1
|
Eid R, Abdelsalam M, Fathy AA, Abolenein HM, Elmarghany EB, El-Hanafy AA, Hamdy N, Abd-Elmagid DS, Niazy NA, Abd-El Ghaffar DM. Bone mineral density in egyptian children with juvenile idiopathic arthritis: possible correlation to serum RANKL / osteoprotegerin (OPG) ratio and OPG gene polymorphisms. Pediatr Rheumatol Online J 2023; 21:58. [PMID: 37328895 PMCID: PMC10273548 DOI: 10.1186/s12969-023-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Children with juvenile idiopathic arthritis (JIA) are at higher risk of decreased bone mineral density (BMD) compared with healthy children due to genetic, disease and medication-related causes. This study aims to investigate the possible effects of osteoprotegerin (OPG) gene polymorphisms and serum levels of osteoprotegerin (OPG) and receptor activator of nuclear factor κB-ligand (RANKL) and RANKL/OPG ratio on BMD in children with JIA. METHODS OPG gene rs2073617, rs3134069, serum RANKL, OPG and RANKL/OPG ratio were evaluated in 60 JIA children and 100 matched healthy controls. BMD was evaluated by lumbar dual energy X-ray absorptiometry (DEXA) according to which patients were classified in 2 groups (DEXA z-score above and below - 2). Composite disease activity was measured using the Juvenile Arthritis Disease Activity Score (JADAS) 27-joints. Articular damage was scored using the juvenile arthritis damage index (JADI). RESULTS Patients aged 12.05 ± 3.2 years, included 38 females and 31% had BMD z-score below-2. Systemic-onset JIA was the most frequent phenotype (38%). Genotypes and alleles frequencies of the 2 studied polymorphisms did not differ between patients and controls (p > 0.05 for all) while serum RANKL and RANKL/OPG ratio were significantly higher in patients compared to controls (p = < 0.001 and 0.03 respectively). Patients with BMD < -2 had significantly greater frequencies of rs2073617 TT genotype and T allele (p < 0.001), higher serum RANKL, RANKL/OPG ratio (p = 0.01, 0.002), female predominance (p = 0.02), higher articular and extra-articular damage index (p = 0.008,0.009) and more frequent steroid usage (p = 0.02) compared to patients with BMD z-score >-2. Multivariate analysis showed rs2073617 TT genotype, RANKL/OPG ratio, long disease duration (above 36 months) and use of steroid to be associated with decreased BMD (p = 0.03,0.04,0.01,0.01 respectively) in JIA children. CONCLUSIONS Egyptian children with JIA have decreased BMD. rs2073617 TT genotype and T allele, RANKL/OPG ratio are possible determinants of reduced BMD in JIA. Our results underline the importance of frequent monitoring of BMD in JIA children and trying to control disease activity to preserve long term bone health.
Collapse
Affiliation(s)
- Riham Eid
- Paediatric Nephrology Unit, Faculty of Medicine, Mansoura University Children’s Hospital, Mansoura University, Mansoura, 35561 Egypt
| | - Maha Abdelsalam
- Immunology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, 11517 Egypt
| | - Aya Ahmed Fathy
- Public health and Community Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hadil M. Abolenein
- Paediatric Endocrinology and Diabetes Unit, Faculty of Medicine, Mansoura University Children’s Hospital, Mansoura University, Mansoura, Egypt
| | - Eman Bakr Elmarghany
- Rheumatology, Rehabilitation and Physical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Ahmed El-Hanafy
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nashwa Hamdy
- Paediatric Nephrology Unit, Faculty of Medicine, Mansoura University Children’s Hospital, Mansoura University, Mansoura, 35561 Egypt
| | - Dina Salama Abd-Elmagid
- Paediatric Neurology Unit, Faculty of Medicine, Mansoura University Children’s Hospital, Mansoura University, Mansoura, Egypt
| | - Nermeen A. Niazy
- Public health and Community Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dina M. Abd-El Ghaffar
- Rheumatology, Rehabilitation and Physical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Payne KA, Shaw NM, Erickson CB, Yarger P, Yu Y, Baldini T, Kleck CJ, Patel VV, Burger EL. Blockade of Osteoclast-Mediated Bone Resorption With a RANKL-Inhibitor Enhances Bone Formation in a Rat Spinal Fusion Model. Spine (Phila Pa 1976) 2022; 47:1165-1171. [PMID: 35797625 DOI: 10.1097/brs.0000000000004412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Rat spine fusion model. OBJECTIVE The present study aimed to determine whether administration of osteoprotegerin (OPG) in a rat model of spinal fusion increases bone volume, bone density, and decreases osteoclasts in the fusion mass. SUMMARY OF BACKGROUND DATA OPG is a soluble RANK-ligand inhibitor that blocks osteoclast differentiation and activation. This makes it a potential agent to control the remodeling process and enhance bone mass during spinal fusion. MATERIALS AND METHODS Forty-eight male Sprague-Dawley rats received a one-level spinal fusion of L4-L5 with bone allograft. Rats were then divided into four groups according to initiation of treatment: (1) saline on day 0 (saline), (2) OPG on day 0 (OPG D0), (3) OPG on day 10 (OPG D10), and (4) OPG on day 21 (OPG D21) postsurgery. After their initial injection, rats received weekly subcutaneous injections of OPG (10 mg/kg) and were euthanized six weeks postsurgery. MicroCT analysis of the fusion site and histological analysis of bone surface for quantification of osteoclast lining was performed. RESULTS Increased bone volume in the fusion site and around the spinous process was seen in OPG D0 and OPG D10 when compared with saline. Mean trabecular thickness was greater in all groups receiving OPG compared with saline, with OPG D0 and OPG D10 having significantly greater mean trabecular thickness than OPG D21. All OPG groups had less bone surface lined with osteoclasts when compared with Saline, with OPG D0 and OPG D10 having fewer than OPG D21. CONCLUSIONS This study indicates that OPG inhibited osteoclast bone resorption, which led to greater bone at the fusion site. Future studies investigating OPG on its own or in combination with an osteogenic factor to improve spinal fusion outcomes are warranted to further elucidate its potential therapeutic effect.
Collapse
Affiliation(s)
- Karin A Payne
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nichole M Shaw
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Christopher B Erickson
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Peter Yarger
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yangyi Yu
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Todd Baldini
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Christopher J Kleck
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Vikas V Patel
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Evalina L Burger
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
3
|
Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. NPJ Microgravity 2021; 7:49. [PMID: 34836964 PMCID: PMC8626488 DOI: 10.1038/s41526-021-00178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Disuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin-LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.
Collapse
|
4
|
Yang H, Kuo YH, Smith ZI, Spangler J. Targeting cancer metastasis with antibody therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1698. [PMID: 33463090 DOI: 10.1002/wnan.1698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Cancer metastasis, the spread of disease from a primary to a distal site through the circulatory or lymphatic systems, accounts for over 90% of all cancer related deaths. Despite significant progress in the field of cancer therapy in recent years, mortality rates remain dramatically higher for patients with metastatic disease versus those with local or regional disease. Although there is clearly an urgent need to develop drugs that inhibit cancer spread, the overwhelming majority of anticancer therapies that have been developed to date are designed to inhibit tumor growth but fail to address the key stages of the metastatic process: invasion, intravasation, circulation, extravasation, and colonization. There is growing interest in engineering targeted therapeutics, such as antibody drugs, that inhibit various steps in the metastatic cascade. We present an overview of antibody therapeutic approaches, both in the pipeline and in the clinic, that disrupt the essential mechanisms that underlie cancer metastasis. These therapies include classes of antibodies that indirectly target metastasis, including anti-integrin, anticadherin, and immune checkpoint blocking antibodies, as well as monoclonal and bispecific antibodies that are specifically designed to interrupt disease dissemination. Although few antimetastatic antibodies have achieved clinical success to date, there are many promising candidates in various stages of development, and novel targets and approaches are constantly emerging. Collectively, these efforts will enrich our understanding of the molecular drivers of metastasis, and the new strategies that arise promise to have a profound impact on the future of cancer therapeutic development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zion I Smith
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jamie Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Sasaki F, Hayashi M, Ono T, Nakashima T. The regulation of RANKL by mechanical force. J Bone Miner Metab 2021; 39:34-44. [PMID: 32889574 DOI: 10.1007/s00774-020-01145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) is a key mediator of osteoclast differentiation and bone resorption. Osteoblast-lineage cells including osteoblasts and osteocytes express RANKL, which is regulated by several different factors, including hormones, cytokines, and mechanical forces. In vivo and in vitro analyses have demonstrated that various types of mechanosensing proteins on the cell membrane (i.e. mechanosensors) and intracellular mechanosignaling proteins play essential roles in the differentiation and functions of osteoblasts, osteoclasts, and osteocytes via soluble factors, such as sclerostin, Wnt ligands, and RANKL. This section provides an overview of the in vivo and in vitro evidence for the regulation of RANKL expression by mechanosensing and mechanotransduction.
Collapse
Affiliation(s)
- Fumiyuki Sasaki
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
- Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
- Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
- Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
6
|
Kwok A, Rosas S, Bateman TA, Livingston E, Smith TL, Moore J, Zawieja DC, Hampton T, Mao XW, Delp MD, Willey JS. Altered rodent gait characteristics after ~35 days in orbit aboard the International Space Station. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:9-17. [PMID: 31987483 DOI: 10.1016/j.lssr.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The long-term adaptations to microgravity and other spaceflight challenges within the confines of a spacecraft, and readaptations to weight-bearing upon reaching a destination, are unclear. While post-flight gait change in astronauts have been well documented and reflect multi-system deficits, no data from rodents have been collected. Thus, the purpose of this study was to evaluate gait changes in response to spaceflight. A prospective collection of gait data was collected on 3 groups of mice: those who spent~35 days in orbit (FLIGHT) aboard the International Space Station (ISS); a ground-based control with the same habitat conditions as ISS (Ground Control; GC); and a vivarium control with typical rodent housing conditions (VIV). Pre-flight and post-flight gait measurements were conducted utilizing an optimized and portable gait analysis system (DigiGait, Mouse Specifics, Inc). The total data acquisition time for gait patterns of FLIGHT and control mice was 1.5-5 min/mouse, allowing all 20 mice per group to be assessed in less than an hour. Patterns of longitudinal gait changes were observed in the hind limbs and the forelimbs of the FLIGHT mice after ~35 days in orbit; few differences were observed in gait characteristics within the GC and VIV controls from the initial to the final gait assessment, and between groups. For FLIGHT mice, 12 out of 18 of the evaluated gait characteristics in the hind limbs were significantly changed, including: stride width variability; stride length and variance; stride, swing, and stance duration; paw angle and area at peak stance; and step angle, among others. Gait characteristics that decreased included stride frequency, and others. Moreover, numerous forelimb gait characteristics in the FLIGHT mice were changed at post-flight measures relative to pre-flight. This rapid DigiGait gait measurement tool and customized spaceflight protocol is useful for providing preliminary insight into how spaceflight could affect multiple systems in rodents in which deficits are reflected by altered gait characteristics.
Collapse
Affiliation(s)
- Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Samuel Rosas
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric Livingston
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Joseph Moore
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David C Zawieja
- Department of Medical Physiology, Texas A&M University, College Station, TX, United States
| | - Tom Hampton
- Mouse Specifics, Framingham, MA, United States
| | - Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, United States
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
7
|
Schneider DA, Smith SM, Campbell C, Hayami T, Kapila S, Hatch NE. Locally limited inhibition of bone resorption and orthodontic relapse by recombinant osteoprotegerin protein. Orthod Craniofac Res 2016; 18 Suppl 1:187-95. [PMID: 25865548 DOI: 10.1111/ocr.12086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine minimal dose levels required for local inhibition of orthodontic relapse by recombinant OPG protein (OPG-Fc), while also determining effects of injected OPG-Fc on alveolar bone and long bone. SETTING AND SAMPLE POPULATION The Department of Orthodontics and Pediatric Dentistry at the University of Michigan. Eighteen male Sprague Dawley rats. MATERIALS & METHODS Maxillary molars were moved with nickel-titanium springs and then allowed to relapse in Sprague Dawley rats. Upon appliance removal, animals were injected with a single dose of 1.0 mg/kg OPG-Fc, 0.1 mg/kg OPG-Fc, or phosphate-buffered saline (vehicle) just distal to the molar teeth. Tooth movement measurements were made from stone casts, which were scanned and digitally measured. Alveolar tissues were examined by histology. Micro-computed tomography was used to quantify changes in alveolar and femur bone. RESULTS Local injection of OPG-Fc inhibited molar but not incisor relapse, when compared to vehicle-injected animals. No significant differences in alveolar or femur bone were seen between the three treatment groups after 24 days of relapse. CONCLUSIONS Our results demonstrate that a single local injection of OPG-Fc effectively inhibits orthodontic relapse, with minimal systemic bone metabolic effects. Our results also show that a single injection of OPG-Fc will influence tooth movement only in teeth close to the injection site. These findings indicate that OPG-Fc has potential as a safe and effective pharmacological means to locally control osteoclasts, for uses such as maintaining anchorage during orthodontic tooth movement and preventing orthodontic relapse in humans.
Collapse
Affiliation(s)
- D A Schneider
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
8
|
Sims NA, Ng KW. Implications of osteoblast-osteoclast interactions in the management of osteoporosis by antiresorptive agents denosumab and odanacatib. Curr Osteoporos Rep 2014; 12:98-106. [PMID: 24477416 DOI: 10.1007/s11914-014-0196-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antiresorptive agents, used in the treatment of osteoporosis, inhibit either osteoclast formation or function. However, with these approaches, osteoblast activity is also reduced because of the loss of osteoclast-derived coupling factors that serve to stimulate bone formation. This review discusses how osteoclast inhibition influences osteoblast function, comparing the actions of an inhibitor of osteoclast formation [anti-RANKL/Denosumab (DMAB)] with that of a specific inhibitor of osteoclastic cathepsin K activity [Odanacatib (ODN)]. Denosumab rapidly and profoundly, but reversibly, reduces bone formation. In contrast, preclinical studies and clinical trials of ODN showed that bone formation at some skeletal sites was preserved although resorption was reduced. This preservation of bone formation appears to be due to effects of coupling factors, secreted by osteoclasts and released from demineralized bone matrix. This indicates that bone resorptive activities of osteoclasts are separable from their coupling activities.
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria, 3065, Australia,
| | | |
Collapse
|
9
|
Iolascon G, Napolano R, Gioia M, Moretti A, Riccio I, Gimigliano F. The contribution of cortical and trabecular tissues to bone strength: insights from denosumab studies. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2013; 10:47-51. [PMID: 23858311 PMCID: PMC3710010 DOI: 10.11138/ccmbm/2013.10.1.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
All materials undergo an aging process which is characterized essentially by changes of the rigidity (stiffness), of the ability to absorb the stresses (toughness) and then ultimately in the mechanical resistance (strength). Both cortical and trabecular bone undergo a continuous process of structural remodeling with the main aim to preserve their biomechanical properties. An imbalance in this process, which promotes bone resorption, results in a quantitative loss of bone tissue and in a qualitative alteration of the skeletal microarchitecture, as you can see in osteoporosis, rheumatoid arthritis or bone metastases. Cortical component has a prominent role on strength therefore loss of cortical bone that is prevalent in elderly may explain the higher frequency of fractures of bones composed mainly of cortical bone such as the proximal femur. Remodeling inhibition with denosumab improved structural strength without altering material properties, that can be primarily explained by the combined effects of increased trabecular and cortical bone mass, and reductions in trabecular eroded surfaces and particularly cortical porosity. Denosumab for its mechanism of action and pharmacokinetics results in a significant, early and continued increase in BMD with enhanced bone strength improving both cortical and trabecular bone.
Collapse
Affiliation(s)
- Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, Second University of Napoli, Napoli, Italy
| | - Rosa Napolano
- Department of Medical and Surgical Specialties and Dentistry, Second University of Napoli, Napoli, Italy
| | - Margherita Gioia
- Department of Medical and Surgical Specialties and Dentistry, Second University of Napoli, Napoli, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, Second University of Napoli, Napoli, Italy
| | - Ilaria Riccio
- Department of Medical and Surgical Specialties and Dentistry, Second University of Napoli, Napoli, Italy
| | - Francesca Gimigliano
- Department of Medical and Surgical Specialties and Dentistry, Second University of Napoli, Napoli, Italy
| |
Collapse
|
10
|
Wang Y, Huang P, Tang PF, Chan KM, Li G. Alendronate (ALN) combined with osteoprotegerin (OPG) significantly improves mechanical properties of long bone than the single use of ALN or OPG in the ovariectomized rats. J Orthop Surg Res 2011; 6:34. [PMID: 21752290 PMCID: PMC3143091 DOI: 10.1186/1749-799x-6-34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 07/13/2011] [Indexed: 12/17/2022] Open
Abstract
Background Alendronate (ALN) is the most common form of bisphosphonates used for the treatment of osteoporosis. Osteoprotegerin (OPG) has also been shown to reduce osteoporotic changes in both humans and experimental animals after systemic administration. The aim of this current study was to test if the anti-resorption effects of ALN may be enhanced when used in combination with OPG. Objectives To investigate the effects of ALN, OPG or combined on bone mass and bone mechanical properties in ovariectomized (OVX) rats. Methods OVX rats were treated with ALN, OPG-Fc, or OPG-Fc and ALN. Biochemical markers, trabecular bone mass, biomechanics, histomorphometry and RANKL expression in the bone tissues were examined following the treatments. Results The treatment of ALN, OPG-Fc and ALN+OPG-Fc all prevented bone loss in the OVX-rats, there was no statistical difference among the three treatment groups in terms of vertebrae BMD, mineralizing surfaces, mineral apposition rate, BFR/BS. The ALN+OPG-Fc treatment group had significantly increased the mechanical strength of lumber vertebral bodies and femoral shafts when compared to the ALN and OPG-Fc treatment groups. The RANKL protein expression in the vertebral bones was significantly decreased in the ALN and ALN+OPG-Fc treatment groups, suggesting the combined use of OPG-Fc and ALN might have amplified inhibition of bone resorption through inhibiting RANKL-dependent osteoclastogenesis. Conclusion The combined use of OPG-Fc and ALN may be a new treatment strategy for reversing bone loss and restoring bone quality in osteoprotic disorders.
Collapse
Affiliation(s)
- Yan Wang
- Department of Orthopaedic Surgery, The General Hospital of People's Liberation Army, Beijing, PR China.
| | | | | | | | | |
Collapse
|
11
|
Halade GV, Rahman MM, Williams PJ, Fernandes G. High fat diet-induced animal model of age-associated obesity and osteoporosis. J Nutr Biochem 2010; 21:1162-9. [PMID: 20149618 DOI: 10.1016/j.jnutbio.2009.10.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/24/2009] [Accepted: 10/02/2009] [Indexed: 12/19/2022]
Abstract
Osteoporosis and obesity remain a major public health concern through its associated fragility and fractures. Several animal models for the study of osteoporotic bone loss, such as ovariectomy (OVX) and denervation, require unique surgical skills and expensive set up. The challenging aspect of these age-associated diseases is that no single animal model exactly mimics the progression of these human-specific chronic conditions. Accordingly, to develop a simple and novel model of post menopausal bone loss with obesity, we fed either a high fat diet containing 10% corn oil (CO) or standard rodent lab chow (LC) to 12-month-old female C57Bl/6J mice for 6 months. As a result, CO fed mice exhibited increased body weight, total body fat mass, abdominal fat mass and reduced bone mineral density (BMD) in different skeletal sites measured by dual energy X-ray absorptiometry. We also observed that decreased BMD with age in CO fed obese mice was accompanied by increased bone marrow adiposity, up-regulation of peroxisome proliferator-activated receptor γ, cathepsin k and increased proinflammatory cytokines (interleukin 6 and tumor necrosis factor α) in bone marrow and splenocytes, when compared to that of LC fed mice. Therefore, this appears to be a simple, novel and convenient age-associated model of post menopausal bone loss, in conjunction with obesity, which can be used in pre-clinical drug discovery to screen new therapeutic drugs or dietary interventions for the treatment of obesity and osteoporosis in the human population.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Texas Health Science Center at San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Proper development of the skeleton in utero and during growth requires mechanical stimulation. Loading results in adaptive changes in bone that strengthen bone structure. Bone's adaptive response is regulated by the ability of resident bone cells to perceive and translate mechanical energy into a cascade of structural and biochemical changes within the cells a process known as mechanotransduction. Mechanotransduction pathways are among the most anabolic in bone, and consequently, there is great interest in elucidating how mechanical loading produces its observed effects, including increased bone formation, reduced bone loss, changes in bone cell differentiation and lifespan, among others. A molecular understanding of these processes is developing, and with it comes a profound new insight into the biology of bone. In this article, we review the nature of the physical stimulus to which bone cells mount an adaptive response, including the identity of the sensor cells, their attributes and physical environment, and putative mechanoreceptors they express. Particular attention is allotted to the focal adhesion and Wnt signaling, in light of their emerging role in bone mechanotransduction. Te cellular mechanisms for increased bone loss during disuse, and reduced bone loss during loading are considered. Finally, we summarize the published data on bone cell accommodation, whereby bone cells stop responding to mechanical signaling events. Collectively, these data highlight the complex yet finely orchestrated process of mechanically regulated bone homeostasis.
Collapse
Affiliation(s)
- Alexander G. Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine
- Department of Biomedical Engineering, Indiana University/Purdue University at Indianapolis (IUPUI)
| | - Charles H. Turner
- Department of Biomedical Engineering, Indiana University/Purdue University at Indianapolis (IUPUI)
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
13
|
|
14
|
Samelson EJ, Broe KE, Demissie S, Beck TJ, Karasik D, Kathiresan S, Kiel DP. Increased plasma osteoprotegerin concentrations are associated with indices of bone strength of the hip. J Clin Endocrinol Metab 2008; 93:1789-95. [PMID: 18303076 PMCID: PMC2386280 DOI: 10.1210/jc.2007-2492] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Osteoprotegerin (OPG) is an important regulator of bone turnover through its effects on osteoclastogenesis, yet findings from previous studies of circulating OPG and commonly measured bone indices in humans have been conflicting. We conducted a cross-sectional study to evaluate the association between plasma OPG and femoral neck (FN) bone density (BMD) and geometry in a large cohort of women and men. DESIGN Participants included 1379 postmenopausal women and 1165 men, aged 50-89 yr (mean, 64 yr), in the Framingham Offspring Study. Dual x-ray absorptiometry was used to evaluate FN BMD and geometry (bone width, section modulus, and cross-sectional area at the narrow neck region). Plasma OPG concentrations were measured by ELISA. Sex-specific analysis of covariance was used to calculate means and assess linear trend in BMD and geometry values across OPG quartiles, adjusted for confounders. RESULTS OPG concentrations were greater in women than men, increased with age, and were greater in smokers and those with diabetes and heart disease. Multivariable-adjusted mean FN BMD in women increased from the lowest to the highest OPG quartile (trend, P < 0.01). However, no linear trend between FN BMD and OPG was observed in men (trend, P = 0.34). Section modulus and bone width increased with OPG in men (trend, P < 0.01), whereas no association between hip geometry indices and OPG was observed in women. CONCLUSION Higher OPG concentration may indicate greater skeletal strength in women and men, possibly through reducing bone loss in women and increasing periosteal apposition in men.
Collapse
Affiliation(s)
- Elizabeth J Samelson
- Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA 02131, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29:155-92. [PMID: 18057140 PMCID: PMC2528846 DOI: 10.1210/er.2007-0014] [Citation(s) in RCA: 563] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/15/2007] [Indexed: 12/13/2022]
Abstract
Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their respective roles in resorbing and forming bone. Bone remodeling is a spatially coordinated lifelong process whereby old bone is removed by osteoclasts and replaced by bone-forming osteoblasts. The refilling of resorption cavities is incomplete in many pathological states, which leads to a net loss of bone mass with each remodeling cycle. Postmenopausal osteoporosis and other conditions are associated with an increased rate of bone remodeling, which leads to accelerated bone loss and increased risk of fracture. Bone resorption is dependent on a cytokine known as RANKL (receptor activator of nuclear factor kappaB ligand), a TNF family member that is essential for osteoclast formation, activity, and survival in normal and pathological states of bone remodeling. The catabolic effects of RANKL are prevented by osteoprotegerin (OPG), a TNF receptor family member that binds RANKL and thereby prevents activation of its single cognate receptor called RANK. Osteoclast activity is likely to depend, at least in part, on the relative balance of RANKL and OPG. Studies in numerous animal models of bone disease show that RANKL inhibition leads to marked suppression of bone resorption and increases in cortical and cancellous bone volume, density, and strength. RANKL inhibitors also prevent focal bone loss that occurs in animal models of rheumatoid arthritis and bone metastasis. Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Ann E Kearns
- Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
16
|
Lloyd SAJ, Travis ND, Lu T, Bateman TA. Development of a low-dose anti-resorptive drug regimen reveals synergistic suppression of bone formation when coupled with disuse. J Appl Physiol (1985) 2008; 104:729-38. [PMID: 18174391 DOI: 10.1152/japplphysiol.00632.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Safe and effective countermeasures to spaceflight-induced osteoporosis are required to mitigate the potential for mission-critical fractures and ensure long-term bone health in astronauts. Two anti-resorptive drugs, the bisphosphonate zoledronic acid (ZOL) and the anti-receptor activator of NF-kappaB ligand protein osteoprotegerin (OPG), were investigated to find the minimum, comparable doses that yield a maximal increase in bone quality, while minimizing deleterious effects on turnover and mineralization. Through a series of five trials in normally loaded female mice (n = 56/trial), analysis of trabecular volume fraction and connectivity using microcomputed tomography, along with biomechanical testing, quantitative histomorphometry, and compositional analysis, was used to select 45 microg/kg ZOL and 500 microg/kg OPG as doses that satisfy these criteria. These doses were then examined for their ability to mitigate bone loss following short-term unloading through hindlimb suspension (HLS). Seventy-two mice were prophylactically administered ZOL, OPG, or PBS and assigned to loaded control or 2-wk HLS groups (n = 12 for each of 6 groups). Both anti-resorptives were able to preserve trabecular microarchitecture and femoral elastic and maximum force in HLS mice (+30-40% ZOL/OPG vs. PBS). In HLS mice, anti-resorptive dosing reduced resorption perimeter at the femoral endocortical surface by 30% vs. PBS. In loaded control mice, anti-resorptives produced no change in bone formation rate; however, reductions in bone formation rate brought about by HLS were exacerbated by anti-resorptive treatment, suggesting synergistic inhibition of osteoblasts during disuse. Refined anti-resorptive dosing will tend to target countermeasures to the period of disuse, resulting in faster recovery and less adverse effects for astronauts.
Collapse
Affiliation(s)
- Shane A J Lloyd
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
17
|
Han X, Kawai T, Taubman MA. Interference with immune-cell-mediated bone resorption in periodontal disease. Periodontol 2000 2007; 45:76-94. [PMID: 17850450 DOI: 10.1111/j.1600-0757.2007.00215.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaozhe Han
- Department of Immunology, The Forsyth Institute, Harvard Medical School, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | |
Collapse
|
18
|
Abstract
When the rate of bone resorption exceeds that of bone formation, destruction of bone tissue occurs, resulting in a fragile skeleton. The clinical consequences, namely osteoporosis and fragility fractures, are common and costly problems. Treatments that normalize the balance of bone turnover by inhibiting bone resorption preserve bone mass and reduce fracture risk. The discovery of receptor activator of nuclear factor-κB ligand (RANKL) as a pivotal regulator of osteoclast activity provides a new therapeutic target. Early studies have demonstrated that denosumab, an investigational, highly specific anti-RANKL antibody, rapidly and substantially reduces bone resorption. Pharmacokinetics of the antibody allow dosing by subcutaneous injection at an interval of 6 months. Inhibiting RANKL appears to be a promising new treatment for osteoporosis and related disorders. More information about the effectiveness of denosumab in reducing fracture risk, its tolerability and safety, and the response to discontinuing therapy will be provided by ongoing clinical studies.
Collapse
|
19
|
Ominsky MS, Kostenuik PJ, Cranmer P, Smith SY, Atkinson JE. The RANKL inhibitor OPG-Fc increases cortical and trabecular bone mass in young gonad-intact cynomolgus monkeys. Osteoporos Int 2007; 18:1073-82. [PMID: 17384898 DOI: 10.1007/s00198-007-0363-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 01/31/2007] [Indexed: 11/28/2022]
Abstract
UNLABELLED Weekly treatment of gonad-intact cynomolgus monkeys (for up to 6 months) with the RANKL inhibitor OPG-Fc reduced bone turnover markers and increased volumetric cortical and trabecular BMD and BMC at radial and tibial metaphyses. OPG-Fc was well tolerated in this study without evidence of change in measured toxicologic parameters vs. control. INTRODUCTION RANKL is the primary mediator of osteoclast formation, function, and survival. The catabolic effects of RANKL are inhibited by OPG, a soluble decoy receptor for RANKL. We investigated the safety and pharmacology of OPG-Fc in gonad-intact cynomolgus monkeys. METHODS Males and females were treated weekly with vehicle (n = 5/sex) or OPG-Fc (15 mg/kg) by s.c. (n = 5/sex) or i.v. (n = 3/sex) injection for 6 months. RESULTS Routine toxicologic investigations, hematologic parameters, body and organ weights, and ophthalmologic and electrocardiographic findings were not affected by OPG-Fc treatment. Because s.c. and i.v. dosing of OPG-Fc caused similar effects, these groups were combined for analyses. The following endpoints were significantly different in males and/or females treated with OPG-Fc relative to sex-matched vehicle controls after 6 months (p < 0.05). Biochemical markers of bone turnover (urine N-telopeptide and serum osteocalcin) were significantly decreased with OPG-Fc treatment. Cortical and trabecular volumetric BMD and BMC, cortical thickness, and cross-sectional moment of inertia were significantly increased by OPG-Fc treatment at the proximal tibia and distal radius metaphyses. Increases in cortical thickness were associated with significantly greater periosteal circumference. CONCLUSIONS OPG-Fc increased cortical and trabecular BMD and BMC in young gonad-intact cynomolgus monkeys.
Collapse
Affiliation(s)
- M S Ominsky
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA 91320, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Osteoporosis and several other bone disorders occur when there is an imbalance between the resorption and formation components of bone remodeling activity. Therapies available for some of these conditions modulate the activity of osteoclasts and/or osteoblasts. The recent discoveries of receptor activator of NF-kappaB ligand (RANKL), an endogenous activator of osteoclastogenenesis and osteoclast activity and its inhibitor, osteoprotegerin (OPG) as pivotal regulatory factors in the pathogenesis of bone diseases like osteoporosis provide unique targets for therapeutic agents. In laboratory animals and now in humans, administering forms of OPG markedly inhibits osteoclast activity and improves bone strength, documenting that the strategy of inhibiting RANKL activity has therapeutic promise. A highly specific, fully human antibody against RANKL has been produced (denosumab) that in early studies in humans reduces bone turnover and improves bone density. Attributes of denosumab in these clinical studies include a very rapid onset of action, sustained effects for several months after a single injection, and good tolerability. These results provide the basis for studies evaluating the effectiveness of denosumab in several clinical conditions characterized by increased osteoclastic activity.
Collapse
Affiliation(s)
- Michael R McClung
- Oregon Osteoporosis Center, 5050 NE Hoyt Street, Suite 651, Portland, OR 97210, USA.
| |
Collapse
|
21
|
Yamazaki H, Sasaki T. Effects of osteoprotegerin administration on osteoclast differentiation and trabecular bone structure in osteoprotegerin-deficient mice. Microscopy (Oxf) 2005; 54:467-77. [PMID: 16339792 DOI: 10.1093/jmicro/dfi066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Osteoprotegerin (OPG)-deficient mice exhibit severe bone loss including the destruction of growth plate cartilage. Using OPG-deficient mice, we attempted to clarify the differentiation and ultrastructure of osteoclasts located on the destroyed growth plate cartilage and trabecular bone matrix in long bones. In (-/-) homozygous OPG knockout mice, adjacent to the growth plate cartilage, the formation of bone trabeculae without a calcified cartilaginous core resulted in an irregular chondrocyte distribution in the growth plate cartilage. At the metaphyseal ossification center, TRAP-positive osteoclasts showed unusual localization on both type-II collagen-positive cartilage and type-I collagen-positive bone matrix. Osteoclasts located on cartilage matrix lacked a typical ruffled border structure, but formed resorption lacunae. During growth plate cartilage destruction, osteoclasts formed ruffled border structures on bone matrix deposited on the remaining cartilage surfaces. These findings suggest that, in OPG (-/-) mice, osteoclast structure differs, depending on the matrix of either cartilage or bone. Then, we examined the effects of OPG administration on the internal trabecular bone structure and osteoclast differentiation in OPG (-/-) mice. OPG administration to OPG (-/-) mice significantly inhibited trabecular bone loss and maintained the internal trabecular bone structure, but did not reduce the osteoclast number on bone trabeculae. For most osteoclasts, OPG administration caused disappearance or reduction of the ruffled border, but induced neither necrotic nor apoptotic damages. These results suggest that OPG administration is an effective means of maintaining the internal structure and volume of trabecular bone in metabolic bone diseases by inhibition of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Hiroko Yamazaki
- Department of Oral Histology, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | | |
Collapse
|
22
|
Ulrich-Vinther M, Schwarz EM, Pedersen FS, Søballe K, Andreassen TT. Gene therapy with human osteoprotegerin decreases callus remodeling with limited effects on biomechanical properties. Bone 2005; 37:751-8. [PMID: 16169783 DOI: 10.1016/j.bone.2005.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/01/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Osteoprotegerin (OPG) is a naturally occurring protein, which prevents bone resorption by inhibition of osteoclastogenesis, function, and survival. Therefore, recombinant OPG may be an attractive drug in the treatment of chronic bone resorptive diseases such as osteoporosis. Gene therapy has the potential to achieve long-term treatment by delivering genes of anti-resorptive proteins to the recipient. The effects of OPG gene therapy on fracture healing have not been described previously. The influence of OPG gene therapy on callus formation, callus tissue structural strength, apparent material properties, and histology of tibia fractures in rats was investigated after 3 weeks and 8 weeks of healing. Intramuscular administration of adeno-associated virus (AAV) vector-mediated OPG resulted in increased levels of OPG in serum of approximately 100 ng/ml throughout the study period. Control animals with fractures received transduction with an AAV reporter gene construct (AAV-enhanced green fluorescent protein (eGFP)), and in this group serum OPG levels remained at baseline (<10 ng/ml). After 3 weeks of healing, AAV-OPG treatment reduced the number of osteoclasts in the callus tissue (33%, P < 0.001). However, AAV-OPG treatment did not influence callus dimensions, callus bone mineral content (BMC), fracture structural strength, or apparent callus tissue material properties. After 8 weeks of healing, AAV-OPG treatment reduced the number of osteoclasts in the callus tissue (31%, P < 0.001) compared with AAV-eGFP fractures. Furthermore, deposition of new woven bone at the fracture line of the original cortical bone was hampered (new woven bone present: in all AAV-eGFP animals, in 41% of AAV-OPG-treated animals, P < 0.001). AAV-OPG treatment also increased callus BMC (18%, P = 0.023) compared with AAV-eGFP fractures. AAV-OPG did not influence callus dimensions, structural strength of the fractures, or ultimate stress, whereas elastic modulus was reduced in the AAV-OPG groups (37%, P = 0.039). The experiment demonstrates that AAV-OPG gene therapy decreases the fracture remodeling, but this does not influence the structural strength of healing fractures.
Collapse
Affiliation(s)
- Michael Ulrich-Vinther
- Department of Orthopaedics, Aarhus University Hospital, Noerrebrogade, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
23
|
Andelković Z, Katić V, Mihajlović D, Zivković V, Petrović A, Lalosević D. [Osteoprotegerin--a neutralizing receptor, protector of bones and a potential antiresorptive agent]. MEDICINSKI PREGLED 2005; 58:362-7. [PMID: 16296579 DOI: 10.2298/mpns0508362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The receptor activator of NF-B ligand (RANKL), expressed on the surface of osteoblasts and stromal cells in the bone marrow, plays an essential role in the formation and differentiation of osteoclasts and bone resorption. RANKL binds to its functional receptor, receptor activator of NF-B (RANK), expressed as a transmembrane heterotrimer on the surface of hematopoietic osteoclasts progenitors and mature osteoclasts. RANKL-RANK interaction is inhibited by soluble receptor-osteoprotegerin. OSTEOPROTEGERIN Osteoprotegerin (OPG), a member of the tumor necrosis factor receptor superfamily, acts as a natural decoy receptor that blocks the interaction between RANKL and RANK. The balance between RANKL and osteoprotegerin is of major importance in bone homeostasis. Osteoprotegerin inhibits differentiation and formation of osteoclasts and induces apoptosis of osteoclasts. OPG knock-out mice develop severe osteoporosis. In contrast, overexpression of OPG in transgenic mice causes osteopetrosis. OSTEOPROTEGERIN AS A THERAPEUTIC AGENT Antiresorptive activity of osteoprotegerin is proved in numerous experimental models. Osteoprotective effect of osteoprotegerin has recently been proved in postmenopausal women with osteoporosis as well as in patients with multiple myeloma and osteolytic metastases of breast cancer. CONCLUSION Osteoprotegerin is a potent antiosteoclast agent that may prove useful in the treatment of bone disorders with net bone loss, such as postmenopausal osteoporosis and cancer metastases.
Collapse
Affiliation(s)
- Zlatibor Andelković
- Institut za histologiju i embriologiju, Medicinski fakultet Pristina, Kosovska Mitrovica.
| | | | | | | | | | | |
Collapse
|
24
|
Maïmoun L, Couret I, Mariano-Goulart D, Dupuy AM, Micallef JP, Peruchon E, Ohanna F, Cristol JP, Rossi M, Leroux JL. Changes in osteoprotegerin/RANKL system, bone mineral density, and bone biochemicals markers in patients with recent spinal cord injury. Calcif Tissue Int 2005; 76:404-11. [PMID: 15812577 DOI: 10.1007/s00223-004-0048-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 11/17/2004] [Indexed: 10/25/2022]
Abstract
This study analyzed the temporal and regional variations in bone loss and explored bone cell activities via biochemical markers during an extended follow-up in patients with spinal cord injury (SCI). In parallel, the possible role of the osteoprotegerin (OPG)/RANKL system in disuse osteoporosis was investigated. Seven male patients with acute and complete SCI (31.3 +/- 9.5 years) and 12 able-bodied (AB) men (26.9 +/- 4.2 years) participated in the study. Measurements were performed 16, 24, 36, 48, and 71 weeks after injury. At week 16, marked calcium homeostasis disturbance and a concomitant increase in bone resorption markers were observed, reflecting an intense bone degradation process. Resorption activity decreased continuously with time. Contrasting with the great rise in the resorption markers, the bone formation markers showed little variation. During the period of investigation, a loss in bone mineral density (BMD) was demonstrated for the total body (-4.3%), pelvis (-15.7%) and lower limbs (-15.2%), whereas BMD did not change at the lumbar spine, upper limbs, or skull. At all stages, SCI patients had lower serum RANKL levels and higher serum OPG levels than did AB controls, but no significant variation with time was observed for either cytokine. These findings suggest that bone resorption persisted long after SCI and specifically affected BMD at sublesional sites. The marked modification of serum OPG/RANKL levels in SCI patients suggests that this system is affected, in disuse osteoporosis. However, the precise biologic role of the OPG/RANKL system in the bone tissue of SCI patients has yet to be determined.
Collapse
Affiliation(s)
- L Maïmoun
- Groupe de Recherche Interdisciplinaire Sur le Metabolisme Osseux, Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Iwaniec UT, Wronski TJ, Amblard D, Nishimura Y, van der Meulen MCH, Wade CE, Bourgeois MA, Damsky CD, Globus RK. Effects of disrupted β1-integrin function on the skeletal response to short-term hindlimb unloading in mice. J Appl Physiol (1985) 2005; 98:690-6. [PMID: 15465888 DOI: 10.1152/japplphysiol.00689.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study was designed to determine whether β1-integrin plays a role in mediating the acute skeletal response to mechanical unloading. Transgenic (TG) mice were generated to express a dominant negative form of β1-integrin under the control of the osteocalcin promoter, which targets expression of the transgene to mature osteoblasts. At 63 days of age, wild-type (WT) and TG mice were subjected to hindlimb unloading by tail suspension for 1 wk. Pair-fed, normally loaded WT and TG mice served as age-matched controls. Bone samples from each mouse were processed for quantitative bone histomorphometry and biomechanical testing. The skeletal phenotype of TG mice was characterized by lower cancellous bone mass in the distal femoral metaphysis (−52%) and lumbar vertebral body (−20%), reduced curvature of the proximal tibia (−20%), and decreased bone strength (−20%) and stiffness (−23%) of the femoral diaphysis with relatively normal indexes of cancellous bone turnover. Hindlimb unloading for only 1 wk induced a 10% decline in tibial curvature and a 30% loss of cancellous bone in the distal femur due to a combination of increased bone resorption and decreased bone formation in both WT and TG mice. However, the strength and stiffness of the femoral diaphysis were unaffected by short-term hindlimb unloading in both genotypes. The observed increase in osteoclast surface was greater in unloaded TG mice (92%) than in unloaded WT mice (52%). Cancellous bone formation rate was decreased in unloaded WT (−29%) and TG (−15%) mice, but, in contrast to osteoclast surface, the genotype by loading interaction was not statistically significant. The results indicate that altered integrin function in mature osteoblasts may enhance the osteoclastic response to mechanical unloading but that it does not have a major effect on the development of cancellous osteopenia in mice during the early stages of hindlimb unloading.
Collapse
Affiliation(s)
- U T Iwaniec
- Dept. of Physiological Sciences, Box 100144, JHMHC, Univ. of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sasaki T. Differentiation and functions of osteoclasts and odontoclasts in mineralized tissue resorption. Microsc Res Tech 2003; 61:483-95. [PMID: 12879416 DOI: 10.1002/jemt.10370] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The differentiation and functions of osteoclasts (OC) are regulated by osteoblast-derived factors such as receptor activator of NFKB ligand (RANKL) that stimulates OC formation, and a novel secreted member of the TNF receptor superfamily, osteoprotegerin (OPG), that negatively regulates osteoclastogenesis. In examination of the preosteoclast (pOC) culture, pOCs formed without any additives expressed tartrate-resistant acid phosphatase (TRAP), but showed little resorptive activity. pOC treated with RANKL became TRAP-positive OC, which expressed intense vacuolar-type H(+)-ATPase and exhibited prominent resorptive activity. Such effects of RANKL on pOC were completely inhibited by addition of OPG. OPG inhibited ruffled border formation in mature OC and reduced their resorptive activity, and also induced apoptosis of some OC. Although OPG administration significantly reduced trabecular bone loss in the femurs of ovariectomized (OVX) mice, the number of TRAP-positive OC in OPG-administered OVX mice was not significantly decreased. Rather, OPG administration caused the disappearance of ruffled borders and decreased H(+)-ATPase expression in most OC. OPG deficiency causes severe osteoporosis. We also examined RANKL localization and OC induction in periodontal ligament (PDL) during experimental movement of incisors in OPG-deficient mice. Compared to wild-type OPG (+/+) littermates, after force application, TRAP-positive OC were markedly increased in the PDL and alveolar bone was severely destroyed in OPG-deficient mice. In both wild-type and OPG-deficient mice, RANKL expression in osteoblasts and fibroblasts became stronger by force application. These in vitro and in vivo studies suggest that RANKL and OPG are important regulators of not only the terminal differentiation of OC but also their resorptive function. To determine resorptive functions of OC, we further examined the effects of specific inhibitors of H(+)-ATPase, bafilomycin A1, and lysosomal cysteine proteinases (cathepsins), E-64, on the ultrastructure, expression of these enzymes and resorptive functions of cultured OC. In bafilomycin A1-treated cultures, OC lacked ruffled borders, and H(+)-ATPase expression and resorptive activity were significantly diminished. E-64 treatment did not affect the ultrastructure and the expression of enzyme molecules in OC, but significantly reduced resorption lacuna formation, by inhibition of cathepsin activity. Lastly, we examined the expression of H(+)-ATPase, cathepsin K, and matrix metalloproteinase-9 in odontoclasts (OdC) during physiological root resorption in human deciduous teeth, and found that there were no differences in the expression of these molecules between OC and OdC. RANKL was also detected in stromal cells located on resorbing dentine surfaces. This suggests that there is a common mechanism in cellular resorption of mineralized tissues such as bone and teeth.
Collapse
Affiliation(s)
- Takahisa Sasaki
- Department of Oral Histology, School of Dentistry, Showa University, Tokyo 142-8555, Japan.
| |
Collapse
|
27
|
Capparelli C, Morony S, Warmington K, Adamu S, Lacey D, Dunstan CR, Stouch B, Martin S, Kostenuik PJ. Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res 2003; 18:852-8. [PMID: 12733724 DOI: 10.1359/jbmr.2003.18.5.852] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Osteoprotegerin (OPG) is a naturally occurring negative regulator of osteoclast differentiation, activation, and survival. We created a recombinant form of human OPG (rhOPG), with a sustained serum half-life, to achieve prolonged antiresorptive activity. This study describes the rapid and sustained antiresorptive effects that are achieved with a single treatment with rhOPG. Male Sprague-Dawley rats (10 weeks old) were given a single bolus intravenous injection of vehicle (PBS) or rhOPG (5 mg/kg). PBS- and rhOPG-treated rats (n = 6/group) were killed at 0, 0.5, 1, 2, 5, 10, 20, and 30 days post-treatment. rhOPG-treated rats were compared with their age-matched controls. The main pharmacologic effect of rhOPG was a rapid (24 h) reduction in osteoclast surface in the tibia, which reached a nadir on days 5 and 10 (95% reduction vs. vehicle controls). Osteoclast surface remained significantly reduced 30 days after the single treatment with rhOPG. Tibial cancellous bone volume was significantly increased within 5 days of rhOPG treatment (23%) and reached a peak increase of 58% on day 30. Femoral bone mineral density was significantly increased in rhOPG-treated rats on days 10 and 20. Pharmacokinetic analysis revealed that serum concentrations of rhOPG remained at measurable levels throughout the 30-day study. These data show that a single intravenous injection of rhOPG in young growing rats causes significant gains in bone volume and density, which are associated with rapid and sustained suppression of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Charles Capparelli
- Metabolic Disorders Research, Amgen, Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bolon B, Shalhoub V, Kostenuik PJ, Campagnuolo G, Morony S, Boyle WJ, Zack D, Feige U. Osteoprotegerin, an endogenous antiosteoclast factor for protecting bone in rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 2002; 46:3121-35. [PMID: 12483715 DOI: 10.1002/art.10680] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Brad Bolon
- Amgen, Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shiotani A, Takami M, Itoh K, Shibasaki Y, Sasaki T. Regulation of osteoclast differentiation and function by receptor activator of NFkB ligand and osteoprotegerin. THE ANATOMICAL RECORD 2002; 268:137-46. [PMID: 12221720 DOI: 10.1002/ar.10121] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The differentiation and functions of osteoclasts (OCs) are regulated by osteoblast-derived factors. Receptor activator of NFkB ligand (RANKL) is one of the key regulatory molecules in OC formation. Osteoprotegerin (OPG) is a novel secreted member of the TNF receptor superfamily that negatively regulates osteoclastogenesis and binds to RANKL. We examined the biological actions of macrophage-colony-stimulating factor (M-CSF), RANKL, and OPG on the differentiation of OCs isolated from cocultures of mouse osteoblastic cells and bone marrow cells. Preosteoclasts (pOCs) and OCs were characterized by their ultrastructure and the expression of OC markers such as tartrate-resistant acid phosphatase (TRAP) and vacuolar-type H(+)-ATPase. pOCs formed without any additives expressed TRAP, but showed little resorptive activity on cocultured dentine slices. TRAP-positive pOCs treated with M-CSF began to fuse with each other, but lacked a ruffled border (RB) and showed almost no resorptive activity. pOCs treated with RANKL became TRAP-positive multinucleated cells, which expressed intense vacuolar-type H(+)-ATPase along the RB membranes and exhibited prominent resorptive activity. Such effects of RANKL on pOCs were completely inhibited by the addition of OPG. OPG inhibited RB formation in mature OCs and reduced their resorptive activity, and also induced apoptosis of some OCs. These results suggest that 1) RANKL induces differentiation of functional OCs from pOCs, 2) M-CSF induces macrophage-like multinucleated cells, but not OCs, 3) OPG inhibits RB formation and resorptive activity in mature OCs, 4) OPG also induces apoptosis of OCs, and 5) RANKL and OPG are, therefore, important regulators of not only the terminal differentiation of OCs but also their resorptive function.
Collapse
Affiliation(s)
- Aya Shiotani
- Department of Orthodontics, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
30
|
Romas E, Sims NA, Hards DK, Lindsay M, Quinn JWM, Ryan PFJ, Dunstan CR, Martin TJ, Gillespie MT. Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1419-27. [PMID: 12368214 PMCID: PMC1867274 DOI: 10.1016/s0002-9440(10)64417-3] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rheumatoid arthritis is characterized by progressive synovial inflammation and joint destruction. While matrix metalloproteinases (MMPs) are implicated in the erosion of unmineralized cartilage, bone destruction involves osteoclasts, the specialized cells that resorb calcified bone matrix. RANK ligand (RANKL) expressed by stromal cells and T cells, and its cognate receptor, RANK, were identified as a critical ligand-receptor pair for osteoclast differentiation and survival. A decoy receptor for RANKL, osteoprotegerin, (OPG) impinges on this system and regulates osteoclast numbers and activity. RANKL is also expressed in collagen-induced arthritis (CIA) in which focal collections of osteoclasts are prominent at sites of bone destruction. To determine the role of RANK signaling events in the effector phase of CIA, we investigated effects of Fc-osteoprotegerin fusion protein (Fc-OPG) in CIA. After induction of CIA in Dark Agouti rats, test animals were treated with or without Fc-OPG (3 mg/kg/day) subcutaneously for 5 days, beginning at the onset of disease. Paraffin-embedded joints were then analyzed histologically and the adjacent bone assessed by histomorphometry. Osteoclasts were identified using TRAP staining and expression of the mRNA for OPG and RANKL was identified by in situ hybridization. The results indicated that short-term Fc-OPG effectively prevented joint destruction, even though it had no impact on the inflammatory aspects of CIA. In arthritic joints, Fc-OPG depleted osteoclast numbers by over 75% and diminished bone erosion scores by over 60%. Although cartilage loss was also reduced by Fc-OPG, the effects on cartilage were less striking than those on bone. In arthritic joints OPG mRNA was highly expressed and co-localized with RANK ligand, and treatment with Fc-OPG did not affect the expression of endogenous RANKL or OPG mRNA. These data demonstrate that short term Fc-OPG treatment has powerful anti-erosive effects, principally on bone, even though synovitis is not affected. These findings indicate the potential utility of disrupting RANK signaling to preserve skeletal integrity in inflammatory arthritis.
Collapse
Affiliation(s)
- Evan Romas
- University of Melbourne, the Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang J, Dai J, Lin DL, Habib P, Smith P, Murtha J, Fu Z, Yao Z, Qi Y, Keller ET. Osteoprotegerin abrogates chronic alcohol ingestion-induced bone loss in mice. J Bone Miner Res 2002; 17:1256-63. [PMID: 12096839 DOI: 10.1359/jbmr.2002.17.7.1256] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To investigate the role of osteoprotegerin (OPG) on alcohol (ethanol)-mediated osteoporosis, we measured a variety of bone remodeling parameters in mice that were either on a control diet, an ethanol (5%) diet, or an ethanol (5%) diet plus OPG administration. OPG diminished the ethanol-induced (1) decrease in bone mineral density (BMD) as determined by dual-energy densitometry, (2) decrease in cancellous bone volume and trabecular width and the increase of osteoclast surface as determined by histomorphometry of the femur, (3) increase in urinary deoxypyridinolines (Dpd's) as determined by ELISA, and (4) increase in colony-forming unit-granulocyte macrophage (CFU-GM) formation and osteoclastogenesis as determined by ex vivo bone marrow cell cultures. Additionally, OPG diminished the ethanol-induced decrease of several osteoblastic parameters including osteoblast formation and osteoblast culture calcium retention. These findings were supported by histomorphometric indices in the distal femur. Taken together, these data show that OPG diminishes ethanol-induced bone loss. Furthermore, they suggest that OPG achieves this through its ability to abrogate ethanol-induced promotion of osteoclastogenesis and promote osteoblast proliferation.
Collapse
Affiliation(s)
- Jian Zhang
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Price PA, Caputo JM, Williamson MK. Bone origin of the serum complex of calcium, phosphate, fetuin, and matrix Gla protein: biochemical evidence for the cancellous bone-remodeling compartment. J Bone Miner Res 2002; 17:1171-9. [PMID: 12096831 DOI: 10.1359/jbmr.2002.17.7.1171] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We previously described the discovery of a fetuin-matrix Gla protein (MGP)-mineral complex in the serum of rats treated with the bone-active bisphosphonate etidronate and showed that the appearance of this complex in serum correlates with the inhibition of bone mineralization by etidronate. In this study we show that the inhibition of bone resorption by treatment with the hormone calcitonin, the cytokine osteoprotegerin, or the drug alendronate, completely inhibits the generation of the fetuin-mineral complex in response to etidronate injection. These observations can be explained best by the bone-remodeling compartment (BRC), a cancellous bone compartment in which the concentrations of calcium and phosphate are determined directly by the combined actions of the osteoclast and the osteoblast. When bone mineralization is acutely inhibited by etidronate, the BRC model predicts that the continuing action of osteoclasts will cause a sharp rise in the concentrations of calcium and phosphate in the aqueous solution of the BRC with the consequent spontaneous formation of calcium phosphate crystal nuclei in which growth then would be arrested by formation of a complex with fetuin. When the inhibition of bone resorption by calcitonin, osteoprotegerin, or alendronate is combined with the acute inhibition of bone mineralization with etidronate, the BRC model correctly predicts that there will no longer be a sharp rise in calcium and phosphate, and, therefore, there will no longer be the formation of the fetuin-mineral complex. The vascular nature of the BRC is supported by the observations that the fetuin component of the fetuin-mineral complex is derived from plasma fetuin and that the fetuin mineral complex appears in plasma within minutes of the inhibition of bone mineralization with etidronate.
Collapse
Affiliation(s)
- Paul A Price
- Division of Biology, University of California, San Diego, La Jolla 92093-0368, USA
| | | | | |
Collapse
|
33
|
Kanematsu M, Yoshimura K, Takaoki M, Sato A. Vector-averaged gravity regulates gene expression of receptor activator of NF-kappaB (RANK) ligand and osteoprotegerin in bone marrow stromal cells via cyclic AMP/protein kinase A pathway. Bone 2002; 30:553-8. [PMID: 11934645 DOI: 10.1016/s8756-3282(02)00680-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bone loss due to unloading of the skeleton may be caused by an acceleration of osteoclastic bone resorption as well as a decline of osteoblastic bone formation. Recently, two molecular species that play important roles in osteoclastogenesis were discovered: (i) the receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG) ligand/osteoclast differentiation factor induces osteoclastogenesis; and (ii) the OPG/osteoclastogenesis inhibitory factor potently inhibits osteoclastogenesis. To investigate the effects of gravity on gene expression of RANKL and OPG, a mouse bone marrow-derived stromal cell line, ST2, was cultured on a single axis clinostat, which generates a vector-averaged gravity environment. Northern blot analysis revealed that RANKL mRNA was increased, whereas that of OPG decreased. The clinostat culture also caused an increase in intracellular cyclic (cAMP) level. Both forskolin and dibutyryl-cAMP mimicked the regulation of RANKL and OPG transcription in clinostat culture. These modulations of gene expression in clinostat culture were blocked by a protein kinase A (PKA) inhibitor, H89, but not by a cyclooxygenase inhibitor, indomethacin. The enhancement of RANKL gene expression under clinostat culture and its inhibition by H89 were confirmed by a reporter assay with the murine RANKL 5'-flanking region. These results suggest that modulations of RANKL and OPG expression in stromal cells might be one of the causes of bone loss during skeletal unloading. An elevation of intracellular cAMP level caused through an as yet undetermined pathway is involved in modulation of RANKL and OPG expression during clinostat culture.
Collapse
Affiliation(s)
- M Kanematsu
- Bone Project, Space Utilization Research Programme, National Space Development Agency of Japan, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
34
|
Ishijima M, Tsuji K, Rittling SR, Yamashita T, Kurosawa H, Denhardt DT, Nifuji A, Noda M. Resistance to unloading-induced three-dimensional bone loss in osteopontin-deficient mice. J Bone Miner Res 2002; 17:661-7. [PMID: 11918223 DOI: 10.1359/jbmr.2002.17.4.661] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent development in three-dimensional (3D) imaging of cancellous bone has made possible true 3D quantification of trabecular architecture. This provides a significant improvement in the measures available to study and understand the mechanical functions of cancellous bone. We recently reported that the presence of osteopontin (OPN) was required for the effects of mechanical stress on bone as OPN-null (OPN-/-) mice showed neither enhancement of bone resorption nor suppression of bone formation when they were subjected to unloading by tail suspension. However, in this previous study, morphological analyses were limited to two-dimensional (2D) evaluation. Although bone structure is 3D and thus stress effect should be evaluated based on 3D parameters, no such 3D morphological features underlying the phenomenon have been known. To elucidate the role of OPN in mediating mechanical stress effect based on true quantitative examination of bone, we evaluated 3D trabecular structures of hindlimb bones of OPN-/- mice after tail suspension. Tail suspension significantly reduced 3D parameters of bone volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and anisotropy and increased 3D parameters on trabecular separation (Tb.Sp) in wild-type mice. In contrast, these 3D parameters were not altered after tail suspension in OPN-/- mice. These data provided evidence that OPN is required for unloading-induced 3D bone loss.
Collapse
Affiliation(s)
- Muneaki Ishijima
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Oshiro T, Shiotani A, Shibasaki Y, Sasaki T. Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. THE ANATOMICAL RECORD 2002; 266:218-25. [PMID: 11920384 DOI: 10.1002/ar.10061] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteoprotegerin (OPG) is a novel secreted member of the tumor necrosis factor (TNF) receptor superfamily that negatively regulates osteoclastogenesis. The receptor activator of the NFKB ligand (RANKL) is one of the key regulatory molecules in osteoclast formation and binds to OPG. In this study, it was suggested that OPG and RANKL are involved in alveolar bone remodeling during orthodontic tooth movement. We examined RANKL localization and osteoclast induction in periodontal tissues during experimental movement of incisors in OPG-deficient mice. To produce orthodontic force, an elastic band was inserted between the upper right and left incisors for 2 or 5 days, and the dissected maxillae were examined for cytochemical and immunocytochemical localization of tartrate-resistant acid phosphatase (TRAP), vacuolar-type H(+)-ATPase, and RANKL. Compared to wild-type OPG (+/+) littermates, TRAP-positive multinucleated cells were markedly induced in the periodontal ligament (PDL) on the compressed side and in the adjacent alveolar bone of OPG-deficient mice. These multinucleated cells exhibited intense vacuolar-type H(+)-ATPase along the ruffled border membranes. Because of accelerated osteoclastic resorption in OPG-deficient mice, alveolar bone was severely destroyed and partially perforated at 2 and 5 days after force application. In both wild-type and OPG-deficient mice, RANKL expression became stronger at 2 and 5 days after force application than before force application. There was no apparent difference in intensity of RANKL expression between OPG (+/+) littermates and OPG-deficient mice. In both wild-type and OPG-deficient mice, expression of RANKL protein was detected in osteoblasts, fibroblasts, and osteoclasts mostly located in resorption lacunae. These results suggest that during orthodontic tooth movement, RANKL and OPG in the periodontal tissues are important determinants regulating balanced alveolar bone resorption.
Collapse
Affiliation(s)
- Takahiro Oshiro
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Romas E, Gillespie MT, Martin TJ. Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 2002; 30:340-6. [PMID: 11856640 DOI: 10.1016/s8756-3282(01)00682-2] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone loss represents a major unsolved problem in rheumatoid arthritis (RA). The skeletal complications of RA consist of focal bone erosions and periarticular osteoporosis at sites of active inflammation, and generalized bone loss with reduced bone mass. New evidence indicates that osteoclasts are key mediators of all forms of bone loss in RA. TNF-alpha is one of the most potent osteoclastogenic cytokines produced in inflammation and is pivotal in the pathogenesis of RA. Production of tumor necrosis factor-alpha (TNF-alpha) and other proinflammatory cytokines in RA is largely CD4(+) T-cell dependent and mostly a result of interferon-gamma (IFN-gamma) secretion. Synovial T cells contribute to synovitis by secreting IFN-gamma and interleukin (IL)-17 as well as directly interacting with macrophages and fibroblasts through cell-to-cell contact mechanisms. Activated synovial T cells express both membrane-bound and soluble forms of receptor activator of NF-kappaB ligand (RANKL). In rheumatoid synovium, fibroblasts also provide an abundant source of RANKL. Furthermore, TNF-alpha and IL-1 target stromal-osteoblastic cells to increase IL-6, IL-11, and parathyroid hormone-related protein (PTHrP) production as well as expression of RANKL. In the presence of permissive levels of RANKL, TNF-alpha acts directly to stimulate osteoclast differentiation of macrophages and myeloid progenitor cells. In addition, TNF-alpha induces IL-1 release by synovial fibroblasts and macrophages, and IL-1, together with RANKL, is a major survival and activation signal for nascent osteoclasts. Consequently, TNF-alpha and IL-1, acting in concert with RANKL, can powerfully promote osteoclast recruitment, activation, and osteolysis in RA. The most convincing support for this hypothesis has come from in vivo studies of animal models. Protection of bone in the presence of continued inflammation in arthritic rats treated with osteoprotegerin (OPG) supports the concept that osteoclasts mediate bone loss, providing further evidence that OPG protects bone integrity by downregulating osteoclastogenesis and promoting osteoclast apoptosis. Modulation of the RANKL/OPG equilibrium in arthritis may provide additional skeletal benefits, such as chondroprotection. The nexus between T-cell activation, TNF-alpha overproduction, and the RANKL/OPG/RANK ligand-receptor system points to a unifying paradigm for the entire spectrum of skeletal pathology in RA. Strategies that address osteoclastic bone resorption will represent an important new facet of therapy for RA.
Collapse
Affiliation(s)
- E Romas
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| | | | | |
Collapse
|
37
|
Price PA, June HH, Buckley JR, Williamson MK. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D. Arterioscler Thromb Vasc Biol 2001; 21:1610-6. [PMID: 11597934 DOI: 10.1161/hq1001.097102] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present experiments were carried out to test the hypothesis that arterial calcification is linked to bone resorption by determining whether the selective inhibition of bone resorption with osteoprotegerin will inhibit arterial calcification. In the first test, arterial calcification was induced by treating 22-day-old male rats with warfarin, a procedure that inhibits the gamma-carboxylation of matrix Gla protein and causes extensive calcification of the arterial media. Compared with rats treated for 1 week with warfarin alone, rats treated with warfarin plus osteoprotegerin at a dose of 1 mg/kg per day had dramatically reduced alizarin red staining for calcification in the aorta and in the carotid, hepatic, mesenteric, renal, and femoral arteries, and they had 90% lower levels of calcium and phosphate in the abdominal aorta (P<0.001) and in tracheal ring cartilage (P<0.01). More rapid arterial calcification was induced by treating 49-day-old male rats with toxic doses of vitamin D. Treatment for 96 hours with vitamin D caused widespread alizarin red staining for calcification in the aorta and the femoral, mesenteric, hepatic, renal, and carotid arteries, and osteoprotegerin completely prevented calcification in each of these arteries and reduced the levels of calcium and phosphate in the abdominal aorta to control levels (P<0.001). Treatment with vitamin D also caused extensive calcification in the lungs, trachea, kidneys, stomach, and small intestine, and treatment with osteoprotegerin reduced or prevented calcification in each of these sites. Measurement of serum levels of cross-linked N-teleopeptides showed that osteoprotegerin dramatically reduced bone resorption activity in each of these experiments (P<0.001). Therefore, we conclude that doses of osteoprotegerin that inhibit bone resorption are able to potently inhibit the calcification of arteries that is induced by warfarin treatment and by vitamin D treatment. These results support the hypothesis that arterial calcification is linked to bone resorption.
Collapse
Affiliation(s)
- P A Price
- Division of Biology, University of California, San Diego, La Jolla, USA.
| | | | | | | |
Collapse
|
38
|
Hofbauer LC, Neubauer A, Heufelder AE. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer 2001; 92:460-70. [PMID: 11505389 DOI: 10.1002/1097-0142(20010801)92:3<460::aid-cncr1344>3.0.co;2-d] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The current review summarizes the roles of the ligand, receptor activator of nuclear factor-kappaB ligand (RANKL), its receptor, receptor activator of nuclear factor-kappaB (RANK), and its decoy receptor, osteoprotegerin (OPG), on osteoclast biology and bone resorption. Furthermore, it highlights the impact of these compounds on the pathogenesis of malignant bone diseases, including tumor metastasis, humoral hypercalcemia of malignancy, and multiple myeloma. Finally, the authors discuss the therapeutic potential of OPG in the management of malignancies involving the skeleton. METHODS After its discovery and cloning, the biologic effects of RANKL, RANK, and OPG have been characterized by in vitro experiments and in vivo studies. The generation of knock-out mice and transgenic mice has produced animal models with absent or excessive production of these cytokine components that display opposite abnormal skeletal phenotypes (osteoporosis or osteopetrosis). The potential effect of RANKL and OPG has been assessed by evaluating these compounds in various animal models of metabolic and malignant bone disease and by administering OPG to humans. RESULTS Abnormal bone resorption due to local or systemic stimulation of osteoclast differentiation and activation is a hallmark of various benign and malignant bone diseases. RANKL, RANK, and OPG form an essential cytokine system that is capable of regulating all aspects of osteoclast functions, including proliferation, differentiation, fusion, activation, and apoptosis. The balance of bone resorption depends on the local RANKL-to-OPG ratio, which is enhanced in bone metastases and humoral hypercalcemia of malignancy. The exogenous administration of OPG to tumor-bearing animals corrects the increased RANKL-to-OPG ratio, and reverses the skeletal complications of malignancies. CONCLUSIONS Abnormalities of the RANKL/OPG system have been implicated in the pathogenesis of various primary and secondary bone malignancies. The systemic administration of OPG appears to be a potent novel therapeutic agent for treatment of these disorders.
Collapse
Affiliation(s)
- L C Hofbauer
- Division of Gastroenterology, Endocrinology and Metabolism, Department of Medicine, Philipps University, Baldingerstrasse, D-35033 Marburg, Germany.
| | | | | |
Collapse
|
39
|
Bateman TA, Dunstan CR, Lacey DL, Ferguson VL, Ayers RA, Simske SJ. Osteoprotegerin ameliorates sciatic nerve crush induced bone loss. J Orthop Res 2001; 19:518-23. [PMID: 11518255 DOI: 10.1016/s0736-0266(00)00057-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study examines the ability of osteoprotegerin (OPG) to prevent the local bone resorption caused by sciatic nerve damage. Sixty-five 18-week-old male mice were assigned to one of six groups (n = 10-11/group). A baseline control group was sacrificed on day zero of the 10-day study. The remaining groups were placebo sham operated, placebo nerve crush (Plac NC) operated, 0.1 mg/kg/day OPG + nerve crush (LOW), 0.3 mg/kg/day OPG + nerve crush (MED), and 1.0 mg/kg/day OPG + nerve crush (HI). Nerve crush or sham operations were performed on the right leg. The left leg served as a contralateral control to the nerve crushed (ipsilateral) leg. The difference in mass between the right and left femur and tibia was examined. Additionally, quantitative histomorphometry was performed on the right and left femur and tibia diaphyses. Nerve crush resulted in a significant loss of bone mass in the ipsilateral side compared to the contralateral side. Bone mass for the ipsilateral bones of the Plac NC group were significantly reduced by 3.8% in the femur and 3.5% in the tibia compared to the contralateral limb. The percent diminution was reduced for OPG treated mice compared to the Plac NC group for both the femur and tibia. In the femur, the percent reduction of ipsilateral bone mass was reduced to 1.0% (LOW), 1.3% (MED) and 1.6% (HI) compared to the contralateral limb. In the tibia, loss of bone mass in the ipsilateral limb was reduced to 1.4% (LOW), 1.4% (MED), and 2.4% (HI) compared to the contralateral. OPG also decreased the amount of tibial endocortical resorption compared to the Plac NC group. In summary, OPG mitigated bone loss caused by damage to the sciatic nerve.
Collapse
Affiliation(s)
- T A Bateman
- Department of Aerospace Engineering Sciences, BioServe Space Technologies, University of Colorado, Boulder 80309-0429, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Hofbauer LC, Heufelder AE. The role of osteoprotegerin and receptor activator of nuclear factor kappaB ligand in the pathogenesis and treatment of rheumatoid arthritis. ARTHRITIS AND RHEUMATISM 2001; 44:253-9. [PMID: 11229454 DOI: 10.1002/1529-0131(200102)44:2<253::aid-anr41>3.0.co;2-s] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- L C Hofbauer
- Division of Gastroenterology, Endocrinology, and Metabolism, Zentrum für Innere Medizin, Philipps University, Marburg, Germany
| | | |
Collapse
|