1
|
Hermawan A, Hanif N, Putri DDP, Fatimah N, Prasetio HH. Citrus flavonoids for overcoming breast cancer resistance to methotrexate: identification of potential targets of nobiletin and sinensetin. Discov Oncol 2025; 16:365. [PMID: 40111633 PMCID: PMC11926326 DOI: 10.1007/s12672-025-02116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Breast cancer is a potentially fatal illness that affects millions of women worldwide. Methotrexate (MTX) may be beneficial for treating breast cancer; however, high doses and prolonged use can cause drug resistance. Although certain citrus flavonoids-nobiletin, sinensetin, tangeretin, hesperidin, hesperetin, and naringenin-may overcome resistance to chemotherapy, no study has investigated MTX resistance. This study investigated the potential of natural chemicals, specifically nobiletin and sinensetin, to overcome MTX resistance in breast cancer cells using MTX-resistant MCF-7 (MCF-7/MTX) and MCF-7 cells. Protein targets of citrus flavonoids were identified from multiple databases and were collected using Venny 2.1. Microarray data of MCF-7 and MCF-7/MTX cells were acquired from the Gene Expression Omnibus. Subsequently, we constructed a protein-protein interaction network and selected the hub proteins. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, drug- and disease-gene enrichment analyses, genetic alteration examination, receiver operating characteristic curve analysis, mRNA levels analysis, prognostic value analysis, and molecular docking analysis were performed along with in vitro experiments. Cytotoxicity of citrus flavonoids (individually and combined) was assessed in MCF-7/MTX cells. Nobiletin and sinensetin significantly enhanced the cytotoxicity of MTX in MCF-7/MTX cells. BCL2L1, CDK1, EGFR, PTGS2, PLK1, MMP2, ACHE, ABCG2, and KIT genes were enriched in cholinesterase activity, cell cycle regulation, and the PI3K/Akt signaling pathway. Nobiletin and sinensetin impeded PLK1, CDK1, and ACHE activities based on molecular docking. Nobiletin and sinensetin in combination with MTX may overcome breast cancer cell resistance to MTX.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Naufa Hanif
- Doctoral Student, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Dyaningtyas Dewi Pamungkas Putri
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Jayakumar R, Dash MK, Kumar P, Sharma S, Gulati S, Pandey A, Cholke K, Fatima Z, Trigun SK, Joshi N. Pharmaceutical characterization and exploration of Arkeshwara rasa in MDA-MB-231 cells. J Ayurveda Integr Med 2024; 15:100823. [PMID: 38160612 PMCID: PMC10792653 DOI: 10.1016/j.jaim.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The diverse specificity mode of cancer treatment targets and chemo resistance demands the necessity of drug entities which can address the devastating dynamicity of the disease. OBJECTIVES To check the anti-tumour potential of traditional medicine rich in polyherbal components and metal nanoparticle namely Arkeshwara rasa (AR). MATERIAL METHODS The AR was prepared in a modified version with reference from Rasaratna Samuchaya and characterized using sophisticated instrumental analysis including XRD, SEM-EDAX, TEM, TGA-DSC, and LC-MS and tested against the MDA-MB-231 cell line to screen cell viability and the cytotoxicity with MTT, SRB and the AO assay. RESULTS XRD pattern shows cubic tetrahedrite structure with Sb, Cu, S peaks and trace elements like Fe, Mg, etc. The particle size of AR ranges between 20 and 30 nm. The TGA points thermal decomposition at 210 °C and the metal sulphide peaks in DSC. LC-MS analysis reveals the components of the formulation more on the flavonoid portion. The IC50 value of MTT and SRB are 25.28 μg/mL and 31.7 μg/mL respectively. The AO colorimeter substantiated the cell viability and the apoptosis figures of the same cell line. The AR exhibits cytotoxicity and reaffirms the apoptosis fraction with SRB assay. CONCLUSIONS The Hesperidine, Neohesperidin, Rutin components in the phytochemical pool can synergize the anti-tumour potential with either influencing cellular pathways or decreasing chemo resistance to conventional treatment. AR need to be further experimented with reverse transcription, flow cytometry, western blotting, etc.
Collapse
Affiliation(s)
- Remya Jayakumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Kumar Dash
- Department of Rasashastra and Bhaishajya Kalpana, Government Ayurveda College, Raipur, India.
| | - Pankaj Kumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Shiwakshi Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Gulati
- Dept of Rasashastra and Bhaishjya Kalpana, Babu Yugraj Singh Ayurvedic Medical College and Hospital, Gomtinagar Extension, Sector 6 Lucknow, Uttar Pradesh, 226010, India
| | - Akanksha Pandey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kaushavi Cholke
- Amity Lipidomics Research Facility (ALRF), Amity University, Haryana, Manesar, Gurugram, 122413, India; Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Switzerland
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia; Amity Institute of Biotechnology, Amity University, Haryana, Manesar, Gurugram, 122413, India
| | - S K Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Namrata Joshi
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Rahmani AH, Babiker AY, Anwar S. Hesperidin, a Bioflavonoid in Cancer Therapy: A Review for a Mechanism of Action through the Modulation of Cell Signaling Pathways. Molecules 2023; 28:5152. [PMID: 37446814 DOI: 10.3390/molecules28135152] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents one of the most frequent causes of death in the world. The current therapeutic options, including radiation therapy and chemotherapy, have various adverse effects on patients' health. In this vista, the bioactive ingredient of natural products plays a vital role in disease management via the inhibition and activation of biological processes such as oxidative stress, inflammation, and cell signaling molecules. Although natural products are not a substitute for medicine, they can be effective adjuvants or a type of supporting therapy. Hesperidin, a flavonoid commonly found in citrus fruits, with its potential antioxidant, anti-inflammatory, and hepatoprotective properties, and cardio-preventive factor for disease prevention, is well-known. Furthermore, its anticancer potential has been suggested to be a promising alternative in cancer treatment or management through the modulation of signal transduction pathways, which includes apoptosis, cell cycle, angiogenesis, ERK/MAPK, signal transducer, and the activator of transcription and other cell signaling molecules. Moreover, its role in the synergistic effects with anticancer drugs and other natural compounds has been described properly. The present article describes how hesperidin affects various cancers by modulating the various cell signaling pathways.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
4
|
Lobo CL, Shetty A, M M, Dubey A, El-Zahaby SA. Non-systemic Approaches for Ductal Carcinoma In Situ: Exploring the Potential of Ultra-flexible Combisomes as a Novel Drug Delivery Strategy-a Review. AAPS PharmSciTech 2023; 24:119. [PMID: 37173545 DOI: 10.1208/s12249-023-02574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is currently treated through breast-conserving surgery (lumpectomy), radiation therapy, breast-removing surgery (mastectomy), and hormone therapy to prevent further progression into invasive breast cancer and recurrence. Discrepancies concerning the prognosis of DCIS have sparked controversy about adequate treatment. Considering the severe medical and psychological consequences of mastectomy, developing a treatment approach that arrests the progression of DCIS to the invasive stage without affecting the non-cancerous cells is of utmost importance. In the current review, the problems associated with the diagnosis and management of DCIS have been thoroughly discussed. A summary of the route of administration and drug delivery systems to manage DCIS was also provoked. Innovative ultra-flexible combisomes were also proposed for the effective management of DCIS. Prevention is essential in managing the risk of DCIS and reducing the risk of progression to invasive breast cancer. While prevention is vital, it is not always possible to prevent DCIS, and in some cases, treatment may be necessary. Hence, this review recommends that ultra-flexible combisomes administered as a topical gel provide a non-systemic approach for managing DCIS and thus significantly minimize the side effects and costs associated with existing therapies.
Collapse
Affiliation(s)
- Cynthia Lizzie Lobo
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore, 575018, India
| | - Amitha Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore, 575018, India
| | - Manohar M
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore, 575018, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore, 575018, India.
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, South Sinai, Egypt
| |
Collapse
|
5
|
Amalina ND, Salsabila IA, Zulfin UM, Jenie RI, Meiyanto E. In vitro synergistic effect of hesperidin and doxorubicin downregulates epithelial-mesenchymal transition in highly metastatic breast cancer cells. J Egypt Natl Canc Inst 2023; 35:6. [PMID: 36967442 DOI: 10.1186/s43046-023-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Abstract
Background
We previously reported that in highly metastatic breast cancer cells, doxorubicin (DOX) at non-toxic concentrations promoted cell migration and invasion. Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavonoid glycoside isolated from citrus/lemon plant that possesses a cytotoxic effect in several cancer cells. In this study, we investigate whether DOX efficacy is enhanced by hesperidin (Hsd) and the molecular pathway involved in highly metastatic breast cancer, 4T1.
Methods
Combined cytotoxicity of Hsd and DOX was evaluated with MTT assay and was analyzed using Chou-Talalay’s method. To better understand the underlying mechanism, several factors, including apoptosis and cell cycle arrest were analyzed by flow cytometry. In addition, antimigration activity was evaluated by scratch wound healing assay, MMP-9 expression by ELISA and gelatin zymography, and Rac-1 protein level using western blot. The data on survival rate and expression level of MMP-9 and Rac-1 were obtained from Gene Expression OMNIBUS (GEO).
Results
Under MTT assay, Hsd showed a cytotoxic effect in a concentration-dependent manner with an IC50 value of 284 µM on 4T1 cells. Hsd synergistically enhanced the cytotoxic effect of DOX which seemed to correlate with an increase in apoptotic cell death, G2/M cell cycle arrest and blocked the migration of 4T1 cells. At 10 nM, doxorubicin induced lamellipodia formation, and increased the level of Rac-1 and metalloproteinase-9 (MMP-9) expression. Interestingly, combined treatment of DOX and Hsd dramatically downregulated the expression of MMP-9 and Rac-1. These results indicated that Hsd block the cell migration induced by DOX under in vitro studies.
Conclusion
These findings strongly suggest that Hsd possesses a potential synergistic effect that can be developed to enhance the anticancer efficacy of DOX and reduce the risks of chemotherapy use in highly metastatic breast cancer.
Collapse
|
6
|
Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants (Basel) 2023; 12:antiox12030586. [PMID: 36978836 PMCID: PMC10045673 DOI: 10.3390/antiox12030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Citrus (genus Citrus L.) fruits are essential sources of bioactive compounds with antioxidant properties, such as flavonoids. These polyphenolic compounds are divided into subclasses, in which flavanones are the most prominent. Among them, naringenin and hesperidin are emerging compounds with anticancer potential, especially for breast cancer (BC). Several mechanisms have been proposed, including the modulation of epigenetics, estrogen signaling, induction of cell death via regulation of apoptotic signaling pathways, and inhibition of tumor invasion and metastasis. However, this information is sparse in the literature and needs to be brought together to provide an overview of how naringenin and hesperidin can serve as therapeutic tools for drug development and as a successful co-adjuvant strategy against BC. This review detailed such mechanisms in this context and highlighted how naringenin and hesperidin could interfere in BC carcinogenesis and be helpful as potential alternative therapeutic sources for breast cancer treatment.
Collapse
|
7
|
G R, Raghunandhakumar S, S B. Dual therapeutic 5-fluorouracil and hesperidin loaded chitosan nanocarrier system: Understanding its synergism on anti-cancer activity. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
El Wahed SA, Hassabou NF, Hamouda MA. Anticancer Potential of Hesperidin against HEp-2 Laryngeal Carcinoma Cell Line in Comparison to Doxorubicin. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND: Doxorubicin (DOX) is a drug that is frequently used to treat a variety of cancers. Unfortunately, in many situations, it is ineffective, and raising the dosage is restricted due to systemic toxicity. An important strategy to minimize the toxic effects of the above cited drug is to use co-adjuvant. A citrus flavonoid hesperidin (Hesp) has emerged as promising anticancer natural product and proved to be potent antioxidant agent. It suppresses cancer cell replicating by triggering apoptosis and cell cycle arrest.
AIM: The study’s goal was to investigate anticarcinogenic effects of Hesp in comparison with DOX against HEp-2 laryngeal carcinoma cell line.
MATERIALS AND METHODS: Five groups of HEp-2 cell line were included, two groups were subjected to Hesp and the other two groups were subjected to DOX, which was used as a reference drug, in addition to a control untreated group. Expression of Bcl-2 and p53 genes was evaluated. Furthermore, the cell cycle arrest and apoptotic induction were assessed.
RESULTS: Hesp exerted anti-proliferative effects against HEp-2 cells which increase in time dependent manner. Gene profile analysis revealed highly statistically significant decrease of anti-apoptotic Bcl-2 expression and highly statistically significant increase of tumor suppressor gene p53 expression (p ˂ 0.01 and p ˂ 0.0001, respectively) for both tested drugs.
CONCLUSIONS: Hesp proved potential anticancer effects with reducing cancer cell viability in HEp-2 cell line through cell cycle arrest and apoptotic mechanism. It could be used as a prodrug or coadjuvant in treatment of oral cancer.
Collapse
|
9
|
Teng YN, Kao MC, Huang SY, Wu TS, Lee TE, Kuo CY, Hung CC. Novel application of rhein and its prodrug diacerein for reversing cancer-related multidrug resistance through the dual inhibition of P-glycoprotein efflux and STAT3-mediated P-glycoprotein expression. Biomed Pharmacother 2022; 150:112995. [PMID: 35658243 DOI: 10.1016/j.biopha.2022.112995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Multidrug resistance (MDR) is a multifactorial issue in cancer treatment. Drug efflux transporters, particularly P-glycoprotein (P-gp), are major contributors to such resistance. In the present study, we evaluated the P-gp-inhibiting and MDR-reversing effects of two compounds, namely rhein, an anthraquinone, and diacerein, the acetylated prodrug of rhein. ABCB1/Flp-In-293 was used as a model for investigating the related molecular mechanisms, and the multi-drug-resistant cancer cell line KB/VIN was used as a platform for evaluating the reversal of MDR0. The results indicated that at a concentration of 2.5 μM, both diacerein and rhein significantly inhibited P-gp efflux function. They also downregulated P-gp expression by interacting with the signal transducer and activator of transcription 3. Further investigation of the inhibitory mechanism of these compounds revealed that both stimulated P-gp ATPase activity dose dependently and engaged in the noncompetitive inhibition of rhodamine 123 efflux. Furthermore, rhein was revealed to be a potent reverser of MDR in cancer, and the combination of 30 μM rhein and 1000 nM vincristine exerted a strong synergistic effect, achieving a high combination index (CI) of 0.092. Diacerein demonstrated potential applications as a selective cytotoxic agent against multi-drug-resistant cancer cells at a concentration of > 18.92 μM and as a mild MDR reverser at doses of < 10 μM. In conclusion, diacerein and rhein are potential candidates for P-gp inhibition and MDR reversal in cancer cells.
Collapse
Affiliation(s)
- Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan.
| | - Ming-Chang Kao
- Department of Anesthesiology, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan.
| | - Shih-Ya Huang
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan.
| | - Tsui-Er Lee
- Office of Physical Education, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; Department of Nursing, Cardinal Tien College of Healthcare and Management, New Taipei City, Taiwan.
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan; Department of Pharmacy, China Medical University Hospital, 2 Yude Road, Taichung 40447, Taiwan; Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
10
|
Jiang X, Zhang W, Li L, Xie S. Integrated Transcriptomic Analysis Revealed Hub Genes and Pathways Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Pathol Oncol Res 2021; 27:1609985. [PMID: 34737677 PMCID: PMC8560649 DOI: 10.3389/pore.2021.1609985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This study aimed to identify critical genes and pathways associated with sorafenib resistance in HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were identified using four HCC gene expression profiles (including 34 sorafenib-resistant and 29 sorafenib-sensitive samples) based on the robust rank aggregation method and R software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and small molecules reversing sorafenib resistance were searched for using the connectivity map (CMAP) database. Pearson correlation and survival analyses of hub genes were performed using cBioPortal and Gene Expression Profiling and Interactive Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165 integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples compared sorafenib sensitive ones) primarily enriched in negative regulation of endopeptidase activity, extracellular exosome, and protease binding were identified. Some pathways were commonly shared between the integrated DEGs. Seven promising therapeutic agents and 13 hub genes were identified. These findings provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC patients.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, China
| | - Lifeng Li
- Department of Radiology, Changsha Central Hospital, Changsha, China
| | - Shucai Xie
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Hesperidin and Chlorogenic Acid Synergistically Inhibit the Growth of Breast Cancer Cells via Estrogen Receptor/Mitochondrial Pathway. Life (Basel) 2021; 11:life11090950. [PMID: 34575098 PMCID: PMC8467139 DOI: 10.3390/life11090950] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Hesperidin (Hes) and chlorogenic acid (CA) are traditional medicinal molecules that abundantly exist in natural plants or foods. These compounds have been shown to prevent and suppress various cancers and therefore can be utilized as adjunctive therapies to aid cancer treatment. Here, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays show a greater synergistic inhibitory effect on the growth of breast cancer cells, MCF-7, but not normal breast cells, MCF-10A, than hesperidin or chlorogenic acid alone. We present the possible molecular signaling pathways in MCF-7 cells with or without herbal molecule treatments via proteomic approaches. The data were further analyzed by Ingenuity Pathway Analysis (IPA) and confirmed by quantifying mRNA associated with the estrogen-receptor signaling pathway and mitochondrial functions. We demonstrated that the expression of CYC1, TFAM, ATP5PB, mtATP6, mtDNA, and NRF-1 were decreased upon 12 h treatment, and subsequent ATP production was also significantly decreased at 24 h. These results identified a synergistic effect induced by combinational treatment with hesperidin and chlorogenic acid, which can regulate mitochondria and ATP production through the estrogen receptor pathway in MCF-7 cells. However, none of the treatments induced the generation of reactive oxygen species (ROS), suggesting that ROS likely plays no role in the observed pharmacological activities. Overall, our study sheds light on the adequacy of hesperidin and chlorogenic acid to serve as an adjunctive therapy when co-administrated with chemotherapy drugs in breast cancer patients.
Collapse
|
12
|
Wudtiwai B, Makeudom A, Krisanaprakornkit S, Pothacharoen P, Kongtawelert P. Anticancer Activities of Hesperidin via Suppression of Up-Regulated Programmed Death-Ligand 1 Expression in Oral Cancer Cells. Molecules 2021; 26:molecules26175345. [PMID: 34500779 PMCID: PMC8434411 DOI: 10.3390/molecules26175345] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Up-regulated expression of programmed death-ligand 1 (PD-L1) by interferon-gamma (IFN-γ) has been associated with promotion of cancer cell survival and tumor cell escape from anti-tumor immunity. Therefore, a blockade of PD-L1 expression can potentially be used as a molecular target for cancer therapy. The aim of this study was to investigate whether suppression of IFN-γ induced PD-L1 expression in two oral cancer cell lines, HN6 and HN15, by hesperidin effectively decreased cell proliferation and migration. Further, our objective was to elucidate the involvement of the signal transducer and activator of transcription 1 (STAT1) and STAT3 in the inhibition of induced PD-L1 expression by hesperidin. Our findings indicate that IFN-γ induced expression of PD-L1 protein in HN6 and HN15 via phosphorylation of STAT1 and STAT3 and that hesperidin significantly reduced that induction through suppression of phosphorylated STAT1 and STAT3 in both cell lines. Moreover, hesperidin also significantly decreased the viability, proliferation, migration, and invasion of both cell lines. In conclusion, hesperidin exerted anticancer effects against oral cancer cells through the suppression of PD-L1 expression via inactivation of the STAT1 and STAT3 signaling molecules. The findings of this study support the use of hesperidin as a potential adjunctive treatment for oral cancer.
Collapse
Affiliation(s)
- Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (B.W.); (P.P.)
| | - Anupong Makeudom
- Center of Excellence in Oral and Maxillofacial Biology, Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (S.K.)
- School of Dentistry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Suttichai Krisanaprakornkit
- Center of Excellence in Oral and Maxillofacial Biology, Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (S.K.)
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (B.W.); (P.P.)
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (B.W.); (P.P.)
- Correspondence:
| |
Collapse
|
13
|
Pandey P, Khan F. A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutr Res 2021; 92:21-31. [PMID: 34273640 DOI: 10.1016/j.nutres.2021.05.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Hesperidin, a phytoactive compound, is an abundant and economical dietary bioflavonoid possessing numerous biological and medicinal benefits. Several studies have strongly proven the significant chemotherapeutic potential of hesperidin. Therefore, this review aims to bring together the existing studies demonstrating hesperidin as a potential anticancer agent with its mode of action reported in the therapeutic strategies for numerous cancer types. Hesperidin acts via modulating multiple pathways involving cell cycle arrest, apoptosis, antiangiogenic, antimetastatic and DNA repair in various cancer cells. Hesperidin has been reported to alter several molecular targets related to carcinogenesis, such as reactive nitrogen species, cellular kinases, transcription factors, reactive oxygen species, drug transporters, cell cycle mediators and inflammatory cytokines. Collectively, this review provides significant insights for the potential of hesperidin to be a strong and promising candidate for pharmaceuticals, functional foods, dietary supplements, nutraceuticals and geared toward the better management of carcinoma.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India.
| |
Collapse
|
14
|
Suzery M, Cahyono B, Amalina ND. Citrus sinensis (L) Peels Extract Inhibits Metastasis of Breast Cancer Cells by Targeting the Downregulation Matrix Metalloproteinases-9. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction:
Long-term use of doxorubicin (DOX) chemotherapy causes several side effects, especially induction of metastasis on breast cancer (BC). There is an urgent need to identify novel agent with low side effect targeting BC metastasis. Citrus sinensis (L.) peels extract (CSP) has long been used for the treatment of several cancer. However, its anti-metastatic potential against BC metastatic remains unclear.
Objective:
This study aimed to explore the role of CSP in combination with DOX in inhibiting the migration of metastatic breast cancer MDAMB-231 cells.
Material and Methods:
Potential cytotoxic in single and combination was analysed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT assay). The anti-metastatic activities of several major compound on CSP including hesperetin, tangeretin, nobiletin, naringenin and hesperidin were screened by molecular docking under PLANTS software.
Results:
Based on molecular docking we revealed that the selected protein target MMP-9 (PBD ID:2OVX) has lower docking score for hesperetin, tangeretin, nobiletin, naringenin and hesperidin compare to DOX. CSP and DOX individually exhibited strong cytotoxic effect on MDA-MB-231 cells under MTT assay with IC50 value of 344 µg/mL and 85 nM, respectively. Furthermore, CSP in combination with DOX synergistically increased the cytotoxicity of DOX. Here, we showed that CSP can specifically suppress the side effect of DOX-induced metastasis by reduces doses of DOX. However, low doses of DOX in combination with CSP still potential inhibited cancer cells growth.
Conclusion:
In conclusion, CSP increased the cytotoxicity and inhibited the induction of metastasis by DOX in breast cancer cells. So that, CSP potential to be developed as co-chemotherapeutic agent.
Collapse
|
15
|
Flavonoids Induce Migration Arrest and Apoptosis in Detroit 562 Oropharynx Squamous Cell Carcinoma Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9030426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite advances in the treatment of head and neck squamous cell carcinoma (HNSCC), the morbidity remains at a high level due to the resistance of SCC cells to chemotherapeutics. This study aimed to determine and compare the magnitude of the flavonoids’ effectiveness in activating apoptosis and migration arrest in HNSCC cells in vitro. Methods: Head and neck SCC cells of the Detroit 562 line were exposed to a range of concentrations (5–100 μM) of quercetin (Que), hesperidin (Hes) and rutin (Rut) for 24 and 48 h. The SCC cell viability and migration rate were investigated using cytotoxicity and migration inhibition assays. Muse Cell Analyzer flow cytometry was utilized to quantitatively assess the apoptosis rate of Detroit 562 cells exposed to Que, Hes and Rut. The morphology of the SCC cells was evaluated via hematoxylin-eosin staining. Results: The viability diminishment of the Detroit 562-line cells treated with Que, Hes and Rut for 48 h revealed a significant dose-dependent trend, relatively equal for three substances, whereas the most noticeable cytotoxic effect observed for Hes. Exposure to Hes and Rut exhibited a dose-dependent increased proportion of apoptotic SCC cells, at either necrosis or late apoptosis stage. Detroit 562 SCC migration rate and cells motility were halted for the 100 µM dose of Hes and Que. The comparative results elucidated that Hesperidin and Quercetin achieved a more potent reduction of Detroit 562 migration at 24 h. Conclusions: Hesperidin, rutin and quercetin are capable of inducing apoptosis and migration arrest in the Detroit 562 cell line to various extents, resulting in proapoptotic attenuating effects at different magnitudes.
Collapse
|
16
|
Hermawan A, Khumaira A, Ikawati M, Putri H, Jenie RI, Angraini SM, Muflikhasari HA. Identification of key genes of hesperidin in inhibition of breast cancer stem cells by functional network analysis. Comput Biol Chem 2020; 90:107427. [PMID: 33360419 DOI: 10.1016/j.compbiolchem.2020.107427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Breast cancer therapy with classical chemotherapy is unable to eradicate breast cancer stem cells (BCSCs). Loss of p53 function causes growth and differentiation in cancer stem cells (CSCs); therefore, p53-targeted compounds can be developed for BCSCs-targeted drugs. Previously, hesperidin (HES), a citrus flavonoid, showed anticancer activities and increased efficacy of chemotherapy in several types of cancer in vitro and in vivo. This study was aimed to explore the key protein and molecular mechanism of hesperidin in the inhibition of BCSCs using bioinformatics and in vitro study. Bioinformatics analysis revealed about 75 potential therapeutic target proteins of HES in BCSCs (TH), in which TP53 was the only direct target protein (DTP) with a high degree score. Furthermore, the results of GO enrichment analysis showed that TH was taken part in the biological process of regulation of apoptosis and cell cycle. The KEGG pathway enrichment analysis also showed that TH is involved in several pathways, including cell cycle, p53 signaling pathway. In vitro experiment results showed that HES inhibited cell proliferation, mammosphere, and a colony formation, and migration in on MCF-7 3D cells (mammospheres). HES induced G0/G1 cell cycle arrest and apoptosis in MCF-7 cells 3D. In addition, HES treatment reduced the mRNA level of p21 but increased the mRNA level of cyclin D1 and p53 in the mammosphere. HES inhibits BCSCs in mammospheres. More importantly, this study highlighted p53 as a key protein in inhibition of BCSCs by HES. Future studies on the molecular mechanism are needed to validate the results of this study.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia.
| | - Annisa Khumaira
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia; Study Program of Biotechnology, Faculty of Sciences and Technology, Universitas Aisyiah Yogyakarta, Jalan Ringroad Barat No.63, Mlangi Nogotirto, Gamping, Nogotirto, Sleman, Yogyakarta, 55592, Indonesia
| | - Muthi Ikawati
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Riris Istighfari Jenie
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Sonia Meta Angraini
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Haruma Anggraini Muflikhasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| |
Collapse
|
17
|
Sokkar HH, Abo Dena AS, Mahana NA, Badr A. Artichoke extracts in cancer therapy: do the extraction conditions affect the anticancer activity? FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Artichoke is an edible plant that is grown in the Mediterranean region and is known for its antimicrobial, antifungal, antibacterial, antioxidant and anticancer activities. Different artichoke extraction methods can impressively affect the nature as well as the yield of the extracted components.
Main body
The different methods of artichoke extraction and the influence of the extraction conditions on the extraction efficiency are summarized herein. In addition, cancer causalities and hallmarks together with the molecular mechanisms of artichoke active molecules in cancer treatment are also discussed. Moreover, a short background is given on the common types of cancer that can be treated with artichoke extracts as well as their pathogenesis. A brief discussion of the previous works devoted to the application of artichoke extracts in the treatment of these cancers is also given.
Conclusion
This review article covers the extraction methods, composition, utilization and applications of artichoke extracts in the treatment of different cancers.
Collapse
|
18
|
Apigenin and Hesperidin Downregulate DNA Repair Genes in MCF-7 Breast Cancer Cells and Augment Doxorubicin Toxicity. Molecules 2020; 25:molecules25194421. [PMID: 32993087 PMCID: PMC7582946 DOI: 10.3390/molecules25194421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
A number of studies have confirmed anti-tumor activity of flavonoids and their ability to enhance the effectiveness of classical anticancer drugs. The mechanism of this phenomenon is difficult to explain because of the ambivalent nature of these compounds. Many therapeutic properties of these compounds are attributed to their antioxidant activity; however, it is known that they can act as oxidants. The aim of this study was to assess the influence of apigenin and hesperidin on MCF-7 breast cancer cells with doxorubicin. The cytotoxic effect was determined using an MTT test and cell cycle analysis. To evaluate the possible interaction mechanism, reduced glutathione levels, as well as the DNA oxidative damage and the double strand breaks, were evaluated. Additionally, mRNA expression of genes related to DNA repair was assessed. It was demonstrated that flavonoids intensified the cytotoxic effect of doxorubicin despite flavonoids reduced oxidative damage caused by the drug. At the same time, the number of double strand breaks significantly increased and expression of tested genes was downregulated. In conclusion, both apigenin and hesperidin enhance the cytotoxic effects of doxorubicin on breast cancer cells, and this phenomenon occurs regardless of oxidative stress but is accompanied by disorders of DNA damage response mechanisms.
Collapse
|
19
|
Ferreira de Oliveira JMP, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152887. [PMID: 30975541 DOI: 10.1016/j.phymed.2019.152887] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The ability of cancer cells to divide without restriction and to escape programmed cell death is a feature of the proliferative state. Citrus flavanones are flavonoids with potential multiple anticancer actions, from antioxidant and chemopreventive, to anti-inflammatory, anti-angiogenic, cytostatic and cytotoxic in different cancer models. PURPOSE This review aims to summarize the current knowledge on the antiproliferative actions of the citrus flavanones hesperidin (HSD) and hesperetin (HST), with emphasis on cell cycle arrest and apoptosis. METHODS Cochrane Library, Scopus, Pubmed and Web of Science collection databases were queried for publications reporting antiproliferative effects of HSD and HST in cancer models. RESULTS HSD and HST have been proven to delay cell proliferation in several cancer models. Depending on the compound, dose and cell line studied, different effects have been reported. Cell cycle arrest associated with cytostatic effects has been reported in cells with increased levels of p53 and also cyclin-dependent kinase inhibitors, as well as decreased levels of specific cyclins and cyclin-dependent kinases. Moreover, apoptotic effects have been found to be associated with altered ratios of pro-/antiapoptotic proteins, caspase activation, c-Jun N-terminal kinase (JNK) pathway activation and caspase-independent pathways. CONCLUSION Available scientific literature data indicate complex effects, dependent on cell lines and exposure conditions, suggesting that HSD and HST doses need to be optimized according to the cellular and organismal context. The establishment of the main antiproliferative mechanisms is of utmost importance for a possible therapeutic benefit of citrus flavanones in the context of cancer.
Collapse
Affiliation(s)
- José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; LAQV, REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
20
|
Koolaji N, Shammugasamy B, Schindeler A, Dong Q, Dehghani F, Valtchev P. Citrus Peel Flavonoids as Potential Cancer Prevention Agents. Curr Dev Nutr 2020; 4:nzaa025. [PMID: 32391511 PMCID: PMC7199889 DOI: 10.1093/cdn/nzaa025] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Citrus fruit and in particular flavonoid compounds from citrus peel have been identified as agents with utility in the treatment of cancer. This review provides a background and overview regarding the compounds found within citrus peel with putative anticancer potential as well as the associated in vitro and in vivo studies. Historical studies have identified a number of cellular processes that can be modulated by citrus peel flavonoids including cell proliferation, cell cycle regulation, apoptosis, metastasis, and angiogenesis. More recently, molecular studies have started to elucidate the underlying cell signaling pathways that are responsible for the flavonoids' mechanism of action. These growing data support further research into the chemopreventative potential of citrus peel extracts, and purified flavonoids in particular. This critical review highlights new research in the field and synthesizes the pathways modulated by flavonoids and other polyphenolic compounds into a generalized schema.
Collapse
Affiliation(s)
- Nooshin Koolaji
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Balakrishnan Shammugasamy
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
- Bioengineering & Molecular Medicine, The Children's Hospital at Westmead, Sydney, Australia
| | - Qihan Dong
- School of Science and Health, Western Sydney University, Sydney, Australia
- Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S, Pandey A, Sak K, Varol M, Khan MA, Sethi G. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp Biol Med (Maywood) 2020; 245:486-497. [PMID: 32050794 PMCID: PMC7082885 DOI: 10.1177/1535370220903671] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Hesperidin belongs to flavanones class of flavonoids and is known to possess broad-spectrum applicability to prevent dreadful diseases such as cardiovascular disease, neurodegeneration, and cancer. The reported anticancer effects of hesperidin have been found to be associated with its anti-oxidant and anti-inflammatory activities. Hesperidin interacts with numerous recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, evidence has suggested its promising role in inhibiting tumor cell metastasis, angiogenesis, and chemoresistance. The present mini-review highlights the ongoing development to identify hesperidin targets in cancer. Furthermore, the potential of nano technology-based hesperidin combinations and delivery systems will also be discussed. Overall, this review highlights all the possible molecular targets affected by hesperidin in tumor cells on a single platform. IMPACT STATEMENT Experimental findings from numerous studies have demonstrated the anticancer effects of hesperidin (Hesp) to be associated with anti-oxidant and anti-inflammatory activities along with its potential role in inhibiting the tumor cell metastasis and angiogenesis. Additionally, Hesp can also reverse drug resistance of cancer cells, which make it a promising candidate to be used in combination with existing anti-cancer drugs. This review will be helpful for upcoming researchers and scientific community to find out complete capsular package about cancer drug targets of Hesp and its role in modulating various important hallmarks of cancer.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Paavan Singhal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Saumya Srivastava
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | - Anjana Pandey
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
22
|
Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity. Food Chem 2020; 316:126298. [PMID: 32062230 DOI: 10.1016/j.foodchem.2020.126298] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/15/2020] [Accepted: 01/25/2020] [Indexed: 01/29/2023]
Abstract
Vine Pruning residue was submitted to conventional heating and ohmic heating (OH) for the extraction of bioactive compounds and analyzed for total phenolic content (TPC), polyphenolic profile, antioxidant activity, antimicrobial activity and anticancer activity. The OH extracts were obtained using Low electric field (496.0 V/cm) or Intermediate electric field - IEF (840.0 V/cm). The tests were performed using 45% (v/v) ethanol-water extraction solution at 80 °C at different extraction times (20-90 min). The extract that stood out among the others concerning anticancer potential was the one obtained by OH when used, IEF, where the TPC was significantly higher than in the other extracts which correlated with higher antioxidant, antimicrobial and anti-proliferative activity on different tumor cell lines (HepG2, MDA-MB-231, MCF-7 and Caco2). Vine pruning OH extracts obtained using green solvents by an eco-friendly procedure were revealed as a source of compounds with relevant antioxidant and anticancer activity.
Collapse
|
23
|
Costea T, Vlad OC, Miclea LC, Ganea C, Szöllősi J, Mocanu MM. Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer. Int J Mol Sci 2020; 21:E401. [PMID: 31936346 PMCID: PMC7013436 DOI: 10.3390/ijms21020401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of the manuscript is to discuss the influence of plant polyphenols in overcoming multidrug resistance in four types of solid cancers (breast, colorectal, lung and prostate cancer). Effective treatment requires the use of multiple toxic chemotherapeutic drugs with different properties and targets. However, a major cause of cancer treatment failure and metastasis is the development of multidrug resistance. Potential mechanisms of multidrug resistance include increase of drug efflux, drug inactivation, detoxification mechanisms, modification of drug target, inhibition of cell death, involvement of cancer stem cells, dysregulation of miRNAs activity, epigenetic variations, imbalance of DNA damage/repair processes, tumor heterogeneity, tumor microenvironment, epithelial to mesenchymal transition and modulation of reactive oxygen species. Taking into consideration that synthetic multidrug resistance agents have failed to demonstrate significant survival benefits in patients with different types of cancer, recent research have focused on beneficial effects of natural compounds. Several phenolic compounds (flavones, phenolcarboxylic acids, ellagitannins, stilbens, lignans, curcumin, etc.) act as chemopreventive agents due to their antioxidant capacity, inhibition of proliferation, survival, angiogenesis, and metastasis, modulation of immune and inflammatory responses or inactivation of pro-carcinogens. Moreover, preclinical and clinical studies revealed that these compounds prevent multidrug resistance in cancer by modulating different pathways. Additional research is needed regarding the role of phenolic compounds in the prevention of multidrug resistance in different types of cancer.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Oana Cezara Vlad
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - Luminita-Claudia Miclea
- Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Research Excellence Center in Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constanta Ganea
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Maria-Magdalena Mocanu
- Department of Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.C.V.); (C.G.)
| |
Collapse
|
24
|
Kongtawelert P, Wudtiwai B, Shwe TH, Pothacharoen P, Phitak T. Inhibitory Effect of Hesperidin on the Expression of Programmed Death Ligand (PD-L1) in Breast Cancer. Molecules 2020; 25:molecules25020252. [PMID: 31936263 PMCID: PMC7024188 DOI: 10.3390/molecules25020252] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) is overexpressed in the most aggressive breast cancer subtype, triple-negative breast cancer (TNBC), assisting the eradication of antitumor immunity, and thereby enhancing the survival of the tumor. This study explored how hesperidin affects PD-L1 expression, and thereby cancer progression in breast cancer cells. We found that MDA-MB231, the triple-negative breast adenocarcinoma cancer cell line, (high aggressiveness) has higher expression, in both mRNA and protein, of PD-L1 than that of the other breast cancer cell line, MCF-7 (low aggressiveness). Hesperidin inhibited cell proliferation in MDA-MB231 cells. Additionally, high expression of PD-L1 (both mRNA and protein) in aggressive cancer cells was strongly inhibited by hesperidin through inhibition of Akt and NF-κB signaling. Moreover, hesperidin treatment, by inhibiting activation of matrix metalloproteinases such as MMP-9 and MMP-2, suppressed the metastatic phenotype and cell migration in the PD-L1 high-expressing MDA-MB231 cells. In summary, hesperidin inhibits breast cancer cell growth through the inhibition of the expression of PD-L1 via downregulation of Akt and NF-κB signaling in TNBC. Moreover, hesperidin significantly suppresses cell migration of MDA-MB231 cells. Our findings reveal fresh insights into the anticancer effects of hesperidin which might have potential clinical implications.
Collapse
|
25
|
Martínez-Rodríguez OP, Thompson-Bonilla MDR, Jaramillo-Flores ME. Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways. Crit Rev Food Sci Nutr 2020; 60:3770-3792. [PMID: 31899947 DOI: 10.1080/10408398.2019.1708262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an abnormal or excessive accumulation of fat that leads to different health problems, such as cancer, where the adipocytes promote the proliferation, migration, and invasion of cancer cells, especially in the breast, where the epithelial cells are immersed in a fatty environment, and the interactions between these two types of cells involve, not only adipokines but also local pro-inflammatory mechanisms and hypoxic processes generating anti-apoptotic signals, which are a common result in leptin signaling. The expression of the Vascular Endothelial Growth Factor (VEGF) and cyclin D1, results in the decrease in phosphorylation of AMPK, increasing the activity of the aromatase enzyme; alternatively, the adiponectin activates AMPK to reduce inflammation. Nevertheless, alterations of the JAK/STAT pathways contribute to mammary carcinogenesis, while the PI3K/AKT/mTOR pathway controls most of the cancer's characteristics such as the cell cycle, survival, differentiation, proliferation, motility, metabolism, and genetic stability. Therefore, the purpose of the present review is, through the accumulated scientific evidence, to find the concordance between the signaling pathways involved among obesity and breast cancer, which can be modulated by using flavonoids.
Collapse
Affiliation(s)
- Oswaldo Pablo Martínez-Rodríguez
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - María Del Rocío Thompson-Bonilla
- Laboratorio de Medicina Genómica, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado ISSSTE, Ciudad de México, México
| | - María Eugenia Jaramillo-Flores
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
26
|
Hasanin AH, Matboli M, Seleem HS. Hesperidin suppressed hepatic precancerous lesions via modulation of exophagy in rats. J Cell Biochem 2019; 121:1295-1306. [PMID: 31489981 DOI: 10.1002/jcb.29363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
The enormous cost of modern medicines warrants alternative strategies for the better management of hepatocellular carcinoma. Recently, exosomes have been shown to relay the oncogenic information through the horizontal transfer of RNAs between the cells. In this study, we modulated exosomal production and autophagy (exophagy) by the administration of hesperidin and evaluated its effect on the development of hepatic precancerous lesion (HPC) in rats. Diethylnitrosamine and 2-acetylaminofluorene were used in vivo to induce HPC in rats. Rats were allocated into five groups: naïve, HPC, and three hesperidin treated (50, 100, and 200 mg/kg/d; orally) for 4 consecutive days per week for 16 weeks. Liver tissues and blood samples were collected for histopathological, immunohistochemical, and transmission electron microscope examinations, liver function, alfa-fetoprotein level, and isolation of exosomal and autophagy RNAs. Hesperidin administration showed hepato-protective effects and improved the microscopic hepatic features with a decrease in glutathione S-transferase placental precancerous foci and the abundance of exosomes in liver tissues. Hesperidin improved liver function with a significant decrease in alfa-fetoprotein levels. Hesperidin dose-dependently decreased exosomal RAB11A messsenger RNA and long noncoding RNA-RP11-583F2.2 along with the increase in exosomal miR-1298, involved in the exophagy process. In conclusion, hesperidin likely suppresses liver carcinogenesis in rat model via the modulation of exosomal secretion and autophagy.
Collapse
Affiliation(s)
- Amany H Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan S Seleem
- Department of Histology, Faculty of Medicine, Menoufia University, Cairo, Egypt.,Histology Department, Faculty of Medicine, Unaizah College of Medicine, Al Qassim University, Buraydah, KSA
| |
Collapse
|
27
|
Wei GJ, Chao YH, Tung YC, Wu TY, Su ZY. A Tangeretin Derivative Inhibits the Growth of Human Prostate Cancer LNCaP Cells by Epigenetically Restoring p21 Gene Expression and Inhibiting Cancer Stem-like Cell Proliferation. AAPS JOURNAL 2019; 21:86. [DOI: 10.1208/s12248-019-0345-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022]
|
28
|
Naz H, Tarique M, Ahamad S, Alajmi MF, Hussain A, Rehman MT, Luqman S, Hassan MI. Hesperidin-CAMKIV interaction and its impact on cell proliferation and apoptosis in the human hepatic carcinoma and neuroblastoma cells. J Cell Biochem 2019; 120:15119-15130. [PMID: 31021496 DOI: 10.1002/jcb.28774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a key regulatory molecule of cell signaling, and thereby controls its growth and proliferation, including expression of certain genes. The overexpression of CAMKIV is directly associated with the development of different types of cancers. Hesperidin is abundantly found in citrus fruits and exhibits wide range of pharmacological activities including anti-inflammatory, antibacterial and anticancerous effects. We have investigated binding mechanism of hesperidin with the CAMKIV using molecular docking methods followed by fluorescence quenching and isothermal titration calorimetric assays. An appreciable binding affinity of hesperidin was observed with CAMKIV during fluorescence quenching and isothermal titration calorimetric studies. Efficacy of hesperidin to inhibit the growth of human hepatic carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cancer cell lines were investigated. Hesperidin has significantly reduced the proliferation of HepG2 and SH-SY5Y cells and induces apoptosis by activating the caspase-3-dependent intrinsic pathway through the upregulation of proapoptotic Bax protein. Hesperidin treatment reduces the mitochondrial membrane potential of HepG2 and SH-SY5Y cells. All these observations clearly anticipated hesperidin a potent inhibitor of CAMKIV which may be further exploited a newer therapeutic approach for the management of different cancer types.
Collapse
Affiliation(s)
- Huma Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Tarique
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shahzaib Ahamad
- Department of Biotechnology, College of Engineering & Technology, IFTM University, Delhi Road, Moradabad, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
29
|
Hajialyani M, Hosein Farzaei M, Echeverría J, Nabavi SM, Uriarte E, Sobarzo-Sánchez E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules 2019; 24:E648. [PMID: 30759833 PMCID: PMC6384806 DOI: 10.3390/molecules24030648] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Neuroprotection is the preservation of function and networks of neural tissues from damages caused by various agents, as well as neurodegenerative diseases such as Parkinson's, Alzheimer's, Huntington's diseases, and multiple sclerosis. Hesperidin, a flavanone glycoside, is a natural phenolic compound with a wide range of biological effects. Mounting evidence has demonstrated that hesperidin possesses inhibitory effect against development of neurodegenerative diseases. Our review discusses neuropharmacological mechanisms for preventive and therapeutic effects of hesperidin in neurodegenerative diseases. In addition, the review examines clinical evidence confirming its neuroprotective function. Various cellular and animal models specific to neurodegenerative diseases have been conducted to evaluate the underlying neuropharmacological mechanisms of hesperidin. Neuroprotective potential of this flavonoid is mediated by improvement of neural growth factors and endogenous antioxidant defense functions, diminishing neuro-inflammatory and apoptotic pathways. Despite the various preclinical studies on the role of hesperidin in the neurodegenerative diseases, less is known about its definite effect on humans. A limited number of clinical trials showed that hesperidin-enriched dietary supplements can significantly improve cerebral blood flow, cognition, and memory performance. Further clinical trials are also required for confirming neuroprotective efficacy of this natural flavonoid and evaluating its safety profile.
Collapse
Affiliation(s)
- Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran.
| | - Javier Echeverría
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile.
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile.
| |
Collapse
|
30
|
Mashhadi Akbar Boojar M, Mashhadi Akbar Boojar M, Golmohammad S, Yazdi MN. Ceramide generation as a novel biological mechanism for chemo-preventive and cytotoxic effects of hesperidin on HT-144 melanoma cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
31
|
Pratama NP, Wulandari S, Nugroho AE, Fakhrudin N, Astuti P, Sudarsono. Tylophorine Abrogates G2/M Arrest Induced by Doxorubicine and Promotes Increased Apoptosis in T47D Breast Cancer Cells. Asian Pac J Cancer Prev 2018; 19:3065-3069. [PMID: 30485942 PMCID: PMC6318386 DOI: 10.31557/apjcp.2018.19.11.3065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: The effects of tylophorine, a natural alkaloid found in Tylophora indica, administered as a single compound or in combination with doxorubicin on cell cycling and apoptosis were assessed in T47D breast cancer cells, selected as a model system for breast cancer. Methods: Cell cycle distribution and apoptosis were examined by flow cytometry. Caspase 3 and 9 expression was determined by immunocytochemistry. Result: We found that tylophorine did not significantly influence the cell cycle distribution of T47D cells. However, the alkaloid did prevent accumulation of cells in the G2/M phase. In addition, tylophorine increased the number of apoptotic cells. Expression of proapoptotic proteins (caspases 3 and 9) was up-regulated upon administration of tyloporine alone or in combination with doxorubicin. Conclusions: Tylophorine alone or in combination with doxorubicin induced apoptosis in T47D breast cancer cells through modulation of the cell cycle and affecting the expression of caspases 3 and 9.
Collapse
|
32
|
Çatmakaş T, Ertuğrul B, İplik ES, Çakmakoğlu B. Hesperidin triggering apoptosis on neuroblastoma cell. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2018. [DOI: 10.25000/acem.449087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Long non-coding RNA TUC338 is functionally involved in sorafenib-sensitized hepatocarcinoma cells by targeting RASAL1. Oncol Rep 2016; 37:273-280. [PMID: 27878301 DOI: 10.3892/or.2016.5248] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Development of novel targeted therapy holds promise for conquering chemotherapy resistance, one of major hurdles in current liver cancer treatment. We found that long non-coding RNA TUC338 is involved in the development of hepatocellular carcinoma (HCC) and sorafenib resistance. HCC cell lines were transfected with siTUC338, then cell proliferation and invasion ability were investigated by MTT and Transwell assay. Sorafenib resistance HepG2 cells were generated to test the role of TUC338 in sorafenib sensitivity. Intratumoral delivering of siTUC338 was used to analyze the sorafenib treatment response in HepG2/Sor xenografts in vivo. Higher levels of TUC338 were found both in HCC tissues and cell lines, knockdown of TUC338 was accompanied with increased expression of RASAL1 in HCC cell line with increased proliferation and invasion ability, knockdown of TUC338 could activate the RASAL1 pathway and inhibit tumor growth genes by directly targeting RASAL1 3'-UTR. Furthermore, knockdown of TUC338 in HepG2 sorafenib sensitized its reaction to the treatment of sorafenib, which was accompanied by increased expression RASAL1; intratumoral delivering of siTUC338 could also restore sorafenib treatment response in HepG2/Sor xenografts in vivo. These findings provide direct evidence that the TUC338/RASAL1 axis might play an essential role in sorafenib-resistance of liver cancer cells, suggesting the signaling cohort could serve as a novel therapeutic target for the treatment of chemotherapy resistant liver cancer.
Collapse
|
34
|
Wang J, Wu HJ, Zhou CZ, Wang H. Sulfated polysaccharide-protein complex sensitizes doxorubicin-induced apoptosis of breast cancer cells in vitro and in vivo. Exp Ther Med 2016; 12:2169-2176. [PMID: 27698706 PMCID: PMC5038368 DOI: 10.3892/etm.2016.3574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the effect of sulfated polysaccharide-protein complex (SPPC) on the antitumor effect of doxorubicin (Dox) on MDA-MB-231 breast cancer cells in vitro and in vivo. MTT and Annexin V/propidium iodide staining assays demonstrated that SPPC selectively sensitized MDA-MB-231 cells to Dox-induced cytotoxicity. The half maximal inhibitory concentration of Dox against MDA-MB-231 cells was decreased from 5.3 to 1.5 µM when it was used concomitantly with 5 µM SPPC. SPPC potentiated Dox-induced apoptosis in breast cancer cells via the mitochondrial apoptosis signaling pathway by activating caspase-3 and caspase-9. Notably, the caspase inhibitor Z-VAD-fmk diminished the effect of SPPC on Dox-mediated apoptosis. Furthermore, combination treatment with SPPC and Dox markedly reduced the growth of breast cancer xenografts in mice. The present study demonstrated that SPPC was able to enhance the antitumor effect of Dox on breast cancer cells, thus suggesting that SPCC may be used to reduce the cumulative dose of Dox and its associated toxicities in the chemotherapy of breast cancer and other types of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Surgery, Hushan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hua Jian Wu
- Department of Surgery, Hushan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chao Zhu Zhou
- Department of Surgery, Hushan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hao Wang
- Fudan University Experimental Teaching Center of Basic Medicine, Fudan University School of Medicine, Shanghai 200040, P.R. China
| |
Collapse
|
35
|
South Asian Medicinal Compounds as Modulators of Resistance to Chemotherapy and Radiotherapy. Cancers (Basel) 2016; 8:cancers8030032. [PMID: 26959063 PMCID: PMC4810116 DOI: 10.3390/cancers8030032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/05/2016] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer is a hyperproliferative disorder that involves transformation, dysregulation of apoptosis, proliferation, invasion, angiogenesis and metastasis. During the last 30 years, extensive research has revealed much about the biology of cancer. Chemotherapy and radiotherapy are the mainstays of cancer treatment, particularly for patients who do not respond to surgical resection. However, cancer treatment with drugs or radiation is seriously limited by chemoresistance and radioresistance. Various approaches and strategies are employed to overcome resistance to chemotherapy and radiation treatment. Many plant-derived phytochemicals have been investigated for their chemo- and radio-sensitizing properties. The peoples of South Asian countries such as India, Pakistan, Sri Lanka, Nepal, Bangladesh and Bhutan have a large number of medicinal plants from which they produce various pharmacologically potent secondary metabolites. The medicinal properties of these compounds have been extensively investigated and many of them have been found to sensitize cancer cells to chemo- and radio-therapy. This review focuses on the role of South Asian medicinal compounds in chemo- and radio-sensitizing properties in drug- and radio-resistant cancer cells. Also discussed is the role of South Asian medicinal plants in protecting normal cells from radiation, which may be useful during radiotherapy of tumors to spare surrounding normal cells.
Collapse
|
36
|
Banudevi S, Swaminathan S, Maheswari KU. Pleiotropic Role of Dietary Phytochemicals in Cancer: Emerging Perspectives for Combinational Therapy. Nutr Cancer 2015; 67:1021-48. [PMID: 26359767 DOI: 10.1080/01635581.2015.1073762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is considered a complicated health issue worldwide. The mean cancer survival through standard therapeutic strategies has not been significantly improved over the past few decades. Hence, alternate remedies are needed to treat or prevent this dreadful disease being explored. Currently, it has been recognized that repeated treatment with chemotherapeutic agents has been largely ineffective due to multidrug resistance and further conventional treatment possesses limited drug accessibility to cancerous tissues, which in turn necessitates a higher dose resulting in increased cytotoxicity. Drug combinations have been practiced to address the problems associated with conventional single drug treatment. Recently, natural dietary agents have attracted much attention in cancer therapy because of their synergistic effects with anticancer drugs against different types of cancer. Natural phytochemicals may execute their anticancer activity through targeting diverse cancer cell signaling pathways, promoting cell cycle arrest and apoptosis, regulating antioxidant status and detoxification. This review focuses mainly on the anticancer efficacy of dietary phytochemicals in combination with standard therapeutic drugs reported from various in vitro and in vivo experimental studies apart from clinical trials. This review adds knowledge to the field of intervention studies using combinational modalities that opens a new window for cancer treatment/chemoprevention.
Collapse
Affiliation(s)
- Sivanantham Banudevi
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University , Tamil Nadu , India
| | - Sethuraman Swaminathan
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University , Tamil Nadu , India
| | - Krishnan Uma Maheswari
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University , Tamil Nadu , India
| |
Collapse
|
37
|
Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumour Biol 2015. [PMID: 26194866 PMCID: PMC4841854 DOI: 10.1007/s13277-015-3774-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Citrus seeds are full of phenolic compounds, such as flavonoids. The aims of this study were to identify the types of flavonoids in Citrus seed extracts, the cytotoxic effect, mode of cell death, and signaling pathway in human hepatic cancer HepG2 cells. The flavonoids contain anticancer, free radical scavenging, and antioxidant activities. Neohesperidin, hesperidin, and naringin, active flavanone glycosides, were identified in Citrus seed extract. The cytotoxic effect of three compounds was in a dose-dependent manner, and IC50 levels were determined. The sensitivity of human HepG2 cells was as follows: hesperidin > naringin > neohesperidin > naringenin. Hesperidin induced HepG2 cells to undergo apoptosis in a dose-dependent manner as evidenced by the externalization of phosphatidylserine and determined by annexin V-fluorescein isothiocyanate and propidium iodide staining using flow cytometry. Hesperidin did not induce the generation of reactive oxygen species, which was determined by using 2',7'-dichlorohydrofluorescein diacetate and flow cytometry method. The number of hesperidin-treated HepG2 cells with the loss of mitochondrial transmembrane potential increased concentration dependently, using 3,3'-dihexyloxacarbocyanine iodide employing flow cytometry. Caspase-9, -8, and -3 activities were activated and increased in hesperidin-treated HepG2 cells. Bcl-xL protein was downregulated whereas Bax, Bak, and tBid protein levels were upregulated after treatment with hesperidin in a dose-dependent manner. In conclusion, the bioflavanone from Citrus seeds, hesperidin, induced human HepG2 cell apoptosis via mitochondrial pathway and death receptor pathway. Citrus seed flavonoids are beneficial and can be developed as anticancer drug or food supplement, which still needs further in vivo investigation in animals and human beings.
Collapse
|
38
|
MiR-133a Is Functionally Involved in Doxorubicin-Resistance in Breast Cancer Cells MCF-7 via Its Regulation of the Expression of Uncoupling Protein 2. PLoS One 2015; 10:e0129843. [PMID: 26107945 PMCID: PMC4481265 DOI: 10.1371/journal.pone.0129843] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
The development of novel targeted therapies holds promise for conquering chemotherapy resistance, which is one of the major hurdles in current breast cancer treatment. Previous studies indicate that mitochondria uncoupling protein 2 (UCP-2) is involved in the development of chemotherapy resistance in colon cancer and lung cancer cells. In the present study we found that lower level of miR133a is accompanied by increased expression of UCP-2 in Doxorubicin-resistant breast cancer cell cline MCF-7/Dox as compared with its parental cell line MCF-7. We postulated that miR133a might play a functional role in the development of Doxorubicin-resistant in breast cancer cells. In this study we showed that: 1) exogenous expression of miR133a in MCF-7/Dox cells can sensitize their reaction to the treatment of Doxorubicin, which is coincided with reduced expression of UCP-2; 2) knockdown of UCP-2 in MCF-7/Dox cells can also sensitize their reaction to the treatment of Doxorubicin; 3) intratumoral delivering of miR133a can restore Doxorubicin treatment response in Doxorubicin-resistant xenografts in vivo, which is concomitant with the decreased expression of UCP-2. These findings provided direct evidences that the miR133a/UCP-2 axis might play an essential role in the development of Doxorubicin-resistance in breast cancer cells, suggesting that the miR133a/UCP-2 signaling cohort could be served as a novel therapeutic target for the treatment of chemotherapy resistant in breast cancer.
Collapse
|