1
|
Mirsalami SM, Mirsalami M. Assessing microbial ecology and antibiotic resistance genes in river sediments. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105738. [PMID: 40127879 DOI: 10.1016/j.meegid.2025.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Anthropogenic activities greatly affect the Karon River leading to deterioration of water quality. This investigation utilizes environmental genomic techniques to delineate microbial populations, examine functional genomics, and evaluate the occurrence of virulence determinants and antibiotic resistance genes (ARGs) in fluvial sediment. Taxonomic assessment identified that Firmicutes were the predominant phyla, with Bacillus being the most abundant genus across samples. Functional analysis revealed the metabolic capabilities of sediment-associated bacteria, linking them to biogeochemical processes and potential health impacts. The S2 samples exhibited the highest virulence factor genes, while the S3 samples had the most ARGs (30), highlighting concerns about pathogenicity. Analyzing ARGs provides critical insights into environmental data collected, such as water quality parameters (e.g., nutrient concentrations, pH) or pollution levels, prevalence, and distribution of these resistance factors within the sediment samples, helping to identify potential hotspots of antibiotic resistance in the Karon River ecosystem. The study identified similar operational taxonomic units (OTUs) across sampling sites at the phylogenetic level, indicating a consistent presence of certain microbial taxa. However, the lack of variation in functional classification suggests that while these taxa may be present, they are not exhibiting significant differences in metabolic capabilities or functional roles. These findings emphasize the significance of metagenomic methods in understanding microbial ecology and antibiotic resistance in aquatic environments, suggesting a need for further research into the restoration of microbial functions related to ARGs and virulence factors.
Collapse
Affiliation(s)
- Seyed Mehrdad Mirsalami
- Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran.
| | - Mahsa Mirsalami
- Faculty of Engineering and Technical Sciences, Qazvin Islamic Azad University, Qazvin, Iran; Faculty of Engineering Sciences, Raja University, Qazvin, Iran
| |
Collapse
|
2
|
Raghuram V, Petit RA, Karol Z, Mehta R, Weissman DB, Read TD. Average nucleotide identity-based Staphylococcus aureus strain grouping allows identification of strain-specific genes in the pangenome. mSystems 2024; 9:e0014324. [PMID: 38934646 PMCID: PMC11265343 DOI: 10.1128/msystems.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
Staphylococcus aureus causes both hospital- and community-acquired infections in humans worldwide. Due to the high incidence of infection, S. aureus is also one of the most sampled and sequenced pathogens today, providing an outstanding resource to understand variation at the bacterial subspecies level. We processed and downsampled 83,383 public S. aureus Illumina whole-genome shotgun sequences and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise comparison of average nucleotide identity revealed a natural boundary of 99.5% that could be used to define 145 distinct strains within the species. We found that intermediate frequency genes in the pangenome (present in 10%-95% of genomes) could be divided into those closely linked to strain background ("strain-concentrated") and those highly variable within strains ("strain-diffuse"). Non-core genes had different patterns of chromosome location. Notably, strain-diffuse genes were associated with prophages; strain-concentrated genes were associated with the vSaβ genome island and rare genes (<10% frequency) concentrated near the origin of replication. Antibiotic resistance genes were enriched in the strain-diffuse class, while virulence genes were distributed between strain-diffuse, strain-concentrated, core, and rare classes. This study shows how different patterns of gene movement help create strains as distinct subspecies entities and provide insight into the diverse histories of important S. aureus functions. IMPORTANCE We analyzed the genomic diversity of Staphylococcus aureus, a globally prevalent bacterial species that causes serious infections in humans. Our goal was to build a genetic picture of the different strains of S. aureus and which genes may be associated with them. We reprocessed >84,000 genomes and subsampled to remove redundancy. We found that individual samples sharing >99.5% of their genome could be grouped into strains. We also showed that a portion of genes that are present in intermediate frequency in the species are strongly associated with some strains but completely absent from others, suggesting a role in strain specificity. This work lays the foundation for understanding individual gene histories of the S. aureus species and also outlines strategies for processing large bacterial genomic data sets.
Collapse
Affiliation(s)
- Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Robert A. Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Zach Karol
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Rohan Mehta
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | | | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Han X, Zhou J, Yu L, Shao L, Cai S, Hu H, Shi Q, Wang Z, Hua X, Jiang Y, Yu Y. Genome sequencing unveils blaKPC-2-harboring plasmids as drivers of enhanced resistance and virulence in nosocomial Klebsiella pneumoniae. mSystems 2024; 9:e0092423. [PMID: 38193706 PMCID: PMC10878039 DOI: 10.1128/msystems.00924-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The threat posed by Klebsiella pneumoniae in healthcare settings has worsened due to the evolutionary advantages conferred by blaKPC-2-harboring plasmids (pKPC-2). However, the specific evolutionary pathway of nosocomial K. pneumoniae carrying pKPC-2 and its transmission between patients and healthcare environments are not yet well understood. Between 1 August and 31 December 2019, 237 ST11 KPC-2-producing-carbapenem-resistant K. pneumoniae (CRKP) (KPC-2-CRKP) were collected from patient or ward environments in an intensive care unit and subjected to Illumina sequencing, of which 32 strains were additionally selected for Nanopore sequencing to obtain complete plasmid sequences. Bioinformatics analysis, conjugation experiments, antimicrobial susceptibility tests, and virulence assays were performed to identify the evolutionary characteristics of pKPC-2. The pKPC-2 plasmids were divided into three subgroups with distinct evolutionary events, including Tn3-mediated plasmid homologous recombination, IS26-mediated horizontal gene transfer, and dynamic duplications of antibiotic resistance genes (ARGs). Surprisingly, the incidence rates of multicopy blaKPC-2, blaSHV-12, and blaCTX-M-65 were quite high (ranging from 27.43% to 67.01%), and strains negative for extended-spectrum β-lactamase tended to develop multicopy blaKPC-2. Notably, the presence of multicopy blaSHV-12 reduced sensitivity to ceftazidime/avibactam (CZA), and the relative expression level of blaSHV-12 in the CZA-resistant group was 6.12 times higher than that in the sensitive group. Furthermore, a novel hybrid pKPC-2 was identified, presenting enhanced virulence levels and decreased susceptibility to CZA. This study emphasizes the notable prevalence of multicopy ARGs and provides a comprehensive insight into the intricate and diverse evolutionary pathways of resistant plasmids that disseminate among patients and healthcare environments.IMPORTANCEThis study is based on a CRKP screening program between patients and ward environments in an intensive care unit, describing the pKPC-2 (blaKPC-2-harboring plasmids) population structure and evolutionary characteristics in clinical settings. Long-read sequencing was performed in genetically closely related strains, enabling the high-resolution analysis of evolution pathway between or within pKPC-2 subgroups. We revealed the extremely high rates of multicopy antibiotic resistance genes (ARGs) in clinical settings and its effect on resistance profile toward novel β-lactam/β-lactamase inhibitor combinations, which belongs to the last line treatment choices toward CRKP infection. A novel hybrid pKPC-2 carrying CRKP with enhanced resistance and virulence level was captured during its clonal spread between patients and ward environment. These evidences highlight the threat of pKPC-2 to CRKP treatment and control. Thus, surveillance and timely disinfection in clinical settings should be practiced to prevent transmission of CRKP carrying threatful pKPC-2. And rational use of antibiotics should be called for to prevent inducing of pKPC-2 evolution, especially the multicopy ARGs.
Collapse
Affiliation(s)
- Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifei Yu
- Department of Infectious Diseases, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Shao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiqi Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huangdu Hu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Pronyk PM, de Alwis R, Rockett R, Basile K, Boucher YF, Pang V, Sessions O, Getchell M, Golubchik T, Lam C, Lin R, Mak TM, Marais B, Twee-Hee Ong R, Clapham HE, Wang L, Cahyorini Y, Polotan FGM, Rukminiati Y, Sim E, Suster C, Smith GJD, Sintchenko V. Advancing pathogen genomics in resource-limited settings. CELL GENOMICS 2023; 3:100443. [PMID: 38116115 PMCID: PMC10726422 DOI: 10.1016/j.xgen.2023.100443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Genomic sequencing has emerged as a powerful tool to enhance early pathogen detection and characterization with implications for public health and clinical decision making. Although widely available in developed countries, the application of pathogen genomics among low-resource, high-disease burden settings remains at an early stage. In these contexts, tailored approaches for integrating pathogen genomics within infectious disease control programs will be essential to optimize cost efficiency and public health impact. We propose a framework for embedding pathogen genomics within national surveillance plans across a spectrum of surveillance and laboratory capacities. We adopt a public health approach to genomics and examine its application to high-priority diseases relevant in resource-limited settings. For each grouping, we assess the value proposition for genomics to inform public health and clinical decision-making, alongside its contribution toward research and development of novel diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Paul Michael Pronyk
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Ruklanthi de Alwis
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore; Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rebecca Rockett
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Kerri Basile
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Yann Felix Boucher
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117549, Singapore; Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117549, Singapore; Nanyang Technological University, Singapore 639798, Singapore
| | - Vincent Pang
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore
| | - October Sessions
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Marya Getchell
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Tanya Golubchik
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia; Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Connie Lam
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Raymond Lin
- National Public Health Laboratory, National Centre for Infectious Diseases, Singapore 308442, Singapore
| | - Tze-Minn Mak
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore
| | - Ben Marais
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Hannah Eleanor Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Linfa Wang
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore; Programme for Research in Epidemic Preparedness and Response (PREPARE), Ministry of Health, Singapore 169854, Singapore
| | - Yorin Cahyorini
- Center for Health Resilience and Resource Policy, Ministry of Health, Jakarta 12950, Indonesia
| | - Francisco Gerardo M Polotan
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Metro Manila, Philippines
| | - Yuni Rukminiati
- Center for Health Resilience and Resource Policy, Ministry of Health, Jakarta 12950, Indonesia
| | - Eby Sim
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Carl Suster
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Gavin J D Smith
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vitali Sintchenko
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Mateo-Estrada V, Tyrrell C, Evans BA, Aguilar-Vera A, Drissner D, Castillo-Ramirez S, Walsh F. Acinetobacter baumannii from grass: novel but non-resistant clones. Microb Genom 2023; 9:mgen001054. [PMID: 37439781 PMCID: PMC10438806 DOI: 10.1099/mgen.0.001054] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/26/2023] [Indexed: 07/14/2023] Open
Abstract
Acinetobacter baumannii is one the most worrisome nosocomial pathogens, which has long been considered almost mainly as a hospital-associated bacterium. There have been some studies about animal and environmental isolates over the last decade. However, little effort has been made to determine if this pathogen dwells in the grass. Here, we aim to determine the evolutionary relationships and antibiotic resistance of clones of A. baumannii sampled from grass to the major human international clones and animal clones. Two hundred and forty genomes were considered in total from four different sources for this study. Our core and accessory genomic epidemiology analyses showed that grass isolates cluster in seven groups well differentiated from one another and from the major human and animal isolates. Furthermore, we found new sequence types under both multilocus sequence typing schemes: two under the Pasteur scheme and seven for the Oxford scheme. The grass isolates contained fewer antibiotic-resistance genes and were not resistant to the antibiotics tested. Our results demonstrate that these novel clones appear to have limited antibiotic resistance potential. Given our findings, we propose that genomic epidemiology and surveillance of A. baumannii should go beyond the hospital settings and consider the environment in an explicit One Health approach.
Collapse
Affiliation(s)
- Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ciara Tyrrell
- Department of Biology, The Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Alejandro Aguilar-Vera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany
| | - Santiago Castillo-Ramirez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Fiona Walsh
- Department of Biology, The Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Fu Y, M’ikanatha NM, Dudley EG. Whole-Genome Subtyping Reveals Population Structure and Host Adaptation of Salmonella Typhimurium from Wild Birds. J Clin Microbiol 2023; 61:e0184722. [PMID: 37249426 PMCID: PMC10281135 DOI: 10.1128/jcm.01847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Within-host evolution of bacterial pathogens can lead to host-associated variants of the same species or serovar. Identification and characterization of closely related variants from diverse host species are crucial to public health and host-pathogen adaptation research. However, the work remained largely underexplored at a strain level until the advent of whole-genome sequencing (WGS). Here, we performed WGS-based subtyping and analyses of Salmonella enterica serovar Typhimurium (n = 787) from different wild birds across 18 countries over a 75-year period. We revealed seven avian host-associated S. Typhimurium variants/lineages. These lineages emerged globally over short timescales and presented genetic features distinct from S. Typhimurium lineages circulating among humans and domestic animals. We further showed that, in terms of virulence, host adaptation of these variants was driven by genome degradation. Our results provide a snapshot of the population structure and genetic diversity of S. Typhimurium within avian hosts. We also demonstrate the value of WGS-based subtyping and analyses in unravelling closely related variants at the strain level.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Fida M, Cunningham SA, Beisken S, Posch AE, Chia N, Jeraldo PR, Murphy MP, Zinsmaster NM, Patel R. Acinetobacter baumannii Genomic Sequence-Based Core Genome Multilocus Sequence Typing Using Ridom SeqSphere+ and Antimicrobial Susceptibility Prediction in ARESdb. J Clin Microbiol 2022; 60:e0053322. [PMID: 35862760 PMCID: PMC9383114 DOI: 10.1128/jcm.00533-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 01/14/2023] Open
Abstract
Whole-genome sequencing (WGS) is rapidly replacing traditional typing methods for the investigation of infectious disease outbreaks. Additionally, WGS data are being used to predict phenotypic antimicrobial susceptibility. Acinetobacter baumannii, which is often multidrug-resistant, is a significant culprit in outbreaks in health care settings. A well-characterized collection of A. baumannii was studied using core genome multilocus sequence typing (cgMLST). Seventy-two isolates previously typed by PCR-electrospray ionization mass spectrometry (PCR/ESI-MS) provided by the Antimicrobial Resistance Leadership Group (ARLG) were analyzed using a clinical microbiology laboratory developed workflow for cgMLST with genomic susceptibility prediction performed using the ARESdb platform. Previously performed PCR/ESI-MS correlated with cgMLST using relatedness thresholds of allelic differences of ≤9 and ≤200 allelic differences in 78 and 94% of isolates, respectively. Categorical agreement between genotypic and phenotypic antimicrobial susceptibility across a panel of 11 commonly used drugs was 89%, with minor, major, and very major error rates of 8%, 11%, and 1%, respectively.
Collapse
Affiliation(s)
- Madiha Fida
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricio R. Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Murphy
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Romero Picazo D, Werner A, Dagan T, Kupczok A. Pangenome Evolution in Environmentally Transmitted Symbionts of Deep-Sea Mussels Is Governed by Vertical Inheritance. Genome Biol Evol 2022; 14:evac098. [PMID: 35731940 PMCID: PMC9260185 DOI: 10.1093/gbe/evac098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial pangenomes vary across species; their size and structure are determined by genetic diversity within the population and by gene loss and horizontal gene transfer (HGT). Many bacteria are associated with eukaryotic hosts where the host colonization dynamics may impact bacterial genome evolution. Host-associated lifestyle has been recognized as a barrier to HGT in parentally transmitted bacteria. However, pangenome evolution of environmentally acquired symbionts remains understudied, often due to limitations in symbiont cultivation. Using high-resolution metagenomics, here we study pangenome evolution of two co-occurring endosymbionts inhabiting Bathymodiolus brooksi mussels from a single cold seep. The symbionts, sulfur-oxidizing (SOX) and methane-oxidizing (MOX) gamma-proteobacteria, are environmentally acquired at an early developmental stage and individual mussels may harbor multiple strains of each symbiont species. We found differences in the accessory gene content of both symbionts across individual mussels, which are reflected by differences in symbiont strain composition. Compared with core genes, accessory genes are enriched in genome plasticity functions. We found no evidence for recent HGT between both symbionts. A comparison between the symbiont pangenomes revealed that the MOX population is less diverged and contains fewer accessory genes, supporting that the MOX association with B. brooksi is more recent in comparison to that of SOX. Our results show that the pangenomes of both symbionts evolved mainly by vertical inheritance. We conclude that genome evolution of environmentally transmitted symbionts that associate with individual hosts over their lifetime is affected by a narrow symbiosis where the frequency of HGT is constrained.
Collapse
Affiliation(s)
- Devani Romero Picazo
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Almut Werner
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Tal Dagan
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Anne Kupczok
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- Bioinformatics Group, Wageningen University & Research, 6708PB Wageningen, The Netherlands
| |
Collapse
|