1
|
Marais BJ, Zhang X, Sintchenko V. The promise and the reality of targeted next-generation sequencing for drug-resistant tuberculosis detection. THE LANCET. INFECTIOUS DISEASES 2025; 25:251-253. [PMID: 39486427 DOI: 10.1016/s1473-3099(24)00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024]
Affiliation(s)
- Ben J Marais
- The Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW 2145, Australia.
| | - Xiaomei Zhang
- The Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW 2145, Australia
| | - Vitali Sintchenko
- The Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, NSW 2145, Australia; NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology-Public Health (CIDM-PH), Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Zarin S, Ahuja Y, Fayaz H, Alam A, Ehtesham NZ, Hasnain SE. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Crit Rev Microbiol 2025; 51:108-127. [PMID: 38470107 DOI: 10.1080/1040841x.2024.2321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Sheeba Zarin
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, New Delhi, India
| | - Yashika Ahuja
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, School of Science and Engineering Technology, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
3
|
Ehtram A, Shariq M, Quadir N, Jamal S, Pichipalli M, Zarin S, Sheikh JA, Ehtesham NZ, Hasnain SE. Deciphering the functional roles of PE18 and PPE26 proteins in modulating Mycobacterium tuberculosis pathogenesis and immune response. Front Immunol 2025; 16:1517822. [PMID: 39949767 PMCID: PMC11821933 DOI: 10.3389/fimmu.2025.1517822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/07/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of mortality worldwide. A crucial factor in Mtb's virulence is the ESX-5 secretion system, which transports PE/PPE proteins such as PE18 and PPE26. These proteins modulate host-pathogen interactions, immune responses, and intracellular survival mechanisms. Despite their importance, the roles and molecular interactions of PE18 and PPE26 in Mtb pathogenesis require further investigation. Methods We explored the roles of PE18 and PPE26 using recombinant Mycobacterium smegmatis (Msmeg) as a model organism. Protein-protein interactions were analyzed biochemically to identify partners within the ESX-5 secretion system, including EspG5 and other PE/PPE proteins. Subcellular localization of these proteins was assessed via cell fractionation studies. Functional assays, including in vitro cytokine production and antigen presentation studies, were performed using TLR2/Myd88 knockout and wild-type macrophages. In vivo experiments were conducted to assess effector T-cell activation and intracellular survival. Mechanistic insights into endosome-phagosome maturation and actin cytoskeleton dynamics were obtained through fluorescence microscopy. Results Our biochemical analyses confirmed interactions between PE18/PPE26, PE18/PPE27, PE19/PPE25, and EspG5/PPE, highlighting their involvement in ESX-5-mediated secretion. Cell fractionation studies revealed that PE/PPE proteins predominantly localize to the cell wall, with PE18 also secreted extracellularly. In vitro and in vivo experiments demonstrated that PE18 and PPE26 activate cytokine production and antigen presentation via TLR2/Myd88-dependent signaling pathways, inducing robust effector memory T-cell responses. Recombinant Msmeg expressing PE18, PPE26, or their combination exhibited enhanced intracellular survival by disrupting endosome-phagosome maturation, likely through interference with actin cytoskeletal organization. Discussion Our findings elucidate the pivotal roles of PE18 and PPE26 in Mtb pathogenesis, emphasizing their contributions to immune modulation and intracellular persistence. The observed disruption of actin dynamics and endosome-phagosome maturation underscores a novel mechanism by which Mtb evades host defenses. The ability of PE18 and PPE26 to induce effector T-cell responses highlights their potential as targets for host-directed therapies or vaccine development against TB. Further studies focusing on their structure-function relationships and interactions with host proteins could accelerate the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Aquib Ehtram
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohd Shariq
- GITAM School of Science, Gandhi Institute of Technology and Management (GITAM) University, Hyderabad, Telangana, India
| | - Neha Quadir
- Inflammation Biology and Cell Signaling Laboratory, ICMR-National Institute of Pathology, New Delhi, India
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Salma Jamal
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Manjunath Pichipalli
- Inflammation Biology and Cell Signaling Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | | | - Nasreen Z. Ehtesham
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E. Hasnain
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
4
|
Malik AA, Shariq M, Sheikh JA, Jaiswal U, Fayaz H, Shrivastava G, Ehtesham NZ, Hasnain SE. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Crit Rev Biochem Mol Biol 2024; 59:310-336. [PMID: 39378051 DOI: 10.1080/10409238.2024.2411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/14/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. M. tb employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit M. tb survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Telangana, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Udyeshita Jaiswal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Gauri Shrivastava
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, India
| |
Collapse
|
5
|
Malik AA, Shariq M, Sheikh JA, Fayaz H, Srivastava G, Thakuri D, Ahuja Y, Ali S, Alam A, Ehtesham NZ, Hasnain SE. Regulation of Type I Interferon and Autophagy in Immunity against Mycobacterium Tuberculosis: Role of CGAS and STING1. Adv Biol (Weinh) 2024; 8:e2400174. [PMID: 38977406 DOI: 10.1002/adbi.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is a significant intracellular pathogen responsible for numerous infectious disease-related deaths worldwide. It uses ESX-1 T7SS to damage phagosomes and to enter the cytosol of host cells after phagocytosis. During infection, M. tb and host mitochondria release dsDNA, which activates the CGAS-STING1 pathway. This pathway leads to the production of type I interferons and proinflammatory cytokines and activates autophagy, which targets and degrades bacteria within autophagosomes. However, the role of type I IFNs in immunity against M. tb is controversial. While previous research has suggested a protective role, recent findings from cgas-sting1 knockout mouse studies have contradicted this. Additionally, a study using knockout mice and non-human primate models uncovered a new mechanism by which neutrophils recruited to lung infections form neutrophil extracellular traps. Activating plasmacytoid dendritic cells causes them to produce type I IFNs, which interfere with the function of interstitial macrophages and increase the likelihood of tuberculosis. Notably, M. tb uses its virulence proteins to disrupt the CGAS-STING1 signaling pathway leading to enhanced pathogenesis. Investigating the CGAS-STING1 pathway can help develop new ways to fight tuberculosis.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi, 110029, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Haleema Fayaz
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Gauri Srivastava
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Deeksha Thakuri
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Saquib Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201306, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, 110 016, India
| |
Collapse
|
6
|
Rahim MA, Seo H, Kim S, Barman I, Ghorbanian F, Hossain MS, Shuvo MSH, Lee S, Song HY. Exploring the potential of Lactocaseibacillus rhamnosus PMC203 in inducing autophagy to reduce the burden of Mycobacterium tuberculosis. Med Microbiol Immunol 2024; 213:14. [PMID: 38977511 PMCID: PMC11231020 DOI: 10.1007/s00430-024-00794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024]
Abstract
Mycobacterium tuberculosis, a lethal pathogen in human history, causes millions of deaths annually, which demands the development of new concepts of drugs. Considering this fact, earlier research has explored the anti-tuberculosis potential of a probiotic strain, Lactocaseibacillus rhamnosus PMC203, leading to a subsequent focus on the molecular mechanism involved in its effect, particularly on autophagy. In this current study, immunoblotting-based assay exhibited a remarkable expression of autophagy marker LC3-II in the PMC203 treated group compared to an untreated group. A remarkable degradation of p62 was also noticed within treated cells compared to control. Furthermore, the immunofluorescence-based assay showed significant fold change in fluorescence intensity for alexa-647-LC3 and alexa-488-LC3, whereas p62 was degraded noticeably. Moreover, lysosomal biogenesis generation was elevated significantly in terms of LAMP1 and acidic vesicular organelles. As a result, PMC203-induced autophagy played a vital role in reducing M. tuberculosis burden within the macrophages in treated groups compared to untreated group. A colony -forming unit assay also revealed a significant reduction in M. tuberculosis in the treated cells over time. Additionally, the candidate strain significantly upregulated the expression of autophagy induction and lysosomal biogenesis genes. Together, these results could enrich our current knowledge of probiotics-mediated autophagy in tuberculosis and suggest its implications for innovatively managing tuberculosis.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Indrajeet Barman
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Fatemeh Ghorbanian
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Mohammed Solayman Hossain
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Md Sarower Hossen Shuvo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Saebim Lee
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
- Human Microbiome Medical Research Center, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
7
|
Nazim T, Kumar V, Ahmed F, Ehtesham NZ, Hasnain SE, Sundar D, Grover S. Computational analysis of RNA methyltransferase Rv3366 as a potential drug target for combating drug-resistant Mycobacterium tuberculosis. Front Mol Biosci 2024; 10:1348337. [PMID: 38274093 PMCID: PMC10808684 DOI: 10.3389/fmolb.2023.1348337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) remains a formidable global health threat. The increasing drug resistance among M.tb clinical isolates is exacerbating the current tuberculosis (TB) burden. In this study we focused on identifying novel repurposed drugs that could be further investigated as potential anti-TB drugs. We utilized M.tb RNA methyltransferase Rv3366 (spoU) as a potential drug target due to its imperative activity in RNA modification and no structural homology with human proteins. Using computational modeling approaches the structure of Rv3366 was determined followed by high throughput virtual screening of Food and Drug Administration (FDA) approved drugs to screen potential binders of Rv3366. Molecular dynamics (MD) simulations were performed to assess the drug-protein binding interactions, complex stability and rigidity. Through this multi-step structure-based drug repurposing workflow two promising inhibitors of Rv3366 were identified, namely, Levodopa and Droxidopa. This study highlights the significance of targeting M.tb RNA methyltransferases to combat drug-resistant M.tb. and proposes Levodopa and Droxidopa as promising inhibitors of Rv3366 for future pre-clinical investigations.
Collapse
Affiliation(s)
- Tasmin Nazim
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Faraz Ahmed
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Nasreen Z. Ehtesham
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Rastogi N, Zarin S, Alam A, Konduru GV, Manjunath P, Mishra A, Kumar S, Nagarajaram HA, Hasnain SE, Ehtesham NZ. Structural and Biophysical properties of therapeutically important proteins Rv1509 and Rv2231A of Mycobacterium tuberculosis. Int J Biol Macromol 2023; 245:125455. [PMID: 37331537 DOI: 10.1016/j.ijbiomac.2023.125455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Through comparative analyses using BLASTp and BLASTn of the 25 target sequences, our research identified two unique post-transcriptional modifiers, Rv1509 and Rv2231A, which serve as distinctive and characteristic proteins of M.tb - the Signature Proteins. Here, we have characterized these two signature proteins associated with pathophysiology of M.tb which may prove to be therapeutically important targets. Dynamic Light Scattering and Analytical Gel Filtration Chromatography exhibited that Rv1509 exists as a monomer while Rv2231A as a dimer in solution. Secondary structures were determined using Circular Dichroism and further validated through Fourier Transform Infrared spectroscopy. Both the proteins are capable of withstanding a wide range of temperature and pH variations. Fluorescence spectroscopy based binding affinity experiments showed that Rv1509 binds to iron and may promote organism growth by chelating iron. In the case of Rv2231A, a high affinity for its substrate RNA was observed, which is facilitated in presence of Mg2+ suggesting it might have RNAse activity, supporting the prediction through in-silico studies. This is the first study on biophysical characterization of these two therapeutically important proteins, Rv1509 and Rv2231A, providing important insights into their structure -function correlations which are crucial for development of new drugs/ early diagnostics tools targeting these proteins.
Collapse
Affiliation(s)
- Nilisha Rastogi
- Cell Signaling and Inflammation Biology Lab, ICMR-National Institute of Pathology, New Delhi 110029, India
| | - Sheeba Zarin
- Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India; Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Anwar Alam
- Department of Biotechnology, School of Engineering Sciences and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Guruprasad Varma Konduru
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - P Manjunath
- Cell Signaling and Inflammation Biology Lab, ICMR-National Institute of Pathology, New Delhi 110029, India
| | - Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Hampapathalu Adimurthy Nagarajaram
- Laboratory of Computational Biology, Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof C.R. Rao Road, Hyderabad 500007, India
| | - Seyed Ehtesham Hasnain
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India.
| | - Nasreen Zafar Ehtesham
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
9
|
Selvapandiyan A, Puri N, Kumar P, Alam A, Ehtesham NZ, Griffin G, Hasnain SE. Zooming in on common immune evasion mechanisms of pathogens in phagolysosomes: potential broad-spectrum therapeutic targets against infectious diseases. FEMS Microbiol Rev 2023; 47:6780197. [PMID: 36309472 DOI: 10.1093/femsre/fuac041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome-lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens.
Collapse
Affiliation(s)
| | - Niti Puri
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pankaj Kumar
- Department of Biochemistry, Jamia Hamdard, New Delhi, 110062, India.,Centre for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Anwar Alam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, 110016, India
| | - Nasreen Zafar Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - George Griffin
- Department of Cellular and Molecular Medicine, St. George's University of London, London, SW17 0RE, United Kingdom
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, 110016, India.,Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, 201310, India
| |
Collapse
|
10
|
Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, Ehtesham NZ. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy 2023; 19:3-23. [PMID: 35000542 PMCID: PMC9809970 DOI: 10.1080/15548627.2021.2021495] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intracellular pathogens have evolved various efficient molecular armaments to subvert innate defenses. Cellular ubiquitination, a normal physiological process to maintain homeostasis, is emerging one such exploited mechanism. Ubiquitin (Ub), a small protein modifier, is conjugated to diverse protein substrates to regulate many functions. Structurally diverse linkages of poly-Ub to target proteins allow enormous functional diversity with specificity being governed by evolutionarily conserved enzymes (E3-Ub ligases). The Ub-binding domain (UBD) and LC3-interacting region (LIR) are critical features of macroautophagy/autophagy receptors that recognize Ub-conjugated on protein substrates. Emerging evidence suggests that E3-Ub ligases unexpectedly protect against intracellular pathogens by tagging poly-Ub on their surfaces and targeting them to phagophores. Two E3-Ub ligases, PRKN and SMURF1, provide immunity against Mycobacterium tuberculosis (M. tb). Both enzymes conjugate K63 and K48-linked poly-Ub to M. tb for successful delivery to phagophores. Intriguingly, M. tb exploits virulence factors to effectively dampen host-directed autophagy utilizing diverse mechanisms. Autophagy receptors contain LIR-motifs that interact with conserved Atg8-family proteins to modulate phagophore biogenesis and fusion to the lysosome. Intracellular pathogens have evolved a vast repertoire of virulence effectors to subdue host-immunity via hijacking the host ubiquitination process. This review highlights the xenophagy-mediated clearance of M. tb involving host E3-Ub ligases and counter-strategy of autophagy inhibition by M. tb using virulence factors. The role of Ub-binding receptors and their mode of autophagy regulation is also explained. We also discuss the co-opting and utilization of the host Ub system by M. tb for its survival and virulence.Abbreviations: APC: anaphase promoting complex/cyclosome; ATG5: autophagy related 5; BCG: bacille Calmette-Guerin; C2: Ca2+-binding motif; CALCOCO2: calcium binding and coiled-coil domain 2; CUE: coupling of ubiquitin conjugation to ER degradation domains; DUB: deubiquitinating enzyme; GABARAP: GABA type A receptor-associated protein; HECT: homologous to the E6-AP carboxyl terminus; IBR: in-between-ring fingers; IFN: interferon; IL1B: interleukin 1 beta; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LGALS: galectin; LIR: LC3-interacting region; MAPK11/p38: mitogen-activated protein kinase 11; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK8/JNK: mitogen-activated protein kinase 8; MHC-II: major histocompatibility complex-II; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB1/p50: nuclear factor kappa B subunit 1; OPTN: optineurin; PB1: phox and bem 1; PE/PPE: proline-glutamic acid/proline-proline-glutamic acid; PknG: serine/threonine-protein kinase PknG; PRKN: parkin RBR E3 ubiquitin protein ligase; RBR: RING-in between RING; RING: really interesting new gene; RNF166: RING finger protein 166; ROS: reactive oxygen species; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; Ub: ubiquitin; UBA: ubiquitin-associated; UBAN: ubiquitin-binding domain in ABIN proteins and NEMO; UBD: ubiquitin-binding domain; UBL: ubiquitin-like; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Neha Quadir
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Anwar Alam
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Sheeba Zarin
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A. Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Neha Sharma
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Uzair Ahmad
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Indu Kumari
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India,Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India,Seyed E. Hasnain ; ; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India
| | - Nasreen Z. Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,CONTACT Nasreen Z. Ehtesham ; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi110029, India
| |
Collapse
|
11
|
Malik AA, Sheikh JA, Ehtesham NZ, Hira S, Hasnain SE. Can Mycobacterium tuberculosis infection lead to cancer? Call for a paradigm shift in understanding TB and cancer. Int J Med Microbiol 2022; 312:151558. [PMID: 35842995 DOI: 10.1016/j.ijmm.2022.151558] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Infections are known to cause tumours though more attributed to viruses. Strong epidemiological links suggest association between bacterial infections and cancers as exemplified by Helicobacter pylori and Salmonella spp. Infection with Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), has been reported to predispose patients to lung cancers and possibly in other organs as well. While this etiopathogenesis warrant inclusion of M. tb in IARC's (International Agency for Research on Cancer) classified carcinogenic agents, the lack of well-defined literature and direct experimental studies have barred the research community from accepting the role of M. tb as a carcinogen. The background research, case studies, and experimental data extensively reviewed in Roy et al., 2021; provoke the debate for elucidating carcinogenic properties of M. tb. Moreover, proper, timely and correct diagnosis of both diseases (which often mimic each other) will save millions of lives that are misdiagnosed. In addition, use of Anti Tubercular therapy (ATT) in misdiagnosed non-TB patients contributes to drug resistance in population thereby severely impacting TB disease control measures. Research in this arena can further aid in saving billions of dollars by preventing the superfluous use of cancer drugs. In order to achieve these goals, it is imperative to identify the underlying mechanism of M. tb infection acting as major risk factor for cancer.
Collapse
Affiliation(s)
- Asrar A Malik
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Javaid A Sheikh
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Subhash Hira
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Seyed E Hasnain
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India.
| |
Collapse
|
12
|
Sheikh JA, Malik AA, Quadir N, Ehtesham NZ, Hasnain SE. Learning from COVID-19 to tackle TB pandemic: From despair to hope. THE LANCET REGIONAL HEALTH - SOUTHEAST ASIA 2022; 2:100015. [PMID: 35769164 PMCID: PMC9095456 DOI: 10.1016/j.lansea.2022.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Shariq M, Sheikh JA, Quadir N, Sharma N, Hasnain SE, Ehtesham NZ. COVID-19 and tuberculosis: the double whammy of respiratory pathogens. Eur Respir Rev 2022; 31:31/164/210264. [PMID: 35418488 DOI: 10.1183/16000617.0264-2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Prior to coronavirus disease 2019 (COVID-19), tuberculosis (TB) was the worst killer among infectious diseases. The union of these two obnoxious respiratory diseases can be devastating, with severe public health implications. The COVID-19 pandemic has affected all TB-elimination programmes due to the severe burden on healthcare systems and the diversion of funds and attention towards controlling the pandemic. The emerging data show that the COVID-19 pandemic caused a marked decrease in case notifications and bacille Calmette-Guérin immunisations, ultimately promoting disease transmission and increasing the susceptible population. The similarity between the clinical characteristics of TB and COVID-19 adds to the public health complications, with evidence of immune dysregulation in both cases leading to severe consequences. Clinical evidence suggests that severe acute respiratory syndrome coronavirus 2 infection predisposes patients to TB infection or may lead to reactivation of latent disease. Similarly, underlying TB disease can worsen COVID-19. Treatment options are limited in COVID-19; therefore, using immunosuppressive and immunomodulatory regimens that can modulate the concomitant bacterial infection and interaction with anti-TB drugs requires caution. Thus, considering the synergistic impact of these two respiratory diseases, it is crucial to manage both diseases to combat the syndemic of TB and COVID-19.
Collapse
Affiliation(s)
- Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India.,These authors contributed equally to this work
| | - Javaid A Sheikh
- Dept of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.,These authors contributed equally to this work
| | - Neha Quadir
- ICMR-National Institute of Pathology, New Delhi, India.,Jamia Hamdard-Institute of Molecular Medicine, New Delhi, India
| | - Neha Sharma
- ICMR-National Institute of Pathology, New Delhi, India.,Jamia Hamdard-Institute of Molecular Medicine, New Delhi, India
| | - Seyed E Hasnain
- Dept of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India.,Dept of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India.,These authors contributed equally to this article as lead authors and supervised the work
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, New Delhi, India .,These authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
14
|
Rahim MA, Seo H, Kim S, Tajdozian H, Barman I, Lee Y, Lee S, Song HY. In vitro anti-tuberculosis effect of probiotic Lacticaseibacillus rhamnosus PMC203 isolated from vaginal microbiota. Sci Rep 2022; 12:8290. [PMID: 35585245 PMCID: PMC9116076 DOI: 10.1038/s41598-022-12413-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), poses a severe challenge for public health and remains the number one cause of death as a single infectious agent. There are 10 million active cases of TB per year with 1.5 million deaths, and 2-3 billion people are estimated to harbor latent M. tb infection. Moreover, the emergence of multi-drug-resistant (MDR), extremely-drug-resistant (XDR), and the recent totally drug-resistant (TDR) M. tb is becoming a global issue that has fueled the need to find new drugs different from existing regimens. In these circumstances, probiotics can be a potential choice, so we focused on developing them as an anti-tuberculosis drug candidate. Here, we report the anti-tubercular activities of Lacticaseibacillus rhamnosus PMC203 isolated from the vaginal microbiota of healthy women. PMC203 exhibited a promising intracellular killing effect against both drug-sensitive and resistant M. tb infected murine macrophage cell line RAW 264.7 without showing any cytotoxicity. Additionally, it also inhibited the growth of M. tb under broth culture medium. PMC203 did not cause weight change or specific clinical symptoms in a 2-week repeated oral administration toxicity test in a guinea pig model. Here, we also found that PMC203 induces autophagy in a dose dependent manner by increasing the signal of well-known autophagy gene markers, suggesting a possible intracellular killing mechanism.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Hanieh Tajdozian
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Indrajeet Barman
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Youngkyoung Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea.,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Ho-Yeon Song
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Chungnam, Korea. .,Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 31151, Chungnam, Korea.
| |
Collapse
|
15
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
16
|
Nehvi IB, Quadir N, Khubaib M, Sheikh JA, Shariq M, Mohareer K, Banerjee S, Rahman SA, Ehtesham NZ, Hasnain SE. ArgD of Mycobacterium tuberculosis is a functional N-acetylornithine aminotransferase with moonlighting function as an effective immune modulator. Int J Med Microbiol 2022; 312:151544. [DOI: 10.1016/j.ijmm.2021.151544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022] Open
|
17
|
PGRS Domain of Rv0297 of Mycobacterium tuberculosis Functions in A Calcium Dependent Manner. Int J Mol Sci 2021; 22:ijms22179390. [PMID: 34502303 PMCID: PMC8430768 DOI: 10.3390/ijms22179390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb), the pathogen causing tuberculosis, is a major threat to human health worldwide. Nearly 10% of M.tb genome encodes for a unique family of PE/PPE/PGRS proteins present exclusively in the genus Mycobacterium. The functions of most of these proteins are yet unexplored. The PGRS domains of these proteins have been hypothesized to consist of Ca2+ binding motifs that help these intrinsically disordered proteins to modulate the host cellular responses. Ca2+ is an important secondary messenger that is involved in the pathogenesis of tuberculosis in diverse ways. This study presents the calcium-dependent function of the PGRS domain of Rv0297 (PE_PGRS5) in M.tb virulence and pathogenesis. Tandem repeat search revealed the presence of repetitive Ca2+ binding motifs in the PGRS domain of the Rv0297 protein (Rv0297PGRS). Molecular Dynamics simulations and fluorescence spectroscopy revealed Ca2+ dependent stabilization of the Rv0297PGRS protein. Calcium stabilized Rv0297PGRS enhances the interaction of Rv0297PGRS with surface localized Toll like receptor 4 (TLR4) of macrophages. The Ca2+ stabilized binding of Rv0297PGRS with the surface receptor of macrophages enhances its downstream consequences in terms of Nitric Oxide (NO) production and cytokine release. Thus, this study points to hitherto unidentified roles of calcium-modulated PE_PGRS proteins in the virulence of M.tb. Understanding the pathogenic potential of Ca2+ dependent PE_PGRS proteins can aid in targeting these proteins for therapeutic interventions.
Collapse
|
18
|
Vogel M, Utpatel C, Corbett C, Kohl TA, Iskakova A, Ahmedov S, Antonenka U, Dreyer V, Ibrahimova A, Kamarli C, Kosimova D, Mohr V, Sahalchyk E, Sydykova M, Umetalieva N, Kadyrov A, Kalmambetova G, Niemann S, Hoffmann H. Implementation of whole genome sequencing for tuberculosis diagnostics in a low-middle income, high MDR-TB burden country. Sci Rep 2021; 11:15333. [PMID: 34321545 PMCID: PMC8319420 DOI: 10.1038/s41598-021-94297-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
Whole genome sequencing (WGS) is revolutionary for diagnostics of TB and its mutations associated with drug-resistances, but its uptake in low- and middle-income countries is hindered by concerns of implementation feasibility. Here, we provide a proof of concept for its successful implementation in such a setting. WGS was implemented in the Kyrgyz Republic. We estimated needs of up to 55 TB-WGS per week and chose the MiSeq platform (Illumina, USA) because of its capacity of up to 60 TB-WGS per week. The project's timeline was completed in 93-weeks. Costs of large equipment and accompanying costs were 222,065 USD and 8462 USD, respectively. The first 174 WGS costed 277 USD per sequence, but this was skewed by training inefficiencies. Based on real prices and presuming optimal utilization of WGS capacities, WGS costs could drop to 167 and 141 USD per WGS using MiSeq Reagent Kits v2 (500-cycles) and v3 (600-cycles), respectively. Five trainings were required to prepare the staff for autonomous WGS which cost 48,250 USD. External assessment confirmed excellent performance of WGS by the Kyrgyz laboratory in an interlaboratory comparison of 30 M. tuberculosis genomes showing complete agreeance of results.
Collapse
Affiliation(s)
- Monica Vogel
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Caroline Corbett
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Altyn Iskakova
- Republican Tuberculosis Reference Laboratory, Bishkek, Kyrgyz Republic
| | - Sevim Ahmedov
- USAID, Bureau for Global Health, TB Division, Washington, DC, USA
| | - Uladzimir Antonenka
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Ainura Ibrahimova
- ABT Associates, Defeat TB Project Management, Bishkek, Kyrgyz Republic
| | | | - Dilorom Kosimova
- ABT Associates, Defeat TB Project Management, Bishkek, Kyrgyz Republic
| | - Vanessa Mohr
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Evgeni Sahalchyk
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Meerim Sydykova
- Republican Tuberculosis Reference Laboratory, Bishkek, Kyrgyz Republic
| | - Nagira Umetalieva
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany
| | - Abdylat Kadyrov
- Republican Tuberculosis Center, National Tuberculosis Project Management, Bishkek, Kyrgyz Republic
| | | | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Harald Hoffmann
- Institute of Microbiology and Laboratory Medicine, Department IML Red GmbH, WHO - Supranational Tuberculosis Reference Laboratory Munich-Gauting, Robert Koch-Allee 2, 82131, Gauting, Germany.
- SYNLAB Gauting, SYNLAB Human Genetics, Munich-Gauting, Germany.
| |
Collapse
|
19
|
P M, Ahmad J, Samal J, Sheikh JA, Arora SK, Khubaib M, Aggarwal H, Kumari I, Luthra K, Rahman SA, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis Specific Protein Rv1509 Evokes Efficient Innate and Adaptive Immune Response Indicative of Protective Th1 Immune Signature. Front Immunol 2021; 12:706081. [PMID: 34386011 PMCID: PMC8354026 DOI: 10.3389/fimmu.2021.706081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Dissecting the function(s) of proteins present exclusively in Mycobacterium tuberculosis (M.tb) will provide important clues regarding the role of these proteins in mycobacterial pathogenesis. Using extensive computational approaches, we shortlisted ORFs/proteins unique to M.tb among 13 different species of mycobacteria and identified a hypothetical protein Rv1509 as a ‘signature protein’ of M.tb. This unique protein was found to be present only in M.tb and absent in all other mycobacterial species, including BCG. In silico analysis identified numerous putative T cell and B cell epitopes in Rv1509. Initial in vitro experiments using innate immune cells demonstrated Rv1509 to be immunogenic with potential to modulate innate immune responses. Macrophages treated with Rv1509 exhibited higher activation status along with substantial release of pro-inflammatory cytokines. Besides, Rv1509 protein boosts dendritic cell maturation by increasing the expression of activation markers such as CD80, HLA-DR and decreasing DC-SIGN expression and this interaction was mediated by innate immune receptor TLR2. Further, in vivo experiments in mice demonstrated that Rv1509 protein promotes the expansion of multifunctional CD4+ and CD8+T cells and induces effector memory response along with evoking a canonical Th1 type of immune response. Rv1509 also induces substantial B cell response as revealed by increased IgG reactivity in sera of immunized animals. This allowed us to demonstrate the diagnostic efficacy of this protein in sera of human TB patients compared to the healthy controls. Taken together, our results reveal that Rv1509 signature protein has immunomodulatory functions evoking immunological memory response with possible implications in serodiagnosis and TB vaccine development.
Collapse
Affiliation(s)
- Manjunath P
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Javeed Ahmad
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| | | | - Simran Kaur Arora
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Mohd Khubaib
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Heena Aggarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Indu Kumari
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Seyed E Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India.,Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| |
Collapse
|
20
|
Sharma N, Shariq M, Quadir N, Singh J, Sheikh JA, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis Protein PE6 (Rv0335c), a Novel TLR4 Agonist, Evokes an Inflammatory Response and Modulates the Cell Death Pathways in Macrophages to Enhance Intracellular Survival. Front Immunol 2021; 12:696491. [PMID: 34322125 PMCID: PMC8311496 DOI: 10.3389/fimmu.2021.696491] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that exploits moonlighting functions of its proteins to interfere with host cell functions. PE/PPE proteins utilize host inflammatory signaling and cell death pathways to promote pathogenesis. We report that M. tb PE6 protein (Rv0335c) is a secretory protein effector that interacts with innate immune toll-like receptor TLR4 on the macrophage cell surface and promotes activation of the canonical NFĸB signaling pathway to stimulate secretion of proinflammatory cytokines TNF-α, IL-12, and IL-6. Using mouse macrophage TLRs knockout cell lines, we demonstrate that PE6 induced secretion of proinflammatory cytokines dependent on TLR4 and adaptor Myd88. PE6 possesses nuclear and mitochondrial targeting sequences and displayed time-dependent differential localization into nucleus/nucleolus and mitochondria, and exhibited strong Nucleolin activation. PE6 strongly induces apoptosis via increased production of pro-apoptotic molecules Bax, Cytochrome C, and pcMyc. Mechanistic details revealed that PE6 activates Caspases 3 and 9 and induces endoplasmic reticulum-associated unfolded protein response pathways to induce apoptosis through increased production of ATF6, Chop, BIP, eIF2α, IRE1α, and Calnexin. Despite being a potent inducer of apoptosis, PE6 suppresses innate immune defense strategy autophagy by inducing inhibitory phosphorylation of autophagy initiating kinase ULK1. Inversely, PE6 induces activatory phosphorylation of autophagy master regulator MtorC1, which is reflected by lower conversion of autophagy markers LC3BI to LC3BII and increased accumulation of autophagy substrate p62 which is also dependent on innate immune receptor TLR4. The use of pharmacological agents, rapamycin and bafilomycin A1, confirms the inhibitory effect of PE6 on autophagy, evidenced by the reduced conversion of LC3BI to LC3BII and increased accumulation of p62 in the presence of rapamycin and bafilomycin A1. We also observed that PE6 binds DNA, which could have significant implications in virulence. Furthermore, our analyses reveal that PE6 efficiently binds iron to likely aid in intracellular survival. Recombinant Mycobacterium smegmatis (M. smegmatis) containing pe6 displayed robust growth in iron chelated media compared to vector alone transformed cells, which suggests a role of PE6 in iron acquisition. These findings unravel novel mechanisms exploited by PE6 protein to subdue host immunity, thereby providing insights relevant to a better understanding of host–pathogen interaction during M. tb infection.
Collapse
Affiliation(s)
- Neha Sharma
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Mohd Shariq
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| | - Neha Quadir
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India.,Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasdeep Singh
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India
| | - Seyed E Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, India.,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Indian Council of Medical Research-National Institute of Pathology, New Delhi, India
| |
Collapse
|
21
|
Development and Validation of Signature Sequence-Based PCR for Improved Molecular Diagnosis of Tuberculosis. J Mol Diagn 2021; 23:1138-1144. [PMID: 34116244 DOI: 10.1016/j.jmoldx.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022] Open
Abstract
Reliable, fast, and affordable diagnosis for tuberculosis (TB) remains a challenge to reduce disease incidence in resource-poor countries. Tests based on nucleotide sequences that are signature to Mycobacterium tuberculosis have the potential to make a positive impact on case detection rates, which can eventually help control TB. Using extensive comparative bioinformatics approach, we mined the genome for M. tuberculosis-specific genes and identified four genes so-called signature sequence (SS). With <25% homology with other known genes/proteins of mycobacterial/nonmycobacterial origin in various databases, these SS genes are ideal targets for species-specific identification. Sputum from suspected patients was liquefied using novel complete liquefying reagent, and DNA was isolated. Samples from patients (n = 417), reporting to TB clinics at two different hospitals, which met our inclusion criteria, were collected for this study. A small number (n = 143) was used for initial standardization, and the remaining patient samples (n = 274) were evaluated by SS and compared with smear microscopy, GeneXpert, culture, and clinical outcome. An overwhelming sensitivity of 97.0%, significantly higher than GeneXpert (95.0%), was seen. SS could pick all smear-negative, but culture-positive samples, along with other culture-negative samples; some of the latter were declared clinically positive. Our results yielded superior sensitivity and specificity through conventional PCR.
Collapse
|
22
|
Singh P, Jamal S, Ahmed F, Saqib N, Mehra S, Ali W, Roy D, Ehtesham NZ, Hasnain SE. Computational modeling and bioinformatic analyses of functional mutations in drug target genes in Mycobacterium tuberculosis. Comput Struct Biotechnol J 2021; 19:2423-2446. [PMID: 34025934 PMCID: PMC8113780 DOI: 10.1016/j.csbj.2021.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) continues to be the leading cause of deaths due to its persistent drug resistance and the consequent ineffectiveness of anti-TB treatment. Recent years witnessed huge amount of sequencing data, revealing mutations responsible for drug resistance. However, the lack of an up-to-date repository remains a barrier towards utilization of these data and identifying major mutations-associated with resistance. Amongst all mutations, non-synonymous mutations alter the amino acid sequence of a protein and have a much greater effect on pathogenicity. Hence, this type of gene mutation is of prime interest of the present study. The purpose of this study is to develop an updated database comprising almost all reported substitutions within the Mycobacterium tuberculosis (M.tb) drug target genes rpoB, inhA, katG, pncA, gyrA and gyrB. Various bioinformatics prediction tools were used to assess the structural and biophysical impacts of the resistance causing non-synonymous single nucleotide polymorphisms (nsSNPs) at the molecular level. This was followed by evaluating the impact of these mutations on binding affinity of the drugs to target proteins. We have developed a comprehensive online resource named MycoTRAP-DB (Mycobacterium tuberculosis Resistance Associated Polymorphisms Database) that connects mutations in genes with their structural, functional and pathogenic implications on protein. This database is accessible at http://139.59.12.92. This integrated platform would enable comprehensive analysis and prioritization of SNPs for the development of improved diagnostics and antimycobacterial medications. Moreover, our study puts forward secondary mutations that can be important for prognostic assessments of drug-resistance mechanism and actionable anti-TB drugs.
Collapse
Affiliation(s)
- Pooja Singh
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Salma Jamal
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Faraz Ahmed
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Najumu Saqib
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Seema Mehra
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Waseem Ali
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Deodutta Roy
- Department of Environmental and Occupational Health, Florida International University, Miami 33029, USA
| | - Nasreen Z. Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E. Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201301, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110016, India
| |
Collapse
|
23
|
Ali S, Ehtram A, Arora N, Manjunath P, Roy D, Ehtesham NZ, Hasnain SE. The M. tuberculosis Rv1523 Methyltransferase Promotes Drug Resistance Through Methylation-Mediated Cell Wall Remodeling and Modulates Macrophages Immune Responses. Front Cell Infect Microbiol 2021; 11:622487. [PMID: 33777836 PMCID: PMC7994892 DOI: 10.3389/fcimb.2021.622487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The acquisition of antibiotics resistance is a major clinical challenge limiting the effective prevention and treatment of the deadliest human infectious disease tuberculosis. The molecular mechanisms by which initially Mycobacterium tuberculosis (M.tb) develop drug resistance remain poorly understood. In this study, we report the novel role of M.tb Rv1523 MTase in the methylation of mycobacterial cell envelope lipids and possible mechanism of its contribution in the virulence and drug resistance. Initial interactome analyses predicted association of Rv1523 with proteins related to fatty acid biosynthetic pathways. This promoted us to investigate methylation activity of Rv1523 using cell wall fatty acids or lipids as a substrate. Rv1523 catalyzed the transfer of methyl group from SAM to the cell wall components of mycobacterium. To investigate further the in vivo methylating role of Rv1523, we generated a recombinant Mycobacterium smegmatis strain that expressed the Rv1523 gene. The M. smegmatis strain expressing Rv1523 exhibited altered cell wall lipid composition, leading to an increased survival under surface stress, acidic condition and resistance to antibiotics. Macrophages infected with recombinant M. smegmatis induced necrotic cell death and modulated the host immune responses. In summary, these findings reveal a hitherto unknown role of Rv1523 encoded MTase in cell wall remodeling and modulation of immune responses. Functional gain of mycolic acid Rv1523 methyltransferase induced virulence and resistance to antibiotics in M. smegmatis. Thus, mycolic acid methyltransferase may serve as an excellent target for the discovery and development of novel anti-TB agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aquib Ehtram
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Naresh Arora
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - P Manjunath
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Deodutta Roy
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
24
|
Shariq M, Quadir N, Sheikh JA, Singh AK, Bishai WR, Ehtesham NZ, Hasnain SE. Post translational modifications in tuberculosis: ubiquitination paradox. Autophagy 2020; 17:814-817. [PMID: 33190592 DOI: 10.1080/15548627.2020.1850009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Innate immune signaling and xenophagy are crucial innate defense strategies exploited by the host to counteract intracellular pathogens with ubiquitination as a critical regulator of these processes. These pathogens, including Mycobacterium tuberculosis (M. tb), co-opt the host ubiquitin machinery by utilizing secreted or cell surface effectors to dampen innate host defenses. Inversely, the host utilizes ubiquitin ligase-mediated ubiquitination of intracellular pathogens and recruits autophagy receptors to induce xenophagy. In the current article, we discuss the co-option of the ubiquitin pathway by the M. tb virulence effectors.Abbreviations: ANAPC2: anaphase promoting complex subunit 2; IL: interleukin; Lys: lysine (K); MAPK: mitogen-activated protein kinase; MAP3K7/TAK1; mitogen-activated protein kinase kinase kinase 7; M. tb: Mycobacterium tuberculosis; NFKB/NF-κB: nuclear factor kappa B subunit; PtpA: protein tyrosine phosphatase; SQSTM1/p62: sequestosome 1; V-ATPase: vacuolar-type H+-ATPase; UBA: a eukaryotic-like ubiquitin-associated domain.
Collapse
Affiliation(s)
- Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Neha Quadir
- ICMR-National Institute of Pathology, New Delhi, India.,JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Alok Kumar Singh
- Johns Hopkins School of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | - William R Bishai
- Johns Hopkins School of Medicine, Center for Tuberculosis Research, Baltimore, MD, USA
| | | | - Seyed E Hasnain
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|