1
|
Venkatesh VS, Nie T, Golub S, Stok KS, Hemmatian H, Desai R, Handelsman DJ, Zajac JD, Grossmann M, Davey RA. High circulating concentrations of estradiol are anabolic for bone mass and strength in an adult male to female transgender mouse model. Bone 2024; 186:117143. [PMID: 38866125 DOI: 10.1016/j.bone.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
The effects of gender affirming hormone therapy (GAHT) on bone microarchitecture and fracture risk in adult transgender women is unclear. To investigate the concept that skeletal integrity and strength in trans women may be improved by treatment with a higher dose of GAHT than commonly prescribed, we treated adult male mice with a sustained, high dose of estradiol. Adult male mice at 16 weeks of age were administered ~1.3 mg estradiol by silastic implant, implanted intraperitoneally, for 12 weeks. Controls included vehicle treated intact females and males. High-dose estradiol treatment in males stimulated the endocortical deposition of bone at the femoral mid-diaphysis, increasing cortical thickness and bone area. This led to higher stiffness, maximum force, and the work required to fracture the bone compared to male controls, while post-yield displacement was unaffected. Assessment of the material properties of the bone showed an increase in both elastic modulus and ultimate stress in the estradiol treated males. Treatment of male mice with high dose estradiol was also anabolic for trabecular bone, markedly increasing trabecular bone volume, number and thickness in the distal metaphysis which was accompanied by an increase in the histomorphometric markers of bone remodelling, mineralizing surface/bone surface, bone formation rate and osteoclast number. In conclusion, a high dose of estradiol is anabolic for cortical and trabecular bone in a male to female transgender mouse model, increasing both stiffness and strength. These findings suggest that increasing the current dose of GAHT administered to trans women, while considering other potential adverse effects, may be beneficial to preserving their bone microstructure and strength.
Collapse
Affiliation(s)
- Varun S Venkatesh
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia; Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia.
| | - Tian Nie
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia.
| | - Suzanne Golub
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia.
| | - Kathryn S Stok
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Haniyeh Hemmatian
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia.
| | - Reena Desai
- ANZAC Research Institute, University of Sydney and Andrology, Concord Repatriation General Hospital, Concord, New South Wales 2137, Australia.
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney and Andrology, Concord Repatriation General Hospital, Concord, New South Wales 2137, Australia.
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia.
| | - Mathis Grossmann
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia; Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia.
| | - Rachel A Davey
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia.
| |
Collapse
|
2
|
Suboptimal Plasma Vitamin C Is Associated with Lower Bone Mineral Density in Young and Early Middle-Aged Men: A Retrospective Cross-Sectional Study. Nutrients 2022; 14:nu14173556. [PMID: 36079812 PMCID: PMC9459983 DOI: 10.3390/nu14173556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background: This study was conducted to evaluate associations between bone mineral density (BMD) and four selected circulating nutrients, particularly vitamin C, among adults aged 20−49 years. Methods: In this retrospective cross-sectional study, the lumbar spine BMD of 866 men and 589 women were measured by dual-energy X-ray absorptiometry and divided into tertiles, respectively. Logistic regressions were used to identify the predictors of low BMD by comparing subjects with the highest BMD to those with the lowest. Results: Multivariate logistic regressions identified suboptimal plasma vitamin C (adjusted odds ratio (AOR) 1.64, 95% confidence interval (CI) 1.16, 2.31), suboptimal serum vitamin B12 (AOR 2.05, 95% CI 1.02, 4.12), and low BMI (BMI < 23) (AOR 1.68, 95% CI 1.12, 2.53) as independent predictors for low BMD in men. In women, low BMI was the only independent predictor for low BMD. Plasma vitamin C, categorized as suboptimal (≤8.8 mg/L) and sufficient (>8.8 mg/L), was positively significantly correlated with the lumbar spine BMD in men, but there was no association in women. Conclusions: Plasma vitamin C, categorized as suboptimal and sufficient, was positively associated with the lumbar spine BMD in young and early middle-aged men. A well-designed cohort study is needed to confirm the findings.
Collapse
|
3
|
Eusemann BK, Ulrich R, Sanchez-Rodriguez E, Benavides-Reyes C, Dominguez-Gasca N, Rodriguez-Navarro AB, Petow S. Bone quality and composition are influenced by egg production, layer line, and estradiol-17ß in laying hens. Avian Pathol 2022; 51:267-282. [PMID: 35261302 DOI: 10.1080/03079457.2022.2050671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Keel bone fractures are a serious animal welfare problem in laying hens. The aim of the current study was to assess the influence of egg production, estradiol-17ß, and selection for high laying performance on bone quality. Hens of two layer lines differing in laying performance (WLA: 320 eggs per year, G11: 200 eggs per year) were allocated to four treatment groups. Group S received a deslorelin acetate implant that suppressed egg production. Group E received an implant with the sexual steroid estradiol-17ß. Group SE received both implants and group C did not receive any implant. In the 63rd week of age, composition and characteristics of the tibiotarsi were assessed using histological analysis, three-point bending test, thermogravimetric analysis, infrared spectroscopy, and two-dimensional X-ray diffraction, respectively. Non-egg laying hens showed a higher total bone area and a higher relative amount of cortical bone compared to egg laying hens. Hens of layer line G11 showed a higher relative amount of medullary bone and a higher degree of mineralization of the cortical bone compared to hens of layer line WLA. These differences in bone composition may explain different susceptibility for keel bone fractures in non-egg laying compared to egg laying hens as well as in hens of layer lines differing in laying performance. The effect of exogenous estradiol-17ß on bone parameters varied between the layer lines indicating a genetic influence on bone physiology and the way it can be modulated by hormone substitution.
Collapse
Affiliation(s)
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Isle of Riems, Germany
| | | | | | | | | | - Stefanie Petow
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| |
Collapse
|
4
|
Pilutin A, Misiakiewicz-Has K, Kolasa-Wołosiuk A, Trybek G, Urban F, Marchlewicz M, Leszczyński B, Wróbel A, Wiszniewska B. Morphology and serum and bone tissue calcium and magnesium concentrations in the bones of male rats chronically treated with letrozole, a nonsteroidal cytochrome P450 aromatase inhibitor. Connect Tissue Res 2021; 62:454-463. [PMID: 32419518 DOI: 10.1080/03008207.2020.1771329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim of the study: The role of estrogen (E) in the regulation of bone turnover in women is well established, though the contributions of E versus testosterone (T) in the control of bone turnover in men are poorly understood. The aim of this study was to examine the association between chronic treatment with letrozole, a nonsteroidal inhibitor blocking the aromatase activity and thus the conversion of androgens into estrogens, and cortical bone morphology in the femur and humerus of male adult rats.Materials and Methods: Adult male rats were treated with letrozole for 6 months and the body and femur weight, morphology, collagen structure, blood serum, and bone tissue concentrations of calcium and magnesium were examined.Results: Long-term aromatase inhibition resulted in a decrease in femur mass, a wavelike arrangement of bone and lamellae with an altered organization of collagen in compact bone, a increased concentration of calcium in blood serum, and no change in calcium bone tissue concentration, magnesium serum, or bone tissue concentration. MicroCT study of the humerus revealed significant decreases of whole bone tissue volume, cortical bone thickness, cortical bone volume, and external cortical bone thickness with letrozole treatment.Conclusion: Chronic treatment with letrozole affected cortical bone structure and produced histomorphological changes in male rat bone similar to that observed in the aging processes.
Collapse
Affiliation(s)
- Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Grzegorz Trybek
- Department of Dental Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Fabian Urban
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| | - Mariola Marchlewicz
- Department of Aesthetic Dermatology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Leszczyński
- M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Andrzej Wróbel
- M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
5
|
Machek SB, Cardaci TD, Wilburn DT, Willoughby DS. Considerations, possible contraindications, and potential mechanisms for deleterious effect in recreational and athletic use of selective androgen receptor modulators (SARMs) in lieu of anabolic androgenic steroids: A narrative review. Steroids 2020; 164:108753. [PMID: 33148520 DOI: 10.1016/j.steroids.2020.108753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/07/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
Anabolic androgenic steroids (AAS) are testosterone and testosterone-derivative compounds sporadically employed by athletes and increasingly used recreationally to acquire a competitive edge or improve body composition. Nevertheless, users are subject to undesired side effects majorly associated with tissue-specific androgen receptor (AR) binding-mediated actions. More recently, selective AR modulators (SARMs) have gained popularity towards delivering androgen-associated anabolic actions with hopes of minimal androgenic effects. While several SARMs are in preclinical and clinical phases intended for demographics subject to hypogonadism, muscle wasting, and osteoporosis, several athletic organizations and drug testing affiliates have realized the increasingly widespread use of SARMs amongst competitors and have subsequently banned their use. Furthermore, recreational users are haphazardly acquiring these compounds from the internet and consuming doses several times greater than empirically reported. Unfortunately, online sources are rife with potential contamination, despite a prevailing public opinion suggesting SARMs are innocuous AAS alternatives. Considering each agent has a broad range of supporting evidence in both human and non-human models, it is important to comprehensively evaluate the current literature on commercially available SARMs to gain better understanding of their efficacy and if they can truly be considered a safer AAS alternative. Therefore, the purpose of this review is to discuss the current evidence regarding AAS and SARM mechanisms of action, demonstrate the efficacy of several prominent SARMs in a variety of scientific trials, and theorize on the wide-ranging contraindications and potential deleterious effects, as well as potential future directions regarding acute and chronic SARM use across a broad range of demographics.
Collapse
Affiliation(s)
- Steven B Machek
- Exercise & Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation. Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Thomas D Cardaci
- Exercise & Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation. Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA; Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Dylan T Wilburn
- Exercise & Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation. Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Darryn S Willoughby
- Mayborn College of Health Sciences, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA.
| |
Collapse
|
6
|
Živanović J, Jarić I, Ajdžanović V, Mojić M, Miler M, Šošić-Jurjević B, Milošević V, Filipović B. Daidzein upregulates anti-aging protein Klotho and NaPi 2a cotransporter in a rat model of the andropause. Ann Anat 2018; 221:27-37. [PMID: 30240906 DOI: 10.1016/j.aanat.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Abstract
In a rat model of the andropause we aimed to examine the influence of daidzein, soy isoflavone, on the structure and function of parathyroid glands (PTG) and the expression levels of some of the crucial regulators of Ca2+ and Pi homeostasis in the kidney, and to compare these effects with the effects of estradiol, serving as a positive control. Middle-aged (16-month-old) male Wistar rats were divided into the following groups: sham-operated (SO), orchidectomized (Orx), orchidectomized and estradiol-treated (Orx+E; 0.625mg/kg b.w./day, s.c.) as well as orchidectomized and daidzein-treated (Orx+D; 30mg/kg b.w./day, s.c.) group. Every treated group had a corresponding control group. PTH serum concentration was decreased in Orx+E and Orx+D groups by 10% and 21% (p<0.05) respectively, in comparison with the Orx. PTG volume was decreased in Orx+E group by 16% (p<0.05), when compared to the Orx. In Orx+E group expression of NaPi 2a was lower (p<0.05), while NaPi 2a abundance in Orx+D animals was increased (p<0.05), when compared to Orx. Expression of PTH1R was increased (p<0.05) in Orx+E group, while in Orx+D animals the same parameter was decreased (p<0.05), in comparison with Orx. Klotho expression was elevated (p<0.05) in Orx+D rats, in regard to Orx. Orx+D induced reduction in Ca2+/creatinine and Pi/creatinine ratio in urine by 32% and 16% (p<0.05) respectively, in comparison with Orx. In conclusion, presented results indicate the more coherent beneficial effects of daidzein compared to estradiol, on disturbed Ca2+ and Pi homeostasis, and presumably on bone health, in the aging male rats.
Collapse
Affiliation(s)
- Jasmina Živanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Ivana Jarić
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Marija Mojić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Branko Filipović
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Wu J, Movérare-Skrtic S, Börjesson AE, Lagerquist MK, Sjögren K, Windahl SH, Koskela A, Grahnemo L, Islander U, Wilhelmson AS, Tivesten Å, Tuukkanen J, Ohlsson C. Enzalutamide Reduces the Bone Mass in the Axial But Not the Appendicular Skeleton in Male Mice. Endocrinology 2016; 157:969-77. [PMID: 26587782 DOI: 10.1210/en.2015-1566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Testosterone is a crucial regulator of the skeleton, but the role of the androgen receptor (AR) for the maintenance of the adult male skeleton is unclear. In the present study, the role of the AR for bone metabolism and skeletal growth after sexual maturation was evaluated by means of the drug enzalutamide, which is a new AR antagonist used in the treatment of prostate cancer patients. Nine-week-old male mice were treated with 10, 30, or 100 mg/kg·d of enzalutamide for 21 days or were surgically castrated and were compared with vehicle-treated gonadal intact mice. Although orchidectomy reduced the cortical bone thickness and trabecular bone volume fraction in the appendicular skeleton, these parameters were unaffected by enzalutamide. In contrast, both enzalutamide and orchidectomy reduced the bone mass in the axial skeleton as demonstrated by a reduced lumbar spine areal bone mineral density (P < .001) and trabecular bone volume fraction in L5 vertebrae (P < .001) compared with vehicle-treated gonadal intact mice. A compression test of the L5 vertebrae revealed that the mechanical strength in the axial skeleton was significantly reduced by enzalutamide (maximal load at failure -15.3% ± 3.5%; P < .01). The effects of enzalutamide in the axial skeleton were associated with a high bone turnover. In conclusion, enzalutamide reduces the bone mass in the axial but not the appendicular skeleton in male mice after sexual maturation. We propose that the effect of testosterone on the axial skeleton in male mice is mainly mediated via the AR.
Collapse
Affiliation(s)
- Jianyao Wu
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Anna E Börjesson
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Klara Sjögren
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Sara H Windahl
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Antti Koskela
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Louise Grahnemo
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Ulrika Islander
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Anna S Wilhelmson
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Åsa Tivesten
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Juha Tuukkanen
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research (J.W., S.M.-S., A.E.B., M.K.L., K.S., S.H.W., L.G., U.I., C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, S-413 45 Gothenburg, Sweden; Rheumatology and Bone Diseases Unit (A.E.B.), Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, Scotland, United Kingdom; Centre for Comparative and Clinical Anatomy (S.H.W.), School of Veterinary Science, University of Bristol, Bristol BS28EJ, United Kingdom; Department of Anatomy and Cell Biology (A.K., J.T.), Medical Research Center, University of Oulu, FI-90014 Oulu, Finland; and The Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., ÅT.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| |
Collapse
|
8
|
Ucer S, Iyer S, Bartell SM, Martin-Millan M, Han L, Kim HN, Weinstein RS, Jilka RL, O'Brien CA, Almeida M, Manolagas SC. The Effects of Androgens on Murine Cortical Bone Do Not Require AR or ERα Signaling in Osteoblasts and Osteoclasts. J Bone Miner Res 2015; 30:1138-49. [PMID: 25704845 PMCID: PMC4871247 DOI: 10.1002/jbmr.2485] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (AR(f/y);Prx1-Cre or ERα(f/f);Osx1-Cre) or myeloid cell lineage (AR(f/y);LysM-Cre or ERα(f/f);LysM-Cre) and their descendants. Male AR(f/y);Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, AR(f/y);LysM-Cre, ERα(f/f);Osx1-Cre, or ERα(f/f);LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the AR(f/y);Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts-not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s).
Collapse
Affiliation(s)
- Serra Ucer
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Srividhya Iyer
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Shoshana M Bartell
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Marta Martin-Millan
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Robert S Weinstein
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
9
|
Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C. Sex steroid actions in male bone. Endocr Rev 2014; 35:906-60. [PMID: 25202834 PMCID: PMC4234776 DOI: 10.1210/er.2014-1024] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority.
Collapse
Affiliation(s)
- Dirk Vanderschueren
- Clinical and Experimental Endocrinology (D.V.) and Gerontology and Geriatrics (M.R.L., E.G.), Department of Clinical and Experimental Medicine; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine (M.R.L., F.C.); and Centre for Metabolic Bone Diseases (D.V., M.R.L., E.G.), KU Leuven, B-3000 Leuven, Belgium; and Center for Bone and Arthritis Research (M.K.L., L.V., A.E.B., C.O.), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Beck DT, Yarrow JF, Beggs LA, Otzel DM, Ye F, Conover CF, Miller JR, Balaez A, Combs SM, Leeper AM, Williams AA, Lachacz SA, Zheng N, Wronski TJ, Borst SE. Influence of aromatase inhibition on the bone-protective effects of testosterone. J Bone Miner Res 2014; 29:2405-13. [PMID: 24764121 PMCID: PMC8366408 DOI: 10.1002/jbmr.2265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/09/2014] [Accepted: 04/22/2014] [Indexed: 11/07/2022]
Abstract
The influence of the aromatase enzyme in androgen-induced bone maintenance after skeletal maturity remains somewhat unclear. Our purpose was to determine whether aromatase activity is essential to androgen-induced bone maintenance. Ten-month-old male Fisher 344 rats (n = 73) were randomly assigned to receive Sham surgery, orchiectomy (ORX), ORX + anastrozole (AN; aromatase inhibitor), ORX + testosterone-enanthate (TE, 7.0 mg/wk), ORX + TE + AN, ORX + trenbolone-enanthate (TREN; nonaromatizable, nonestrogenic testosterone analogue; 1.0 mg/wk), or ORX + TREN + AN. ORX animals exhibited histomorphometric indices of high-turnover osteopenia and reduced cancellous bone volume compared with Shams. Both TE and TREN administration suppressed cancellous bone turnover similarly and fully prevented ORX-induced cancellous bone loss. TE- and TREN-treated animals also exhibited greater femoral neck shear strength than ORX animals. AN co-administration slightly inhibited the suppression of bone resorption in TE-treated animals but did not alter TE-induced suppression of bone formation or the osteogenic effects of this androgen. In TREN-treated animals, AN co-administration produced no discernible effects on cancellous bone turnover or bone volume. ORX animals also exhibited reduced levator ani/bulbocavernosus (LABC) muscle mass and elevated visceral adiposity. In contrast, TE and TREN produced potent myotrophic effects in the LABC muscle and maintained fat mass at the level of Shams. AN co-administration did not alter androgen-induced effects on muscle or fat. In conclusion, androgens are able to induce direct effects on musculoskeletal and adipose tissue, independent of aromatase activity.
Collapse
Affiliation(s)
- Darren T Beck
- Malcom Randall Veterans Affairs Medical Center, Geriatric Research Education and Clinical Center, Gainesville, FL, USA; Department of Kinesiology, University of Rhode Island, Kingston, RI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF, Tian W, Tang W, Long J. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res 2014; 32:709-720. [PMID: 24522890 DOI: 10.1002/jor.22590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/14/2014] [Indexed: 02/04/2023]
Abstract
Promoting new bone formation during distraction osteogenesis (DO) in elderly patients with osteoporosis is still a challenge. In this study, we investigated the effect of gene therapy using local Runt-related gene 2 on new bone formation during osteoporotic mandibular DO in rabbits. First, we successfully established a mandibular osteoporotic animal model by ovariectomizing rabbits. Second, the right mandibles of the osteoporotic rabbits were distracted after corticotomy. The distraction gap of the rabbits in Group A2 and B2 were injected with Adv-hRunx2-GFP-transfected adipose-derived stromal cells (ADSCs) and Adv-GFP-transfected ADSCs, respectively. Rabbits in Groups C2 (ovariectomized control) and D2 (sham surgery control) were injected with physiologic saline. New-generation bone tissue in the distraction gap was analyzed via plain radiographic examinations, micro-computed tomography, histological examinations, and biomechanical testing at weeks 3, 6, and 9 of the consolidation period. Results of above examinations showed that no ideal new bone formation was observed in Groups B2 and C2, but obvious ideal new bone formation was observed in Group A2 and D2. The results suggested that gene therapy using rhRunx2-modified ADSCs promoted new bone formation during osteoporotic mandibular DO and effectively compensated for the detrimental effects of systemic osteoporosis on new bone formation.
Collapse
Affiliation(s)
- Jing-Jing Sun
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, P.R, China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, P.R, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified. Proc Natl Acad Sci U S A 2014; 111:1180-5. [PMID: 24395795 DOI: 10.1073/pnas.1322910111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-2(0)) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-2(0) mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-2(0) mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist.
Collapse
|
13
|
Locatelli V, Bianchi VE. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis. Int J Endocrinol 2014; 2014:235060. [PMID: 25147565 PMCID: PMC4132406 DOI: 10.1155/2014/235060] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/25/2023] Open
Abstract
Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered.
Collapse
Affiliation(s)
- Vittorio Locatelli
- Department of Health Sciences, School of Medicine, University of Milano Bicocca, Milan, Italy
| | - Vittorio E. Bianchi
- Endocrinology Department, Area Vasta N. 1, Cagli, Italy
- *Vittorio E. Bianchi:
| |
Collapse
|
14
|
Börjesson AE, Lagerquist MK, Windahl SH, Ohlsson C. The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cell Mol Life Sci 2013; 70:4023-37. [PMID: 23516016 PMCID: PMC11114058 DOI: 10.1007/s00018-013-1317-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/07/2013] [Accepted: 03/04/2013] [Indexed: 02/02/2023]
Abstract
Estrogens are important endocrine regulators of skeletal growth and maintenance in both females and males. Studies have demonstrated that the estrogen receptor (ER)-α is the main mediator of these estrogenic effects in bone. Therefore, estrogen signaling via ERα is a target both for affecting longitudinal bone growth and bone remodeling. However, treatment with estradiol (E2) leads to an increased risk of side effects such as venous thromboembolism and breast cancer. Thus, an improved understanding of the signaling pathways of ERα will be essential in order to find better bone specific treatments with minimal adverse effects for different estrogen-related bone disorders. This review summarizes the recent data regarding the intracellular signaling mechanisms, in vivo, mediated by the ERα activation functions (AFs), AF-1 and AF-2, and the effect on bone, growth plate and other estrogen responsive tissues. In addition, we review the recent cell-specific ERα-deleted mouse models lacking ERα specifically in neuronal cells or growth plate cartilage. The newly characterized signaling pathways of estrogen, described in this review, provide a better understanding of the ERα signaling pathways, which may facilitate the design of new, bone-specific treatment strategies with minimal adverse effects.
Collapse
Affiliation(s)
- A. E. Börjesson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M. K. Lagerquist
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S. H. Windahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C. Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Cole HA, Yuasa M, Hawley G, Cates JMM, Nyman JS, Schoenecker JG. Differential development of the distal and proximal femoral epiphysis and physis in mice. Bone 2013; 52:337-46. [PMID: 23079139 DOI: 10.1016/j.bone.2012.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/06/2012] [Accepted: 10/06/2012] [Indexed: 11/21/2022]
Abstract
Many pathologic conditions of hip development result from aberrant vascularity with subsequent effects on physeal resorption and epiphyseal fusion. To elucidate the mechanisms of these developmental disorders, researchers have mainly focused on larger mammals as they have been well characterized and are known to provide a model similar to humans in which a secondary ossification center is formed through an independent blood supply followed by physeal resorption. Murine models of hip development, however, have never been characterized as it was previously assumed that all physes in rodents never resorb and therefore not suitable as a model of the human condition. The purpose of this study was to determine if murine hip development was comparable to humans as laboratory mice provide an ideal model in which genetic knockouts are readily available with a short developmental time span. Here we show for the first time the unique developmental patterns of the murine hip in which a secondary ossification center never develops. Instead, the epiphysis undergoes a prolonged phase of mineralization through chondrocyte, not osteoblast, dependent mechanisms. After skeletal growth, transphyseal vessels develop from the metaphysis resulting in resorption of the physis, ossification of the mineralized cartilage of the epiphysis, and epiphyseal fusion. Although the development of the murine hip is markedly different from that in humans, we believe that these findings have direct implications for studying the vascularity of developing bone, particularly during physeal resorption, chondrocyte-mediated mineralization and more importantly, developmental diseases of the human physis and epiphysis.
Collapse
Affiliation(s)
- Heather A Cole
- Vanderbilt University Medical Center, Department of Orthopaedics, 2200 Children's Way, Nashville, TN 37232-9565, USA
| | | | | | | | | | | |
Collapse
|
16
|
Börjesson AE, Windahl SH, Karimian E, Eriksson EE, Lagerquist MK, Engdahl C, Antal MC, Krust A, Chambon P, Sävendahl L, Ohlsson C. The role of estrogen receptor-α and its activation function-1 for growth plate closure in female mice. Am J Physiol Endocrinol Metab 2012; 302:E1381-9. [PMID: 22414805 PMCID: PMC3378067 DOI: 10.1152/ajpendo.00646.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High estradiol levels in late puberty induce growth plate closure and thereby cessation of growth in humans. In mice, the growth plates do not fuse after sexual maturation, but old mice display reduced longitudinal bone growth and high-dose estradiol treatment induces growth plate closure. Estrogen receptor (ER)-α stimulates gene transcription via two activation functions (AFs), AF-1 and AF-2. To evaluate the role of ERα and its AF-1 for age-dependent reduction in longitudinal bone growth and growth plate closure, female mice with inactivation of ERα (ERα(-/-)) or ERαAF-1 (ERαAF-1(0)) were evaluated. Old (16- to 19-mo-old) female ERα(-/-) mice showed continued substantial longitudinal bone growth, resulting in longer bones (tibia: +8.3%, P < 0.01) associated with increased growth plate height (+18%, P < 0.05) compared with wild-type (WT) mice. In contrast, the longitudinal bone growth ceased in old ERαAF-1(0) mice (tibia: -4.9%, P < 0.01). Importantly, the proximal tibial growth plates were closed in all old ERαAF-1(0) mice while they were open in all WT mice. Growth plate closure was associated with a significantly altered balance between chondrocyte proliferation and apoptosis in the growth plate. In conclusion, old female ERα(-/-) mice display a prolonged and enhanced longitudinal bone growth associated with increased growth plate height, resembling the growth phenotype of patients with inactivating mutations in ERα or aromatase. In contrast, ERαAF-1 deletion results in a hyperactive ERα, altering the chondrocyte proliferation/apoptosis balance, leading to growth plate closure. This suggests that growth plate closure is induced by functions of ERα that do not require AF-1 and that ERαAF-1 opposes growth plate closure.
Collapse
Affiliation(s)
- A. E. Börjesson
- 1Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden;
| | - S. H. Windahl
- 1Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden;
| | - E. Karimian
- 2Division of Pediatric Endocrinology Unit, Department of Woman's and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - E. E. Eriksson
- 2Division of Pediatric Endocrinology Unit, Department of Woman's and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - M. K. Lagerquist
- 1Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden;
| | - C. Engdahl
- 1Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden;
| | - M. C. Antal
- 3Departement of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/UdS, Collège de France, Illkirch, Cedex, France
| | - A. Krust
- 3Departement of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/UdS, Collège de France, Illkirch, Cedex, France
| | - P. Chambon
- 3Departement of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/UdS, Collège de France, Illkirch, Cedex, France
| | - L. Sävendahl
- 2Division of Pediatric Endocrinology Unit, Department of Woman's and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - C. Ohlsson
- 1Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden;
| |
Collapse
|
17
|
Pang TPS, Clarke MV, Ghasem-Zadeh A, Lee NKL, Davey RA, MacLean HE. A physiological role for androgen actions in the absence of androgen receptor DNA binding activity. Mol Cell Endocrinol 2012; 348:189-97. [PMID: 21872641 DOI: 10.1016/j.mce.2011.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/06/2011] [Accepted: 08/12/2011] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that androgens have physiological actions via non-DNA binding-dependent androgen receptor (AR) signaling pathways in males, using our genetically modified mice that express a mutant AR with deletion of the 2nd zinc finger of the DNA binding domain (AR(ΔZF2)) that cannot bind DNA. In cultured genital skin fibroblasts, the mutant AR(ΔZF2) has normal ligand binding ability, phosphorylates ERK-1/2 in response to 1 min DHT treatment (blocked by the AR antagonist bicalutamide), but has reduced androgen-dependent nuclear localization compared to wildtype (WT). AR(ΔZF2) males have normal baseline ERK-1/2 phosphorylation, with a 1.5-fold increase in Akt phosphorylation in AR(ΔZF2) muscle vs WT. To identify physiological actions of non-DNA binding-dependent AR signaling, AR(ΔZF2) males were treated for 6 weeks with dihydrotestosterone (DHT). Cortical bone growth was suppressed by DHT in AR(ΔZF2) mice (6% decrease in periosteal and 7% decrease in medullary circumference vs untreated AR(ΔZF2) males). In conclusion, these data suggest that non-DNA binding dependent AR actions suppress cortical bone growth, which may provide a mechanism to fine-tune the response to androgens in bone.
Collapse
Affiliation(s)
- Tammy P S Pang
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Vic. 3084, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Yonezawa T, Higashi M, Yoshioka K, Mutoh KI. Distribution of Aromatase and Sex Steroid Receptors in the Baculum During the Rat Life Cycle: Effects of Estrogen During the Early Development of the Baculum1. Biol Reprod 2011; 85:105-12. [DOI: 10.1095/biolreprod.110.089508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
19
|
Abstract
Aromatase is a specific component of the cytochrome P450 enzyme system that is responsible for the transformation of C19 androgen precursors into C18 estrogenic compounds. This enzyme is encoded by the CYP19A1 gene located at chromosome 15q21.2, that is expressed in ovary and testis not only but also in many extraglandular sites such as the placenta, brain, adipose tissue, and bone. The regulation of the level and activity of aromatase determines the levels of estrogens that have endocrine, paracrine, and autocrine effects on target issues including bone. Importantly, extraglandular aromatization of circulating androgen precursors is the major source of estrogen not only in men (since only 15% of circulating estradiol is released directly by the testis) but also in women after the menopause. Several lines of clinical and experimental evidence now clearly indicate that aromatase activity and estrogen production are necessary for longitudinal bone growth, attainment of peak bone mass, the pubertal growth spurt, epiphyseal closure, and normal bone remodeling in young individuals. Moreover, with aging, individual differences in aromatase activity and thus in estrogen levels may significantly affect bone loss and fracture risk in both genders.
Collapse
|
20
|
Börjesson AE, Lagerquist MK, Liu C, Shao R, Windahl SH, Karlsson C, Sjögren K, Movérare-Skrtic S, Antal MC, Krust A, Mohan S, Chambon P, Sävendahl L, Ohlsson C. The role of estrogen receptor α in growth plate cartilage for longitudinal bone growth. J Bone Miner Res 2010; 25:2690-700. [PMID: 20564247 DOI: 10.1002/jbmr.156] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/07/2010] [Accepted: 06/04/2010] [Indexed: 11/06/2022]
Abstract
Estrogens enhance skeletal growth during early sexual maturation, whereas high estradiol levels during late puberty result in growth plate fusion in humans. Although the growth plates do not fuse directly after sexual maturation in rodents, a reduction in growth plate height is seen by treatment with a high dose of estradiol. It is unknown whether the effects of estrogens on skeletal growth are mediated directly via estrogen receptors (ERs) in growth plate cartilage and/or indirectly via other mechanisms such as the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis. To determine the role of ERα in growth plate cartilage for skeletal growth, we developed a mouse model with cartilage-specific inactivation of ERα. Although mice with total ERα inactivation displayed affected longitudinal bone growth associated with alterations in the GH/IGF-1 axis, the skeletal growth was normal during sexual maturation in mice with cartilage-specific ERα inactivation. High-dose estradiol treatment of adult mice reduced the growth plate height as a consequence of attenuated proliferation of growth plate chondrocytes in control mice but not in cartilage-specific ERα(-/-) mice. Adult cartilage-specific ERα(-/-) mice continued to grow after 4 months of age, whereas growth was limited in control mice, resulting in increased femur length in 1-year-old cartilage-specific ERα(-/-) mice compared with control mice. We conclude that during early sexual maturation, ERα in growth plate cartilage is not important for skeletal growth. In contrast, it is essential for high-dose estradiol to reduce the growth plate height in adult mice and for reduction of longitudinal bone growth in elderly mice.
Collapse
Affiliation(s)
- Anna E Börjesson
- Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, Sahlgrenska Academy, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yarrow JF, Conover CF, Lipinska JA, Santillana CA, Wronski TJ, Borst SE. Methods to quantify sex steroid hormones in bone: applications to the study of androgen ablation and administration. Am J Physiol Endocrinol Metab 2010; 299:E841-7. [PMID: 20739509 DOI: 10.1152/ajpendo.00384.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone may contain an intraskeletal reservoir of sex steroids that is capable of producing biological effects. The purposes of these experiments were to 1) establish and validate methods to extract and measure intraskeletal sex hormones, 2) compare serum and intraskeletal sex hormone abundance, and 3) determine the impact of testosterone-enanthate administration and orchiectomy on intraskeletal sex hormone concentrations. Tibiae from male F344 rats were crushed, suspended in an aqueous buffer, disrupted mechanically and sonically, extracted with organic solvents, dried, and reconstituted in assay buffer appropriate for measurement of testosterone, dihydrotestosterone, and estradiol by immunoassay. Prior to extraction, bone homogenate was spiked with [³H]testosterone, [³H]dihydrotestosterone, or [³H]estradiol, and >80% of each ³H-labeled sex hormone was recovered. Extracted bone samples were also assayed with and without known amounts of unlabeled sex hormones, and >97% of the expected hormone concentrations were measured. Administration of testosterone-enanthate increased intraskeletal testosterone 11-fold and intraskeletal dihydrotestosterone by 82% without altering intraskeletal estradiol (P < 0.01). Conversely, orchiectomy did not alter intraskeletal testosterone or estradiol but increased intraskeletal dihydrotestosterone by 39% (P < 0.05). In intact rats, intraskeletal testosterone and dihydrotestosterone were directionally higher than in serum, whereas intraskeletal estradiol was directionally lower than serum. Serum androgens were positively correlated with intraskeletal androgens (r = 0.74-0.96, P < 0.001); however, neither serum nor intraskeletal androgens nor serum estradiol were correlated with intraskeletal estradiol. We report the validation of a novel method for measuring intraskeletal sex hormones. Our findings demonstrate that the intraskeletal sex steroid reservoirs are modifiable and only partially influenced by circulating sex hormones.
Collapse
Affiliation(s)
- Joshua F Yarrow
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Gainesville, FL 32608-1197, USA
| | | | | | | | | | | |
Collapse
|
22
|
Windahl SH, Andersson N, Chagin AS, Mårtensson UEA, Carlsten H, Olde B, Swanson C, Movérare-Skrtic S, Sävendahl L, Lagerquist MK, Leeb-Lundberg LMF, Ohlsson C. The role of the G protein-coupled receptor GPR30 in the effects of estrogen in ovariectomized mice. Am J Physiol Endocrinol Metab 2009; 296:E490-6. [PMID: 19088255 DOI: 10.1152/ajpendo.90691.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In vitro studies suggest that the membrane G protein-coupled receptor GPR30 is a functional estrogen receptor (ER). The aim of the present study was to determine the possible in vivo role of GPR30 as a functional ER primarily for the regulation of skeletal parameters, including bone mass and longitudinal bone growth, but also for some other well-known estrogen-regulated parameters, including uterine weight, thymus weight, and fat mass. Three-month-old ovariectomized (OVX) GPR30-deficient mice (GPR30(-/-)) and wild-type (WT) mice were treated with either vehicle or increasing doses of estradiol (E(2); 0, 30, 70, 160, or 830 ng.mouse(-1).day(-1)). Body composition [bone mineral density (BMD), fat mass, and lean mass] was analyzed by dual-energy-X ray absorptiometry, while the cortical and trabecular bone compartments were analyzed by peripheral quantitative computerized tomography. Quantitative histological analyses were performed in the distal femur growth plate. Bone marrow cellularity and distribution were analyzed using a fluorescence-activated cell sorter. The estrogenic responses on most of the investigated parameters, including increase in bone mass (total body BMD, spine BMD, trabecular BMD, and cortical bone thickness), increase in uterine weight, thymic atrophy, fat mass reduction, and increase in bone marrow cellularity, were similar for all of the investigated E(2) doses in WT and GPR30(-/-) mice. On the other hand, E(2) treatment reduced longitudinal bone growth, reflected by decreased femur length and distal femur growth plate height, in the WT mice but not in the GPR30(-/-) mice compared with vehicle-treated mice. These in vivo findings demonstrate that GPR30 is not required for normal estrogenic responses on several major well-known estrogen-regulated parameters. In contrast, GPR30 is required for a normal estrogenic response in the growth plate.
Collapse
Affiliation(s)
- S H Windahl
- Institute of Medicine, Sahlgrenska Academy, Göteborg University, Göteborg
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kastelan D, Grubic Z, Kraljevic I, Polasek O, Dusek T, Stingl K, Kerhin-Brkljacic V, Korsic M. The role of estrogen receptor-alpha gene TA polymorphism and aromatase gene TTTA polymorphism on peak bone mass attainment in males: is there an additive negative effect of certain allele combinations? J Bone Miner Metab 2009; 27:198-204. [PMID: 19172223 DOI: 10.1007/s00774-008-0029-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 06/16/2008] [Indexed: 01/26/2023]
Abstract
Idiopathic osteoporosis in males is influenced predominantly by low peak bone mass as a feature under a strong genetic control. Among a number of candidate genes, alpha-estrogen receptor (ERalpha) and CYP19 genes are of particular interest due to important role of estrogen in pathophysiology of osteoporosis. In the present study we examined the association of certain allelic combinations of ERalpha gene thymine-adenine (TA) polymorphism and aromatase gene TTTA polymorphism on bone mineral density (BMD) in young men. The study sample consisted of 92 unrelated healthy male volunteers, aged 21-35. In each subject, lumbar spine and proximal femur BMD, parameters of bone turnover and 25-OHD level were measured. Two ERalpha (TA)( n ) alleles, allele 19 and allele 21, were found to be associated with lower BMD. The presence of allele 19 was associated with significantly lower lumbar spine (P = 0.006) and trochanter (P = 0.02) BMD while the subjects positive for allele 21 had significantly lower lumbar spine (P = 0.04), trochanter (P = 0.02) and total hip (P = 0.03) BMD. Men with CYP19 (TTTA)(7-3)/ERalpha (TA)(19) allele combination had significantly lower lumbar spine BMD (P = 0.02) and those with CYP19 (TTTA)(7-3)/ERalpha (TA)(21) allele combination had significantly lower BMD for all three measurements, i.e. lumbar spine (P = 0.02), femoral neck (P = 0.02) and total hip (P = 0.008). These particular combinations of high-risk alleles were associated with lower median lumbar spine, femoral neck and total hip BMD than either of the allele alone suggesting that negative effect of two risk alleles on peak bone mass add up.
Collapse
Affiliation(s)
- Darko Kastelan
- Division of Endocrinology, Department of Internal Medicine, University Hospital Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Haren MT, Banks WA, Perry HM, Patrick P, Malmstrom TK, Miller DK, Morley JE. Predictors of serum testosterone and DHEAS in African-American men. INTERNATIONAL JOURNAL OF ANDROLOGY 2008; 31:50-9. [PMID: 18190426 PMCID: PMC2717611 DOI: 10.1111/j.1365-2605.2007.00757.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are few reported data on biochemical and functional correlates of androgen levels in African-American men. This study aimed at reporting physical and biochemical correlates of serum total testosterone (total T), bioavailable testosterone (BT) and dehydroepiandrosterone-sulphate (DHEAS) levels in community-dwelling, African-American men aged 50-65 years. Home-based physical examinations and health status questionnaires were administered to randomly sampled men. Body composition (dual-energy X-ray absorptiometry), lower limb and hand-grip muscle strength, and neuropsychological functions were assessed. Levels of serum total T, BT, DHEAS, oestradiol (E2), adiponectin, leptin, triglycerides and glucose were measured. Multiple linear regression models were constructed to identify factors independently associated with androgen levels. DHEAS levels declined from age 50 to 65 years (p < 0.0001), but total T and BT levels remained constant. Independent of other associated factors, higher total T levels were associated with lower serum triglyceride levels (beta = -0.142, p = 0.049); higher BT was associated with better performance on the trail-making tests (TMT-B:TMT-A ratio: beta = -0.118, p = 0.024) and higher DHEAS levels were associated with lower adiponectin (beta = -0.293, p = 0.047) and higher mini-mental state examination (MMSE) score (beta = 0.098, p = 0.008). Multiple regression models predicted 21, 18 and 29% of variance in total T, BT and DHEAS, respectively. Higher total T levels were associated with serum metabolic markers, particularly lower triglycerides, whereas higher BT was associated with better cognitive and muscle function and DHEAS with lower adiponectin and higher MMSE scores.
Collapse
Affiliation(s)
- Matthew T. Haren
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, MO
- GRECC, VA Medical Center, St Louis, MO
| | - William A. Banks
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, MO
- GRECC, VA Medical Center, St Louis, MO
| | - H. M. Perry
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, MO
- GRECC, VA Medical Center, St Louis, MO
| | - Ping Patrick
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, MO
| | | | - Douglas K. Miller
- Indiana University Center for Ageing Research, Regenstrief Institute, Inc., Indiana University School of Medicine, Indianapolis, IN, USA
| | - John E. Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St Louis, MO
- GRECC, VA Medical Center, St Louis, MO
| |
Collapse
|
25
|
Abstract
Aromatase is a key enzyme of intratumoral production of estrogen in breast cancers. Aromatase inhibitors are commonly used as hormone therapy in postmenopausal estrogen sensitive breast cancer patients. Type I aromatase inhibitors such as exemestane are steroidal inhibitors, which have androstenedione like structure and bind to androgen receptor with low affinity. Type II aromatase inhibitors such as anastrozole and letrozole are known as non-steroidal inhibitors, which are non-competitive inhibitors of aromatase. Sex steroid hormones such as estrogen and androgen play important roles in the maintenances of female and male bone tissues. It is well known that adult women have less bone mass than men. Especially after menopause, adult women loss their bone mass more rapidly than men of comparable age do. Therefore, many clinical reports of breast cancer patients treated with aromatase inhibitors have emphasized potential bone loss caused by aromatase inhibition. Several basic researches using animal model or in vitro model demonstrated the different effects of steroid and non-steroid aromatase inhibitors on bone tissues and cells. In this review, we summarize the effects of AIs on bone tissues reported in clinical studies and animal/in vitro studies.
Collapse
Affiliation(s)
- Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980 8575, Japan
| | | | | |
Collapse
|
26
|
Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O'Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 2007; 282:27285-27297. [PMID: 17623659 PMCID: PMC3119455 DOI: 10.1074/jbc.m702810200] [Citation(s) in RCA: 537] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Both aging and loss of sex steroids have adverse effects on skeletal homeostasis, but whether and how they may influence each others negative impact on bone remains unknown. We report herein that both female and male C57BL/6 mice progressively lost strength (as determined by load-to-failure measurements) and bone mineral density in the spine and femur between the ages of 4 and 31 months. These changes were temporally associated with decreased rate of remodeling as evidenced by decreased osteoblast and osteoclast numbers and decreased bone formation rate; as well as increased osteoblast and osteocyte apoptosis, increased reactive oxygen species levels, and decreased glutathione reductase activity and a corresponding increase in the phosphorylation of p53 and p66(shc), two key components of a signaling cascade that are activated by reactive oxygen species and influences apoptosis and lifespan. Exactly the same changes in oxidative stress were acutely reproduced by gonadectomy in 5-month-old females or males and reversed by estrogens or androgens in vivo as well as in vitro. We conclude that the oxidative stress that underlies physiologic organismal aging in mice may be a pivotal pathogenetic mechanism of the age-related bone loss and strength. Loss of estrogens or androgens accelerates the effects of aging on bone by decreasing defense against oxidative stress.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Marta Martin-Millan
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Lilian I Plotkin
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Scott A Stewart
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Paula K Roberson
- Department of Biostatistics, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Health Care System, Little Rock, Arkansas 72205
| | - Stavroula Kousteni
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Teresita Bellido
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - A Michael Parfitt
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Robert S Weinstein
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the.
| |
Collapse
|
27
|
Abstract
In this review we summarize available data regarding linear growth in oestrogen receptor alpha (ERalpha)- and oestrogen receptor beta (ERbeta)-deficient mice. We discuss these findings in relation to known oestrogenic effects in humans and the possibility of applying this knowledge for the therapeutic modulation of longitudinal bone growth employing selective oestrogen receptor modulators (SERMs). We conclude that SERMs potentially could offer new possibilities to modulate bone growth by specifically targeting different oestrogen receptors within the growth plate.
Collapse
Affiliation(s)
- Andrei S Chagin
- Pediatric Endocrinology Unit, Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
28
|
Venken K, De Gendt K, Boonen S, Ophoff J, Bouillon R, Swinnen JV, Verhoeven G, Vanderschueren D. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J Bone Miner Res 2006; 21:576-85. [PMID: 16598378 DOI: 10.1359/jbmr.060103] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The relative importance of AR and ER activation has been studied in pubertal male AR knockout and WT mice after orchidectomy and androgen replacement therapy, either with or without an aromatase inhibitor. AR activation dominates normal trabecular bone development and cortical bone modeling in male mice. Moreover, optimal periosteal bone expansion is only observed in the presence of both AR and ER activation. INTRODUCTION Androgen receptor (AR)-mediated androgen action has traditionally been considered a key determinant of male skeletal growth. Increasing evidence, however, suggests that estrogens are also essential for normal male bone growth. Therefore, the relative importance of AR-mediated and estrogen receptor (ER)-mediated androgen action after aromatization remains to be clarified. MATERIALS AND METHODS Trabecular and cortical bone was studied in intact or orchidectomized pubertal AR knockout (ARKO) and male wildtype (WT) mice, with or without replacement therapy (3-8 weeks of age). Nonaromatizable (dihydrotestosterone [DHT]) and aromatizable (testosterone [T]) androgens and T plus an aromatase inhibitor (anastrazole) were administered to orchidectomized ARKO and WT mice. Trabecular and cortical bone modeling were evaluated by static and dynamic histomorphometry, respectively. RESULTS AR inactivation or orchidectomy induced a similar degree of trabecular bone loss (-68% and -71%, respectively). Both DHT and T prevented orchidectomy-induced bone loss in WT mice but not in ARKO mice. Administration of an aromatase inhibitor did not affect T action on trabecular bone. AR inactivation and orchidectomy had similar negative effects on cortical thickness (-13% and -8%, respectively) and periosteal bone formation (-50% and -26%, respectively). In orchidectomized WT mice, both DHT and T were found to stimulate periosteal bone formation and, as a result, to increase cortical thickness. In contrast, the periosteum of ARKO mice remained unresponsive to either DHT or T. Interestingly, administration of an aromatase inhibitor partly reduced T action on periosteal bone formation in orchidectomized WT mice (-34% versus orchidectomized WT mice on T), but not in ARKO mice. This effect was associated with a significant decrease in serum IGF-I (-21% versus orchidectomized WT mice on T). CONCLUSIONS These findings suggest a major role for AR activation in normal development of trabecular bone and periosteal bone growth in male mice. Moreover, optimal stimulation of periosteal growth is only obtained in the presence of both AR and ER activation.
Collapse
Affiliation(s)
- Katrien Venken
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gennari L, Nuti R, Bilezikian JP. Estrogen in men: effects on bone accrual, maintenance and prevention of bone loss. Expert Rev Endocrinol Metab 2006; 1:281-295. [PMID: 30754147 DOI: 10.1586/17446651.1.2.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sex steroid hormones play an important role in the maintenance of bone mass in males as well as in females. Even though androgens represent the major sex steroid class in men, their primacy in regulating male skeletal remodeling has been questioned increasingly as direct and indirect evidence has emerged suggesting that estrogens also play a major role in male skeletal health. This review summarizes clinical and experimental evidence that estrogens are essential for bone accrual in the growing skeleton, maintenance of bone mass and prevention of bone loss in men.
Collapse
Affiliation(s)
- Luigi Gennari
- a University of Siena, Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, Policlinico Le Scotte, Viale Bracci, Siena 53100, Italy.
| | - Ranuccio Nuti
- b University of Siena, Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, Policlinico Le Scotte, Viale Bracci, Siena 53100, Italy.
| | - John P Bilezikian
- c Columbia University, Departments of Medicine and Pharmacology, College of Physicians and Surgeons, 630 W. 168 Street, NY 10032, USA.
| |
Collapse
|
30
|
Ribot C, Trémollieres F, Pouillés JM. Aromatase and regulation of bone remodeling. Joint Bone Spine 2006; 73:37-42. [PMID: 16213769 DOI: 10.1016/j.jbspin.2005.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 02/23/2005] [Indexed: 11/24/2022]
Abstract
Estrogens play a key role in regulating bone mineralization. Bone tissue expresses the enzymes that metabolize estrogens, as well as the alpha and beta receptors that mediate responses to estrogens. After the menopause, estrogen secretion by the ovaries is promptly replaced by production within tissues, which occurs chiefly via aromatization of adrenal steroids. Therefore, aromatase activity is a major determinant of estrogen activity in postmenopausal women. Studies are beginning to shed light on the mechanisms by which aromatase activity influences bone remodeling.
Collapse
Affiliation(s)
- Claude Ribot
- UF Ménopause et Maladies Osseuse Métaboliques, Hôpital Paule de Viguier, jean Poulhes, Beforecty, Toulouse, France.
| | | | | |
Collapse
|
31
|
Ligibel JA, Winer EP. Aromatase inhibitors in the adjuvant treatment of postmenopausal women with early stage breast cancer. WOMEN'S HEALTH (LONDON, ENGLAND) 2006; 2:89-97. [PMID: 19803930 DOI: 10.2217/17455057.2.1.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article summarizes the current data regarding the use of the aromatase inhibitors as adjuvant hormonal therapy for postmenopausal women with early stage breast cancer. The article focuses on the five major trials examining the use of these drugs and their toxicity in the adjuvant setting. The data currently available suggest that the aromatase inhibitors are efficacious, either as upfront therapy or after a course of tamoxifen. Ongoing trials will compare these approaches and guide the use of these agents in the years to come.
Collapse
Affiliation(s)
- Jennifer A Ligibel
- Harvard Medical School, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
32
|
Fintini D, Alba M, Salvatori R. Influence of estrogen administration on the growth response to growth hormone (GH) in GH-deficient mice. Exp Biol Med (Maywood) 2005; 230:715-20. [PMID: 16246898 DOI: 10.1177/153537020523001004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In women who are growth hormone (GH) deficient, exogenous estrogens increase the dosage of GH that is needed to normalize circulating levels of insulin-like growth factor (IGF-1). Serum IGF-1 derives mostly from the liver, and it is unknown whether the peripheral effects of GH are also impaired by estrogens. Because the ultimate effect of GH is longitudinal growth, we have investigated the influence of estrogen administration on the growth response to recombinant mouse GH therapy in prepubertal GH-deficient (GHD) GHRH knockout (GHRHKO) female mice. Twenty-four GHRHKO female mice (4 animals/group) were treated for 4 weeks (from the second to sixth week of age) with the following schedules: Group I, GH only (25 microg/day); Group II, subcutaneous (sc) ethynil estradiol (EE) (0.035 ES01247g/day); Group III, GH + scEE; Group IV, oral (po) EE (0.035 microg/day); Group V, GH + poEE; Group VI, placebo. At the end of the treatment period, we measured uterine weight, total body weight (TBW), body length (nose-anus, N-A), and femur length. In addition, serum IGF-1 levels were measured. Uteri of mice treated with oral or scEE showed similar increases in weight. There was no difference in the increase in longitudinal growth parameters between mice treated with GH alone or with GH in association with oral or scEE. Serum IGF-1 decreased in animals treated with GH + scEE, compared with GH group, but no group was significantly different from placebo. These results show that subcutaneous or oral EE does not reduce the growth response to GH in female GHD mice.
Collapse
Affiliation(s)
- Danilo Fintini
- Department of Medicine, Division of Endocrinology, Ilyssa Center for Molecular and Cellular Endocrinology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
33
|
Aydin T, Karacan I, Demir SE, Sahin Z. Bone loss in males with ankylosing spondylitis: its relation to sex hormone levels. Clin Endocrinol (Oxf) 2005; 63:467-9. [PMID: 16181241 DOI: 10.1111/j.1365-2265.2005.02369.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Osteoporosis is a common complication of ankylosing spondylitis (AS). The aim of the present study was to assess the association of sex hormone levels with bone loss in males with AS. DESIGN A cross-sectional study. Patients The study group consisted of 58 male patients with primary AS. The mean age was 38.2 years (range 18-59 years). MEASUREMENTS Bone mineral density (BMD) was measured in the left proximal femur. Serum FSH, LH, total testosterone (T), dehydroepiandrosterone sulfate (DHEAS), oestradiol (E2) and progesterone levels were measured. RESULTS Bone loss was observed in 54.5% of cases at the femoral neck and in 52.3% of cases at the trochanter and total hip. Bone loss was found in 40 (69%) cases in at least one of these three regions. Serum DHEAS was low in 12 (30.8%) of the cases with bone loss, and one (5.9%) of those without (P = 0.043). The ratio of serum T/DHEAS was higher in those with bone loss (5.24 +/- 3.70) than in those without (3.58 +/- 3.16) (P = 0.026). CONCLUSIONS The results showed that bone loss might be related to low serum DHEAS levels in males with AS.
Collapse
Affiliation(s)
- Teoman Aydin
- SB Vakif Gureba Education and Research Hospital, Physical Medicine and Rehabilitation Department, Istanbul, Turkey
| | | | | | | |
Collapse
|
34
|
Venken K, Boonen S, Van Herck E, Vandenput L, Kumar N, Sitruk-Ware R, Sundaram K, Bouillon R, Vanderschueren D. Bone and muscle protective potential of the prostate-sparing synthetic androgen 7alpha-methyl-19-nortestosterone: evidence from the aged orchidectomized male rat model. Bone 2005; 36:663-70. [PMID: 15784189 DOI: 10.1016/j.bone.2005.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 12/14/2004] [Accepted: 01/14/2005] [Indexed: 11/17/2022]
Abstract
This study reports the preclinical evaluation of the bone and muscle protective potential of the synthetic androgen 7alpha-methyl-19-nortestosterone (MENTtrade mark), as assessed in the aged orchidectomized rat model. Aged (13-month-old) orchidectomized Wistar rats were treated with different doses of MENT (4, 12 or 36 microg/day) subcutaneously for 16 weeks via mini-osmotic pumps. Analysis of the effects of androgen deficiency versus MENT replacement was performed using quantitative computed tomography (pQCT), dual energy X-ray absorptiometry (DEXA) and biochemical markers of bone turnover. At the end of the study period, prostate weight in orchidectomized rats treated with low- (4 microg/day) or mid-dose (12 mug/day) MENT remained significantly lower compared to the sham-operated animals (-47% and -25%, respectively). High-dose MENT (36 microg/day), on the other hand, induced prostate hypertrophy (+21% versus sham). Low-, mid- and high-dose MENT were found to be effective in suppressing the acceleration of bone remodeling following orchidectomy, as assessed by osteocalcin and deoxypyridinoline. In addition, low-, mid- and high-dose were able to prevent the orchidectomy-induced bone loss, as evaluated by DEXA at the femur and total-body and by pQCT at the femur. Compared to sham-operated animals, the low- and mid-dose MENT groups showed no decline in lean body mass and no muscle atrophy (as measured by m. quadriceps weight) at 16 weeks, whereas high-dose MENT was associated with a significant decline in lean body mass (-8.5% versus sham) and quadriceps weight (-10.6%). We conclude that, in the aged orchidectomized rat model, low- and mid-doses of the synthetic androgen MENT have bone and muscle protective effects and do not induce prostate hypertrophy. The bone protective action of high-dose MENT, however, occurs at the expense of muscle wasting and prostate hypertrophy. Our findings support the need for human studies to explore the potential of MENT as an option for androgen replacement in aging men.
Collapse
Affiliation(s)
- Katrien Venken
- Laboratory for Experimental Medicine and Endocrinology, Onderwijs en Navorsing, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Veldhuis JD, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, Mauras N, Bowers CY. Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev 2005; 26:114-46. [PMID: 15689575 DOI: 10.1210/er.2003-0038] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Body composition exhibits marked variations across the early human lifetime. The precise physiological mechanisms that drive such developmental adaptations are difficult to establish. This clinical challenge reflects an array of potentially confounding factors, such as marked intersubject differences in tissue compartments; the incremental nature of longitudinal intrasubject variations in body composition; technical limitations in quantitating the unobserved mass of mineral, fat, water, and muscle ad seriatim; and the multifold contributions of genetic, dietary, environmental, hormonal, nutritional, and behavioral signals to physical and sexual maturation. From an endocrine perspective (reviewed here), gonadal sex steroids and GH/IGF-I constitute prime determinants of evolving body composition. The present critical review examines hormonal regulation of body composition in infancy, childhood, and puberty.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Bone remodeling is a process by which bone renews itself focally in distinct areas on cancellous (ie, trabecular) bone and/or in the Haversian systems of cortical (or compact) bone. Normal bone turnover involves the ordered metabolism of bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts). Estrogen exerts a multitude of actions on bone tissues and is integral to bone health, and estrogen deprivation leads to accelerated bone loss. Bone strength reflects the integration of bone density and bone quality. Methods to assess bone strength fall into 3 categories: radiologic (ie, bone mineral density [BMD]), biochemical (ie, markers of bone turnover), and histologic (ie, bone biopsies for histomorphometry). The beneficial effect of aromatase inhibitors (AIs) and inactivators on breast cancer depends on reducing levels of circulating estrogens in the peripheral blood. There appears to be variability in the effects of AIs on bone in experimental animals, and this variability may not be the same in humans. In general, bone loss is an expected side effect of the AIs. For postmenopausal women receiving adjuvant anastrozole or other AIs, a BMD measurement using dual-energy x-ray absorptiometry is recommended, to be repeated every 1-2 years. Regular physical exercise is advised together with added calcium 1500 mg and vitamin D 800 U daily. If the T-score reaches a level of >2.5, or if it is between -1.5 and -2.5 in the presence of a fragility fracture or vertebral compression fracture, or if height loss > 2 cm occurs or BMD decreases > 3% in 1 year at the lumbar spine or > 5% at the femoral neck, bisphosphonate therapy should be considered.
Collapse
Affiliation(s)
- Alexander H G Paterson
- Tom Baker Cancer Center Calgary, Department of Medicine, 1331 29th St NW, Calgary, AB T2N 4N2, Canada.
| |
Collapse
|
37
|
Parikka V, Peng Z, Hentunen T, Risteli J, Elo T, Väänänen HK, Härkönen P. Estrogen responsiveness of bone formation in vitro and altered bone phenotype in aged estrogen receptor-alpha-deficient male and female mice. Eur J Endocrinol 2005; 152:301-14. [PMID: 15745940 DOI: 10.1530/eje.1.01832] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Although the beneficial effects of estrogen on bone are well known, the roles of estrogen receptors (ERs) in mediating these effects are not fully understood. METHODS To study the effects of long-term ER alpha deficiency, bone phenotype was studied in aged ER alpha knockout (ERKO) mice. In addition, ERKO osteoclasts and osteoblasts were cultured in vitro. DESIGN AND RESULTS Histomorphometric analysis showed that the trabecular bone volume and thickness were significantly increased and the rate of bone formation enhanced in both male and female ERKO mice in comparison to the wild-type animals. In ERKO males, however, the bones were thinner and their maximal bending strengths decreased. Consistent with previous reports, the bones of knockout mice, especially of female mice, were shorter than those of wild-type mice. In addition, the growth plates were totally absent in the tibiae of aged ERKO females, whereas the growth plate cartilages were detectable in wild-type females as well as in all the males. Analysis of cultured bone marrow cells from 10- to 12-week-old mice demonstrated that 17 beta-estradiol could stimulate osteoblastic differentiation of bone marrow cells derived from ERKO mice relatively to the same extent as those derived from wild-type mice. This was demonstrated by increases in synthesis of type I collagen, activity of alkaline phosphatase and accumulation of calcium in cultures. Total protein content was, however, reduced in ERKO osteoblast cultures. CONCLUSIONS These results show altered bone phenotype in ERKO mice and demonstrate the stimulatory effect of estrogen on osteoblasts even in the absence of full-length ER alpha.
Collapse
Affiliation(s)
- Vilhelmiina Parikka
- Department of Anatomy and Medicity Research Laboratory, University of Turku, FIN-20700 Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Khalil DA, Lucas EA, Smith BJ, Soung DY, Devareddy L, Juma S, Akhter MP, Recker R, Arjmandi BH. Soy isoflavones may protect against orchidectomy-induced bone loss in aged male rats. Calcif Tissue Int 2005; 76:56-62. [PMID: 15549639 DOI: 10.1007/s00223-004-0018-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
Evidence from several studies suggests that soy protein and/or its isoflavones may have beneficial effects on bone in postmenopausal women and animal models who have osteoporosis. The present study examined the dose-dependent effects of soy isoflavones in the context of soy protein or casein on the male skeleton. Thirteen-month-old male Fisher 344 rats were orchidectomized (ORX; 5 groups) or sham-operated (Sham; 1 group) and immediately placed on dietary treatments for 180 days. Diets were semi-purified and the protein source was either casein (Sham and ORX; controls), casein with two added doses of isoflavones (Iso1; 600 mg/kg diet and Iso2; 1200 mg/kg diet), soy protein with normal isoflavones content (Soy; 600 mg/kg diet), or soy protein with added isoflavones (Soy+; 1200 mg/kg diet). A 7% loss of whole body bone mineral density (BMD) was observed due to orchidectomy; however, the ORX induced BMD loss was significantly reduced to 4.3 and 4.7 % with the Soy and Soy+, respectively. Both doses of isoflavones in conjunction with casein also reduced the loss of whole body BMD, albeit not significantly different from ORX control animals. Trabecular bone histomorphometric analysis of the proximal tibia further supported the bone-sparing role of soy isoflavones as indicated by higher percent bone volume and trabecular number, and lower trabecular separation. We conclude that isoflavones exert modest beneficial effects on the male skeleton whether provided with casein or a soy protein.
Collapse
Affiliation(s)
- D A Khalil
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Szulc P, Uusi-Rasi K, Claustrat B, Marchand F, Beck TJ, Delmas PD. Role of sex steroids in the regulation of bone morphology in men. The MINOS study. Osteoporos Int 2004; 15:909-17. [PMID: 15235765 DOI: 10.1007/s00198-004-1635-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
In ageing men, skeletal fragility is associated with reduced cortical thickness and decreased bone density. To better understand the role of testosterone and 17beta-estradiol regarding these characteristics of skeletal fragility, we correlated their circulating levels with the estimates of mechanical bone properties derived from areal bone mineral density (aBMD) measured by DXA. External diameter and BMD were used to estimate cortical thickness, cross-sectional area (CSA), section modulus, buckling ratio and strength index of the femoral neck and distal radius on 760 men aged 40-85 years. The 17beta-estradiol level was an independent positive determinant of CSA, aBMD and estimated cortical thickness of both bones. In multivariate models adjusted for age, body weight, height, lean body mass and testosterone concentration, men in the lowest quartile of 17beta-estradiol had lower CSA at the femoral neck (4.8%, P<0.001) and distal radius (3.6%, P<0.01) compared with men in the highest quartile. They had also thinner cortical bone at the femoral neck and distal radius (4.8%, P<0.001 and 4.6%, P<0.001, respectively). Furthermore 17beta-estradiol had a negative association with indices of cortical instability (buckling ratio) and a positive association with bending strength (section modulus, strength index) both at femoral neck and radius. Men in the lowest quartile of 17beta-estradiol had higher buckling ratios (femoral neck 4.8%, P<0.002; radius 5.1%, P<0.005), lower strength index (femoral neck 8.5%, P<0.001, radius 6.1%, P<0.01) and greater section modulus at the femoral neck. However, there were no between-quartile differences in external diameter in any bone sites. Similar, even though somewhat smaller, between-quartile differences were found for bioavailable 17beta-estradiol. Neither total testosterone nor apparent free testosterone concentration was associated with any bone variables after adjusting for age, body weight, body height, and lean body mass and 17beta-estradiol level. In conclusion, in elderly men, low concentration of 17beta-estradiol (total and bioavailable) was associated with a decreased cortical thickness and with a deterioration of biomechanical parameters of long bones (lower section modulus and strength index, higher buckling ratio).
Collapse
Affiliation(s)
- P Szulc
- INSERM Research Unit 403, Hôpital Edouard Herriot, Place d'Arsonval, 69437, Lyon, France
| | | | | | | | | | | |
Collapse
|
40
|
Vandenput L, Swinnen JV, Boonen S, Van Herck E, Erben RG, Bouillon R, Vanderschueren D. Role of the androgen receptor in skeletal homeostasis: the androgen-resistant testicular feminized male mouse model. J Bone Miner Res 2004; 19:1462-70. [PMID: 15312246 DOI: 10.1359/jbmr.040505] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 03/02/2004] [Accepted: 05/07/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED The role of androgen receptor-mediated androgen action on bone was investigated in testicular feminized male (Tfm) mice. Cortical bone was found to be unresponsive to testosterone (T) in orchidectomized Tfm mice, whereas cortical thickness as well as trabecular BMD and structure were fully maintained by T in the corresponding Tabby control mice. These data show an essential role for androgen receptor-mediated androgen action in periosteal bone formation. INTRODUCTION Androgens can affect the male skeleton both directly-through activation of the androgen receptor (AR)-and indirectly-through stimulation of estrogen receptors after aromatization. We assessed the importance of AR-mediated androgen action on bone in a mouse model of androgen resistance. MATERIALS AND METHODS Eight-week-old androgen-resistant testicular feminized male (Tfm) and Tabby control mice were orchidectomized (ORX) and treated for 4 weeks with a slow-release testosterone (T) pellet (delivering 167 microg/day) or a placebo pellet. A comprehensive analysis of the skeletal effects of androgen deficiency and replacement was performed using histomorphometry, QCT, and biochemical assessment of bone turnover. RESULTS As expected, T increased trabecular BMD, volume, number, and width in ORX Tabby mice. In ORX Tfm mice, however, T had less effect on trabecular BMD and no effect on trabecular bone structure. T action on trabecular bone was associated with opposite changes in bone turnover: trabecular and endocortical bone turnover and serum levels of osteocalcin were all reduced by T in ORX Tabby mice, but not in ORX Tfm mice. T also increased cortical thickness (+16%), area, and density in ORX Tabby mice, but not in Tfm mice, resulting in greater bone strength in the Tabby control strain. The positive effects of T on cortical bone reflected a stimulatory effect on periosteal bone formation (+137%), which was again absent in Tfm mice. CONCLUSIONS These data show that, in male mice, AR-mediated T action is essential for periosteal bone formation and contributes to trabecular bone maintenance.
Collapse
Affiliation(s)
- Liesbeth Vandenput
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven B-3000, Belgium
| | | | | | | | | | | | | |
Collapse
|
41
|
Li J, Ahmad T, Bergström J, Samnegård E, Erlandsson-Harris H, Ahmed M, Kreicbergs A. Differential bone turnover in an angulated fracture model in the rat. Calcif Tissue Int 2004; 75:50-9. [PMID: 15037974 DOI: 10.1007/s00223-004-0206-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have developed a simple rat model of angulated tibial fracture which elicits substantial differences in bone formation and resorption within the same bone. In 35 rats the right mid-tibia was manually fractured and fixed with an intramedullary 17-gauge cannula needle. Twenty tibias were fixed in anterior angulation (27 +/- 5 degrees) and 15 in posterior angulation (31 +/- 5 degrees). Serial X-rays were taken over a 12-week period. All fractures healed completely within five weeks. In both groups, bone thickness was already significantly greater on the concave side than on the convex side at week 3 and remained so until the end of the experiment. The thickness on the convex side decreased dramatically within 3 to 5 weeks and gradually thereafter. For morphological analysis of bone mineralization, 3 rats from each group were given calcein and alizarin red injected at different time points up to 14 weeks. Maximum new bone formation was noted within the first 3 weeks. Over the ensuing weeks, new bone formation remained intense on the concave side, but it was virtually absent on the convex side. These results show that angulated fracture deformity reproducibly exhibits differential bone turnover, which can be exploited in research on local regulatory factors. To exemplify the utility of the model, an immunohistochemical study on two local markers was done. Callus tissue of five rats in the anterior angulation group at week 3 post-fracture was stained for the cytokine IL- 1beta, a stimulator of bone resorption, and the neuropeptide CGRP, an inhibitor of resorption, showing clear differences in positive staining between the concave and convex sides. Our in-vivo model offers a means of analyzing morphologically and quantitatively the differential expression and action of factors involved in local bone turnover.
Collapse
Affiliation(s)
- J Li
- Department of Surgical Sciences, Section of Orthopedics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Loss of estrogens or androgens increases the rate of bone remodeling by removing restraining effects on osteoblastogenesis and osteoclastogenesis, and also causes a focal imbalance between resorption and formation by prolonging the lifespan of osteoclasts and shortening the lifespan of osteoblasts. Conversely, androgens, as well as estrogens, maintain cancellous bone mass and integrity, regardless of age or sex. Although androgens, via the androgen receptor (AR), and estrogens, via the estrogen receptors (ERs), can exert these effects, their relative contribution remains uncertain. Recent studies suggest that androgen action on cancellous bone depends on (local) aromatization of androgens into estrogens. However, at least in rodents, androgen action on cancellous bone can be directly mediated via AR activation, even in the absence of ERs. Androgens also increase cortical bone size via stimulation of both longitudinal and radial growth. First, androgens, like estrogens, have a biphasic effect on endochondral bone formation: at the start of puberty, sex steroids stimulate endochondral bone formation, whereas they induce epiphyseal closure at the end of puberty. Androgen action on the growth plate is, however, clearly mediated via aromatization in estrogens and interaction with ERalpha. Androgens increase radial growth, whereas estrogens decrease periosteal bone formation. This effect of androgens may be important because bone strength in males seems to be determined by relatively higher periosteal bone formation and, therefore, greater bone dimensions, relative to muscle mass at older age. Experiments in mice again suggest that both the AR and ERalpha pathways are involved in androgen action on radial bone growth. ERbeta may mediate growth-limiting effects of estrogens in the female but does not seem to be involved in the regulation of bone size in males. In conclusion, androgens may protect men against osteoporosis via maintenance of cancellous bone mass and expansion of cortical bone. Such androgen action on bone is mediated by the AR and ERalpha.
Collapse
Affiliation(s)
- Dirk Vanderschueren
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Weinstein RS, Jia D, Powers CC, Stewart SA, Jilka RL, Parfitt AM, Manolagas SC. The skeletal effects of glucocorticoid excess override those of orchidectomy in mice. Endocrinology 2004; 145:1980-7. [PMID: 14715712 DOI: 10.1210/en.2003-1133] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypogonadism has been implicated as a contributing factor in glucocorticoid-induced osteoporosis, but evidence for this is limited. Hypogonadism and glucocorticoid excess both cause bone loss, but the cellular mechanisms responsible are distinct. Loss of gonadal steroids causes an increase in bone remodeling by up-regulating osteoblastogenesis and osteoclastogenesis. Glucocorticoid excess, conversely, suppresses remodeling by down-regulating osteoblastogenesis and osteoclastogenesis. Nonetheless, both conditions increase osteoblast apoptosis and decrease osteoclast apoptosis, and both cause bone loss due to an undersupply of osteoblasts relative to the need for cavity repair. To investigate their interactions, we compared the effects of orchidectomy, glucocorticoid excess, or both combined in mice. After 28 d, serum unbound testosterone concentration and seminal vesicle weight were not diminished when prednisolone was administered alone. Vertebral bone mineral density and compression strength decreased to the same extent in animals receiving prednisolone or after orchidectomy, but the changes were not additive. Orchidectomy induced the expected up-regulation of osteoblast and osteoclast progenitors, but these changes were prevented in orchidectomized mice simultaneously receiving glucocorticoids. Likewise, the increase in cancellous osteoid, osteoblasts, osteoclasts, bone formation, and activation frequency caused by orchidectomy were prevented by prednisolone. The prevalence of osteoblast apoptosis increased in the mice receiving prednisolone or after orchidectomy, but the increases were not additive. These data demonstrate that hypogonadism does not occur in or contribute to glucocorticoid-induced osteoporosis and that the adverse skeletal effects of glucocorticoid excess override those of orchidectomy.
Collapse
Affiliation(s)
- Robert S Weinstein
- Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Chagin AS, Lindberg MK, Andersson N, Moverare S, Gustafsson JA, Sävendahl L, Ohlsson C. Estrogen receptor-beta inhibits skeletal growth and has the capacity to mediate growth plate fusion in female mice. J Bone Miner Res 2004; 19:72-7. [PMID: 14753739 DOI: 10.1359/jbmr.0301203] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED To determine the long-term role of ER beta in the regulation of longitudinal bone growth, appendicular and axial skeletal growth was followed and compared in female ER beta-/-, ER alpha-/-, and ER alpha-/- beta-/- mice. Our results show that ER beta inhibits appendicular and axial skeletal growth and has the capacity to induce fusion of the growth plates. INTRODUCTION Estrogen affects skeletal growth and promotes growth plate fusion in humans. In rodents, the growth plates do not fuse after sexual maturation, but prolonged treatment with supraphysiological levels of estradiol has the capacity to fuse the growth plates. It should be emphasized that the estrogen receptor (ER) alpha-/- and the ER alpha-/- beta-/-, but not the ER beta-/-, mouse models have clearly increased serum levels of estradiol. MATERIALS AND METHODS The skeletal growth was monitored by X-ray and dynamic histomorphometry, and the growth plates were analyzed by quantitative histology, calcein double labeling, bromodeoxyuridine (BrdU) incorporation, and TUNEL assay in 4- and 18-month-old female ER beta-/-, ER alpha-/-, and ER alpha-/- beta-/- mice. RESULTS Young adult (4-month-old) ER beta-/- mice demonstrated an increased axial- and appendicular-skeletal growth, supporting the notion that ER beta inhibits skeletal growth in young adult female mice. Interestingly, the growth plates were consistently fused in the appendicular skeleton of 18-month-old female ER alpha-/- mice. This fusion of growth plates, caused by a prolonged exposure to supraphysiological levels of estradiol in female ER alpha-/- mice, must be mediated through ER beta because old ER alpah-/- beta-/- mice displayed unchanged, unfused growth plates. CONCLUSIONS Our results confirm that ER beta is a physiological inhibitor of appendicular- and axial-skeletal growth in young adult female mice. Furthermore, we made the novel observation that ER beta, after prolonged supraphysiological estradiol exposure, has the capacity to mediate growth plate fusion in old female mice.
Collapse
Affiliation(s)
- A S Chagin
- Pediatric Endocrinology Unit, Department of Woman and Child Health, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Osteoporosis is being recognized increasingly in men, and represents a substantial public health problem. As the male population ages and lives longer, the incidence of osteoporotic fractures is expected to increase. The current lifetime risk for a fragility fracture is approximately 27% in men aged 50 years or more, and will increase further over the next 20 years. A major problem with osteoporosis in men is that it continues to be unrecognized, and the majority of men with fragility fractures due to osteoporosis are not being treated. A higher level of awareness is required amongst both general practitioners and the general public that osteoporosis is a treatable condition that can affect men. Secondary causes for osteoporosis are more common in men than in women, and require rigorous exclusion and treatment. Undiagnosed clinical hypogonadism is a common cause of osteoporosis in men, and is readily treatable. The cause of primary osteoporosis in men is unknown, but it results in an osteoblast defect. Genetic factors are likely to be important. In some but not all men, relative estrogen deficiency contributes to rapid rates of age-related bone loss and fractures. An adequate calcium intake, regular weight-bearing exercise, and normal vitamin D status are all very important, particularly with increasing age. The role of testosterone in treating eugonadal men with osteoporosis is currently unclear, and larger prospective studies will be required to carefully evaluate the benefits and risks of therapy. First-line treatment of osteoporosis in hypogonadal or eugonadal men is with bisphosphonates. Alendronate increases bone density and reduces vertebral fractures measured using a semiquantitative method in eugonadal or hypogonadal men with osteoporosis. In the near future, it is likely that subcutaneous human parathyroid hormone (1-34) or teriparatide will also be available as an important new anabolic treatment for men with osteoporosis. Teriparatide treatment also increases bone density in men. Selective estrogen receptor modulating drugs require further evaluation in men, but would appear to theoretically benefit men, especially those with low estradiol levels. In the future, selective androgen receptor modulating drugs may be useful in the prevention and treatment of osteoporosis, and in increasing lean body mass in men, without having adverse effects on prostate and breast tissue.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Diabetes and Endocrinology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
46
|
2002 Highlights From: 25th Annual San Antonio Breast Cancer Symposium; San Antonio, Texas December 11–14, 2002. Clin Breast Cancer 2003. [DOI: 10.1016/s1526-8209(11)70439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Abstract
Gonadal function has long been known to be important for skeletal health in men. Prepubertal hypogonadism is clearly associated with impairment in peak bone mass development and adult-onset hypogonadism with accelerated bone loss. Gonadal failure results in deficits in both androgen and estrogen action, but traditionally androgens were assumed to have the most important skeletal effect in men. Recently that model has been reconsidered as a variety of kinds of evidence have appeared to document a critical role for estrogen in bone physiology. As a result of this fresh perspective a host of interesting new dilemmas and hypotheses are being examined, including those related to the mechanisms of sex steroid action in bone, the origins of gender differences in skeletal morphology and physiology, and the role of estrogen in diagnostic and therapeutic strategies in men with metabolic bone disorders.
Collapse
Affiliation(s)
- E S Orwoll
- Bone and Mineral Unit CR113, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
48
|
Whitfield JF, Morley P, Willick GE. Bone growth stimulators. New tools for treating bone loss and mending fractures. VITAMINS AND HORMONES 2003; 65:1-80. [PMID: 12481542 DOI: 10.1016/s0083-6729(02)65059-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the new millennium, humans will be traveling to Mars and eventually beyond with skeletons that respond to microgravity by self-destructing. Meanwhile in Earth's aging populations growing numbers of men and many more women are suffering from crippling bone loss. During the first decade after menopause all women suffer an accelerating loss of bone, which in some of them is severe enough to result in "spontaneous" crushing of vertebrae and fracturing of hips by ordinary body movements. This is osteoporosis, which all too often requires prolonged and expensive care, the physical and mental stress of which may even kill the patient. Osteoporosis in postmenopausal women is caused by the loss of estrogen. The slower development of osteoporosis in aging men is also due at least in part to a loss of the estrogen made in ever smaller amounts in bone cells from the declining level of circulating testosterone and is needed for bone maintenance as it is in women. The loss of estrogen increases the generation, longevity, and activity of bone-resorbing osteoclasts. The destructive osteoclast surge can be blocked by estrogens and selective estrogen receptor modulators (SERMs) as well as antiosteoclast agents such as bisphosphonates and calcitonin. But these agents stimulate only a limited amount of bone growth as the unaffected osteoblasts fill in the holes that were dug by the now suppressed osteoclasts. They do not stimulate osteoblasts to make bone--they are antiresorptives not bone anabolic agents. (However, certain estrogen analogs and bisphosphates may stimulate bone growth to some extent by lengthening osteoblast working lives.) To grow new bone and restore bone strength lost in space and on Earth we must know what controls bone growth and destruction. Here we discuss the newest bone controllers and how they might operate. These include leptin from adipocytes and osteoblasts and the statins that are widely used to reduce blood cholesterol and cardiovascular damage. But the main focus of this article is necessarily the currently most promising of the anabolic agents, the potent parathyroid hormone (PTH) and certain of its 31- to 38-aminoacid fragments, which are either in or about to be in clinical trial or in the case of Lilly's Forteo [hPTH-(1-34)] tentatively approved by the Food and Drug Administration for treating osteoporosis and mending fractures.
Collapse
Affiliation(s)
- James F Whitfield
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | | |
Collapse
|
49
|
Vandenput L, Boonen S, Van Herck E, Swinnen JV, Bouillon R, Vanderschueren D. Evidence from the aged orchidectomized male rat model that 17beta-estradiol is a more effective bone-sparing and anabolic agent than 5alpha-dihydrotestosterone. J Bone Miner Res 2002; 17:2080-6. [PMID: 12412816 DOI: 10.1359/jbmr.2002.17.11.2080] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was designed to evaluate the impact of estrogen versus androgen action on orchidectomy (ORX)-induced bone loss and associated changes in body composition. During an experimental period of 4 months, aged (12-month-old) ORX rats were treated with 17beta-estradiol (E2; 0.75 microg/day) or different doses of the nonaromatizable androgen 5alpha-dihydrotestosterone (DHT; 45, 75, and 150 microg/day, respectively), via subcutaneous (sc) silastic implants. Low doses of DHT and E2 inhibited the ORX-induced rise of bone turnover markers (serum osteocalcin and urinary deoxypyridinoline [DPD]) to a similar extent. High-dose DHT prevented the ORX-induced decrease of trabecular bone density but had no significant effect on cortical thinning as assessed by peripheral quantitative computed tomography (pQCT). This bone-sparing action of DHT occurred at the expense of hypertrophy of the ventral prostate and seminal vesicles. On the other hand, E2 restored both trabecular bone density and cortical thickness in ORX rats and even prevented age-related bone loss. In contrast to DHT, E2 increased lean body mass and inhibited the ORX-associated increase of fat mass, as measured by DXA. Administration of E2 was associated with increased serum concentrations of insulin-like growth factor (IGF) I and decreased circulating levels of leptin. We conclude that, in the aged ORX rat model, E2 is more effective in preventing ORX-induced bone loss than DHT. Additionally, E2 has anabolic effects on muscle tissue and prevents the ORX-related increase of fat mass. Overall, these data suggest that androgen action on bone and body composition is dependent on stimulation of both androgen receptors (ARs) and estrogen receptors (ERs).
Collapse
Affiliation(s)
- L Vandenput
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Over the last 30 years the role of tamoxifen in breast cancer treatment has been progressively expanded by clinical investigation to encompass the entire spectrum of disease from cancer chemoprevention to palliation of advanced disease. The primacy of tamoxifen for these indications in postmenopausal women is now under challenge by the selective aromatase inhibitors, a class of endocrine agent that induces oestrogen deprivation rather than oestrogen receptor blockade. This review considers the biochemical, pharmacological and clinical properties of the nonsteroidal aromatase inhibitor letrozole. This agent is superior to tamoxifen for the treatment of metastatic breast cancer, a finding that suggests that letrozole may ultimately eclipse tamoxifen for other indications, including chemoprevention. Further clinical investigation will be necessary to establish the risks and benefits of letrozole versus tamoxifen for each new indication, with adjuvant therapy being the next in line. The object of this review is to provide a reference source on the biochemical, pharmacological and clinical properties of letrozole for clinicians to consider both established and future indications.
Collapse
Affiliation(s)
- Heather S Shaw
- Multidisciplinary Breast Program, Duke University Medical Center, Box 3381, Durham, NC 27710, USA.
| | | |
Collapse
|