1
|
Wani MJ, Zofair SFF, Salman KA, Moin S, Hasan A. Aloin reduces advanced glycation end products, decreases oxidative stress, and enhances structural stability in glycated low-density lipoprotein. Int J Biol Macromol 2025; 289:138823. [PMID: 39694362 DOI: 10.1016/j.ijbiomac.2024.138823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Glycation of proteins has been linked to several cardiovascular diseases, including atherosclerosis and diabetes mellitus. Various natural compounds have been explored for their anti-glycating ability. Aloin is the major anthraquinone glycoside, acquired from the Aloe species. This study focuses on aloin's anti-glycating and anti-oxidative potential on glycated low-density lipoprotein (LDL). Fluorescence studies related to anti-glycation showed that aloin significantly reduced the formation of fluorescent advanced glycation end-products (AGEs), hydrophobic environment, and fibrillar aggregates in glycated LDL. A decrease in oxidative stress markers was also seen in glycated LDL in the presence of aloin. Circular dichroism spectra depicted the positive role aloin played in restoring the secondary structure of LDL. Mode of binding between aloin and LDL were obtained through spectroscopic measurements, which revealed significant binding characteristics. Molecular docking studies confirmed the interaction with a binding energy of -8.5 kcal/mol, indicating a strong affinity between aloin and LDL. Furthermore, the stability of the aloin-LDL complex was validated by molecular dynamics simulations, showing that the secondary structure of LDL remained largely unchanged throughout the simulation period, indicating high stability of the complex. These findings open up new possibilities for using aloin in therapeutic applications aimed at cardiovascular health, potentially leading to the development of novel treatments or preventive measures for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Mohd Junaid Wani
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India.
| | - Syeda Fauzia Farheen Zofair
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Khushtar Anwar Salman
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Shagufta Moin
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Asif Hasan
- Department of Cardiology, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| |
Collapse
|
2
|
Altyar AE, Afzal M, Ghaboura N, Alharbi KS, Alenezi SK, Sayyed N, Kazmi I. Barbaloin Protects Pentylenetetrazol-Induced Cognitive Deficits in Rodents via Modulation of Neurotransmitters and Inhibition of Oxidative-Free-Radicals-Led Inflammation. Pharmaceuticals (Basel) 2024; 17:699. [PMID: 38931365 PMCID: PMC11206990 DOI: 10.3390/ph17060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Epilepsy is defined by an excessive level of activity in the neurons and coordinated bursts of electrical activity, resulting in the occurrence of seizure episodes. The precise cause of epileptogenesis remains uncertain; nevertheless, the etiology of epilepsy may involve neuroinflammation, oxidative stress, and malfunction of the neurotransmitter system. OBJECTIVE The goal of this investigation was to assess barbaloin's protective properties with respect to pentylenetetrazol (PTZ)-)-induced cognitive deficits in rats via antioxidative, anti-inflammatory, and neurotransmitter-modulating effects. METHODS Wistar rats were subjected to PTZ [40 mg/kg (i.p.)], which induced cognitive decline. Behavior assessment using a kindling score, open-field test (OFT), novel object recognition test (NORT), and assays for superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA), acetylcholinesterase (AChE), caspase-3, nitric oxide (NO), interleukins-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6, nuclear factor kappa-B (NF-κB), Bcl-2 and Bax, and neurotransmitter levels [GABA, DA, NE, and serotonin (5-HT)] were performed. RESULTS The treatment of rats with barbaloin resulted in behavior improvement and significant changes in the levels of GSH, SOD, CAT, MDA, AChE, NO, IL-6, IL-1β, TNF-α, NF-κB, caspase-3, Bcl-2, and Bax compared to the PTZ control group. Barbaloin treatment resulted in notable changes in neurotransmitter levels (GABA, NE, 5-HT, DA) compared to the PTZ group. CONCLUSIONS The ongoing study has gathered evidence indicating that the injection of barbaloin has resulted in significant improvements in cognitive performance in rats. This is achieved by inhibiting oxidative stress, enhancing the activity of natural antioxidant enzymes, reducing cytokine levels, and increasing the levels of neurotransmitters in the brain. These results were detected in comparison to a PTZ control and can be attributed to the potent anti-inflammatory and antioxidant capabilities of barbaloin, which could be linked to its neuroprotective properties. Barbaloin may potentially increase cognitive decline and boost neuronal survival by altering the expression of Bax, caspase-3, Bcl-2.
Collapse
Affiliation(s)
- Ahmad Essam Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia;
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim 51452, Saudi Arabia; (K.S.A.); (S.K.A.)
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim 51452, Saudi Arabia; (K.S.A.); (S.K.A.)
| | - Nadeem Sayyed
- Glocal School of Pharmacy, Glocal University, Mirzapur-Pole, Saharanpur 247121, India;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box. 80200, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
3
|
Kazmi I, Afzal M, Imam F, Alzarea SI, Patil S, Mhaiskar A, Shah U, Almalki WH. Barbaloin's Chemical Intervention in Aluminum Chloride Induced Cognitive Deficits and Changes in Rats through Modulation of Oxidative Stress, Cytokines, and BDNF Expression. ACS OMEGA 2024; 9:6976-6985. [PMID: 38371830 PMCID: PMC10870395 DOI: 10.1021/acsomega.3c08791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease (AD) is a long-term neurodegenerative condition characterized by impaired cognitive functions, particularly in the domains of learning and memory. Finding promising options for AD can be successful with a medication repurposing strategy. The goal of the research was to examine the neuroprotective characteristics of barbaloin in aluminum chloride (AlCl3)-induced cognitive deficits and changes in rats through modulation of oxidative stress, cytokines, and brain-derived neurotrophic factor (BDNF) expression. Thirty male Wistar rats were subjected to AlCl3 at a dosage of 100 mg/kg via the per oral route (p.o.), which induced cognitive decline. Morris water maze (MWM) is used to assess behavioral metrics. Assays for catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), interleukins-1β (IL-1β), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukins-6 (IL-6), BDNF, and neurotransmitter levels [dopamine (DA), acetylcholine (Ach), and γ-aminobutyric acid (GABA)] were performed. Results: The transfer latency time was notably decreased, and substantial modifications in the concentrations of GSH, MDA, CAT, SOD, AChE, ChAT and observed modulations in the formation of interleukins-6 (IL-6), TNF-α, IL-1β, BDNF, and NF-κB were also evidenced after the treatment of rats with barbaloin in comparison to AlCl3-induced control groups. Significant alterations in neurotransmitter levels (DA, Ach, and GABA) were also seen in barbaloin-treated groups in comparison to AlCl3-induced groups. The current investigation has provided evidence that the administration of barbaloin yielded notable enhancements in cognitive function in rats through the inhibition of MDA, enhancing endogenous antioxidant enzymes, reduction of cytokine levels, and enhancement of neurotransmitter contents in the brain. These effects were observed in comparison to a control group treated with AlCl3 and can be attributable to barbaloin's strong anti-inflammatory and antioxidant properties, and metal chelating properties may contribute to its neuroprotective effects. Barbaloin may also promote neuronal survival and enhance learning and memory by upregulating the expression of BDNF.
Collapse
Affiliation(s)
- Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department
of Pharmaceutical Sciences, Pharmacy Program,
Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Faisal Imam
- Department
of Pharmacology and Toxicology, College
of Pharmacy, King Saud University, P.O.
Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Shaktipal Patil
- Department
of Pharmacology, H. R. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Amrapali Mhaiskar
- Department
of Pharmacology, R. C. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
| | - Ujashkumar Shah
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
4
|
Anuar MSK, Hashim AM, Ho CL, Wong MY, Sundram S, Saidi NB, Yusof MT. Synergism: biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop. World J Microbiol Biotechnol 2023; 39:123. [PMID: 36934342 DOI: 10.1007/s11274-023-03579-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/12/2023] [Indexed: 03/20/2023]
Abstract
In today's fast-shifting climate change scenario, crops are exposed to environmental pressures, abiotic and biotic stress. Hence, these will affect the production of agricultural products and give rise to a worldwide economic crisis. The increase in world population has exacerbated the situation with increasing food demand. The use of chemical agents is no longer recommended due to adverse effects towards the environment and health. Biocontrol agents (BCAs) and biostimulants, are feasible options for dealing with yield losses induced by plant stresses, which are becoming more intense due to climate change. BCAs and biostimulants have been recommended due to their dual action in reducing both stresses simultaneously. Although protection against biotic stresses falls outside the generally accepted definition of biostimulant, some microbial and non-microbial biostimulants possess the biocontrol function, which helps reduce biotic pressure on crops. The application of synergisms using BCAs and biostimulants to control crop stresses is rarely explored. Currently, a combined application using both agents offer a great alternative to increase the yield and growth of crops while managing stresses. This article provides an overview of crop stresses and plant stress responses, a general knowledge on synergism, mathematical modelling used for synergy evaluation and type of in vitro and in vivo synergy testing, as well as the application of synergism using BCAs and biostimulants in reducing crop stresses. This review will facilitate an understanding of the combined effect of both agents on improving crop yield and growth and reducing stress while also providing an eco-friendly alternative to agroecosystems.
Collapse
Affiliation(s)
- Muhammad Salahudin Kheirel Anuar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Shamala Sundram
- Biology Research Division, Malaysian Palm Oil Board, Kajang, Selangor, 43000, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia.
| |
Collapse
|
5
|
Omer AB, Afzal O, Altamimi ASA, Patil S, AlGhamdi SA, Alghamdi AM, Alzarea SI, Almalki WH, Kazmi I. Neuroprotective Effect of Barbaloin on Streptozotocin-Induced Cognitive Dysfunction in Rats via Inhibiting Cholinergic and Neuroinflammatory Cytokines Pathway-TNF-α/IL-1β/IL-6/NF-κB. ACS OMEGA 2023; 8:8110-8118. [PMID: 36872976 PMCID: PMC9979232 DOI: 10.1021/acsomega.2c08277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Streptozotocin (STZ) impairs memory in rats through altering the central nervous systems (CNS) as a result of impaired cholinergic dysfunction, oxidative stress, persistent hyperglycemia, and alterations in the glucagon-like peptide (GLP). In this model cholinergic agonist, antioxidant and antihyperglycemic treatment has been shown to have positive effects. Barbaloin has a variety of pharmacological effects. However, there is no evidence on how barbaloin improves memory dysfunction caused by STZ. Thus, we examined its effectiveness against cognitive damage caused by STZ at a dose of 60 mg/kg i.p. in Wistar rats. Blood glucose levels (BGL) and body weight (BW) were assessed. To assess learning and memory skills, the Y-maze test and Morris water maze (MWM) test were utilized. Superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), and glutathione (GSH) as oxidative stress markers were regulated to reverse the cognitive deterioration, and choline-acetyltransferase (ChAT) and acetyl-cholinesterase (AChE) as indicators of cholinergic dysfunction, nuclear factor kappa-B (NF-κB), IL-1β (interleukin-1β), IL-6, and tumor necrosis factor-α (TNF-α) contents were used. Barbaloin treatment thereby significantly decreased the BW and learning and memory capacities, resulting in substantial behavioral improvement in the Y-maze and MWM test. BGL, SOD, CAT, MDA, GSH, AChE, ChAT, NF-κB, IL-6, TNF-α, and IL-1β levels were also altered. In conclusion, the findings revealed that barbaloin had a protective impact against cognitive dysfunction caused by STZ.
Collapse
Affiliation(s)
- Asma B. Omer
- Department
of Basic Health Sciences, Foundation Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shaktipal Patil
- Department
of Pharmacology, H. R. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur- 425405, Maharashtra, India
| | - Shareefa A. AlGhamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental
Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Lima Matos F, Duarte EL, S V Muniz G, Alexander Milán-Garcés E, Coutinho K, Teresa Lamy M, da Cunha AR. Spectroscopic characterization of different protonation/deprotonation states of Barbaloin in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122020. [PMID: 36323087 DOI: 10.1016/j.saa.2022.122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Barbaloin (10-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10H)-anthraquinone: aloin A), present in Aloe species, is widely used in food, cosmetic and pharmaceutical industries. Here we characterize its optical absorption and emission spectra in aqueous solution at different pH values. Through pH titration, using both absorption and fluorescence spectroscopy, two pKa values for Barbaloin were determined: pKa1=9.6±0.6 and pKa2=12.6±0.8. These acidity constants were found to be higher than those found for Emodin, a similar molecule which lacks the sugar moiety present in Barbaloin. Performing quantum mechanical calculations for non-ionized, singly, doubly, and triply deprotonated forms of Barbaloin in vacuum and in water, we assigned the positions of the site for the first and third deprotonation in the anthraquinone group, and the second deprotonation in the glucose group. The instability of Barbaloin in high pH solutions is discussed here, and the optical absorption and fluorescence spectra due to products resulted from Barbaloin degradation at high pH is well separated from the Barbaloin original spectra. Biological fluids have specific pH values to maintain homeostasis, hence determining the pKa of Barbaloin is important to evaluate the mechanism of action of this drug in different parts of an organism as well as to predict pharmacological relevant parameters, such as absorption, distribution, metabolism, and excretion.
Collapse
Affiliation(s)
- Fernanda Lima Matos
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - Gabriel S V Muniz
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil; Instituto de Química, Universidade de Brasília, CEP 70910-900, Campus Universitário Darcy Ribeiro, Brasília, Brazil.
| | | | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil.
| | - Antonio R da Cunha
- Instituto de Física, Universidade de São Paulo, CEP 05508-090, Cidade Universitária, São Paulo, Brazil; Universidade Federal do Maranhão, UFMA, Campus Balsas, CEP 65800-000, Maranhão, Brazil.
| |
Collapse
|
7
|
Jiang H, Shi GF, Fang YX, Liu YQ, Wang Q, Zheng X, Zhang DJ, Zhang J, Yin ZQ. Aloin A prevents ulcerative colitis in mice by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154403. [PMID: 36075180 DOI: 10.1016/j.phymed.2022.154403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/24/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies reported that Aloe vera ameliorated DSS-induced colitis and promoted mucus secretion. However, the effect of Aloin A (AA), a major compound of Aloe vera, on colitis and its exact mechanism remains uncovered. METHODS C57BL/6 mice were successively subjected to 3% DSS solution for 5 days and distilled water for 2 days. Concurrently, AA (25, 50 mg/kg) and 5-aminosalicylic (500 mg/kg) were administrated intragastrically from day 1 to day 7. Colitis was evaluated by disease active index (DAI), colon length, inflammation response, and intestinal barrier function. In vitro LS174T cells challenged with 50 ng/ml of lipopolysaccharides (LPS) were used to validate the modulatory action of AA on the Notch signaling pathway. RESULTS Our results showed that oral administration with AA prominently prevented DSS-induced colitis symptoms in terms of decreased DAI, prevention of colon shortening, and reduced pathological damage. AA mitigated the inflammatory response evidenced by the decreased proinflammatory cytokines (TNF-α, IL-1β, IL-6) and increased anti-inflammatory cytokine (IL-10). Besides, AA inhibited apoptosis and facilitated proliferation in colons. Moreover, AA treatment up-regulated the expression of tight junction (TJ) proteins (ZO-1, Occludin) and promoted the secretion of MUC2 to decrease colon permeability. Mechanistically, AA inhibited the Notch pathway to promote the secretion of MUC2, which was consistent with LPS-challenged LS174 cells. CONCLUSION These results suggested that AA could prevent colitis by enhancing the intestinal barrier function via suppressing the Notch signaling pathway. Thus, AA might be a prospective remedy for ulcerative colitis.
Collapse
Affiliation(s)
- Hui Jiang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Gao-Feng Shi
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Yu-Xi Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - You-Qian Liu
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Qi Wang
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China
| | - Xian Zheng
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Dong-Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Jian Zhang
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
8
|
de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas-Where Are We? Recent Updates. Pharmaceutics 2022; 14:2004. [PMID: 36297440 PMCID: PMC9607275 DOI: 10.3390/pharmaceutics14102004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| | - Guilherme Leão Barros Martins
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
9
|
Zhang YQ, Zhang M, Wang ZL, Qiao X, Ye M. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnol Adv 2022; 60:108030. [PMID: 36031083 DOI: 10.1016/j.biotechadv.2022.108030] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023]
Abstract
C-glycosides represent a large group of natural products with a C-C bond between the aglycone and the sugar moiety. They exhibit great structural diversity, wide natural distribution, and significant biological activities. By the end of 2021, at least 754 C-glycosides and their derivatives have been isolated and characterized from plants. Thus far, 66 functional C-glycosyltransferases (CGTs) have been discovered from plants, and provide green and efficient approaches to synthesize C-glycosides. Herein, advances in plant-derived C-glycosides are comprehensively summarized from aspects of structural diversity and identification, bioactivities, and biotechnological production. New strategies to discover novel C-glycosides and CGTs, as well as the applications of biotechnological methods to produce C-glycosides in the future are also discussed.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
10
|
Chen QX, Zhou L, Long T, Qin DL, Wang YL, Ye Y, Zhou XG, Wu JM, Wu AG. Galangin Exhibits Neuroprotective Effects in 6-OHDA-Induced Models of Parkinson's Disease via the Nrf2/Keap1 Pathway. Pharmaceuticals (Basel) 2022; 15:1014. [PMID: 36015161 PMCID: PMC9413091 DOI: 10.3390/ph15081014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and there is still no cure for it. PD is characterized by the degeneration of dopaminergic neurons, and oxidative stress has been considered an important pathological mechanism. Therefore, the discovery of antioxidants to alleviate the oxidative damage of dopaminergic neurons is a promising therapeutic strategy for PD. First, a network pharmacology approach was used, and nine common core targets of galangin and PD were screened, mainly involving cell aging, apoptosis, and cellular responses to hydrogen peroxide and hypoxia. In addition, the Gene Ontology (GO) function and pathway enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) identified apoptosis, PI3K/Akt, and HIF-1 signaling pathways. Furthermore, the molecular docking results revealed a strong affinity between galangin and the NFE2L2/Nrf2 protein. To validate the above predictions, we employed 6-hydroxydopamine (6-OHDA) to induce neuronal death in HT22 cells and Caenorhabditis elegans (C. elegans). MTT, cell morphology observation, and Hoechst 33342-PI staining results showed that galangin significantly increased the viability of 6-OHDA-treated HT22 cells. In addition, galangin inhibited 6-OHDA-induced ROS generation and apoptosis in HT22 cells. Mechanistic studies demonstrated that galangin activates the Nrf2/Keap1 signaling pathway, as evidenced by the decreased protein expression of Keap1 and increased protein expression of Nrf2 and HO-1. In the 6-OHDA-induced PD model of C. elegans, galangin indeed inhibited the degeneration of dopaminergic neurons, improved behavioral ability, and decreased ROS generation. In conclusion, the current study is the first to show that galangin has the capacity to inhibit neuronal degeneration via the Nrf2/Keap1 pathway, suggesting that galangin is a possible PD treatment.
Collapse
Affiliation(s)
- Qiu-Xu Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Ling Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Tao Long
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ling Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yun Ye
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
11
|
Aloe emodin 3-O-glucoside inhibits cell growth and migration and induces apoptosis of non-small-cell lung cancer cells via suppressing MEK/ERK and Akt signalling pathways. Life Sci 2022; 300:120495. [PMID: 35341826 DOI: 10.1016/j.lfs.2022.120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022]
Abstract
AIMS Non-small-cell lung cancer (NSCLC) is the most frequent type of lung cancer with a high mortality rate. Glycosylation of phenolic compounds may increase water-solubility and pharmacological activities and reduce the toxicity of aglycones. This study aimed to evaluate and compare the anticancer effect of aloe emodin 3-O-glucoside (AE3G) and its aglycone, aloe emodin (AE), against NSCLC. MAIN METHOD A human adenocarcinoma cell line (A549) and BALB/c nu/nu xenograft mice harboring A549 cells were used as the NSCLC models. Inhibition of cell migration, disruption of mitochondrial membrane potential (MMP), DNA fragmentation, and expression levels of apoptotic proteins were measured by western blot, wound healing assay, JC-1 staining, or TUNEL staining. Histopathological changes in tumour tissues were observed by H&E and TUNEL staining. RESULTS With no significant cytotoxicity against noncancerous cells (Vero cells), AE3G (5-50 μM) significantly and more effectively inhibited the growth, attachment, migration, Bcl-2 expression, and activation of MEK/ERK and Akt signalling proteins and induced cytochrome c release and Bax expression in A549 cells than AE. AE3G augmented the collapse of MMP, cleavage of caspases (caspase 9, 8, and 3) and PARP, and DNA fragmentation. Intraperitoneal injection of AE3G (13 and 26 mg/kg/day) reduced the tumour volume and weight and induced apoptotic cell death in tumour tissues of xenograft NSCLC mice. SIGNIFICANCE The present study demonstrated that AE3G significantly and more effectively diminished human NSCLC cell growth and migration by triggering mitochondria-dependent intrinsic apoptosis than AE, providing AE3G as a new potent candidate to prevent or treat human NSCLC.
Collapse
|
12
|
Rajput A, Mondal A, Pandey SK, Husain SM. Synthesis of rhein and diacerein: a chemoenzymatic approach using anthrol reductase of Talaromyces islandicus. Org Biomol Chem 2022; 20:358-361. [PMID: 34919103 DOI: 10.1039/d1ob02202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report two methods for the synthesis of the osteoarthritis drug rhein and its prodrug diacerein using a chemoenzymatic approach. The strategy relies on the use of an NADPH-dependent anthrol reductase of Talaromyces islandicus (ARti-2), which mediates the regioselective and reductive deoxygenation of anthraquinones. The work further implies similar biosynthesis of rhein in fungi.
Collapse
Affiliation(s)
- Anshul Rajput
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India. .,Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, U.P., India
| | - Amit Mondal
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, 221005, U.P., India
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
13
|
Kadam K, Kıyan S, Uyanıkgil Y, Karabey F, Öykü Çetin E. Investigation of acute effects of topical Alpinia officinarum (galangal) treatment in experimental contact type burns and comparison with topical silver sulfadiazine treatment. ULUS TRAVMA ACIL CER 2022; 28:15-26. [PMID: 34967434 PMCID: PMC10443162 DOI: 10.14744/tjtes.2020.69002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/12/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND It was aimed to determine whether Alpinia officinarum (AO) (galangal), which has been regarded to be effective on wound healing, is healing on experimental contact type burns and compare its effects with silver sulfadiazine (SSD). METHODS Thirty-five rats were divided into five groups of seven rats each group. Superficial second degree burns were formed by contacting a 1×1 cm copper tip which was kept at 100°C constant temperature to the three shaved areas on the back of rats without applying any pressure for 10 s. All groups were irrigated with a 100 cc saline solution for 2 min. Any procedure or treatment was not applied to Group I (Control). Group II (Burn Control) was only irrigated, Group III (SSD) was applied topical SSD 4 times, with 6-h intervals (at h 0, 6, 12 and 18), Group IV (Galangal) was applied topical AO 4 times, and Group V (Gel) was applied placebo topical material, used for the preparation of topical AO, 4 times. Wound healing findings were evaluated histopathologically. RESULTS In the galangal group, it was found that collagen discoloration didn't penetrate into deep dermis compared to other groups; epidermis, hair follicles, and sebaceous glands remained protected compared to the burn control group, and there was a thicker layer of epidermis. It was found that the galangal group was the closest group to the control group histologically. In the galangal group, it was determined that the number of vessels and total hair follicles were significantly higher in the 8th h and 4th h respectively (p<0.05), while epidermal thickness and number of degenerated hair follicles were significantly higher in all hours compared to other three groups (p<0.05). It was determined that galangal group had the lowest scores in the evaluation of edema, polymorphonuclear leukocytes infiltration, collagen discoloration, injury of vessels, hair follicles and sebaceous glands in comparisons between groups and within groups' own processes. CONCLUSION Administrating AO containing gel 4 times a day within the first 24 h is effective in the experimental contact type second degree burn model. It is significantly superior to SSD treatment, especially in the first 8 h of administration.
Collapse
Affiliation(s)
- Koray Kadam
- Department of Emergency Medicine, Near East University Faculty of Medicine, Nicosia, TRNC
| | - Selahattin Kıyan
- Department of Emergency Medicine, Ege University Faculty of Medicine, İzmir-Turkey
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Cord Blood, Cell and Tissue Research and Application Centre, Ege University Faculty of Medicine, İzmir-Turkey
| | - Fatih Karabey
- Department of Biology, Ege University Faculty of Science, İzmir-Turkey
| | - Emel Öykü Çetin
- Department of Biopharmaceutics and Pharmacokinetics, Ege University Faculty of Pharmacy, İzmir-Turkey
| |
Collapse
|
14
|
Wang N, Gan G, Yang J, Wang L. Barbaloin Promotes Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells: Involvement of Wnt/β-catenin Signaling Pathway. Curr Med Chem 2022; 29:6100-6111. [PMID: 35770399 DOI: 10.2174/0929867329666220629150656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Barbaloin, found in Aloe vera, exerts broad pharmacological activities, including antioxidant, anti-inflammatory, and anti-cancer. This study aims to investigate the effects of barbaloin on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). METHODS Osteogenic induction of hBMSCs was performed in the presence or absence of barbaloin. Cell viability was determined by using the CCK-8 assay. The characteristic of hBMSCs was identified by using flow cytometry. Intracellular alkaline phosphatase (ALP) staining was performed to evaluate the ALP activity in hBMSCs. Alizarin Red S staining was performed to evaluate the matrix mineralization. The mRNA and protein levels of target genes were determined using qRT-PCR and western blotting, respectively. RESULTS Treatment with barbaloin (10 and 20 μg/mL) significantly increased cell viability of hBMSCs after 72 hours. In addition, treatment with barbaloin increased the mRNA expression levels of ALP and its activities. Treatment with barbaloin also increased matrix mineralization and the mRNA and protein levels of late-differentiated osteoblast marker genes BMP2, RUNX2, and SP7 in hBMSCs. The underlying mechanisms revealed that barbaloin increased the protein expressions of Wnt/β-catenin pathway-related biomarkers. CONCLUSION Barbaloin promotes osteogenic differentiation of hBMSCs by the regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Nan Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Guoli Gan
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Jihao Yang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Luyao Wang
- Stomatological Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
15
|
Chinese Herbal Medicine Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4963346. [PMID: 34917158 PMCID: PMC8670943 DOI: 10.1155/2021/4963346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia/reperfusion injury is the main cause of increased mortality and disability in cardiovascular diseases. The injury involves many pathological processes, such as oxidative stress, calcium homeostasis imbalance, inflammation, and energy metabolism disorders, and these pathological stimuli can activate endoplasmic reticulum stress. In the early stage of ischemia, endoplasmic reticulum stress alleviates the injury as an adaptive survival response, but the long-term stress on endoplasmic reticulum amplifies oxidative stress, inflammation, and calcium overload to accelerate cell damage and apoptosis. Therefore, regulation of endoplasmic reticulum stress may be a mechanism to improve ischemia/reperfusion injury. Chinese herbal medicine has a long history of clinical application and unique advantages in the treatment of ischemic heart diseases. This review focuses on the effect of Chinese herbal medicine on myocardial ischemia/reperfusion injury from the perspective of regulation of endoplasmic reticulum stress.
Collapse
|
16
|
Prospects of Aloe vera and its Bioactive Compounds in Diabetes: Critical Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diabetes is a significant public health issue. The global diabetes epidemic has had a tremendous impact on India, and the disease burden has increased dramatically. Diabetes is quickly increasing in prevalence, especially in Indian cities, according to data. Therefore, an ideal drug is sought that has better safety and tolerability and the most effective control of diabetes. Many effective medications come from plant sources. Natural products like onion and garlic can effectively control diabetes. In this review, we should pay attention to Aloe vera and its bioactive compounds, that with the development of traditional medicine, Aloe vera can be used to treat various diseases. Some reports have questioned the safety and efficacy of Aloe vera or its compounds, especially at different doses, and some studies have shown no side effects. In this review we also focus on benefits on human health so that Aloe vera is part of the daily diet in many countries and appears to be non-toxic, it is necessary to investigate whether aloe vera dietary supplement can be a beneficial preventive or nutritional mitigation strategy to reduce the effects of diabetes. This review focuses on Aloe vera and its biologically active compounds that play a role in the treatment or prevention of this morbid disease: diabetes, including its underlying mechanism of blood sugar lowering properties, and herbal products that have been marketed for the treatment of diabetes or the therapeutic effect of diabetes.
Collapse
|
17
|
The Intervention and Mechanism of Action for Aloin against Subchronic Aflatoxin B1 Induced Hepatic Injury in Rats. Int J Mol Sci 2021; 22:ijms222111620. [PMID: 34769051 PMCID: PMC8584096 DOI: 10.3390/ijms222111620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022] Open
Abstract
As a class of difurancoumarin compounds with similar structures, aflatoxins (AF) are commonly found in the environment, soil, and food crops. AF pose a serious threat to the health of humans, poultry, and livestock. This study aimed to investigate the neuroprotective effect and detailed mechanism of aloin on hepatic injury induced by subchronic AFB1 in rats. The result showed that aloin could significantly inhibit the decrease in food intake, body weight growth, immune organ index, and serum albumin content caused by long-term AFB1 exposure. Meanwhile, aloin reduced the level of serum liver function and improved renal swelling and pathological changes of liver tissue. Aloin could also inhibit liver lipid peroxidation and improve liver antioxidant capacity. Further investigation revealed that aloin inhibited the activity and expression of hepatic CYP1A2 and CYP3A4 and down-regulated IL-1β expression in subchronic AFB1-induced liver injury rats. The above study demonstrated that aloin played an important role in blocking or delaying the development process of subchronic AFB1-induced hepatotoxicity. Therefore, aloin is considered to have a potential role as a protective agent against AFB1.
Collapse
|
18
|
Kurkin VA, Ryazanova TK, Shmygareva AA, Glushchenko SN. HPLC Determination of Aloenin in Leaves and Preparations of Aloe arborescens Mill. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Pawłowicz K, Ludowicz D, Karaźniewicz-Łada M, Wdowiak K, Cielecka-Piontek J. Analysis of the Composition of Lyophilisates Obtained from Aloe arborescens Gel of Leaves of Different Ages from Controlled Crops. Molecules 2021; 26:3204. [PMID: 34071863 PMCID: PMC8198272 DOI: 10.3390/molecules26113204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the study is to evaluate the composition of lyophilisates obtained from Aloe arborescens leaf gel at the age of one to four years. The leaves were obtained from controlled crops, which allowed to exclude environmental factors as variables. It was confirmed that the lyophilisates obtained from different years of Aloe arborescens leaf gel varied in chromatographic analyses in terms of aloin A and aloenin A content (high-performance liquid chromatography with diode-array detection HPLC-DAD, high-performance liquid chromatography with tandem mass spectrometric detection HPLC-MS/MS). Similarly, while testing the phenolic acids and the sum of polyphenols content, differences in their levels in leaf gel lyophilisates from plants of individual years were observed (spectrophotometric method UV-VIS). The lyophilisate composition analysis showed that the one-year-old leaves were characterized by the highest content of aloin A and aloenin A. While the content of polyphenols, including phenolic acids, was higher in the leaves of older plants. The antioxidant potential of the tested lyophilisates was assessed simultaneously. Regardless of the research model used (CUPRAC, DPPH, ABTS), an antioxidant effect was noted for Aloe arborescens leaves.
Collapse
Affiliation(s)
- Kamil Pawłowicz
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Warta, Poland;
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (D.L.); (K.W.)
| | - Dominika Ludowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (D.L.); (K.W.)
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland;
| | - Kamil Wdowiak
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (D.L.); (K.W.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (D.L.); (K.W.)
| |
Collapse
|
20
|
Wang Y, Wang H, Yang F. Barbaloin Treatment Contributes to the Rebalance of Glucose and Lipid Homeostasis of Gestational Diabetes Mellitus Mice. Dose Response 2021; 18:1559325820984910. [PMID: 33456413 PMCID: PMC7783897 DOI: 10.1177/1559325820984910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Aloe vera L has been shown to possess hypoglycemic and hypolipidemic effects on
type 2 diabetic patients, and its major benefits may be linked to barbaloin,
which is a major component of Aloe vera L. This study focused on investigating
the potential effects and underlying mechanisms of barbaloin on gestational
diabetes mellitus (GDM). The db/+ diabetic mice with GDM were daily orally
administered with barbaloin or metformin during the gestational period. The
results demonstrated that administration of barbaloin significantly reduced
blood glucose levels and increased insulin levels in GDM mice. We further found
that barbaloin treatment reduced inflammatory response and ROS levels in the
liver. Finally, we revealed that the AMP-activated protein kinase (AMPK) /
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)
signaling pathway was involved in BAT-mediated beneficial effects on mice with
GDM. Our study suggested that barbaloin exerted hypoglycemic and hypolipidemic
effects on GDM mice, via, at least in part, modulation of AMPK/ PGC-1α signaling
in GDM mice.
Collapse
Affiliation(s)
- Yong Wang
- The Second Department of Obstetrics, Cangzhou Central Hospital, Yunhe District, Cangzhou, Hebei, China
| | - Haiying Wang
- Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Fengzhen Yang
- The Second Department of Obstetrics, Cangzhou Central Hospital, Yunhe District, Cangzhou, Hebei, China
| |
Collapse
|
21
|
Lima LL, Bierhalz ACK, Moraes ÂM. Influence of the chemical composition and structure design of electrospun matrices on the release kinetics of Aloe vera extract rich in aloin. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Sayed S, Ahmed M, El-Shehawi A, Alkafafy M, Al-Otaibi S, El-Sawy H, Farouk S, El-Shazly S. Ginger Water Reduces Body Weight Gain and Improves Energy Expenditure in Rats. Foods 2020; 9:E38. [PMID: 31906567 PMCID: PMC7023345 DOI: 10.3390/foods9010038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity is a serious global problem that causes predisposition to numerous serious diseases. The current study aims to investigate the effect of ginger water on body weight and energy expenditure through modulation of mRNA expression of carbohydrate and lipid metabolism. A white colored liquid obtained during freeze-drying of fresh rhizomes of Zingiber officinal was collected and named ginger water. It was used to treat rats, then blood and tissue samples were collected from the liver and white adipose at the end of the experiment. The serum was prepared and used for biochemical assays, while tissue samples were used for RNA isolation and gene expression analysis via Reverse transcription polymerase chain reaction (RT-PCR). Results of High Performance Liquid Chromatography (HPLC) analysis of ginger water revealed the presence of chrysin and galangin at concentrations of 0.24 µg/mL and 0.53 µg/mL, respectively. Average body weight gain decreased significantly in groups that received ginger water. In addition, both total cholesterol and serum triacylglycerol were reduced in the groups that received ginger water. Furthermore, mRNA expression of Sterol regulatory element-binding protein 1 (SREBP-1c) in the liver and leptin in adipose tissues were downregulated, while those of adiponectin, hepatic carnitine palmitoyltransferase1 (CPT-1), acyl-coA oxidase (ACO), Glucose transporter 2 (GLUT-2), and pyruvate kinase (PK) were upregulated in ginger water-treated groups. These results clearly revealed the lowering body weight gain effect of ginger water, which most likely occurs at the transcriptional level of energy metabolizing proteins.
Collapse
Affiliation(s)
- Samy Sayed
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; (S.S.); (A.E.-S.); (M.A.); (S.A.-O.); (S.F.)
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mohamed Ahmed
- Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32958, Egypt;
| | - Ahmed El-Shehawi
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; (S.S.); (A.E.-S.); (M.A.); (S.A.-O.); (S.F.)
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria 21526, Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; (S.S.); (A.E.-S.); (M.A.); (S.A.-O.); (S.F.)
- Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32958, Egypt;
| | - Saqer Al-Otaibi
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; (S.S.); (A.E.-S.); (M.A.); (S.A.-O.); (S.F.)
| | - Hanan El-Sawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Samy Farouk
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; (S.S.); (A.E.-S.); (M.A.); (S.A.-O.); (S.F.)
| | - Samir El-Shazly
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; (S.S.); (A.E.-S.); (M.A.); (S.A.-O.); (S.F.)
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh 33511, Egypt
| |
Collapse
|
23
|
Gai L, Chu L, Xia R, Chen Q, Sun X. Barbaloin Attenuates Mucosal Damage in Experimental Models of Rat Colitis by Regulating Inflammation and the AMPK Signaling Pathway. Med Sci Monit 2019; 25:10045-10056. [PMID: 31881016 PMCID: PMC6946048 DOI: 10.12659/msm.918935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Barbaloin is one of the main medicinal ingredients of aloe vera, which displays various anti-inflammatory and anti-apoptosis properties in several inflammatory and fibrotic diseases. Our study evaluated its efficacy against dextran sulfate sodium (DSS)-induced colitis in rats. Material/Methods Ulcerative colitis (UC) rat models were established in vivo, and after barbaloin treatment, body weight and inflammation index were measured. Additionally, the signaling mechanism by which barbaloin protects against UC was investigated using LPS-infected Caco-2 cells. Results Barbaloin could significantly reverse UC-induced weight loss and colon injury. Further, it could effectively increase the mRNA expression of IL-4 and IL-10 in colon tissues, while decreasing the expression of IFN-γ, IL-6, IL-1β, and TNF-α. Furthermore, it significantly enhanced UC-inhibited atresia band 1 (ZO-1), occludin, and E-cadherin, and was also found to activate the AMPK signaling pathway. Additionally, si-RAN-induced knockdown, and overexpression assay showed that barbaloin could inhibit the UC-enhanced MLCK signaling pathway by activating the AMPK signaling pathway. Conclusions Barbaloin can effectively inhibit inflammation and reverse epithelial barrier function to protect against UC, possibly via activation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Ling Gai
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Likai Chu
- Department of Ultrasound, Children's Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Rui Xia
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Qian Chen
- Laboratory Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Xingwei Sun
- Department of Intervention, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
24
|
Duan B, Huang Y, Chen Y. Barbaloin Ameliorates the Memory in Isoflurane Induced Neuronal Injury by Regulating the BDNF/Bcl-2/PI3K Signaling Pathway. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.801.808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Yang H, Zhong W, Hamidi MR, Zhou G, Liu C. Functional improvement and maturation of human cardiomyocytes derived from human pluripotent stem cells by barbaloin preconditioning. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1041-1048. [PMID: 31518384 DOI: 10.1093/abbs/gmz090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
The development of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is a significant advancement in our ability to obtain cardiomyocytes in vitro for regenerative therapies and drug discovery. However, hPSC-CMs obtained via existing protocols usually exhibit a markedly immature phenotype, compared with adult cardiomyocytes, thereby limiting their application. Here we report that barbaloin preconditioning dramatically improves the morphology, structure-related cardiac gene expression, calcium handling, and electrophysiological properties of hPSC-CMs, which means that barbaloin may have the potential to induce the maturation of hPSC-CMs, providing a novel strategy to generate more adult-like cardiomyocytes and promoting the application of hPSC-CMs in regenerative medicine, drug development, and disease modeling.
Collapse
Affiliation(s)
- Hui Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Tongji University, Shanghai 200092, China
| | - Weiyi Zhong
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mohammad Rafi Hamidi
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gaojun Zhou
- Department of Cardiology, Nanjing Pukou Central Hospital, Nanjing 211800, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
26
|
Cui Y, Wang Y, Liu G. Protective effect of Barbaloin in a rat model of myocardial ischemia reperfusion injury through the regulation of the CNPY2‑PERK pathway. Int J Mol Med 2019; 43:2015-2023. [PMID: 30864682 PMCID: PMC6443342 DOI: 10.3892/ijmm.2019.4123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Barbaloin (Bar) has a myocardial protective effect, but its mechanism of action is uncertain. The endoplasmic reticulum stress (ERS)-mediated apoptosis pathway serves an important role in the pathogenesis of myocardial ischemia-reperfusion injury (MIRI). Inhibiting ERS may significantly improve the progression of MIRI and serve a role in its prevention. Therefore, based on current knowledge of ERS-mediated cardiomyocyte apoptosis and the cardioprotective effect of Bar, the purpose of the present study was to further evaluate the myocardial protective effect and potential mechanisms of Bar pretreatment in MIRI. The present study established a MIR rat model and randomly divided these rats into four groups. Prior to myocardial ischemia, Bar (20 mg/kg) was administered to rats once daily for 1 week. Myocardial blood serum lactate dehydrogenase and creatine kinase were subsequently measured. A terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay was used to evaluate the myocardial protective effect of Bar pretreatment on MIRI. To assess whether the ERS signaling pathway was involved in the myocardial protection mechanism of Bar pretreatment, the expression levels of ERS-associated proteins, protein canopy homolog 2 (CNPY2), glucose regulatory protein 78, transcriptional activator 4, C/EBP-homologous protein (CHOP), PKR endoplasmic reticulum kinase (PERK), caspase-12 and caspase-3 were detected by western blot analysis, immunohistochemistry or reverse transcription-quantitative polymerase chain reaction. The results confirmed that Bar pretreatment significantly reduced the damage and the level of apoptosis caused by MIR. Bar pretreatment significantly inhibited the expression of ERS-associated proteins in cardiomyocytes. In addition, the immunohistochemistry results demonstrated that Bar pretreatment significantly inhibited the CNPY2-positive cell apoptosis ratio of cardiomyocytes. Therefore, the results of the current study suggested that CNPY2 is present in cardiomyocytes and participates in the development of MIRI by initiating the PERK-CHOP signaling pathway. Bar pretreatment may attenuate MIRI by inhibiting the CNPY2-PERK apoptotic pathway.
Collapse
Affiliation(s)
- Yue Cui
- Department of Medicine, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Yongqiang Wang
- Department of Medicine, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Gang Liu
- Department of Medicine, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
27
|
The Role of Traditional Chinese Medicine in the Regulation of Oxidative Stress in Treating Coronary Heart Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3231424. [PMID: 30918578 PMCID: PMC6409025 DOI: 10.1155/2019/3231424] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/19/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been closely related with coronary artery disease. In coronary heart disease (CHD), an excess of reactive oxygen species (ROS) production generates endothelial cell and smooth muscle functional disorders, leading to a disequilibrium between the antioxidant capacity and prooxidants. ROS also leads to inflammatory signal activation and mitochondria-mediated apoptosis, which can promote and increase the occurrence and development of CHD. There are several kinds of antioxidative and small molecular systems of antioxidants, such as β-carotene, ascorbic acid, α-tocopherol, and reduced glutathione (GSH). Studies have shown that antioxidant treatment was effective and decreased the risk of CHD, but the effect of the treatment varies greatly. Traditional Chinese medicine (TCM) has been utilized for thousands of years in China and is becoming increasingly popular all over the world, especially for the treatments of cardiovascular diseases. This review will concentrate on the evidence of the action mechanism of TCM in preventing CHD by modulating oxidative stress-related signaling pathways.
Collapse
|
28
|
Ma Y, Tang T, Sheng L, Wang Z, Tao H, Zhang Q, Zhang Y, Qi Z. Aloin suppresses lipopolysaccharide‑induced inflammation by inhibiting JAK1‑STAT1/3 activation and ROS production in RAW264.7 cells. Int J Mol Med 2018; 42:1925-1934. [PMID: 30066904 PMCID: PMC6108888 DOI: 10.3892/ijmm.2018.3796] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
The anti-inflammatory effects of aloin, a bioactive ingredient extracted from Aloe vera, have been described previously. The present study aimed to assess these effects and explore the underlying molecular mechanisms. RAW264.7 cells were incubated with different doses of aloin (100, 150 and 200 µg/ml) and lipopolysaccharide (LPS; 100 ng/ml) for the indicated times. Then, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 expression levels were detected by western blot analysis and reverse transcription polymerase chain reaction (RT-PCR). The concentrations of inflammatory cytokines in the cell culture supernatant were determined by ELISA. Total nitric oxide (NO) assay and reactive oxygen species (ROS) kits were used to detect NO and ROS levels, respectively. Mitogen-activated protein kinase, nuclear factor κB and Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway activation were verified by western blot analysis. Confocal and nucleocytoplasmic separation experiments were used to detect STAT nuclear translocation. It was identified that aloin decreased the level of LPS-induced iNOS expression, inhibiting the release of interleukin (IL)-1β, IL-6, tumour necrosis factor-α and NO dose-dependently. Mechanistically, aloin suppressed LPS-induced JAK1-STAT1/3 activation and STAT1/3 nuclear translocation. Additionally, LPS-induced ROS production was inhibited by aloin. Collectively, these data suggest that aloin attenuated LPS-induced inflammation by inhibiting ROS-mediated activation of the JAK1-STAT1/3 signalling pathway, thereby inhibiting the nuclear translocation of STAT1/3 in RAW264.7 cells. The present study provides an experimental basis for the clinical application of aloin in inflammatory-associated diseases.
Collapse
Affiliation(s)
- Yunfei Ma
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Tuo Tang
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lili Sheng
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Ziqian Wang
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Hong Tao
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Qing Zhang
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yao Zhang
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Zhilin Qi
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
29
|
Wang YR, Yang SY, Chen GX, Wei P. Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo. Biochem Biophys Res Commun 2018. [PMID: 29534962 DOI: 10.1016/j.bbrc.2018.03.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gastric cancer is the third leading cause of cancer-associated death worldwide. Although a decrease in its incidence is observed, gastric cancer still poses a major clinical challenge due to poor prognosis and limited treatments. Barbaloin (BBL) is a main medicinal composition of the Chinese traditional medicine aloe vera. BBL has various bioactivities, including anti-oxidant, anti-inflammatory and anti-tumor properties. Polydopamine (pD)-based surface modification is easy to functionalize polymeric nanoparticles (NPs) surfaces with ligands and/or additional polymeric layers. In the present study, BBL-loaded formulations was developed with pD-modified NPs, which was synthesized by polylactide-TPGS (PLA-TPGS) (pD-PLA-TPGS/NPs). And galactosamine (Gal) was conjugated on the prepared NPs (Gal-pD-PLA-TPGS/NPs) for targeting the gastric cancer cells. Here, we found that BBL-loaded Gal-pD-PLA-TPGS/NPs showed the highest cellular uptake efficacy in gastric cancer cells. Gal-pD-PLA-TPGS/NPs more significantly reduced the gastric cancer cell viability. Further, greater apoptosis, autophagy and ROS generation was induced by Gal-pD-PLA-TPGS/NPs in gastric cancer cells. Additionally, compared to the other two NPs, Gal-pD-PLA-TPGS/NPs most markedly decreased ATP levels in gastric cancer cells. In vivo, Gal-pD-PLA-TPGS/NPs were specifically targeted to tumor site. Moreover, Gal-pD-PLA-TPGS/NPs exhibited the most anti-tumor effects, as evidenced by the lowest tumor volume and tumor weight. Of note, there was no significant difference was observed in body and liver weight, as well as the histological changes in major organs isolated from each group of mice. Together, the findings indicated that BBL-loaded Gal-pD-PLA-TPGS/NPs could be targeted to gastric cancer cells to suppress tumor progression without toxicity.
Collapse
Affiliation(s)
- Yi-Ran Wang
- Digestive Department, Xuzhou Cancer Hospital, Xuzhou 221000, China
| | - Shi-Yan Yang
- Digestive Department, First People's Hospital of Xuzhou (Municipal Hospital Affiliated to Xuzhou Medical University), Xuzhou 221000, China
| | - Guang-Xia Chen
- Digestive Department, First People's Hospital of Xuzhou (Municipal Hospital Affiliated to Xuzhou Medical University), Xuzhou 221000, China
| | - Ping Wei
- Department of Gastroenterology, Second People's Hospital of Huai'an, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an 223300, China.
| |
Collapse
|
30
|
Cao ZZ, Tian YJ, Hao J, Zhang PH, Liu ZP, Jiang WZ, Zeng ML, Zhang PP, Ma JH. Barbaloin inhibits ventricular arrhythmias in rabbits by modulating voltage-gated ion channels. Acta Pharmacol Sin 2018; 39:357-370. [PMID: 29072259 DOI: 10.1038/aps.2017.93] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/17/2017] [Indexed: 12/15/2022]
Abstract
Barbaloin (10-β-D-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10H)-anthracenone) is extracted from the aloe plant and has been reported to have anti-inflammatory, antitumor, antibacterial, and other biological activities. Here, we investigated the effects of barbaloin on cardiac electrophysiology, which has not been reported thus far. Cardiac action potentials (APs) and ionic currents were recorded in isolated rabbit ventricular myocytes using whole-cell patch-clamp technique. Additionally, the antiarrhythmic effect of barbaloin was examined in Langendorff-perfused rabbit hearts. In current-clamp recording, application of barbaloin (100 and 200 μmol/L) dose-dependently reduced the action potential duration (APD) and the maximum depolarization velocity (Vmax), and attenuated APD reverse-rate dependence (RRD) in ventricular myocytes. Furthermore, barbaloin (100 and 200 μmol/L) effectively eliminated ATX II-induced early afterdepolarizations (EADs) and Ca2+-induced delayed afterdepolarizations (DADs) in ventricular myocytes. In voltage-clamp recording, barbaloin (10-200 μmol/L) dose-dependently inhibited L-type calcium current (ICa.L) and peak sodium current (INa.P) with IC50 values of 137.06 and 559.80 μmol/L, respectively. Application of barbaloin (100, 200 μmol/L) decreased ATX II-enhanced late sodium current (INa.L) by 36.6%±3.3% and 71.8%±6.5%, respectively. However, barbaloin up to 800 μmol/L did not affect the inward rectifier potassium current (IK1) or the rapidly activated delayed rectifier potassium current (IKr) in ventricular myocytes. In Langendorff-perfused rabbit hearts, barbaloin (200 μmol/L) significantly inhibited aconitine-induced ventricular arrhythmias. These results demonstrate that barbaloin has potential as an antiarrhythmic drug.
Collapse
|
31
|
Zhang P, Liu X, Huang G, Bai C, Zhang Z, Li H. Barbaloin pretreatment attenuates myocardial ischemia-reperfusion injury via activation of AMPK. Biochem Biophys Res Commun 2017; 490:1215-1220. [DOI: 10.1016/j.bbrc.2017.06.188] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022]
|
32
|
El Sayed AM, Ezzat SM, El Naggar MM, El Hawary SS. In vivo diabetic wound healing effect and HPLC–DAD–ESI–MS/MS profiling of the methanol extracts of eight Aloe species. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Malik EM, Müller CE. Anthraquinones As Pharmacological Tools and Drugs. Med Res Rev 2016; 36:705-48. [PMID: 27111664 DOI: 10.1002/med.21391] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs.
Collapse
Affiliation(s)
- Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
34
|
Pandey DK, Parida S, Dey A. Comparative HPTLC analysis of bioactive marker barbaloin from in vitro and naturally grown Aloe vera. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.09.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Kumar SV, Saravanan D, Kumar B, Jayakumar A. An update on prodrugs from natural products. ASIAN PAC J TROP MED 2014; 7S1:S54-9. [DOI: 10.1016/s1995-7645(14)60203-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 10/24/2022] Open
|
37
|
Cui Y, Ye Q, Wang H, Li Y, Xia X, Yao W, Qian H. Aloin protects against chronic alcoholic liver injury via attenuating lipid accumulation, oxidative stress and inflammation in mice. Arch Pharm Res 2014; 37:1624-33. [DOI: 10.1007/s12272-014-0370-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/13/2014] [Indexed: 02/06/2023]
|
38
|
Toxicologic assessment of a commercial decolorized whole leaf aloe vera juice, lily of the desert filtered whole leaf juice with aloesorb. J Toxicol 2013; 2013:802453. [PMID: 23554812 PMCID: PMC3608129 DOI: 10.1155/2013/802453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/30/2013] [Indexed: 11/18/2022] Open
Abstract
Aloe vera, a common ingredient in cosmetics, is increasingly being consumed as a beverage supplement. Although consumer interest in aloe likely stems from its association with several health benefits, a concern has also been raised by a National Toxicology Program Report that a nondecolorized whole leaf aloe vera extract taken internally by rats was associated with intestinal mucosal hyperplasia and ultimately malignancy. We tested a decolorized whole leaf (DCWL) aloe vera, treated with activated charcoal to remove the latex portion of the plant, for genotoxicity in bacteria, acute/subacute toxicity in B6C3F1 mice, and subchronic toxicity in F344 rats. We found this DCWL aloe vera juice to be nongenotoxic in histidine reversion and DNA repair assays. Following acute administration, mice exhibited no adverse signs at 3- or 14-day evaluation periods. When fed to male and female F344 rats over 13 weeks, DCWL aloe led to no toxicity as assessed by behavior, stools, weight gain, feed consumption, organ weights, and hematologic or clinical chemistry profiles. These rats had intestinal mucosal morphologies—examined grossly and microscopically—that were similar to controls. Our studies show that oral administration of this DCWL aloe juice has a different toxicology profile than that of the untreated aloe juice at exposures up to 13 weeks.
Collapse
|
39
|
Sehgal I, Winters WD, Scott M, Kousoulas K. An in vitro and in vivo toxicologic evaluation of a stabilized aloe vera gel supplement drink in mice. Food Chem Toxicol 2013; 55:363-70. [PMID: 23376510 DOI: 10.1016/j.fct.2013.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/15/2022]
Abstract
Aloe vera gel is increasingly consumed as a beverage dietary supplement. The purpose of this study was to determine potential toxicity of a stabilized aloe vera gel derived from the inner gel fillet and marketed as a drink. The gel juice was assessed through assays of genotoxicity in vivo and acute and subchronic toxicity in B6C3F1 mice. Aloe vera did not increase the SOS DNA repair response in Escherichia coli and at 1× and 0.25× it did not increase mutagenesis of Salmonella TA100 resulting in histidine biosynthesis. At 3 and 14days following acute exposure, male and female mice gavaged with the stabilized aloe gel had daily appearances, total body weight gain, selected organ weights, necropsy and hematology tests similar to control mice gavaged with water. After a 13-week aloe gel feed study, male and female mice evaluated by the same criteria as the acute study plus feed consumption and serum chemistry tests were found to be equivalent to control groups. These data indicate that a commercial stabilized aloe gel consumed as a beverage was not genotoxic or toxic in vivo. These results contrast with those obtained using preparations containing aloe latex phenolic compounds such as anthraquinones.
Collapse
Affiliation(s)
- Inder Sehgal
- LSU School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803, USA.
| | | | | | | |
Collapse
|
40
|
Patel K, Patel DK. Medicinal importance, pharmacological activities, and analytical aspects of aloin: A concise report. JOURNAL OF ACUTE DISEASE 2013. [DOI: 10.1016/s2221-6189(13)60141-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|