bleomycin-induced pulmonary fibrosis conducted in male C57BL6/J mice. OGG1 and SMAD7 interact to induce fibroblast proliferation and differentiation and display roles in fibrotic murine and IPF patient lung tissue. Taken together, these data suggest that TH5487 is a potentially clinically relevant treatment for IPF but further study in human trials is required.
Collapse
Affiliation(s)
- L Tanner
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden.
| | - A B Single
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - R K V Bhongir
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - M Heusel
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - T Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - C A Q Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - L Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - C-M Clausson
- Division of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - J Bergwik
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - K Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - C K Andersson
- Respiratory Cell Biology, Department of Experimental Medical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - R M Oommen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - J S Erjefält
- Division of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - J Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - O Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - I Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - T Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, SE-113 34, Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - C Kalderén
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, SE-113 34, Stockholm, Sweden
| | - A Egesten
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| |
Collapse
|
37
|
Amati F, Spagnolo P, Oldham JM, Ryerson CJ, Stainer A, Gramegna A, Mantero M, Lacedonia D, Sverzellati N, Richeldi L, Blasi F, Aliberti S. Treatable traits in interstitial lung diseases: a call to action. THE LANCET. RESPIRATORY MEDICINE 2023; 11:125-128. [PMID: 36646100 DOI: 10.1016/s2213-2600(23)00002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Affiliation(s)
- Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Milan 20072, Italy; IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health; University of Padua, Padua, Italy
| | - Justin M Oldham
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, Sacramento, CA, USA
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Milan 20072, Italy; IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Andrea Gramegna
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Marco Mantero
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, Università di Foggia, Institute of Respiratory Disease, Foggia, Italy
| | - Nicola Sverzellati
- Unit of Radiological Science, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Richeldi
- Fondazione Policlinico A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan 20072, Italy; IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy.
| |
Collapse
|
38
|
Marinescu DC, Ryerson CJ. Integrating morphology and treatable traits into the management of ILD. THE LANCET. RESPIRATORY MEDICINE 2023; 11:117-119. [PMID: 36640785 DOI: 10.1016/s2213-2600(22)00532-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Daniel-Costin Marinescu
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Christopher J Ryerson
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
39
|
Abdalla M, Castellani C, Singh H, Kurman JS, Benn BS. Real-world utility of a genomic classifier in establishing a diagnosis of newly identified interstitial lung disease. Respir Med Res 2023; 83:100996. [PMID: 36812772 DOI: 10.1016/j.resmer.2023.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Diagnosing interstitial lung disease (ILD) remains challenging. Guidelines recommend utilizing a multidisciplinary discussion (MDD) to review clinical and radiographic data and if diagnostic uncertainty persists, then to obtain histopathology. Surgical lung biopsy and transbronchial lung cryobiopsy (TBLC) are acceptable methods, but risks of complications may be prohibitive. The Envisia genomic classifier (EGC) represents another option to determine a molecular usual interstitial pneumonia (UIP) signature to facilitate an ILD diagnosis at MDD with high sensitivity and specificity. We evaluated the concordance between TBLC and EGC at MDD and the safety of this procedure. METHODS Demographic data, pulmonary function values, chest imaging pattern, procedural information, and MDD diagnosis were recorded. Concordance was defined as agreement between the molecular EGC results and histopathology from TBLC in the context of the patient's High Resolution CT pattern. RESULTS 49 patients were enrolled. Imaging demonstrated a probable (n = 14) or indeterminate (n = 7) UIP pattern in 43% and an alternative pattern in 57% (n = 28). EGC results were positive for UIP in 37% (n = 18) and negative in 63% (n = 31). MDD diagnosis was obtained in 94% (n = 46) with fibrotic hypersensitivity pneumonitis (n = 17, 35%) and IPF (n = 13, 27%) most common. The concordance between EGC and TBLC at MDD was 76% (37/49) with discordant results seen in 24% (12/49) of patients. CONCLUSIONS There appears to be reasonable concordance between EGC and TBLC results at MDD. Efforts clarifying the contributions of these tools to an ILD diagnosis may help identify specific patient populations that may benefit from a tailored diagnostic approach.
Collapse
Affiliation(s)
- Mohammed Abdalla
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, 8701W Watertown Plank, Milwaukee, WI, United States
| | - Carson Castellani
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Harpreet Singh
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, 8701W Watertown Plank, Milwaukee, WI, United States
| | - Jonathan S Kurman
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, 8701W Watertown Plank, Milwaukee, WI, United States
| | - Bryan S Benn
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, 8701W Watertown Plank, Milwaukee, WI, United States.
| |
Collapse
|
40
|
Glenn LM, Troy LK, Corte TJ. Novel diagnostic techniques in interstitial lung disease. Front Med (Lausanne) 2023; 10:1174443. [PMID: 37188089 PMCID: PMC10175799 DOI: 10.3389/fmed.2023.1174443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Research into novel diagnostic techniques and targeted therapeutics in interstitial lung disease (ILD) is moving the field toward increased precision and improved patient outcomes. An array of molecular techniques, machine learning approaches and other innovative methods including electronic nose technology and endobronchial optical coherence tomography are promising tools with potential to increase diagnostic accuracy. This review provides a comprehensive overview of the current evidence regarding evolving diagnostic methods in ILD and to consider their future role in routine clinical care.
Collapse
Affiliation(s)
- Laura M. Glenn
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- *Correspondence: Laura M. Glenn,
| | - Lauren K. Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
41
|
van der Staal A, Göhring J, Ohradanova-Repic A, Kramer M, Donner C, Zech A, Idzko M, Stockinger H. Immune cell profiles and patient clustering in complex cases of interstitial lung disease. Immunol Lett 2023; 253:30-40. [PMID: 36608905 DOI: 10.1016/j.imlet.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Interstitial lung disease comprises numerous clinical entities posing significant challenges towards a prompt and accurate diagnosis. Amongst the contributing factors are intricate pathophysiological mechanisms, an overlap between conditions, and interobserver disagreement. We developed a model for patient clustering offering an additional approach to such complex clinical cases. The model is based on surface phenotyping of over 40 markers on immune cells isolated from bronchoalveolar lavage in combination with clinical data. Based on the marker expression pattern we constructed an individual immune cell profile, then merged these to create a global profile encompassing various pathologies. The contribution of each participant to the global profile was assessed through dimensionality reduction tools and the ensuing similarity between samples was calculated. Our model enables two approaches. First, assessing the immune cell population landscape similarity between patients within a diagnostic group allows rapid identification of divergent profiles, which is particularly helpful for cases with uncertain diagnoses. Second, sample clustering is based exclusively on the calculated similarity of the immune cell profiles, thereby removing physician bias and relying on cellular nearest neighbors.
Collapse
Affiliation(s)
- Alexandra van der Staal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Janett Göhring
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Markus Kramer
- Medical University of Vienna, Division of Pulmonology, Department of Medicine II, Vienna General Hospital, Vienna, Austria
| | - Clemens Donner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Andreas Zech
- Medical University of Vienna, Division of Pulmonology, Department of Medicine II, Vienna General Hospital, Vienna, Austria
| | - Marco Idzko
- Medical University of Vienna, Division of Pulmonology, Department of Medicine II, Vienna General Hospital, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria.
| |
Collapse
|
42
|
Maximizing Small Biopsy Patient Samples: Unified RNA-Seq Platform Assessment of over 120,000 Patient Biopsies. J Pers Med 2022; 13:jpm13010024. [PMID: 36675685 PMCID: PMC9866839 DOI: 10.3390/jpm13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite its wide-ranging benefits, whole-transcriptome or RNA exome profiling is challenging to implement in a clinical diagnostic setting. The Unified Assay is a comprehensive workflow wherein exome-enriched RNA-sequencing (RNA-Seq) assays are performed on clinical samples and analyzed by a series of advanced machine learning-based classifiers. Gene expression signatures and rare and/or novel genomic events, including fusions, mitochondrial variants, and loss of heterozygosity were assessed using RNA-Seq data generated from 120,313 clinical samples across three clinical indications (thyroid cancer, lung cancer, and interstitial lung disease). Since its implementation, the data derived from the Unified Assay have allowed significantly more patients to avoid unnecessary diagnostic surgery and have played an important role in guiding follow-up decisions regarding treatment. Collectively, data from the Unified Assay show the utility of RNA-Seq and RNA expression signatures in the clinical laboratory, and their importance to the future of precision medicine.
Collapse
|
43
|
Screening for idiopathic pulmonary fibrosis using comorbidity signatures in electronic health records. Nat Med 2022; 28:2107-2116. [PMID: 36175678 DOI: 10.1038/s41591-022-02010-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrosing interstitial lung disease with a mean survival time of less than 5 years. Nonspecific presentation, a lack of effective early screening tools, unclear pathobiology of early-stage IPF and the need for invasive and expensive procedures for diagnostic confirmation hinder early diagnosis. In this study, we introduce a new screening tool for IPF in primary care settings that requires no new laboratory tests and does not require recognition of early symptoms. Using subtle comorbidity signatures identified from the history of medical encounters of individuals, we developed an algorithm, called the zero-burden comorbidity risk score for IPF (ZCoR-IPF), to predict the future risk of an IPF diagnosis. ZCoR-IPF was trained on a national insurance claims database and validated on three independent databases, comprising a total of 2,983,215 participants, with 54,247 positive cases. The algorithm achieved positive likelihood ratios greater than 30 at a specificity of 0.99 across different cohorts, for both sexes, and for participants with different risk states and history of confounding diseases. The area under the receiver-operating characteristic curve for ZCoR-IPF in predicting IPF exceeded 0.88 and was approximately 0.84 at 1 and 4 years before a conventional diagnosis, respectively. Thus, if adopted, ZCoR-IPF can potentially enable earlier diagnosis of IPF and improve outcomes of disease-modifying therapies and other interventions.
Collapse
|
44
|
Glenn LM, Troy LK, Corte TJ. Diagnosing interstitial lung disease by multidisciplinary discussion: A review. Front Med (Lausanne) 2022; 9:1017501. [PMID: 36213664 PMCID: PMC9532594 DOI: 10.3389/fmed.2022.1017501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The multidisciplinary meeting (MDM) has been endorsed in current international consensus guidelines as the gold standard method for diagnosis of interstitial lung disease (ILD). In the absence of an accurate and reliable diagnostic test, the agreement between multidisciplinary meetings has been used as a surrogate marker for diagnostic accuracy. Although the ILD MDM has been shown to improve inter-clinician agreement on ILD diagnosis, result in a change in diagnosis in a significant proportion of patients and reduce unclassifiable diagnoses, the ideal form for an ILD MDM remains unclear, with constitution and processes of ILD MDMs varying greatly around the world. It is likely that this variation of practice contributes to the lack of agreement seen between MDMs, as well as suboptimal diagnostic accuracy. A recent Delphi study has confirmed the essential components required for the operation of an ILD MDM. The ILD MDM is a changing entity, as it incorporates new diagnostic tests and genetic markers, while also adapting in its form in response to the obstacles of the COVID-19 pandemic. The aim of this review was to evaluate the current evidence regarding ILD MDM and their role in the diagnosis of ILD, the practice of ILD MDM around the world, approaches to ILD MDM standardization and future directions to improve diagnostic accuracy in ILD.
Collapse
Affiliation(s)
- Laura M. Glenn
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- The University of Sydney School of Medicine (Central Clinical School), Sydney, NSW, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- *Correspondence: Laura M. Glenn
| | - Lauren K. Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- The University of Sydney School of Medicine (Central Clinical School), Sydney, NSW, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- The University of Sydney School of Medicine (Central Clinical School), Sydney, NSW, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
45
|
Cottin V, Bonniaud P, Cadranel J, Crestani B, Jouneau S, Marchand-Adam S, Nunes H, Wémeau-Stervinou L, Bergot E, Blanchard E, Borie R, Bourdin A, Chenivesse C, Clément A, Gomez E, Gondouin A, Hirschi S, Lebargy F, Marquette CH, Montani D, Prévot G, Quetant S, Reynaud-Gaubert M, Salaun M, Sanchez O, Trumbic B, Berkani K, Brillet PY, Campana M, Chalabreysse L, Chatté G, Debieuvre D, Ferretti G, Fourrier JM, Just N, Kambouchner M, Legrand B, Le Guillou F, Lhuillier JP, Mehdaoui A, Naccache JM, Paganon C, Rémy-Jardin M, Si-Mohamed S, Terrioux P. [French practical guidelines for the diagnosis and management of IPF - 2021 update, full version]. Rev Mal Respir 2022; 39:e35-e106. [PMID: 35752506 DOI: 10.1016/j.rmr.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Since the previous French guidelines were published in 2017, substantial additional knowledge about idiopathic pulmonary fibrosis has accumulated. METHODS Under the auspices of the French-speaking Learned Society of Pulmonology and at the initiative of the coordinating reference center, practical guidelines for treatment of rare pulmonary diseases have been established. They were elaborated by groups of writers, reviewers and coordinators with the help of the OrphaLung network, as well as pulmonologists with varying practice modalities, radiologists, pathologists, a general practitioner, a head nurse, and a patients' association. The method was developed according to rules entitled "Good clinical practice" in the overall framework of the "Guidelines for clinical practice" of the official French health authority (HAS), taking into account the results of an online vote using a Likert scale. RESULTS After analysis of the literature, 54 recommendations were formulated, improved, and validated by the working groups. The recommendations covered a wide-ranging aspects of the disease and its treatment: epidemiology, diagnostic modalities, quality criteria and interpretation of chest CT, indication and modalities of lung biopsy, etiologic workup, approach to familial disease entailing indications and modalities of genetic testing, evaluation of possible functional impairments and prognosis, indications for and use of antifibrotic therapy, lung transplantation, symptom management, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are aimed at guiding the diagnosis and the management in clinical practice of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- V Cottin
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France; UMR 754, IVPC, INRAE, Université de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; Membre d'OrphaLung, RespiFil, Radico-ILD2, et ERN-LUNG, Lyon, France.
| | - P Bonniaud
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et soins intensifs respiratoires, centre hospitalo-universitaire de Bourgogne et faculté de médecine et pharmacie, université de Bourgogne-Franche Comté, Dijon ; Inserm U123-1, Dijon, France
| | - J Cadranel
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et oncologie thoracique, Assistance publique-Hôpitaux de Paris (AP-HP), hôpital Tenon, Paris ; Sorbonne université GRC 04 Theranoscan, Paris, France
| | - B Crestani
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - S Jouneau
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Pontchaillou, Rennes ; IRSET UMR1085, université de Rennes 1, Rennes, France
| | - S Marchand-Adam
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, hôpital Bretonneau, service de pneumologie, CHRU, Tours, France
| | - H Nunes
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie, AP-HP, hôpital Avicenne, Bobigny ; université Sorbonne Paris Nord, Bobigny, France
| | - L Wémeau-Stervinou
- Centre de référence constitutif des maladies pulmonaires rares, Institut Cœur-Poumon, service de pneumologie et immuno-allergologie, CHRU de Lille, Lille, France
| | - E Bergot
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie et oncologie thoracique, hôpital Côte de Nacre, CHU de Caen, Caen, France
| | - E Blanchard
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Haut Levêque, CHU de Bordeaux, Pessac, France
| | - R Borie
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - A Bourdin
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, département de pneumologie et addictologie, hôpital Arnaud-de-Villeneuve, CHU de Montpellier, Montpellier ; Inserm U1046, CNRS UMR 921, Montpellier, France
| | - C Chenivesse
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et d'immuno-allergologie, hôpital Albert Calmette ; CHRU de Lille, Lille ; centre d'infection et d'immunité de Lille U1019 - UMR 9017, Université de Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, Lille, France
| | - A Clément
- Centre de ressources et de compétence de la mucoviscidose pédiatrique, centre de référence des maladies respiratoires rares (RespiRare), service de pneumologie pédiatrique, hôpital d'enfants Armand-Trousseau, CHU Paris Est, Paris ; Sorbonne université, Paris, France
| | - E Gomez
- Centre de compétence pour les maladies pulmonaires rares, département de pneumologie, hôpitaux de Brabois, CHRU de Nancy, Vandoeuvre-les Nancy, France
| | - A Gondouin
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Jean-Minjoz, Besançon, France
| | - S Hirschi
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, Nouvel Hôpital civil, Strasbourg, France
| | - F Lebargy
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Maison Blanche, Reims, France
| | - C-H Marquette
- Centre de compétence pour les maladies pulmonaires rares, FHU OncoAge, département de pneumologie et oncologie thoracique, hôpital Pasteur, CHU de Nice, Nice cedex 1 ; Université Côte d'Azur, CNRS, Inserm, Institute of Research on Cancer and Aging (IRCAN), Nice, France
| | - D Montani
- Centre de compétence pour les maladies pulmonaires rares, centre national coordonnateur de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs pneumologiques, AP-HP, DMU 5 Thorinno, Inserm UMR S999, CHU Paris-Sud, hôpital de Bicêtre, Le Kremlin-Bicêtre ; Université Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| | - G Prévot
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Larrey, Toulouse, France
| | - S Quetant
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et physiologie, CHU Grenoble Alpes, Grenoble, France
| | - M Reynaud-Gaubert
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, AP-HM, CHU Nord, Marseille ; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - M Salaun
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, oncologie thoracique et soins intensifs respiratoires & CIC 1404, hôpital Charles Nicole, CHU de Rouen, Rouen ; IRIB, laboratoire QuantiIF-LITIS, EA 4108, université de Rouen, Rouen, France
| | - O Sanchez
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et soins intensifs, hôpital européen Georges-Pompidou, AP-HP, Paris, France
| | | | - K Berkani
- Clinique Pierre de Soleil, Vetraz Monthoux, France
| | - P-Y Brillet
- Université Paris 13, UPRES EA 2363, Bobigny ; service de radiologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - M Campana
- Service de pneumologie et oncologie thoracique, CHR Orléans, Orléans, France
| | - L Chalabreysse
- Service d'anatomie-pathologique, groupement hospitalier est, HCL, Bron, France
| | - G Chatté
- Cabinet de pneumologie et infirmerie protestante, Caluire, France
| | - D Debieuvre
- Service de pneumologie, GHRMSA, hôpital Emile-Muller, Mulhouse, France
| | - G Ferretti
- Université Grenoble Alpes, Grenoble ; service de radiologie diagnostique et interventionnelle, CHU Grenoble Alpes, Grenoble, France
| | - J-M Fourrier
- Association Pierre-Enjalran Fibrose Pulmonaire Idiopathique (APEFPI), Meyzieu, France
| | - N Just
- Service de pneumologie, CH Victor-Provo, Roubaix, France
| | - M Kambouchner
- Service de pathologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - B Legrand
- Cabinet médical de la Bourgogne, Tourcoing ; Université de Lille, CHU Lille, ULR 2694 METRICS, CERIM, Lille, France
| | - F Le Guillou
- Cabinet de pneumologie, pôle santé de l'Esquirol, Le Pradet, France
| | - J-P Lhuillier
- Cabinet de pneumologie, La Varenne Saint-Hilaire, France
| | - A Mehdaoui
- Service de pneumologie et oncologie thoracique, CH Eure-Seine, Évreux, France
| | - J-M Naccache
- Service de pneumologie, allergologie et oncologie thoracique, GH Paris Saint-Joseph, Paris, France
| | - C Paganon
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France
| | - M Rémy-Jardin
- Institut Cœur-Poumon, service de radiologie et d'imagerie thoracique, CHRU de Lille, Lille, France
| | - S Si-Mohamed
- Département d'imagerie cardiovasculaire et thoracique, hôpital Louis-Pradel, HCL, Bron ; Université de Lyon, INSA-Lyon, Université Claude-Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
| | | |
Collapse
|
46
|
Integration and Application of Clinical Practice Guidelines for the Diagnosis of Idiopathic Pulmonary Fibrosis and Fibrotic Hypersensitivity Pneumonitis. Chest 2022; 162:614-629. [DOI: 10.1016/j.chest.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
|
47
|
Maher TM, Nambiar AM, Wells AU. The role of precision medicine in interstitial lung disease. Eur Respir J 2022; 60:2102146. [PMID: 35115344 PMCID: PMC9449482 DOI: 10.1183/13993003.02146-2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
The management of interstitial lung disease (ILD) may benefit from a conceptual shift. Increased understanding of this complex and heterogeneous group of disorders over the past 20 years has highlighted the need for individualised treatment strategies that encompass diagnostic classification and disease behaviour. Biomarker-based approaches to precision medicine hold the greatest promise. Robust, large-scale biomarker-based technologies supporting ILD diagnosis have been developed, and future applications relating to staging, prognosis and assessment of treatment response are emerging. Artificial intelligence may redefine our ability to base prognostic evaluation on both diagnosis and underlying disease processes, sharpening individualised treatment algorithms to a level not previously achieved. Compared with therapeutic areas such as oncology, precision medicine in ILD is still in its infancy. However, the heterogeneous nature of ILD suggests that many relevant molecular, environmental and behavioural targets may serve as useful biomarkers if we are willing to invest in their identification and validation.
Collapse
Affiliation(s)
- Toby M Maher
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, UK
| | - Anoop M Nambiar
- UT Health San Antonio Center for Interstitial Lung Disease, Division of Pulmonary and Critical Care Medicine, Dept of Medicine, University of Texas Health San Antonio and the South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
48
|
León-Román F, Valenzuela C, Molina-Molina M. Idiopathic pulmonary fibrosis. Med Clin (Barc) 2022; 159:189-194. [PMID: 35659420 DOI: 10.1016/j.medcli.2022.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
Idiopathic pulmonary fibrosis is defined as a chronic progressive fibrosing interstitial pneumonia of unknown etiology. There are intrinsic and extrinsic risk factors that could favor the development of the disease in individuals with a genetic predisposition. The diagnosis is made by characteristic radiological and/or histological findings on high-resolution computed tomography and lung biopsy, respectively, in the absence of a specific identifiable cause. The median survival of the disease for patients without treatment is 3-5years from the onset of symptoms, although its natural history is variable and unpredictable. Currently, there are two antifibrotic drugs that reduce disease progression. The multidisciplinary approach will consider the nutritional and emotional status, physical conditioning, and treatment of comorbidities, as well as lung transplantation and palliative care in advanced stages. The following article reviews the fundamental aspects for the diagnosis and treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Claudia Valenzuela
- Unidad de Enfermedades Pulmonares Intersticiales Difusas, Servicio de Neumología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, España
| | - María Molina-Molina
- Unidad Funcional de Intersticio Pulmonar (UFIP), Servicio de Neumología, Hospital Universitario de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, España
| |
Collapse
|
49
|
Helen Sulochana C, Praylin Selva Blessy SA. Interstitial lung disease detection using template matching combined sparse coding and blended multi class support vector machine. Proc Inst Mech Eng H 2022; 236:1492-1501. [DOI: 10.1177/09544119221113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interstitial lung disease (ILD), representing a collection of disorders, is considered to be the deadliest one, which increases the mortality rate of humans. In this paper, an automated scheme for detection and classification of ILD patterns is presented, which eliminates low inter-class feature variation and high intra-class feature variation in patterns, caused by translation and illumination effects. A novel and efficient feature extraction method named Template-Matching Combined Sparse Coding (TMCSC) is proposed, which extracts features invariant to translation and illumination effects, from defined regions of interest (ROI) within lung parenchyma. The translated image patch is compared with all possible templates of the image using template matching process. The corresponding sparse matrix for the set of translated image patches and their nearest template is obtained by minimizing the objective function of the similarity matrix of translated image patch and the template. A novel Blended-Multi Class Support Vector Machine (B-MCSVM) is designed for tackling high-intra class feature variation problems, which provides improved classification accuracy. Region of interests (ROIs) of five lung tissue patterns (healthy, emphysema, ground glass, micronodule, and fibrosis) selected from an internal multimedia database that contains high-resolution computed tomography (HRCT) image series are identified and utilized in this work. Performance of the proposed scheme outperforms most of the state-of-art multi-class classification algorithms.
Collapse
Affiliation(s)
- C Helen Sulochana
- St. Xaviers Catholic College of Engineering, Chunkankadai, Tamil Nadu, India
| | | |
Collapse
|
50
|
French practical guidelines for the diagnosis and management of idiopathic pulmonary fibrosis - 2021 update. Full-length version. Respir Med Res 2022; 83:100948. [PMID: 36630775 DOI: 10.1016/j.resmer.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Since the latest 2017 French guidelines, knowledge about idiopathic pulmonary fibrosis has evolved considerably. METHODS Practical guidelines were drafted on the initiative of the Coordinating Reference Center for Rare Pulmonary Diseases, led by the French Language Pulmonology Society (SPLF), by a coordinating group, a writing group, and a review group, with the involvement of the entire OrphaLung network, pulmonologists practicing in various settings, radiologists, pathologists, a general practitioner, a health manager, and a patient association. The method followed the "Clinical Practice Guidelines" process of the French National Authority for Health (HAS), including an online vote using a Likert scale. RESULTS After a literature review, 54 guidelines were formulated, improved, and then validated by the working groups. These guidelines addressed multiple aspects of the disease: epidemiology, diagnostic procedures, quality criteria and interpretation of chest CT scans, lung biopsy indication and procedures, etiological workup, methods and indications for family screening and genetic testing, assessment of the functional impairment and prognosis, indication and use of antifibrotic agents, lung transplantation, management of symptoms, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are intended to guide the diagnosis and practical management of idiopathic pulmonary fibrosis.
Collapse
|