1
|
Jiang J, Lam KF, Lau EHY, Yin G, Lin Y, Cowling BJ. Protection and waning of vaccine-induced, natural and hybrid immunity to SARS-CoV-2 in Hong Kong. Expert Rev Vaccines 2025; 24:252-260. [PMID: 40137440 DOI: 10.1080/14760584.2025.2485252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/24/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND As the COVID-19 pandemic transitions into its fourth year, understanding the dynamics of immunity is critical for implementing effective public health measures. This study examines vaccine-induced, natural, and hybrid immunity to SARS-CoV-2 in Hong Kong, focusing on their protective effectiveness and waning characteristics against infection during the Omicron BA.1/2 dominant period. RESEARCH DESIGN AND METHODS We conducted a territory-wide retrospective cohort study using vaccination and infection records from the Hong Kong Department of Health. The analysis included over 6.5 million adults, applying the Andersen-Gill model to estimate protective effectiveness while addressing selection bias through inverse probability weighting. RESULTS Vaccine-induced immunity peaked one month after the first dose but waned rapidly, while boosters significantly prolonged protection. Infection-induced immunity showed higher initial effectiveness but declined faster than vaccine-induced immunity. Hybrid immunity provided the most durable protection. mRNA vaccines (Comirnaty) demonstrated greater effectiveness and slower waning compared to inactivated vaccines (CoronaVac). CONCLUSIONS Hybrid immunity represents the most effective strategy for sustained protection against SARS-CoV-2. Public health policies should emphasize booster campaigns and hybrid immunity pathways to enhance population-level immunity and guide future COVID-19 management in Hong Kong.
Collapse
Affiliation(s)
- Jialiang Jiang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok Fai Lam
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Eric Ho Yin Lau
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Guosheng Yin
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yun Lin
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Benjamin John Cowling
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Liu C, Tsang TK, Sullivan SG, Cowling BJ, Yang B. Comparative duration of neutralizing responses and protections of COVID-19 vaccination and correlates of protection. Nat Commun 2025; 16:4748. [PMID: 40404724 PMCID: PMC12098666 DOI: 10.1038/s41467-025-60024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
The decline in neutralizing antibody (nAb) titers and vaccine efficacy /effectiveness (VE) for SARS-CoV-2 vaccines has been observed over time and when confronted with emerging variants, two factors that are hard to distinguish. Despite substantial drop in nAb titers against Omicron, VE remains high for severe cases and fatalities, raising questions about the utility of detected nAbs as a correlate of protection for COVID-19 vaccines for varying disease severity. Here, we conducted a systematic comparison of waning dynamics of nAb and VE over time and against variants with varying levels of disease severity. Using Bayesian linear regression models, we found that antigenically-shifted variants, like Omicron, could potentially lead to greater reductions in nAb titers and primary VE against mild infections than associated immunity waning observed over a 180-day period. By comparing model predicted nAb titers and VE on the same time scales, we found that VE against severe and fatal outcomes remained above 75% even when nAb titers reached the detectable limit of assays, despite strong correlations with nAb titers (spearman correlations ≥0.7) across variants over time. This finding suggested detectable nAb titers are not always sensitive enough to fully predict protection against severe disease and death from SARS-CoV-2.
Collapse
Affiliation(s)
- Chang Liu
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Tim K Tsang
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, Hong Kong, China
| | - Sheena G Sullivan
- School of Clinical Sciences, Monash University, Melbourne, Australia
- Department of Epidemiology, University of California, Los Angeles, USA
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, Hong Kong, China
| | - Bingyi Yang
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
| |
Collapse
|
3
|
Ding C, Chen Q, Shi Y, Liu J, Huang L, Wei W, Chen F, He H, Wu J, Gao Y, Yu Y. Impact of CD4+ T cell and TCR repertoires on SARS-CoV-2-Specific antibody responses in PLWH following COVID-19 vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae040. [PMID: 40235093 DOI: 10.1093/jimmun/vkae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/02/2024] [Indexed: 04/17/2025]
Abstract
In people living with human immunodeficiency virus (HIV, PLWH), the coronavirus disease 2019 (COVID-19) vaccine often results in a limited humoral immune response. While a reduced absolute CD4+ T cell count is a known factor, other determinants remain unclear. To investigate variables influencing the differential antibody response to the COVID-19 vaccine in PLWH, 43 HIV-1/AIDS patients receiving antiretroviral therapy (ART) and 2 doses of the COVID-19 vaccine were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G (IgG) levels and neutralizing antibody (NAb) titers. A retrospective analysis was also performed, examining immune reconstitution and epidemiological history, including annual CD4+ T-cell counts and the duration of HIV-1 infection. To further elucidate the role of CD4+ T cells in the antibody response to the COVID-19 vaccine, next-generation sequencing was used to analyze the T cell receptor (TCR) profiles of CD4+ T cells from twelve representative individuals. The results showed that the SARS-CoV-2-specific antibody response in PLWH was not solely determined by the current CD4+ T cell count, the progression of immune reconstitution and the TCR profile of CD4+ T cells also played significant roles. These findings provide critical insights into the multifaceted roles of CD4+ T cells in SARS-CoV-2-specific antibody responses in PLWH following COVID-19 vaccination.
Collapse
Affiliation(s)
- Chengchao Ding
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qianqian Chen
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yu Shi
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jiamin Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lina Huang
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wei Wei
- Department of HIV Prevention and Control, Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Fang Chen
- Department of HIV Prevention and Control, Yingzhou District Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Hongliang He
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianjun Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Yong Gao
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yue Yu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
4
|
Williams E, Echeverri Tribin F, Carreño JM, Krammer F, Hoffer M, Pallikkuth S, Pahwa S. Proteomic signatures of vaccine-induced and breakthrough infection-induced host responses to SARS-CoV-2. Vaccine 2025; 43:126484. [PMID: 39520894 PMCID: PMC12044548 DOI: 10.1016/j.vaccine.2024.126484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
The severity of SARS-CoV-2 illness is influenced by factors including age, sex, pre-existing health conditions, and individual immune responses. However, the mechanisms conferring immunity following antigenic challenge have not been fully elucidated. There are currently no studies evaluating longitudinal proteomic changes in individuals following vaccination and breakthrough, limiting our understanding of the underlying mechanisms driving conferred immunity. In this work, we evaluated the differential protein expression in individuals with (CoV-P) or without (CoV-N) prior SARS-CoV-2 infection following primary vaccination and after breakthrough infection (CoV-BT). Overall, we found that individuals receiving primary vaccination relied on innate immune mechanisms, including complement and coagulation cascades, and natural killer cell-mediated cytotoxicity, while conversely, breakthrough infection immune mechanisms relied on T cell-mediated immunity. These mechanistic differences may help explain heterogeneity associated with vaccine-induced and breakthrough infection-related outcomes.
Collapse
Affiliation(s)
- Erin Williams
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, Florida, 33136, USA
| | | | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, New York, 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, New York, 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Michael Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA; Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida, 33136, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, 33146, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, 33146, USA
| |
Collapse
|
5
|
Lau CS, Oh HML, Aw TC. Reflections on COVID-19: A Literature Review of SARS-CoV-2 Testing. Vaccines (Basel) 2024; 13:9. [PMID: 39852788 PMCID: PMC11768752 DOI: 10.3390/vaccines13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Although the Coronavirus disease 2019 (COVID-19) pandemic has ended, there are still many important lessons we can learn, as the pandemic profoundly affected every area of laboratory practice. During the pandemic, extensive changes to laboratory staffing had to be implemented, as many healthcare institutions required regular screening of all healthcare staff. Several studies examined the effectiveness of different screening regimens and concluded that repeated testing, even with lower sensitivity tests, could rival the performance of gold-standard RT-PCR testing in the detection of new cases. Many assay evaluations were performed both in the earlier and later periods of the pandemic. They included both nucleocapsid/spike antibodies and automated antigen assays. Early in the pandemic, it was generally agreed that the initial nucleocapsid antibody assays had poor sensitivity when used before 14 days of disease onset, with total or IgG antibodies being preferred over the use of IgM. Spike antibody assays gradually replaced nucleocapsid antibody assays, as most people were vaccinated. Spike antibodies tracked the rise in antibodies after vaccination with mRNA vaccines and became invaluable in the assessment of vaccine response. Studies demonstrated robust antibody secretion with each vaccine dose and could last for several months post-vaccination. When antigen testing was introduced, they became effective tools to identify affected patients when used serially or in an orthogonal fashion with RT-PCR testing. Despite the numerous findings during the pandemic period, research in COVID-19 has slowed. To this day it is difficult to identify a true neutralizing antibody test for the virus. An appropriate antibody level that would confer protective immunity against the plethora of new variants remains elusive. We hope that a summary of events during the pandemic could provide important insights to consider in planning for the next viral pandemic.
Collapse
Affiliation(s)
- Chin Shern Lau
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
| | - Helen M. L. Oh
- Department of Infectious Diseases, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
| | - Tar Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore 117599, Singapore
- Academic Pathology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
6
|
Shiu EYC, Cheng SMS, Martín-Sánchez M, Au NYM, Chan KCK, Li JKC, Fung LWC, Luk LLH, Chaothai S, Kwan TC, Ip DKM, Leung GM, Poon LLM, Peiris JSM, Leung NHL, Cowling BJ. Durability for 12 months of antibody response to a booster dose of monovalent BNT162b2 in adults who had initially received 2 doses of inactivated vaccine. Vaccine 2024; 42:126317. [PMID: 39276621 DOI: 10.1016/j.vaccine.2024.126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
This study examined the strength and durability of antibody responses in 277 adults who received a heterologous third dose of the BNT162b2 vaccine, following two doses of an inactivated vaccine. Neutralizing antibody levels against both the ancestral virus and Omicron BA.2 subvariant decreased from one month to 6 months after the third dose, and were then maintained at 12 months. Participants who received both a fourth dose and reported a SARS-CoV-2 infection had the highest antibody titers at 365 days after the third dose. Individuals with chronic medical conditions had lower antibody levels against the Omicron BA.2 subvariant at 12 months after the third dose. The results suggest that the heterologous third dose provides durable neutralizing antibody responses, which may be influenced by subsequent infection or vaccination and pre-existing medical conditions. These findings may help explain the differences in immune protection between vaccination and natural infection.
Collapse
Affiliation(s)
- Eunice Y C Shiu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Samuel M S Cheng
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Mario Martín-Sánchez
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Niki Y M Au
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Karl C K Chan
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - John K C Li
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Lison W C Fung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Leo L H Luk
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Sara Chaothai
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tsz Chun Kwan
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Dennis K M Ip
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region of China
| | - Leo L M Poon
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region of China
| | - J S Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region of China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region of China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region of China..
| |
Collapse
|
7
|
Cohen CA, Leung NHL, Kaewpreedee P, Lee KWK, Jia JZ, Cheung AWL, Cheng SMS, Mori M, Ip DKM, Poon LLM, Peiris JSM, Cowling BJ, Valkenburg SA. Antibody Fc receptor binding and T cell responses to homologous and heterologous immunization with inactivated or mRNA vaccines against SARS-CoV-2. Nat Commun 2024; 15:7358. [PMID: 39191745 PMCID: PMC11350167 DOI: 10.1038/s41467-024-51427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Whole virion inactivated vaccine CoronaVac (C) and Spike (S) mRNA BNT162b2 (B) vaccines differ greatly in their ability to elicit neutralizing antibodies but have somewhat comparable effectiveness in protecting from severe COVID-19. We conducted further analyses for a randomized trial (Cobovax study, NCT05057169) of third dose homologous and heterologous booster vaccination, i.e. four interventions CC-C, CC-B, BB-C and BB-B. Here, we assess vaccine immunogenicity beyond neutralizing function, including S and non-S antibodies with Fc receptor (FcR) binding, antibody avidity and T cell specificity to 6 months post-vaccination. Ancestral and Omicron S-specific IgG and FcR binding are significantly higher by BNT162b2 booster than CoronaVac, regardless of first doses. Nucleocapsid (N) antibodies are only increased in homologous boosted CoronaVac participants (CC-C). CoronaVac primed participants have lower baseline S-specific CD4+ IFNγ+ cells, but are significantly increased by either CoronaVac or BNT162b2 boosters. Priming vaccine content defined T cell peptide specificity preference, with S-specific T cells dominating B primed groups and non-S structural peptides contributing more in C primed groups, regardless of booster type. S-specific CD4+ T cell responses, N-specific antibodies, and antibody effector functions via Fc receptor binding may contribute to protection and compensate for less potent neutralizing responses in CoronaVac recipients.
Collapse
Affiliation(s)
- Carolyn A Cohen
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Takemi Program in International Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Prathanporn Kaewpreedee
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelly W K Lee
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janice Zhirong Jia
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Alan W L Cheung
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Samuel M S Cheng
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Japan
| | - Dennis K M Ip
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - J S Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
- Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Asante MA, Michelsen ME, Balakumar MM, Kumburegama B, Sharifan A, Thomsen AR, Korang SK, Gluud C, Menon S. Heterologous versus homologous COVID-19 booster vaccinations for adults: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMC Med 2024; 22:263. [PMID: 38915011 PMCID: PMC11197367 DOI: 10.1186/s12916-024-03471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND To combat coronavirus disease 2019 (COVID-19), booster vaccination strategies are important. However, the optimal administration of booster vaccine platforms remains unclear. Herein, we aimed to assess the benefits and harms of three or four heterologous versus homologous booster regimens. METHODS From November 3 2022 to December 21, 2023, we searched five databases for randomised clinical trials (RCT). Reviewers screened, extracted data, and assessed bias risks independently with the Cochrane risk-of-bias 2 tool. We conducted meta-analyses and trial sequential analyses (TSA) on our primary (all-cause mortality; laboratory confirmed symptomatic and severe COVID-19; serious adverse events [SAE]) and secondary outcomes (quality of life [QoL]; adverse events [AE] considered non-serious). We assessed the evidence with the GRADE approach. Subgroup analyses were stratified for trials before and after 2023, three or four boosters, immunocompromised status, follow-up, risk of bias, heterologous booster vaccine platforms, and valency of booster. RESULTS We included 29 RCTs with 43 comparisons (12,538 participants). Heterologous booster regimens may not reduce the relative risk (RR) of all-cause mortality (11 trials; RR 0.86; 95% CI 0.33 to 2.26; I2 0%; very low certainty evidence); laboratory-confirmed symptomatic COVID-19 (14 trials; RR 0.95; 95% CI 0.72 to 1.25; I2 0%; very low certainty); or severe COVID-19 (10 trials; RR 0.51; 95% CI 0.20 to 1.33; I2 0%; very low certainty). For safety outcomes, heterologous booster regimens may have no effect on SAE (27 trials; RR 1.15; 95% CI 0.68 to 1.95; I2 0%; very low certainty) but may raise AE considered non-serious (20 trials; RR 1.19; 95% CI 1.08 to 1.32; I2 64.4%; very low certainty). No data on QoL was available. Our TSAs showed that the cumulative Z curves did not reach futility for any outcome. CONCLUSIONS With our current sample sizes, we were not able to infer differences of effects for any outcomes, but heterologous booster regimens seem to cause more non-serious AE. Furthermore, more robust data are instrumental to update this review.
Collapse
Affiliation(s)
- Mark Aninakwah Asante
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Ekholm Michelsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mithuna Mille Balakumar
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Buddheera Kumburegama
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Amin Sharifan
- Department of Pharmaceutical Care, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steven Kwasi Korang
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Sonia Menon
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Epitech Research, Brussels, Belgium.
| |
Collapse
|
9
|
Xiang T, Quan X, Jia H, Wang H, Liang B, Li S, Wang X, Li H, Feng X, Fan L, Xu L, Wang T, Xiong S, Yang D, Liu J, Zheng X. Omicron breakthrough infections after triple-dose inactivated COVID-19 vaccination: A comprehensive analysis of antibody and T-cell responses. Immunology 2024; 172:313-327. [PMID: 38462236 DOI: 10.1111/imm.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
This study longitudinally evaluated the immune response in individuals over a year after receiving three doses of an inactivated SARS-CoV-2 vaccine, focusing on reactions to Omicron breakthrough infections. From 63 blood samples of 37 subjects, results showed that the third booster enhanced the antibody response against Alpha, Beta, and Delta VOCs but was less effective against Omicron. Although antibody titres decreased post-vaccination, SARS-CoV-2-specific T-cell responses, both CD4+ and CD8+, remained stable. Omicron breakthrough infections significantly improved neutralization against various VOCs, including Omicron. However, the boost in antibodies against WT, Alpha, Beta, and Delta variants was more pronounced. Regarding T cells, breakthrough infection predominantly boosted the CD8+ T-cell response, and the intensity of the spike protein-specific T-cell response was roughly comparable between WT and Omicron BA.5.
Collapse
Affiliation(s)
- Tiandan Xiang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xufeng Quan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Jia
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Boyun Liang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Sumeng Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Huadong Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Fan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Xu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Shue Xiong
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhang R, Hung IFN. Bivalent (Omicron BA.5/ancestral) recombinant spike protein vaccine: a promising booster. THE LANCET. INFECTIOUS DISEASES 2024; 24:558-559. [PMID: 38460526 DOI: 10.1016/s1473-3099(24)00156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Affiliation(s)
- Ruiqi Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administration Region, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administration Region, China.
| |
Collapse
|
11
|
Wu Y, Shi J, He X, Lu J, Gao X, Zhu X, Chen X, Zhang M, Fang L, Zhang J, Yuan Z, Xiao G, Zhou P, Pan X. Protection of the receptor binding domain (RBD) dimer against SARS-CoV-2 and its variants. J Virol 2023; 97:e0127923. [PMID: 37843372 PMCID: PMC10688353 DOI: 10.1128/jvi.01279-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants achieved immune escape and became less virulent and easily transmissible through rapid mutation in the spike protein, thus the efficacy of vaccines on the market or in development continues to be challenged. Updating the vaccine, exploring compromise vaccination strategies, and evaluating the efficacy of candidate vaccines for the emerging variants in a timely manner are important to combat complex and volatile SARS-CoV-2. This study reports that vaccines prepared from the dimeric receptor-binding domain (RBD) recombinant protein, which can be quickly produced using a mature and stable process platform, had both good immunogenicity and protection in vivo and could completely protect rodents from lethal challenge by SARS-CoV-2 and its variants, including the emerging Omicron XBB.1.16, highlighting the value of dimeric recombinant vaccines in the post-COVID-19 era.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jian Shi
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | - Xiaoxue He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xuerui Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xinlan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Man Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | | | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | - Zhiming Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|