1
|
Gems D. How aging causes osteoarthritis: An evolutionary physiology perspective. Osteoarthritis Cartilage 2025:S1063-4584(25)01024-6. [PMID: 40381687 DOI: 10.1016/j.joca.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Late-life diseases result from the poorly understood process of senescence (aging), which is largely genetically determined. According to a recently proposed evolutionary physiology-based account, the multifactorial model, senescence is largely caused by evolved but non-adaptive programmatic mechanisms specified by the wild-type (i.e. normal) genome. These act together with disruptions to wild-type function (due e.g. to infectious pathogens, mechanical injury and malnutrition) in a variety of combinations to generate diverse late-life diseases. Here, I explore the utility of this model by testing its capacity to provide an account of one complex, late-life disease, osteoarthritis (OA), and suggest a framework for understanding OA etiology. In this cartilage-focused framework, a core OA disease mechanism is a futile (non-adaptive) developmental program of endochondral ossification, in which hypertrophic articular cartilage chondrocytes alter joint architecture. Programmatic changes prime chondrocytes for futile program activation, which can be triggered by secondary causes of OA (e.g. joint mechanical injury). I suggest that an evolutionary cause of this priming, involving antagonistic pleiotropy, is selection to maximize early-life tissue repair benefits at the expense of late-life programmatic costs.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK.
| |
Collapse
|
2
|
Smit TH. On growth and scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:2439-2450. [PMID: 38705903 DOI: 10.1007/s00586-024-08276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE To describe the physiology of spinal growth in patients with adolescent idiopathic scoliosis (AIS). METHODS Narrative review of the literature with a focus on mechanisms of growth. RESULTS In his landmark publication On Growth and Form, D'Arcy Thompson wrote that the anatomy of an organism reflects the forces it is subjected to. This means that mechanical forces underlie the shape of tissues, organs and organisms, whether healthy or diseased. AIS is called idiopathic because the underlying cause of the deformation is unknown, although many factors are associated. Eventually, however, any deformity is due to mechanical forces. It has long been shown that the typical curvature and rotation of the scoliotic spine could result from vertebrae and intervertebral discs growing faster than the ligaments attached to them. This raises the question why in AIS the ligaments do not keep up with the speed of spinal growth. The spine of an AIS patient deviates from healthy spines in various ways. Growth is later but faster, resulting in higher vertebrae and intervertebral discs. Vertebral bone density is lower, which suggests less spinal compression. This also preserves the notochordal cells and the swelling pressure in the nucleus pulposus. Less spinal compression is due to limited muscular activity, and low muscle mass indeed underlies the lower body mass index (BMI) in AIS patients. Thus, AIS spines grow faster because there is less spinal compression that counteracts the force of growth (Hueter-Volkmann Law). Ligaments consist of collagen fibres that grow by tension, fibrillar sliding and the remodelling of cross-links. Growth and remodelling are enhanced by dynamic loading and by hormones like estrogen. However, they are opposed by static loading. CONCLUSION Increased spinal elongation and reduced ligamental growth result in differential strain and a vicious circle of scoliotic deformation. Recognising the physical and biological cues that contribute to differential growth allows earlier diagnosis of AIS and prevention in children at risk.
Collapse
Affiliation(s)
- Theodoor H Smit
- Department of Orthopaedic Surgery and Sports Medicine, Amsterdam University Medical Centres, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam University Medical Centres, Meibergdreef 9, Room K2-140, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Santos LA, Sullivan B, Kvist O, Jambawalikar S, Mostoufi-Moab S, Raya JM, Nguyen J, Marin D, Delgado J, Tokaria R, Nelson RR, Kammen B, Jaramillo D. Diffusion tensor imaging of the physis: the ABC's. Pediatr Radiol 2023; 53:2355-2368. [PMID: 37658251 PMCID: PMC10859915 DOI: 10.1007/s00247-023-05753-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
The physis, or growth plate, is the primary structure responsible for longitudinal growth of the long bones. Diffusion tensor imaging (DTI) is a technique that depicts the anisotropic motion of water molecules, or diffusion. When diffusion is limited by cellular membranes, information on tissue microstructure can be acquired. Tractography, the visual display of the direction and magnitude of water diffusion, provides qualitative visualization of complex cellular architecture as well as quantitative diffusion metrics that appear to indirectly reflect physeal activity. In the growing bones, DTI depicts the columns of cartilage and new bone in the physeal-metaphyseal complex. In this "How I do It", we will highlight the value of DTI as a clinical tool by presenting DTI tractography of the physeal-metaphyseal complex of children and adolescents during normal growth, illustrating variation in qualitative and quantitative tractography metrics with age and skeletal location. In addition, we will present tractography from patients with physeal dysfunction caused by growth hormone deficiency and physeal injury due to trauma, chemotherapy, and radiation therapy. Furthermore, we will delineate our process, or "DTI pipeline," from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Laura A Santos
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA.
| | - Brendan Sullivan
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Ola Kvist
- Pediatric Radiology Department, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | | | - Jose M Raya
- New York University Langone Health, New York, NY, USA
| | - Jie Nguyen
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diana Marin
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Jorge Delgado
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rumana Tokaria
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Ronald R Nelson
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Bamidele Kammen
- University of California San Francisco, San Francisco, CA, USA
| | - Diego Jaramillo
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Gems D, Kern CC. Is "cellular senescence" a misnomer? GeroScience 2022; 44:2461-2469. [PMID: 36068483 PMCID: PMC9768054 DOI: 10.1007/s11357-022-00652-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 01/06/2023] Open
Abstract
One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype).
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| | - Carina C. Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| |
Collapse
|
5
|
Sadeghian SM, Shapiro FD, Shefelbine SJ. Computational model of endochondral ossification: Simulating growth of a long bone. Bone 2021; 153:116132. [PMID: 34329814 DOI: 10.1016/j.bone.2021.116132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/04/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
Mechanical loading is a crucial factor in joint and bone development. Using a computational model, we investigated the role of mechanics on cartilage growth rate, ossification of the secondary center, formation of the growth plate, and overall bone shape. A computational algorithm was developed and implemented into finite element models to simulate the endochondral ossification for symmetric and asymmetric motion in a generic diarthrodial joint. Under asymmetric loading condition the secondary center ossifies asymmetrically leaning toward the external load and results in tilted growth plate. Also the mechanics seems to have greater influence in the early onset of the ossification of the secondary center rather than later progression of the center. While previous models have simulated select stages of skeletal development, our model can simulate growth and ossification during the entirety of post-natal development. Such computational models of skeletal development may provide insight into specific loading conditions that cause bone and joint deformities, and the required timing for rehabilitative repair.
Collapse
Affiliation(s)
- S Mahsa Sadeghian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | | | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
6
|
Rubin S, Agrawal A, Stegmaier J, Krief S, Felsenthal N, Svorai J, Addadi Y, Villoutreix P, Stern T, Zelzer E. Application of 3D MAPs pipeline identifies the morphological sequence chondrocytes undergo and the regulatory role of GDF5 in this process. Nat Commun 2021; 12:5363. [PMID: 34508093 PMCID: PMC8433335 DOI: 10.1038/s41467-021-25714-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
The activity of epiphyseal growth plates, which drives long bone elongation, depends on extensive changes in chondrocyte size and shape during differentiation. Here, we develop a pipeline called 3D Morphometric Analysis for Phenotypic significance (3D MAPs), which combines light-sheet microscopy, segmentation algorithms and 3D morphometric analysis to characterize morphogenetic cellular behaviors while maintaining the spatial context of the growth plate. Using 3D MAPs, we create a 3D image database of hundreds of thousands of chondrocytes. Analysis reveals broad repertoire of morphological changes, growth strategies and cell organizations during differentiation. Moreover, identifying a reduction in Smad 1/5/9 activity together with multiple abnormalities in cell growth, shape and organization provides an explanation for the shortening of Gdf5 KO tibias. Overall, our findings provide insight into the morphological sequence that chondrocytes undergo during differentiation and highlight the ability of 3D MAPs to uncover cellular mechanisms that may regulate this process.
Collapse
Affiliation(s)
- Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ankit Agrawal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Svorai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Villoutreix
- LIS (UMR 7020), IBDM (UMR 7288), Turing Center For Living Systems, Aix-Marseille University, Marseille, France.
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Irmak G, Gümüşderelioğlu M. Patients- and tissue-specific bio-inks with photoactivated PRP and methacrylated gelatin for the fabrication of osteochondral constructs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112092. [PMID: 33965102 DOI: 10.1016/j.msec.2021.112092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
In osteochondral tissue engineering, while the biochemical and mechanical properties of hydrogels guide stem cell proliferation and differentiation, physical and chemical stimulators also affect the differentiation of stem cells. Herein, we presented a patient and tissue-specific strategy for the development of biomimetic osteochondral constructs with gradient compositions. Osteochondral constructs were fabricated by gradually printing of bio-inks consisting of therapeutic platelet-rich plasma (PRP), adipose tissue-derived mesenchymal stem cells (AdMSCs), and extracellular matrix (ECM) mimetic hydrogel, microwave-assisted methacrylated gelatin (Gel-MA). Periodic application of light in the near infrared region (600-1200 nm wavelength) was used to induce platelet activation and also AdMSCs' differentiation. Gel-MA has the same structure as type I collagen and PRP has cartilage tissue-specific bioactive components, so they provide the appropriate environment for the differentiation of AdMSCs to osteochondral tissue. Histology, immunocytochemistry, and biochemical analyses indicated enhanced glycosaminoglycan (GAG) and calcium content, mineralization, and ECM production. Furthermore, RT-PCR results indicated the expressions of bone- and cartilage-specific genes. In conclusion, the periodically photoactivated hydrogels with relatively low degradation rate and high mechanical strength, and tissue-specific biomimetic structure promoted in-vitro osteochondral tissue formation including hyaline and hypertrophic cartilage and bone phases.
Collapse
Affiliation(s)
- Gülseren Irmak
- Hacettepe University, Bioengineering Department, 06800 Beytepe, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, 06800 Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Hacettepe University, Bioengineering Department, 06800 Beytepe, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
8
|
Recent Insights into Long Bone Development: Central Role of Hedgehog Signaling Pathway in Regulating Growth Plate. Int J Mol Sci 2019; 20:ijms20235840. [PMID: 31757091 PMCID: PMC6928971 DOI: 10.3390/ijms20235840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longitudinal growth of long bone, regulated by an epiphyseal cartilaginous component known as the “growth plate”, is generated by epiphyseal chondrocytes. The growth plate provides a continuous supply of chondrocytes for endochondral ossification, a sequential bone replacement of cartilaginous tissue, and any failure in this process causes a wide range of skeletal disorders. Therefore, the cellular and molecular characteristics of the growth plate are of interest to many researchers. Hedgehog (Hh), well known as a mitogen and morphogen during development, is one of the best known regulatory signals in the developmental regulation of the growth plate. Numerous animal studies have revealed that signaling through the Hh pathway plays multiple roles in regulating the proliferation, differentiation, and maintenance of growth plate chondrocytes throughout the skeletal growth period. Furthermore, over the past few years, a growing body of evidence has emerged demonstrating that a limited number of growth plate chondrocytes transdifferentiate directly into the full osteogenic and multiple mesenchymal lineages during postnatal bone development and reside in the bone marrow until late adulthood. Current studies with the genetic fate mapping approach have shown that the commitment of growth plate chondrocytes into the skeletal lineage occurs under the influence of epiphyseal chondrocyte-derived Hh signals during endochondral bone formation. Here, we discuss the valuable observations on the role of the Hh signaling pathway in the growth plate based on mouse genetic studies, with some emphasis on recent advances.
Collapse
|
9
|
Barrera CA, Bedoya MA, Delgado J, Berman JI, Chauvin NA, Edgar JC, Jaramillo D. Correlation between diffusion tensor imaging parameters of the distal femoral physis and adjacent metaphysis, and subsequent adolescent growth. Pediatr Radiol 2019; 49:1192-1200. [PMID: 31177318 DOI: 10.1007/s00247-019-04443-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/04/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Diffusion-tensor imaging (DTI) depicts the movement of water through columns of cartilage and newly formed bone and provides information about velocity of growth and growth potential. OBJECTIVE To determine the correlation between DTI tractography parameters of the distal femoral physis and metaphysis and the height change after DTI in pubertal and post-pubertal children. MATERIALS AND METHODS We retrospectively analyzed DTI images of the knee in 47 children with a mean age of 14.1 years in a 2-year period. In sagittal echoplanar DTI studies, regions of interest were placed in the femoral physis. Tractography was performed using a fractional anisotropy threshold of 0.15 and a maximum turning angle of 40°. The sample was divided to assess short-term and long-term growth after DTI. Short-term growth (n=25) was the height change between height at MRI and 1 year later. Long-term growth (n=36) was the height gain between height at MRI and at the growth plateau. RESULTS For the short-term group, subjects with larger tract volume (R2=0.40) and longer track lengths (R2=0.38) had larger height gains (P<0.01). For the long-term group, subjects with larger tract volume (R2=0.43) and longer track lengths (R2=0.32) had a larger height gain at the growth plateau (P<0.01). Intra- and inter-observer variability were good-excellent. CONCLUSION Follow-up data of growth 1 year after DTI evaluation and at skeletal maturity confirms that DTI parameters are associated with the amount of post-imaging growth.
Collapse
Affiliation(s)
- Christian A Barrera
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria A Bedoya
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Delgado
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey I Berman
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy A Chauvin
- Department of Radiology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - J Christopher Edgar
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Diego Jaramillo
- Department of Radiology, Columbia University Medical Center, 630 W. 168th St., MC 28, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The goal of the review is to summarize the current knowledge on the process of chondrocyte-to-osteoblast transdifferentiation during endochondral bone formation and its potential implications in fracture healing and disease. RECENT FINDINGS Lineage tracing experiments confirmed the transdifferentiation of chondrocytes into osteoblasts. More recent studies lead to the discovery of molecules involved in this process, as well as to the hypothesis that these cells may re-enter a stem cell-like phase prior to their osteoblastic differentiation. This review recapitulates the current knowledge regarding chondrocyte transdifferentiating into osteoblasts, the developmental and postnatal events where transdifferentiation appears to be relevant, and the molecules implicated in this process.
Collapse
Affiliation(s)
- Lena Ingeborg Wolff
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University Münster, Munster, Germany
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University Münster, Munster, Germany.
| |
Collapse
|
11
|
|
12
|
Abubakar AA, Ibrahim SM, Ali AK, Handool KO, Khan MS, Noordin Mustapha M, Azmi Ibrahim T, Kaka U, Mohamad Yusof L. Postnatal ex vivo rat model for longitudinal bone growth investigations. Animal Model Exp Med 2019; 2:34-43. [PMID: 31016285 PMCID: PMC6431117 DOI: 10.1002/ame2.12051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chondrocytes in the growth plate (GP) undergo increases in volume during different cascades of cell differentiation during longitudinal bone growth. The volume increase is reported to be the most significant variable in understanding the mechanism of long bone growth. METHODS Forty-five postnatal Sprague-Dawley rat pups, 7-15 days old were divided into nine age groups (P7-P15). Five pups were allocated to each group. The rats were sacrificed and tibia and metatarsal bones were harvested. Bone lengths were measured after 0, 24, 48, and 72 hours of ex vivo incubation. Histology of bones was carried out, and GP lengths and chondrocyte densities were determined. RESULTS There were significant differences in bone length among the age groups after 0 and 72 hours of incubation. Histological sectioning was possible in metatarsal bone from all age groups, and in tibia from 7- to 13-day-old rats. No significant differences in tibia and metatarsal GP lengths were seen among different age groups at 0 and 72 hours of incubation. Significant differences in chondrocyte densities along the epiphyseal GP of the bones between 0 and 72 hours of incubation were observed in most of the age groups. CONCLUSION Ex vivo growth of tibia and metatarsal bones of rats aged 7-15 days old is possible, with percentage growth rates of 23.87 ± 0.80% and 40.38 ± 0.95% measured in tibia and metatarsal bone, respectively. Histological sectioning of bones was carried out without the need for decalcification in P7-P13 tibia and P7-P15 metatarsal bone. Increases in chondrocyte density along the GP influence overall bone elongation.
Collapse
Affiliation(s)
- Adamu Abdul Abubakar
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Department of Veterinary Surgery and RadiologyUsmanu Danfodiyo UniversitySokotoNigeria
| | - Sahar Mohammed Ibrahim
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Department of Surgery and TheriogenologyCollege of Veterinary MedicineUniversity of MosulMosulIraq
| | - Ahmed Khalaf Ali
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Department of Surgery and TheriogenologyCollege of Veterinary MedicineUniversity of MosulMosulIraq
| | - Kareem Obayes Handool
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
| | - Mohammad Shuaib Khan
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
- Faculty of Veterinary and Animal ScienceGomal UniversityDera Ismail KhanPakistan
| | | | - Tengku Azmi Ibrahim
- Department of Pre‐Clinical Veterinary SciencesUniversiti Putra MalaysiaSerdangMalaysia
| | - Ubedullah Kaka
- Laboratory of Sustainable Animal Production and BiodiversityInstitute of Tropical Agriculture and Food SecurityUniversiti Putra MalaysiaSerdangMalaysia
| | - Loqman Mohamad Yusof
- Department of Companion Animal Medicine and SurgeryUniversiti Putra MalaysiaSerdangMalaysia
| |
Collapse
|
13
|
Jiang Z, Derrick-Roberts ALK, Jackson MR, Rossouw C, Pyragius CE, Xian C, Fletcher J, Byers S. Delayed development of ossification centers in the tibia of prenatal and early postnatal MPS VII mice. Mol Genet Metab 2018; 124:135-142. [PMID: 29747998 DOI: 10.1016/j.ymgme.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
Short stature is a characteristic feature of most of the mucopolysaccharidoses, a group of inherited lysosomal storage disorders caused by a single enzyme deficiency. MPS patients present with progressive skeletal defects from an early age, including short stature due to impaired cartilage-to-bone conversion (endochondral ossification). The aim of this study was to determine which murine MPS model best reproduces the bone length reduction phenotype of human MPS and use this model to determine the earliest developmental stage when disrupted endochondral ossification first appears. Gusmps/mps mice representing severe MPS VII displayed the greatest reduction in bone elongation and were chosen for histopathological analysis. Tibial development was assessed from E12.5 to 6 months of age. Chondrocytes in the region of the future primary ossification center became hypertrophic at a similar age to normal in the MPS VII mouse fetus, but a delay in bone deposition was observed with an approximate 1 day delay in the formation of the primary ossification centre. Likewise, chondrocytes in the region of the future secondary ossification center also became hypertrophic at the same age as normal in the MPS VII early postnatal mouse. Bone deposition in the secondary ossification centre was delayed by two days in the MPS VII proximal tibia (observed at postnatal day 14 (P14) compared to P12 in normal). The thickness of the tibial growth plate was larger in MPS VII mice from P9 onwards. Abnormal endochondral ossification starts in utero in MPS VII and worsens with age. It is characterized by a normal timeframe for chondrocyte hypertrophy but a delay in the subsequent deposition of bone in both the primary and secondary ossification centres, accompanied by an increase in growth plate thickness. This suggests that the signals for vascular invasion and bone deposition, some of which are derived from hypertrophic chondrocytes, are altered in MPS VII.
Collapse
Affiliation(s)
- Zhirui Jiang
- Genetics & Evolution, University of Adelaide, Adelaide, SA, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Ainslie L K Derrick-Roberts
- Genetics & Evolution, University of Adelaide, Adelaide, SA, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Paediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Matilda R Jackson
- Genetics & Evolution, University of Adelaide, Adelaide, SA, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Charné Rossouw
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Paediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Carmen E Pyragius
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Cory Xian
- Paediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janice Fletcher
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Sharon Byers
- Genetics & Evolution, University of Adelaide, Adelaide, SA, Australia; Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia; Paediatrics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
14
|
Growth plate-derived hedgehog-signal-responsive cells provide skeletal tissue components in growing bone. Histochem Cell Biol 2018; 149:365-373. [PMID: 29356962 DOI: 10.1007/s00418-018-1641-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 01/01/2023]
Abstract
Longitudinal bone growth progresses by continuous bone replacement of epiphyseal cartilaginous tissue, known as "growth plate", produced by columnar proliferated- and differentiated-epiphyseal chondrocytes. The endochondral ossification process at the growth plate is governed by paracrine signals secreted from terminally differentiated chondrocytes (hypertrophic chondrocytes), and hedgehog signaling is one of the best known regulatory signaling pathways in this process. Here, to investigate the developmental relationship between longitudinal endochondral bone formation and osteogenic progenitors under the influence of hedgehog signaling at the growth plate, genetic lineage tracing was carried out with the use of Gli1CreERT2 mice line to follow the fate of hedgehog-signal-responsive cells during endochondral bone formation. Gli1CreERT2 genetically labeled cells are detected in hypertrophic chondrocytes and osteo-progenitors at the chondro-osseous junction (COJ); these progeny then commit to the osteogenic lineage in periosteum, trabecular and cortical bone along the developing longitudinal axis. Furthermore, in ageing bone, where longitudinal bone growth ceases, hedgehog-signal responsiveness and its implication in osteogenic lineage commitment is significantly weakened. These results show, for the first time, evidence of the developmental contribution of endochondral progenitors under the influence of epiphyseal chondrocyte-derived secretory signals in longitudinally growing bone. This study provides a precise outline for assessing the skeletal lineage commitment of osteo-progenitors in response to growth-plate-derived regulatory signals during endochondral bone formation.
Collapse
|
15
|
Seidel R, Blumer M, Pechriggl EJ, Lyons K, Hall BK, Fratzl P, Weaver JC, Dean MN. Calcified cartilage or bone? Collagens in the tessellated endoskeletons of cartilaginous fish (sharks and rays). J Struct Biol 2017; 200:54-71. [PMID: 28923317 DOI: 10.1016/j.jsb.2017.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens.
Collapse
Affiliation(s)
- Ronald Seidel
- Department Biomaterials, Max Planck Institute of Colloids & Interfaces, Potsdam, Germany.
| | - Michael Blumer
- Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kady Lyons
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Brian K Hall
- Department of Biology, Dalhousie University, Halifax NS, Canada
| | - Peter Fratzl
- Department Biomaterials, Max Planck Institute of Colloids & Interfaces, Potsdam, Germany
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Mason N Dean
- Department Biomaterials, Max Planck Institute of Colloids & Interfaces, Potsdam, Germany
| |
Collapse
|
16
|
Abstract
Endochondral ossification is the fundamental process of skeletal development in vertebrates. Chondrocytes undergo sequential steps of differentiation, including mesenchymal condensation, proliferation, hypertrophy, and mineralization. These steps, which are required for the morphological and functional changes in differentiating chondrocytes, are strictly regulated by a complex transcriptional network. Biochemical and mice genetic studies identified chondrogenic transcription factors critical for endochondral ossification. The transcription factor sex-determining region Y (SRY)-box 9 (Sox9) is essential for early chondrogenesis, and impaired Sox9 function causes severe chondrodysplasia in humans and mice. In addition, recent genome-wide chromatin immunoprecipitation-sequencing studies revealed the precise regulatory mechanism of Sox9 during early chondrogenesis. Runt-related transcription factor 2 promotes chondrocyte hypertrophy and terminal differentiation. Interestingly, endoplasmic reticulum (ER) stress-related transcription factors have recently emerged as novel regulators of chondrocyte differentiation. Here we review the transcriptional mechanisms that regulate endochondral ossification, with a focus on Sox9.
Collapse
Affiliation(s)
- Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
17
|
Lampl M, Schoen M. How long bones grow children: Mechanistic paths to variation in human height growth. Am J Hum Biol 2017; 29. [DOI: 10.1002/ajhb.22983] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/01/2017] [Accepted: 02/05/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michelle Lampl
- Center for the Study of Human Health; Emory University; Atlanta Georgia 30324
- Department of Anthropology; Emory University; Atlanta Georgia 30324
| | - Meriah Schoen
- Center for the Study of Human Health; Emory University; Atlanta Georgia 30324
- Department of Nutrition; Georgia State University; Atlanta Georgia 30302
| |
Collapse
|
18
|
Pazzaglia UE, Congiu T, Sibilia V, Pagani F, Benetti A, Zarattini G. Relationship between the chondrocyte maturation cycle and the endochondral ossification in the diaphyseal and epiphyseal ossification centers. J Morphol 2016; 277:1187-98. [DOI: 10.1002/jmor.20568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/16/2016] [Accepted: 05/26/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ugo E. Pazzaglia
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health; University of Brescia; Brescia Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological Sciences; University of Insubria; Varese Italy
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine; University of Milan; Milan Italy
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational Medicine; University of Milan; Milan Italy
| | - Anna Benetti
- Department of Clinical and Experimental Sciences; University of Brescia; Brescia Italy
| | - Guido Zarattini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health; University of Brescia; Brescia Italy
| |
Collapse
|
19
|
Lee D, Kim YS, Song J, Kim HS, Lee HJ, Guo H, Kim H. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats. Molecules 2016; 21:461. [PMID: 27070559 PMCID: PMC6273700 DOI: 10.3390/molecules21040461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/26/2016] [Accepted: 03/31/2016] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2'-deoxyuridine was injected to label proliferating chondrocytes on days 8-10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) or bone morphogenetic protein-2 (BMP-2) in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.
Collapse
Affiliation(s)
- Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Young-Sik Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Jungbin Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Hyun Soo Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Hyun Jung Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Hailing Guo
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Korea.
| |
Collapse
|
20
|
Structural differences in epiphyseal and physeal hypertrophic chondrocytes. BONEKEY REPORTS 2015; 4:663. [PMID: 25987982 DOI: 10.1038/bonekey.2015.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 01/19/2015] [Indexed: 11/08/2022]
Abstract
We have observed that epiphyseal and physeal hypertrophic chondrocytes in BALB/c mice show considerable differences of light microscopic and ultrastructural appearance, even when the cells are at the same stage of differentiation. In addition, cell structure maintenance improved with tissue preparation controlled for osmolarity and for membrane stabilization using 0.5% ruthenium hexammine trichloride (RHT) for both light microscopy (LM) and electron microscopy (EM) or 0.5% lanthanum nitrate for LM. Physeal hypertrophic chondrocytes showed a gradual increase in size closer to the metaphysis and a change in shape as cells elongated along the long axis. The nucleus remained central, with uniformly dispersed chromatin, and the rough endoplasmic reticulum (RER) was randomly dispersed throughout cytoplasm with little to no presence against the cell membrane. Even the lowermost cells showed thin elongated or dilated cisternae of RER and intact cell membranes. Epiphyseal chondrocytes remained circular to oval with no elongation. Nucleus and RER were positioned as a complete transcellular central nucleocytoplasmic column or as an incomplete bud with RER of the column/bud always continuous with RER peripherally against the intact cell membrane. RER was densely packed with parallel cisternae with adjacent cytoplasm empty of organelles but often filled with circular deposits of moderately electron-dense material consistent with fat. Optimal technique for LM involved fixation using glutaraldehyde (GA) 1.3%, paraformaldehyde (PFA) 1% and RHT 0.5% (mOsm 606) embedded in JB-4 plastic and stained with 0.5% toluidine blue. Optimal technique for EM used fixation with GA 1.3%, PFA 1%, RHT 0.5% and cacodylate buffer 0.03 M (mOsm 511) and post-fixation including 1% osmium tetroxide. These observations lead to the possibility that the same basic cell, the hypertrophic chondrocyte, has differing functional mechanisms at different regions of the developing bone.
Collapse
|
21
|
Di Luca A, Van Blitterswijk C, Moroni L. The osteochondral interface as a gradient tissue: From development to the fabrication of gradient scaffolds for regenerative medicine. ACTA ACUST UNITED AC 2015; 105:34-52. [DOI: 10.1002/bdrc.21092] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea Di Luca
- Tissue Regeneration Department; University of Twente; 7522 NB Enschede The Netherlands
| | - Clemens Van Blitterswijk
- Tissue Regeneration Department; University of Twente; 7522 NB Enschede The Netherlands
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine; Complex Tissue Regeneration Department; Maastricht ER 6229 The Netherlands
| | - Lorenzo Moroni
- Tissue Regeneration Department; University of Twente; 7522 NB Enschede The Netherlands
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine; Complex Tissue Regeneration Department; Maastricht ER 6229 The Netherlands
| |
Collapse
|
22
|
Abstract
Environmental temperature can have a surprising impact on extremity growth in homeotherms, but the underlying mechanisms have remained elusive for over a century. Limbs of animals raised at warm ambient temperature are significantly and permanently longer than those of littermates housed at cooler temperature. These remarkably consistent lab results closely resemble the ecogeographical tenet described by Allen's "extremity size rule," that appendage length correlates with temperature and latitude. This phenotypic growth plasticity could have adaptive significance for thermal physiology. Shortened extremities help retain body heat in cold environments by decreasing surface area for potential heat loss. Homeotherms have evolved complex mechanisms to maintain tightly regulated internal temperatures in challenging environments, including "facultative extremity heterothermy" in which limb temperatures can parallel ambient. Environmental modulation of tissue temperature can have direct and immediate consequences on cell proliferation, metabolism, matrix production, and mineralization in cartilage. Temperature can also indirectly influence cartilage growth by modulating circulating levels and delivery routes of essential hormones and paracrine regulators. Using an integrated approach, this article synthesizes classic studies with new data that shed light on the basis and significance of this enigmatic growth phenomenon and its relevance for treating human bone elongation disorders. Discussion centers on the vasculature as a gateway to understanding the complex interconnection between direct (local) and indirect (systemic) mechanisms of temperature-enhanced bone lengthening. Recent advances in imaging modalities that enable the dynamic study of cartilage growth plates in vivo will be key to elucidating fundamental physiological mechanisms of long bone growth regulation.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
23
|
Abstract
Aberrant redeployment of the 'transient' events responsible for bone development and postnatal longitudinal growth has been reported in some diseases in what is otherwise inherently 'stable' cartilage. Lessons may be learnt from the molecular mechanisms underpinning transient chondrocyte differentiation and function, and their application may better identify disease aetiology. Here, we review the current evidence supporting this possibility. We firstly outline endochondral ossification and the cellular and physiological mechanisms by which it is controlled in the postnatal growth plate. We then compare the biology of these transient cartilaginous structures to the inherently stable articular cartilage. Finally, we highlight specific scenarios in which the redeployment of these embryonic processes may contribute to disease development, with the foresight that deciphering those mechanisms regulating pathological changes and loss of cartilage stability will aid future research into effective disease-modifying therapies.
Collapse
Affiliation(s)
- K A Staines
- (Correspondence should be addressed to K A Staines; )
| | | | | | - C Farquharson
- Comparative Biomedical Sciences, The Royal Veterinary CollegeRoyal College Street, London, NW1 0TUUK
| | | |
Collapse
|
24
|
Ono K, Karolak MR, Ndong JDLC, Wang W, Yang X, Elefteriou F. The ras-GTPase activity of neurofibromin restrains ERK-dependent FGFR signaling during endochondral bone formation. Hum Mol Genet 2013; 22:3048-62. [PMID: 23571107 DOI: 10.1093/hmg/ddt162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The severe defects in growth plate development caused by chondrocyte extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) gain or loss-of-function suggest that tight spatial and temporal regulation of mitogen-activated protein kinase signaling is necessary to achieve harmonious growth plate elongation and structure. We provide here evidence that neurofibromin, via its Ras guanosine triphosphatase -activating activity, controls ERK1/2-dependent fibroblast growth factor receptor (FGFR) signaling in chondrocytes. We show first that neurofibromin is expressed in FGFR-positive prehypertrophic and hypertrophic chondrocytes during growth plate endochondral ossification. Using mice lacking neurofibromin 1 (Nf1) in type II collagen-expressing cells, (Nf1col2(-/-) mutant mice), we then show that lack of neurofibromin in post-mitotic chondrocytes triggers a number of phenotypes reminiscent of the ones observed in mice characterized by FGFR gain-of-function mutations. Those include dwarfism, constitutive ERK1/2 activation, strongly reduced Ihh expression and decreased chondrocyte proliferation and maturation, increased chondrocytic expression of Rankl, matrix metalloproteinase 9 (Mmp9) and Mmp13 and enhanced growth plate osteoclastogenesis, as well as increased sensitivity to caspase-9 mediated apoptosis. Using wildtype (WT) and Nf1(-/-) chondrocyte cultures in vitro, we show that FGF2 pulse-stimulation triggers rapid ERK1/2 phosphorylation in both genotypes, but that return to the basal level is delayed in Nf1(-/-) chondrocytes. Importantly, in vivo ERK1/2 inhibition by daily injection of a recombinant form of C-type natriuretic peptide to post-natal pups for 18 days was able to correct the short stature of Nf1col2(-/-) mice. Together, these results underscore the requirement of neurofibromin and ERK1/2 for normal endochondral bone formation and support the notion that neurofibromin, by restraining RAS-ERK1/2 signaling, is a negative regulator of FGFR signaling in differentiating chondrocytes.
Collapse
Affiliation(s)
- Koichiro Ono
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
25
|
Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 2013; 495:375-8. [PMID: 23485973 PMCID: PMC3606657 DOI: 10.1038/nature11940] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 01/29/2013] [Indexed: 11/08/2022]
Abstract
The wide diversity of skeletal proportions in mammals is evident upon a survey of any natural history museum's collections and allows us to distinguish between species even when reduced to their calcified components. Similarly, each individual is comprised of a variety of bones of differing lengths. The largest contribution to the lengthening of a skeletal element, and to the differential elongation of elements, comes from a dramatic increase in the volume of hypertrophic chondrocytes in the growth plate as they undergo terminal differentiation. However, the mechanisms of chondrocyte volume enlargement have remained a mystery. Here we use quantitative phase microscopy to show that mammalian chondrocytes undergo three distinct phases of volume increase, including a phase of massive cell swelling in which the cellular dry mass is significantly diluted. In light of the tight fluid regulatory mechanisms known to control volume in many cell types, this is a remarkable mechanism for increasing cell size and regulating growth rate. It is, however, the duration of the final phase of volume enlargement by proportional dry mass increase at low density that varies most between rapidly and slowly elongating growth plates. Moreover, we find that this third phase is locally regulated through a mechanism dependent on insulin-like growth factor. This study provides a framework for understanding how skeletal size is regulated and for exploring how cells sense, modify and establish a volume set point.
Collapse
|
26
|
Garzón-Alvarado DA. A biochemical strategy for simulation of endochondral and intramembranous ossification. Comput Methods Biomech Biomed Engin 2013; 17:1237-47. [DOI: 10.1080/10255842.2012.741597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Staines KA, Macrae VE, Farquharson C. Cartilage development and degeneration: a Wnt Wnt situation. Cell Biochem Funct 2012; 30:633-42. [PMID: 22714865 DOI: 10.1002/cbf.2852] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/25/2012] [Accepted: 05/20/2012] [Indexed: 12/27/2022]
Abstract
The Wnt signaling pathway plays a crucial role in the development and homeostasis of a variety of adult tissues and, as such, is emerging as an important therapeutic target for numerous diseases. Factors involved in the Wnt pathway are expressed throughout limb development and chondrogenesis and have been shown to be critical in joint homeostasis and endochondral ossification. Therefore, in this review, we discuss Wnt regulation of chondrogenic differentiation, hypertrophy and cartilage function. Moreover, we detail the role of the Wnt signaling pathway in cartilage degeneration and its potential to act as a target for therapy in osteoarthritis.
Collapse
Affiliation(s)
- Katherine Ann Staines
- The Roslin Institute and Royal-Dick School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland.
| | | | | |
Collapse
|
28
|
Congdon KA, Hammond AS, Ravosa MJ. Differential limb loading in miniature pigs (Sus scrofa domesticus): a test of chondral modeling theory. J Exp Biol 2012; 215:1472-83. [PMID: 22496283 PMCID: PMC3324700 DOI: 10.1242/jeb.061531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2011] [Indexed: 01/25/2023]
Abstract
Variation in mechanical loading is known to influence chondrogenesis during joint formation. However, the interaction among chondrocyte behavior and variation in activity patterns is incompletely understood, hindering our knowledge of limb ontogeny and function. Here, the role of endurance exercise in the development of articular and physeal cartilage in the humeral head was examined in 14 miniature swine (Sus scrofa domesticus). One group was subjected to graded treadmill running over a period of 17 weeks. A matched sedentary group was confined to individual pens. Hematoxylin and eosin staining was performed for histomorphometry of cartilage zone thickness, chondrocyte count and cell area, with these parameters compared multivariately between exercised and sedentary groups. Comparisons were also made with femora from the same sample, focusing on humerus-femur differences between exercised and sedentary groups, within-cohort comparisons of humerus-femur responses and correlated changes within and across joints. This study shows conflicting support for the chondral modeling theory. The humeral articular cartilage of exercised pigs was thinner than that of sedentary pigs, but their physeal cartilage was thicker. While articular and physeal cartilage demonstrated between-cohort differences, humeral physeal cartilage exhibited load-induced responses of greater magnitude than humeral articular cartilage. Controlling for cohort, the humerus showed increased chondrocyte mitosis and cell area, presumably due to relatively greater loading than the femur. This represents the first known effort to evaluate chondral modeling across multiple joints from the same individuals. Our findings suggest the chondral response to elevated loading is complex, varying within and among joints. This has important implications for understanding joint biomechanics and development.
Collapse
Affiliation(s)
- Kimberly A Congdon
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | | |
Collapse
|
29
|
Mechanics of chondrocyte hypertrophy. Biomech Model Mechanobiol 2011; 11:655-64. [DOI: 10.1007/s10237-011-0340-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/29/2011] [Indexed: 12/20/2022]
|
30
|
Amini S, Veilleux D, Villemure I. Three-dimensional in situ zonal morphology of viable growth plate chondrocytes: a confocal microscopy study. J Orthop Res 2011; 29:710-7. [PMID: 21437950 DOI: 10.1002/jor.21294] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 10/04/2010] [Indexed: 02/04/2023]
Abstract
Longitudinal growth, occurring in growth plates with structurally distinct zones, has clinical implications in the treatment of progressive skeletal deformities. This study documents the three-dimensional morphology of chondrocytes within histological zones of growth plate using confocal microscopy combined with fluorescent labeling techniques. Three-dimensional reconstruction of Calcein AM-labeled chondrocytes was made from stacks of confocal images recorded in situ from 4-week-old swine growth plates. Three-dimensional quantitative morphological measurements were further performed and compared at both tissue and cell levels. Chondrocyte volume and surface area increased about five- and threefold, respectively, approaching the chondro-osseous junction from the pool of reserve cells. Chondrocytes from the proliferative zone were the most discoidal cells (sphericity of 0.81 ± 0.06) among three histological zones. Minimum and maximum cell/matrix volume ratios were identified in the reserve (11.0 ± 2.2) and proliferative zones (16.8 ± 3.0), respectively. Evaluated parameters revealed the heterogeneous and zone-dependent morphological state of the growth plate. Tissue and cellular morphology may have noteworthy contribution to the growth plate behavior during growth process. The ability to obtain in situ cell morphometry and monitor the changes in the growth direction could improve our understanding of the mechanisms through which abnormal growth is triggered.
Collapse
Affiliation(s)
- Samira Amini
- Department of Mechanical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, Canada H3C 3A7
| | | | | |
Collapse
|
31
|
Amini S, Veilleux D, Villemure I. Tissue and cellular morphological changes in growth plate explants under compression. J Biomech 2011; 43:2582-8. [PMID: 20627250 DOI: 10.1016/j.jbiomech.2010.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/23/2010] [Accepted: 05/11/2010] [Indexed: 11/29/2022]
Abstract
The mechanisms by which mechanical loading may alter bone development within growth plates are still poorly understood. However, several growth plate cell or tissue morphological parameters are associated with both normal and mechanically modulated bone growth rates. The aim of this study was to quantify in situ the three-dimensional morphology of growth plate explants under compression at both cell and tissue levels. Growth plates were dissected from ulnae of immature swine and tested under 15% compressive strain. Confocal microscopy was used to image fluorescently labeled chondrocytes in the three growth plate zones before and after compression. Quantitative morphological analyses at both cell (volume, surface area, sphericity, minor/major radii) and tissue (cell/matrix volume ratio) levels were performed. Greater chondrocyte bulk strains (volume decrease normalized to the initial cell volume) were found in the proliferative (35.4%) and hypertrophic (41.7%) zones, with lower chondrocyte bulk strains (24.7%) in the reserve zone. Following compression, the cell/matrix volume ratio decreased in the reserve and hypertrophic zones by 24.3% and 22.6%, respectively, whereas it increased by 35.9% in the proliferative zone. The 15% strain applied on growth plate explants revealed zone-dependent deformational states at both tissue and cell levels. Variations in the mechanical response of the chondrocytes from different zones could be related to significant inhomogeneities in growth plate zonal mechanical properties. The ability to obtain in situ cell morphometry and monitor the changes under compression will contribute to a better understanding of mechanisms through which abnormal growth can be triggered.
Collapse
Affiliation(s)
- Samira Amini
- Department of Mechanical Engineering, Ecole Polytechnique of Montreal, Station Centre-Ville, Montréal, Québec, Canada.
| | | | | |
Collapse
|
32
|
Bush PG, Pritchard M, Loqman MY, Damron TA, Hall AC. A key role for membrane transporter NKCC1 in mediating chondrocyte volume increase in the mammalian growth plate. J Bone Miner Res 2010; 25:1594-603. [PMID: 20200963 PMCID: PMC3154001 DOI: 10.1002/jbmr.47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mechanisms that underlie growth plate chondrocyte volume increase and hence bone lengthening are poorly understood. Many cell types activate the Na-K-Cl cotransporter (NKCC) to bring about volume increase. We hypothesised that NKCC may be responsible for the volume expansion of hypertrophic chondrocytes. Metatarsals/metacarpals from 16 rat pups (P(7)) were incubated in the presence/absence of the specific NKCC inhibitor bumetanide and measurement of whole-bone lengths and histologic analysis of the growth plate were done after 24 hours. Fluorescent NKCC immunohistochemistry was visualised using a confocal laser scanning microscopy on seven rat tibial growth plates (P(7)). Microarray analysis was performed on mRNA isolated from proliferative and hypertrophic zone cells of tibial growth plates from five rats of each of three ages (P(49/53/58)). Exposure to bumetanide resulted in approximately 35% reduction (paired Student's t test, p < .05) of bone growth in a dose-dependent manner; histologic analysis showed that a reduction in hypertrophic zone height was responsible. Quantification of fluorescence immunohistochemistry revealed a significant (paired Student's t test, p < .05) change in NKCC from the intracellular space of proliferative cells to the cytosolic membrane of hypertrophic zone cells. Further, microarray analysis illustrated an increase in NKCC1 mRNA between proliferative and hypertrophic cells. The increase in NKCC1 mRNA in hypertrophic zone cells, its cellular localization, and reduced bone growth in the presence of the NKCC inhibitor bumetanide implicate NKCC in growth plate hypertrophic chondrocyte volume increase. Further investigation is warranted to determine the regulatory control of NKCC in the mammalian growth plate and the possible detrimental effect on bone growth with chronic exposure to loop diuretics.
Collapse
Affiliation(s)
- Peter G Bush
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| | | | | | | | | |
Collapse
|
33
|
Kalujnaia S, McVee J, Kasciukovic T, Stewart AJ, Cramb G. A role for inositol monophosphatase 1 (IMPA1) in salinity adaptation in the euryhaline eel (Anguilla anguilla). FASEB J 2010; 24:3981-91. [PMID: 20547660 DOI: 10.1096/fj.10-161000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigated the expression and tissue distribution of inositol monophosphatase (IMPA1) and characterized its role in salinity adaptation in the eel. The coding sequence of eel IMPA1 was determined and confirmed to be orthologous to the mammalian gene/enzyme by phylogenetic analysis and structural modeling. Quantitative real-time PCR and Western blot techniques indicated up to 17-fold increases in mRNA expression and 2-fold increases in protein abundance in major osmoregulatory tissues following transfer of fish to seawater (SW). This was accompanied by up to 5-fold increases in enzyme activity, and 1.8- and 3-fold increases in inositol contents within the gill and kidney, respectively. Immunohistological studies revealed that IMPA1 protein expression predominated in SW-acclimated fish within basal epithelial/epidermal layers of the gill, esophagus, intestine, skin, and fins. SW transfer also induced a 10-fold increase in inositol content in the fin. IMPA1 immunoreactivity was also identified in chondrocytes within the cartilagenous matrix of the gills and fins, as well as in clusters of interstitial cells surrounding the kidney tubules. The observed increases in expression of IMPA1 highlight a protective role for inositol within various eel tissues following SW acclimation. This constitutes an adaptive mechanism in teleost fish naturally exposed to hypertonic environments.
Collapse
Affiliation(s)
- Svetlana Kalujnaia
- School of Medicine, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
| | | | | | | | | |
Collapse
|
34
|
Lenas P, Moos M, Luyten FP. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:395-422. [PMID: 19589040 DOI: 10.1089/ten.teb.2009.0461] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
Collapse
Affiliation(s)
- Petros Lenas
- Department of Biochemistry and Molecular Biology IV, Veterinary Faculty, Complutense University of Madrid , Madrid, Spain
| | | | | |
Collapse
|
35
|
Kapur P, Wuttke W, Jarry H, Seidlova-Wuttke D. Beneficial effects of beta-Ecdysone on the joint, epiphyseal cartilage tissue and trabecular bone in ovariectomized rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:350-355. [PMID: 20171072 DOI: 10.1016/j.phymed.2010.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
Ecdysteroids are steroids found in invertebrates and plants. In mammals they have protein anabolic effects. We have recently published antiosteoporotic effects of Tinospora cordifolia (TC) extract and the search for the possible active ingredients yielded the presence of beta-Ecdysone (Ecd). Therefore, we investigated the effects of pure Ecd in ovariectomized rats on morphological changes in joint, epiphyseal cartilage and trabecular tissue. Following ovariectomy rats were fed for 1 month with Ecd containing food at a dose of 52.8 mg/day/animal. Positive and negative control animals received 17-beta Estradiol (E(2), 132 microg/day/animal) and soy free (sf) food respectively. At sacrifice, specimens consisting of upper tibiae-lower femurs and knee joint were harvested and processed for histomorphometry. The parameters measured included thickness of the joint cartilage, thickness of the whole epiphyseal growth plate and its three zones. Furthermore, the percentage of trabecular bone in the metaphysis region of tibiae was quantified. Ecd and E(2) induced a significant increase in the thickness of joint cartilage. The whole epiphyseal growth plate and its proliferative and hypertrophic zones were also increased by Ecd whereas E(2) reduced their size. The percentage of trabecular area in the metaphysis of tibia was significantly increased in Ecd and E(2) treated animals. Results provide a plausible explanation for the antiosteoporotic effects of TC. Hence, TC as well as other Ecd producing plants or pure Ecd may be of value in the prevention and treatment of osteoporosis and osteoarthritis which is of increasing importance due to aging and obesity among individuals.
Collapse
Affiliation(s)
- P Kapur
- Division of Endocrinology, University of Göttingen, Robert-Koch Strasse 40, D-37075, Göttingen, Germany
| | | | | | | |
Collapse
|
36
|
Prenatal and Nutritional Influences on Skeletal Development: Lessons from Animal Studies. Clin Rev Bone Miner Metab 2010. [DOI: 10.1007/s12018-009-9065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Liang H, Yang L, Ma T, Zhao Y. Functional expression of cystic fibrosis transmembrane conductance regulator in mouse chondrocytes. Clin Exp Pharmacol Physiol 2009; 37:506-8. [PMID: 19843093 DOI: 10.1111/j.1440-1681.2009.05319.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Cystic fibrosis transmembrane conductance regulator (CFTR) is well known for its role in the cystic fibrosis (CF). Recent studies have shown that CF patients and CFTR-deficient mice exhibit a severe abnormal skeletal phenotype, indicating that CFTR may play a role in bone development and pathophysiological processes. However, it is not known whether CFTR has a direct or indirect effect on bone formation. The aim of the present study was to detect the expression and function of CFTR in mouse chondrocytes. 2. Reverse transcription-polymerase chain reaction, western blotting and immunofluorescence were used to characterize the expression of CFTR in primary isolated mouse chondrocytes. Expression of CFTR mRNA and protein was detectable in mouse chondrocytes. Importantly, whole-cell patch-clamp analysis demonstrated that CFTR in mouse chondrocytes is functional as a cAMP-dependent Cl(-) channel that is inhibited by CFTRinh-172. 3. Thus, the results of the present study demonstrate that functional CFTR is expressed in mouse chondrocytes, which offers essential evidence for the potential direct role of CFTR in physiological and pathological processes of bone.
Collapse
Affiliation(s)
- Haitao Liang
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
38
|
Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. J Biomech 2009; 42:510-6. [DOI: 10.1016/j.jbiomech.2008.11.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/24/2022]
|
39
|
|
40
|
Garzón-Alvarado DA, García-Aznar JM, Doblaré M. A reaction–diffusion model for long bones growth. Biomech Model Mechanobiol 2008; 8:381-95. [DOI: 10.1007/s10237-008-0144-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
|
41
|
Abstract
The mammalian growth plate is a complex structure which is essential for the elongation of long bones. However, an understanding of how the growth plate functions at the cellular level is lacking. This review, summarises the factors involved in growth-plate regulation, its failure and the consequence of injury. We also describe some of the cellular mechanisms which underpin the increase in volume of the growth-plate chondrocyte which is the major determinant of the rate and extent of bone lengthening. We show how living in situ chondrocytes can be imaged using 2-photon laser scanning microscopy to provide a quantitative analysis of their volume. This approach should give better understanding of the cellular control of bone growth in both healthy and failed growth plates.
Collapse
Affiliation(s)
- P. G. Bush
- Centre for Integrative Physiology, School of Biomedical Sciences Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - A. C. Hall
- Centre for Integrative Physiology, School of Biomedical Sciences Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - M. F. Macnicol
- Royal Hospital for Sick Children, Lothian University Hospitals NHS Trust, Sciennes Road, Edinburgh EH9 1LF, UK
| |
Collapse
|
42
|
Abstract
Numerous techniques exist to correct pediatric angular deformity by asymmetrically inhibiting physeal growth. Despite decades of surgical experience, little is known about the determinants of success or failure of temporary hemiepiphysiodesis. We lack a basic understanding of tolerances and kinematics of the surgically restrained physis. Furthermore, little is known about the influence of implant design and placement on efficacy of deformity correction and rebound growth. We have undertaken a pilot research study with the goal of producing genu valgum in New Zealand white rabbits. This report comprises our initial experience and observations in performing hemiepiphysiodesis with staples and 2-hole plate techniques. The experimental hypotheses proposed by this article are as follows: (1) a staple or plate applied to the proximal lateral tibial physis of a rabbit hind limb will reliably create a valgus deformity of the knee; (2) the plate or staple will create this deformity without permanently damaging the proximal tibial physis; and (3) provided the implant remains in situ, there will be no difference between the plate and staple constructs with respect to the magnitude or rate of deformity produced. Further studies will aim to use this model to investigate technical issues related to physeal instrumentation.
Collapse
|
43
|
Bush PG, Parisinos CA, Hall AC. The osmotic sensitivity of rat growth plate chondrocytes in situ; clarifying the mechanisms of hypertrophy. J Cell Physiol 2008; 214:621-9. [PMID: 17786946 DOI: 10.1002/jcp.21249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bone elongation is predominantly driven by the volume expansion of growth plate chondrocytes. This mechanism was initially believed to be "hypertrophy", describing a proportional increase of cell water and organelles. However, morphometrical analysis subsequently assumed the increase to be "swelling", resulting in a disproportionate increase of cell water (osmotically active fraction). Histological approaches were performed on fixed tissue, and for the "swelling" assumption to be valid, the osmotic sensitivity of living cells before and during volume increase should differ. To test this, analysis of images acquired by 2-photon laser scanning microscopy (2PLSM) were used to determine the osmotic sensitivity, and osmotically active/inactive proportions of in situ chondrocytes from 15 living rat growth plates exposed to varying media osmolarities ( approximately 0-580 mOsm). The dimensions of cell volume swelling in hypotonic media were different to the preferential lengthening seen in vivo, confirming the complexity of directional cell volume increase. Boyle-van't Hoff analysis of cell volume over the range of media osmolarity indicated no significant difference (Student's t-test) in the osmotically inactive fraction, 39.5 +/- 2.9% and 47.0 +/- 4.3% (n = 13) for proliferative and hypertrophic zones, respectively, or the sensitivity of volume to changes in media osmolarity (proliferative 15.5 +/- 0.8 and hypertrophic zone 15.5 +/- 1.2%volume . Osm). The osmotic fractions did not change as chondrocytes progress from proliferative to hypertrophic regions of the growth plate. Our data suggest cell volume increase by hypertrophy may play a greater role in cell enlargement than swelling, and should be re-evaluated as a mechanism responsible for growth plate chondrocyte volume increase and hence bone elongation.
Collapse
Affiliation(s)
- Peter G Bush
- Centre for Integrative Physiology, School of Biomedical Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
44
|
Takano H, Aizawa T, Irie T, Itoi E, Kokubun S, Roach HI. Normal Bone Growth Requires Optimal Estrogen Levels: Negative Effects of Both High and Low Dose Estrogen on the Number of Growth Plate Chondrocytes. TOHOKU J EXP MED 2008; 214:269-80. [DOI: 10.1620/tjem.214.269] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hiroyuki Takano
- Department of Orthopaedic Surgery, Tohoku University School of Medicine
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Tohoku University School of Medicine
| | - Taichi Irie
- Department of Orthopaedic Surgery, Tohoku University School of Medicine
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine
| | - Shoichi Kokubun
- Department of Orthopaedic Surgery, Tohoku University School of Medicine
| | | |
Collapse
|
45
|
Guehring T, Urban JP, Cui Z, Tirlapur UK. Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering. Microsc Res Tech 2008; 71:298-304. [DOI: 10.1002/jemt.20557] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Takano H, Aizawa T, Irie T, Kokubun S, Itoi E. Estrogen deficiency leads to decrease in chondrocyte numbers in the rabbit growth plate. J Orthop Sci 2007; 12:366-74. [PMID: 17657557 DOI: 10.1007/s00776-007-1145-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 04/24/2007] [Indexed: 02/09/2023]
Abstract
BACKGROUND In the pubertal growth plate, sex hormones play important roles in regulating the proliferation, differentiation, maturation, and programmed death of chondrocytes. Although many studies have been reported on the regulation of estrogen in long-bone growth, some of the mechanisms have remained unclear, including its role in cell kinetics in growth plate chondrocytes. The aim of this study was to clarify the effect of a deficiency of estrogen on growth plate chondrocytes. METHODS We obtained growth plates of the femoral head from normal and ovariectomized Japanese white rabbits at 10, 15, 20, and 25 weeks of age. The effects of estrogen deficiency on the cell kinetics of growth plate chondrocytes were investigated immunohistochemically using antibodies for an apoptotic marker, caspase-3, and for proliferating cell nuclear antigen (PCNA). RESULTS Both the length of the femur and the height of the growth plate in the ovariectomized rabbits tended to be larger than those in the normal rabbits. There were fewer chondrocytes in the ovariectomized rabbits than in the normal ones. Caspase-3-positive cells were detected mainly in the hypertrophic zone, whereas PCNA-positive cells were found in the proliferating to upper hypertrophic zones. The ovariectomized rabbits showed a higher caspase-3-positive rate at 20 weeks of age and a lower PCNA-positive ratio in all age groups than the normal rabbits. CONCLUSIONS This study indicated that ovariectomy led to a decreased number of growth plate chondrocytes, which resulted from decreased cell-proliferating ability and probably acceleration of the number of chondrocytes undergoing apoptosis.
Collapse
Affiliation(s)
- Hiroyuki Takano
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Sendai, Japan
| | | | | | | | | |
Collapse
|
47
|
Nurminsky D, Magee C, Faverman L, Nurminskaya M. Regulation of chondrocyte differentiation by actin-severing protein adseverin. Dev Biol 2007; 302:427-37. [PMID: 17097081 PMCID: PMC3387683 DOI: 10.1016/j.ydbio.2006.09.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/25/2006] [Accepted: 09/29/2006] [Indexed: 11/28/2022]
Abstract
The importance of actin organization in controlling the chondrocyte phenotype is well established, but little is known about the cytoskeletal components regulating chondrocyte differentiation. Previously, we have observed up-regulation of an actin-binding gelsolin-like protein in hypertrophic chondrocytes. We have now identified it as adseverin (scinderin). Adseverin is drastically up-regulated during chondrocyte maturation, as shown by Northern blot analysis, in situ hybridization, and real-time RT-PCR. Its expression is positively regulated by PKC and MEK signaling as shown by inhibitory analyses. Over-expression of adseverin in non-hypertrophic chondrocytes causes rearrangement of the actin cytoskeleton, a change in cell morphology, a dramatic (3.5-fold) increase in cell volume, and up-regulation of Indian hedgehog (Ihh) and of collagen type X--all indicative of chondrocyte differentiation. These changes are mediated by ERK1/2 and p38 kinase pathways. Thus, adseverin-induced rearrangements of the actin cytoskeleton may mediate the PKC-dependent activation of p38 and Erk1/2 signaling pathways necessary for chondrocyte hypertrophy, as evidenced by changes in cell morphology, increase in cell size and expression of the chondrocyte maturation markers. These results demonstrate that interdependence of cytoskeletal organization and chondrogenic gene expression is regulated, at least in part, by actin-binding proteins such as adseverin.
Collapse
Affiliation(s)
- Dmitry Nurminsky
- Tufts University School of Medicine, Department of Anatomy and Cellular Biology, 136 Harrison Avenue Boston, MA 02111, USA
| | | | | | | |
Collapse
|
48
|
Brouwers JEM, van Donkelaar CC, Sengers BG, Huiskes R. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone? J Biomech 2005; 39:2774-82. [PMID: 16298375 DOI: 10.1016/j.jbiomech.2005.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 10/10/2005] [Indexed: 12/30/2022]
Abstract
Endochondral ossification is the process of differentiation of cartilaginous into osseous tissue. Parathyroid hormone related protein (PTHrP), Indian hedgehog (Ihh) and vascular endothelial growth factor (VEGF), which are synthesized in different zones of the growth plate, were found to have crucial roles in regulating endochondral ossification. The aim of this study was to evaluate whether the three growth factors PTHrP, Ihh and VEGF, together, could regulate longitudinal growth in a normal human, fetal femur. For this purpose, a one-dimensional finite element (FE) model, incorporating growth factor signaling, was developed of the human, distal, femoral growth plate. It included growth factor synthesis in the relevant zones, their transport and degradation and their effects. Simulations ran from initial hypertrophy in the center of the bone until secondary ossification starts at approximately 3.5 months postnatal. For clarity, we emphasize that no mechanical stresses were considered. The FE model showed a stable growth plate in which the bone growth rate was constant and the number of cells per zone oscillated around an equilibrium. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates resulted, respectively, in more and less cells per zone and in increased and decreased bone growth rates. The FE model correctly reflected the development of a growth plate and the rate of bone growth in the femur. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates reflected growth plate pathologies and growth plates in PTHrP-/- and Ihh-/- mice. The three growth factors, PTHrP, Ihh and VEGF, could potentially together regulate tissue differentiation.
Collapse
Affiliation(s)
- J E M Brouwers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
49
|
Youssefian T, Sapena R, Carlier R, Bos C, Denormandie A, Denys P, Cormier A, Bandelier M. Nodular osteochondrogenic activity in soft tissue surrounding osteoma in neurogenic para osteo-arthropathy: morphological and immunohistochemical study. BMC Musculoskelet Disord 2004; 5:46. [PMID: 15563732 PMCID: PMC543471 DOI: 10.1186/1471-2474-5-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 11/25/2004] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neurogenic Para-Osteo-Arthropathy (NPOA) occurs as a consequence of central nervous system injuries or some systemic conditions. They are characterized by bone formation around the main joints. METHODS In order to define some biological features of NPOAs, histological and immunohistological studies of the soft tissue surrounding osteoma and Ultrasound examination (US) of NPOA before the appearance of abnormal ossification on plain radiographs were performed. RESULTS We have observed a great number of ossifying areas scattered in soft tissues. US examination have also shown scattered ossifying areas at the early stage of ossification. A high osteogenic activity was detected in these tissues and all the stages of the endochondral process were observed. Mesenchymal cells undergo chondrocytic differentiation to further terminal maturation with hypertrophy, which sustains mineralization followed by endochondral ossification process. CONCLUSION We suggest that periosteoma soft tissue reflect early stage of osteoma formation and could be a model to study the mechanism of osteoma formation and we propose a mechanism of the NPOA formation in which sympathetic dystony and altered mechanical loading induce changes which could be responsible for the cascade of cellular events leading to cartilage and bone formation.
Collapse
MESH Headings
- Alkaline Phosphatase/metabolism
- Arthropathy, Neurogenic/complications
- Arthropathy, Neurogenic/diagnosis
- Arthropathy, Neurogenic/pathology
- Arthropathy, Neurogenic/physiopathology
- Bone Neoplasms/diagnosis
- Bone Neoplasms/etiology
- Bone Neoplasms/pathology
- Bone Neoplasms/physiopathology
- Cell Differentiation
- Chondrocytes/enzymology
- Chondrocytes/pathology
- Chondrogenesis
- Collagen/analysis
- Elbow/diagnostic imaging
- Hip/diagnostic imaging
- Humans
- Immunohistochemistry
- Knee/diagnostic imaging
- Mesoderm/metabolism
- Mesoderm/pathology
- Ossification, Heterotopic/complications
- Ossification, Heterotopic/diagnosis
- Ossification, Heterotopic/pathology
- Ossification, Heterotopic/physiopathology
- Osteogenesis
- Osteoma/diagnosis
- Osteoma/etiology
- Osteoma/pathology
- Osteoma/physiopathology
- Periosteum/pathology
- Stress, Mechanical
- Trauma, Nervous System/complications
- Ultrasonography
- Weight-Bearing
Collapse
Affiliation(s)
- T Youssefian
- SYMPATHOS Laboratory, 67 boulevard du Général Martial Valin, 75015, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Roach HI, Mehta G, Oreffo ROC, Clarke NMP, Cooper C. Temporal analysis of rat growth plates: cessation of growth with age despite presence of a physis. J Histochem Cytochem 2003; 51:373-83. [PMID: 12588965 DOI: 10.1177/002215540305100312] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Despite the continued presence of growth plates in aged rats, longitudinal growth no longer occurs. The aims of this study were to understand the reasons for the cessation of growth. We studied the growth plates of femurs and tibiae in Wistar rats aged 62-80 weeks and compared these with the corresponding growth plates from rats aged 2-16 weeks. During skeletal growth, the heights of the plates, especially that of the hypertrophic zone, reflected the rate of bone growth. During the period of decelerating growth, it was the loss of large hydrated chondrocytes that contributed most to the overall decrease in the heights of the growth plates. In the old rats we identified four categories of growth plate morphology that were not present in the growth plates of younger rats: (a). formation of a bone band parallel to the metaphyseal edge of the growth plate, which effectively sealed that edge; (b). extensive areas of acellularity, which were resistant to resorption and/or remodeling; (c). extensive remodeling and bone formation within cellular regions of the growth plate; and (d). direct bone formation by former growth plate chondrocytes. These processes, together with a loss of synchrony across the plate, would prevent further longitudinal expansion of the growth plate despite continued sporadic proliferation of chondrocytes.
Collapse
Affiliation(s)
- Helmtrud I Roach
- University Orthopaedics, Bone & Joint Research Group, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.
| | | | | | | | | |
Collapse
|