1
|
Dapunt U, Prior B, Kretzer JP, Giese T, Zhao Y. Bacterial Biofilm Components Induce an Enhanced Inflammatory Response Against Metal Wear Particles. Ther Clin Risk Manag 2020; 16:1203-1212. [PMID: 33324065 PMCID: PMC7733385 DOI: 10.2147/tcrm.s280042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose Aseptic implant loosening is still a feared complication in the field of orthopaedics. Presumably, a chronic inflammatory response is induced by wear particles, which leads to osteoclast generation, bone degradation and hence loosening of the implant. Since it has been demonstrated in the literature that most implants are in fact colonized by bacteria, the question arises whether aseptic implant loosening is truly aseptic. The aim of this study was to investigate a possibly enhanced inflammatory response to metal wear particles in the context of subclinical infection. Patients and Methods Tissue samples were collected intra-operatively from patients undergoing implant-exchange surgery due to aseptic loosening. Histopathological analysis was performed, as well as gene expression analysis for the pro-inflammatory cytokine Interleukin-8. By a series of in vitro experiments, the effect of metal wear particles on human monocytes, polymorphonuclear neutrophiles and osteoblasts was investigated. Additionally, minor amounts of lipoteichoic acid (LTA) and the bacterial heat shock protein GroEL were added. Results Histopathology of tissue samples revealed an accumulation of metal wear particles, as well as a cellular infiltrate consisting predominately of mononuclear cells. Furthermore, high expression of IL-8 could be detected in tissue surrounding the implant. Monocytes and osteoblasts in particular showed an increased release of IL-8 after stimulation with metal wear particles and in particular after stimulation with bacterial components and wear particles together. Conclusion We were able to show that minor amounts of bacterial components and metal wear particles together induce an enhanced inflammatory response in human monocytes and osteoblasts. This effect could significantly contribute to the generation of bone-resorbing osteoclasts and hence implant-loosening.
Collapse
Affiliation(s)
- Ulrike Dapunt
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg 69118, Germany
| | - Birgit Prior
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Jan Philippe Kretzer
- Laboratory of Biomechanics and Implant Research, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg 69118, Germany
| | - Thomas Giese
- Institute for Immunology, Heidelberg University, Heidelberg 69120, Germany
| | - Yina Zhao
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg 69118, Germany
| |
Collapse
|
2
|
Souza ATP, Lopes HB, Freitas GP, Ferraz EP, Oliveira FS, Almeida ALG, Weffort D, Beloti MM, Rosa AL. Role of embryonic origin on osteogenic potential and bone repair capacity of rat calvarial osteoblasts. J Bone Miner Metab 2020; 38:481-490. [PMID: 32078052 DOI: 10.1007/s00774-020-01090-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The aim of this study was to evaluate the in vitro osteogenic potential of osteoblasts from neural crest-derived frontal bone (OB-NC) and mesoderm-derived parietal bone (OB-MS) and the bone formation induced by them when injected into calvarial defects. MATERIALS AND METHODS Calvarial bones were collected from newborn Wistar rats (3-day old) and characterized as frontal and parietal prior to OB-NC and OB-MS harvesting. The cells were cultured, and several parameters of osteoblast differentiation were evaluated. These cells, or PBS without cells (control), were locally injected into 5-mm rat calvarial defects (5 × 106 cells/defect) and after 4 weeks bone formation was evaluated by morphometric and histological analyses. RESULTS The characterization of frontal and parietal bones assured the different embryonic origin of both cell populations, OB-NC and OB-MS. The OB-NC presented higher proliferation while the OB-MS presented higher alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of runt-related transcription factor 2, Alp, bone sialoprotein and osteocalcin revealing their high osteogenic potential. µCT analysis indicated that there was higher amount of bone formation in defects injected with both OB-NC and OB-MS compared to the control. Moreover, the bone tissue formed by both cells displayed the same histological characteristics. CONCLUSIONS Despite the distinct in vitro osteogenic potential, OB-NC and OB-MS induced similar bone repair in a rat calvarial defect model. Thus, osteoblasts, irrespective of their in vitro osteogenic potential linked to embryonic origins, seem to be suitable for cell-based therapies aiming to repair bone defects.
Collapse
Affiliation(s)
- Alann Thaffarell Portilho Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Gileade Pereira Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Emanuela Prado Ferraz
- Department of Maxillofacial Surgery, Prosthesis and Traumatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Adriana Luisa Gonçalves Almeida
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Denise Weffort
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
3
|
Lüthje FL, Jensen LK, Jensen HE, Skovgaard K. The inflammatory response to bone infection - a review based on animal models and human patients. APMIS 2020; 128:275-286. [PMID: 31976582 DOI: 10.1111/apm.13027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Bone infections are difficult to diagnose and treat, especially when a prosthetic joint replacement or implant is involved. Bone loss is a major complication of osteomyelitis, but the mechanism behind has mainly been investigated in cell cultures and has not been confirmed in human settings. Inflammation is important in initiating an appropriate immune response to invading pathogens. However, many of the signaling molecules used by the immune system can also modulate bone remodeling and contribute to bone resorption during osteomyelitis. Our current knowledge of the inflammatory response relies heavily on animal models as research based on human samples is scarce. Staphylococcus aureus is one of the most common causes of bone infections and is the pathogen of choice in animal models. The regulation of inflammatory genes during prosthetic joint infections and implant-associated osteomyelitis has only been studied in rodent models. It is important to consider the validity of an animal model when results are extrapolated to humans, and both bone composition and the immune system of pigs has been shown to be more similar to humans, than to rodents. Here in vivo studies on the inflammatory response to prosthetic joint infections and implant-associated osteomyelitis are reviewed.
Collapse
Affiliation(s)
- Freja Lea Lüthje
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Saint-Pastou Terrier C, Gasque P. Bone responses in health and infectious diseases: A focus on osteoblasts. J Infect 2017; 75:281-292. [PMID: 28778751 DOI: 10.1016/j.jinf.2017.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022]
Abstract
Historically, bone was thought to be immunologically inactive with the sole function of supporting locomotion and ensuring stromaness functions as a major lymphoid organ. However, a myriad of pathogens (bacteria such as staphylococcus as well as viruses including alphaviruses, HIV or HCV) can invade the bone. These pathogens can cause apoptosis, autophagy and necrosis of osteoblasts and lead to lymphopenia and immune paralysis. There are now several detailed studies on how osteoblasts contribute to innate immune and inflammatory responses; indeed, osteoblasts in concert with resident macrophages can engage an armory of defense mechanisms capable of detecting and controlling pathogen evasion mechanisms. Osteoblasts can express the so-called pattern recognition receptors such as TOLL-like receptors involved in the detection for example of lipids and unique sugars (polysaccharides and polyriboses) expressed by bacteria or viruses (e.g. LPS and RNA respectively). Activated osteoblasts can produce interferon type I, cytokines, chemokines and interferon-stimulated proteins through autocrine and paracrine mechanisms to control for viral replication and to promote phagocytosis or lysis of bacteria for example by defensins. Uncontrolled and sustained innate immune activation of infected osteoblasts will also lead to an imbalance in the production of osteoclastogenic factors such as RANKL and osteoprotegerin involved in bone repair.
Collapse
Affiliation(s)
- Cécile Saint-Pastou Terrier
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France; Laboratoire de Biologie, secteur Laboratoire d'immunologie clinique et expérimentale ZOI (LICE OI), CHU La Réunion site Félix Guyon, St Denis, La Réunion, France.
| |
Collapse
|
5
|
Dapunt U, Giese T, Stegmaier S, Moghaddam A, Hänsch GM. The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms. BMC Musculoskelet Disord 2016; 17:243. [PMID: 27250617 PMCID: PMC4890488 DOI: 10.1186/s12891-016-1091-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Implant infections are a major complication in the field of orthopaedics. Bacteria attach to the implant-surface and form biofilm-colonies which makes them difficult to treat. Not only immune cells exclusively respond to bacterial challenges, but also local tissue cells are capable of participating in defense mechanisms. The aim of this study was to evaluate the role of osteoblasts in the context of implant infections. METHODS Primary osteoblasts were cultivated and stimulated with free-swimming bacteria at 4 °C and 37 °C. Supernatants were harvested for ELISA and expression of pro-inflammatory cytokines evaluated by RT-PCR. Bacterial binding to osteoblasts was evaluated using cytofluorometry and uptake was investigated by (3)H thymidine-labelling of bacteria. Osteoblasts were additionally stimulated with the extracellular polymeric substance (EPS) of Staphylococcus epidermidis biofilms, as well as components of the EPS; the bacterial heat shock protein GroEL in particular. RESULTS We demonstrated that binding of bacteria to the osteoblast cell surface leads to an increased production of pro-inflammatory cytokines. Bacteria are capable of surviving intracellular. Furthermore, osteoblasts do not only respond to free-swimming, planktonic bacteria, but also to components of the EPS, including lipoteichoic acid and the heat shock protein GroEL. CONCLUSION In conclusion, local tissue cells, specifically osteoblasts, might contribute to the persistence of the inflammatory response associated with implant-infections.
Collapse
Affiliation(s)
- Ulrike Dapunt
- Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, Heidelberg, 69118, Germany.
| | - Thomas Giese
- Institute for Immunology, Heidelberg University, Im Neuenheimer Feld 305, Heidelberg, 69120, Germany
| | - Sabine Stegmaier
- Institute for Immunology, Heidelberg University, Im Neuenheimer Feld 305, Heidelberg, 69120, Germany
| | - Arash Moghaddam
- HTRG Heidelberg Trauma Research Group, Center for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, Heidelberg, 69118, Germany
| | - Gertrud Maria Hänsch
- Institute for Immunology, Heidelberg University, Im Neuenheimer Feld 305, Heidelberg, 69120, Germany
| |
Collapse
|
6
|
MHC class II transcription is associated with inflammatory responses in a wild marine mammal. INFECTION GENETICS AND EVOLUTION 2016; 42:77-82. [PMID: 27137083 DOI: 10.1016/j.meegid.2016.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 01/10/2023]
Abstract
Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population.
Collapse
|
7
|
Szyska M, Na IK. Bone Marrow GvHD after Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2016; 7:118. [PMID: 27066008 PMCID: PMC4811960 DOI: 10.3389/fimmu.2016.00118] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
The bone marrow is the origin of all hematopoietic lineages and an important homing site for memory cells of the adaptive immune system. It has recently emerged as a graft-versus-host disease (GvHD) target organ after allogeneic stem cell transplantation (alloHSCT), marked by depletion of both hematopoietic progenitors and niche-forming cells. Serious effects on the restoration of hematopoietic function and immunological memory are common, especially in patients after myeloablative conditioning therapy. Cytopenia and durable immunodeficiency caused by the depletion of hematopoietic progenitors and destruction of bone marrow niches negatively influence the outcome of alloHSCT. The complex balance between immunosuppressive and cell-depleting treatments, GvHD and immune reconstitution, as well as the desirable graft-versus-tumor (GvT) effect remains a great challenge for clinicians.
Collapse
Affiliation(s)
- Martin Szyska
- Experimental and Clinical Research Center (ECRC) , Berlin , Germany
| | - Il-Kang Na
- Experimental and Clinical Research Center (ECRC), Berlin, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis. Front Cell Infect Microbiol 2015; 5:85. [PMID: 26636047 PMCID: PMC4660271 DOI: 10.3389/fcimb.2015.00085] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
Bone cells, namely osteoblasts and osteoclasts work in concert and are responsible for bone extracellular matrix formation and resorption. This homeostasis is, in part, altered during infections by Staphylococcus aureus through the induction of various responses from the osteoblasts. This includes the over-production of chemokines, cytokines and growth factors, thus suggesting a role for these cells in both innate and adaptive immunity. S. aureus decreases the activity and viability of osteoblasts, by induction of apoptosis-dependent and independent mechanisms. The tight relationship between osteoclasts and osteoblasts is also modulated by S. aureus infection. The present review provides a survey of the relevant literature discussing the important aspects of S. aureus and osteoblast interaction as well as the ability for antimicrobial peptides to kill intra-osteoblastic S. aureus, hence emphasizing the necessity for new anti-infectious therapeutics.
Collapse
Affiliation(s)
- Jérôme Josse
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Frédéric Velard
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Sophie C Gangloff
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| |
Collapse
|
9
|
Repercussions of NSAIDS drugs on bone tissue: the osteoblast. Life Sci 2015; 123:72-7. [PMID: 25625244 DOI: 10.1016/j.lfs.2015.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/11/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can act by modulating the behavior of osteoblasts, including their proliferation, differentiation, adhesion, and migration, but not all NSAIDs have these effects. Our objective was to update the information on this issue in a review of the literature in order to offer guidance on the prescription of the appropriate NSAID(s) to patients requiring bone tissue repair. To review current knowledge of this issue by searching for all relevant publications since 2001 in the MEDLINE, EMBASE and Cochrane Library databases, we used the following descriptors: bone tissue, osteoblast, NSAIDs, Anti-inflammatory drugs. Published studies show that most NSAIDs have an adverse effect on osteoblast growth by cell cycle arrest and apoptosis induction. The effect on differentiation varies according to the drug, dose, and treatment time. Osteoblast adhesion is increased and migration decreased by some NSAIDs, such as indomethacin and diclofenac. The antigenic profile or phagocytic function can also be modulated by NSAIDs. In general, NSAIDs have an adverse effect on bone tissue and given the routine administration of NSAIDs to individuals requiring bone repair, in which the osteoblast has an essential role, this effect on bone should be borne in mind.
Collapse
|
10
|
Bone marrow T-cell infiltration during acute GVHD is associated with delayed B-cell recovery and function after HSCT. Blood 2014; 124:963-72. [PMID: 24833353 DOI: 10.1182/blood-2013-11-539031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
B-cell immune dysfunction contributes to the risk of severe infections after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Delayed B-cell regeneration is found in patients with systemic graft-versus-host disease (GVHD) and is often accompanied by bone marrow (BM) suppression. Little is known about human BM GVHD. We analyzed the reconstitution kinetics of B-cell subsets in adult leukemic patients within 6 months after allo-HSCT. B-cell deficiency already existed before transplant and was aggravated after transplant. Onset of B-cell reconstitution characterized by transitional B-cell recovery occurred either early (months 2-3) or late (from month 6 on) and correlated highly positively with reverse transcription-polymerase chain reaction quantified numbers of κ-deleting recombination excision circles (KRECs). Delayed recovery was associated with systemic acute GVHD and full-intensity conditioning therapy. Histological analysis of BM trephines revealed increased T-cell infiltration in late recovering patients, which was associated with reduced numbers of osteoblasts. Functionally, late recovering patients displayed less pneumococcal polysaccharide-specific immunoglobin M-producing B cells on ex vivo B-cell activation than early recovering patients. Our results provide evidence for acute BM GVHD in allo-HSCT patients with infiltrating donor T cells and osteoblast destruction. This is associated with delayed B-cell reconstitution and impaired antibody response. Herein, KREC appears suitable to monitor BM B-cell output after transplant.
Collapse
|
11
|
Jauregui CE, Mansell JP, Jepson MA, Jenkinson HF. Differential interactions of Streptococcus gordonii and Staphylococcus aureus with cultured osteoblasts. Mol Oral Microbiol 2013; 28:250-66. [PMID: 23413785 DOI: 10.1111/omi.12022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 01/18/2023]
Abstract
The impedance of normal osteoblast function by microorganisms is at least in part responsible for the failure of dental or orthopedic implants. Staphylococcus aureus is a major pathogen of bone, and exhibits high levels of adhesion and invasion of osteoblasts. In this article we show that the commensal oral bacterium Streptococcus gordonii also adheres to and is internalized by osteoblasts. Entry of S. gordonii cells had typical features of phagocytosis, similar to S. aureus, with membrane protrusions characterizing initial uptake, and closure of the osteoblast membrane leading to engulfment. The sensitivities of S. gordonii internalization to inhibitors cytochalasin D, colchicine and monensin indicated uptake through endocytosis, with requirement for actin accumulation. Internalization levels of S. gordonii were enhanced by expression of S. aureus fibronectin-binding protein A (FnBPA) on the S. gordonii cell surface. Lysosomal-associated membrane protein-1 phagosomal membrane marker accumulated with intracellular S. aureus and S. gordonii FnBPA, indicating trafficking of bacteria into the late endosomal/lysosomal compartment. Streptococcus gordonii cells did not survive intracellularly for more than 12 h, unless expressing FnBPA, whereas S. aureus showed extended survival times (>48 h). Both S. aureus and S. gordonii DL-1 elicited a rapid interleukin-8 response by osteoblasts, whereas S. gordonii FnBPA was slower. Only S. aureus elicited an interleukin-6 response. Hence, S. gordonii invades osteoblasts by a mechanism similar to that exhibited by S. aureus, and elicits a proinflammatory response that may promote bone resorption.
Collapse
Affiliation(s)
- C E Jauregui
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
12
|
Cha IS, Kwon J, Mun JY, Park SB, Jang HB, Nho SW, del Castillo CS, Hikima JI, Aoki T, Jung TS. Cathepsins in the kidney of olive flounder, Paralichthys olivaceus, and their responses to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:538-544. [PMID: 23000266 DOI: 10.1016/j.dci.2012.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/03/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Cathepsin activities are responsible for mediating various pathways involved in immune response, including the apoptosis pathway, toll-like receptor (TLR) signaling, cytokine induction and activation of granule serine proteases. In the present study, we investigated cathepsin responses in the kidneys of olive flounder infected with Streptococcus parauberis, analyzing cathepsin expression using a label-free, quantitative proteomic approach in conjunction with quantitative real-time polymerase chain reaction (qRT-PCR). In proteomic analyses, we detected cathepsin B, D, L and S proteins, noting significant decreases and increases in cathepsins B and L, respectively, with infection. Taken together with an evaluation of cathepsin B, D, F, K, L, S and X gene expression in normal and infected kidneys by qRT-PCR, our results indicate that cathepsins B, D, L and S are the dominant lysosomal proteases in the immune system of the teleostei, olive flounder. Cathepsins F, K and X were regarded as minor cathepsins.
Collapse
Affiliation(s)
- In Seok Cha
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Díaz-Rodríguez L, García-Martínez O, De Luna-Bertos E, Ramos-Torrecillas J, Ruiz C. Effect of ibuprofen on proliferation, differentiation, antigenic expression, and phagocytic capacity of osteoblasts. J Bone Miner Metab 2012; 30:554-60. [PMID: 22543821 DOI: 10.1007/s00774-012-0356-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 03/18/2012] [Indexed: 10/28/2022]
Abstract
Ibuprofen is a nonselective nonsteroidal antiinflammatory drug commonly prescribed for acute postsurgical and posttraumatic pain. However, little known is about the effect of this drug on osteoblasts. In this study, we aimed to investigate the effect of ibuprofen on cell proliferation, differentiation, antigenic profile, and phagocytic activity, in a human MG-63 osteosarcoma cell line, as a model of osteoblasts. Flow cytometry was used to study proliferation, antigenic profile, and phagocytic activity, and radioimmunoassay was used to determine osteocalcin synthesis as a cell differentiation marker. Our results showed that therapeutic doses of ibuprofen (5 and 25 μM) did not modify cell proliferation and osteocalcin synthesis in the MG-63 cellular line. However, treatment with a higher dose (25 μM) increased the expression of antigens CD21, CD44, CD80, CD86, and HLA-DR and decreased phagocytic activity. The results indicate that a therapeutic dose of ibuprofen has no adverse effects on growth of the osteoblast-like cells. Treatment with ibuprofen alone may produce some cell activation, which would explain the increase in expression of membrane markers and decrease in phagocytic capacity.
Collapse
Affiliation(s)
- Lourdes Díaz-Rodríguez
- Faculty of Health Sciences, University of Granada, Avda. de Madrid s/n, 18071, Granada, Spain.
| | | | | | | | | |
Collapse
|
14
|
Effect of platelet-rich plasma on growth and antigenic profile of human osteoblasts and its clinical impact. J Oral Maxillofac Surg 2011; 70:1558-64. [PMID: 21864971 DOI: 10.1016/j.joms.2011.06.199] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/15/2011] [Accepted: 06/01/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE In recent years, there has been widespread clinical use of platelet-rich plasma (PRP) to facilitate the regeneration of different tissues. However, few data are available on the effect of PRP on parameters other than cell growth. The aim of the present study was to evaluate the effect of PRP on the cell cycle, antigenic profile, and proliferation of primary cultured human osteoblasts. MATERIALS AND METHODS The cells in the present study were derived from human bone sections obtained from healthy volunteers during third molar surgery. PRP was prepared from human venous blood and used to culture the cell line obtained from the same patient. Flow cytometry was used to study the cell cycle, antigenic profile, and proliferation. RESULTS The treatment of osteoblasts with PRP modified the expression of CD54, CD80, CD86, and HLA-DR antigens. PRP treatment increased cell proliferation in the short term, but the cell proliferation capacity diminished in the long term, perhaps owing to cell exhaustion. No change in the cell cycle profile was observed in the PRP-cultured cells. CONCLUSIONS These results suggest that PRP treatment accelerates bone neoformation with no cell cycle changes that might carry a risk of malignant transformation.
Collapse
|
15
|
Lucena G, Reyes-Botella C, García-Martínez O, Díaz-Rodríguez L, Alba F, Ruiz C. Aminopeptidase activity profile in cultured human osteoblasts. Biol Res Nurs 2011; 15:56-61. [PMID: 21765118 DOI: 10.1177/1099800411414870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminopeptidases (APs) are enzymes involved in a wide variety of biological processes and present in a variety of different cell populations. The authors studied these enzymes in primary cultured human osteoblasts in order to establish an activity profile and thereby contribute to knowledge of bone tissue. The authors used 13 different substrates (N-terminal amino acids) and a fluorimetric assay to examine AP activity associated with the membranes of cultured osteoblasts. The authors demonstrated activity > 10 pmol/min/10(4) cells when glycine, alanine, leucine, arginine, phenylalanine, methionine, and lysine were used as substrates. The activity was markedly lower (<1.6 pmol/min/10(4) cells) when the other N-terminal amino acids were used. Puromycin and bestatin inhibited AP activity, though not completely, when we used AlaNA or LeuNA as substrates. Further studies are warranted to determine the role of these enzymes in bone tissue physiology.
Collapse
Affiliation(s)
- Gema Lucena
- Institute of Neurosciences, University of Granada, Spain
| | | | | | | | | | | |
Collapse
|
16
|
TCA cycle inactivation in Staphylococcus aureus alters nitric oxide production in RAW 264.7 cells. Mol Cell Biochem 2011; 355:75-82. [PMID: 21519920 DOI: 10.1007/s11010-011-0840-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/15/2011] [Indexed: 12/18/2022]
Abstract
Inactivation of the Staphylococcus aureus tricarboxylic acid (TCA) cycle delays the resolution of cutaneous ulcers in a mouse soft tissue infection model. In this study, it was observed that cutaneous lesions in mice infected with wild-type or isogenic aconitase mutant S. aureus strains contained comparable inflammatory infiltrates, suggesting the delayed resolution was independent of the recruitment of immune cells. These observations led us to hypothesize that staphylococcal metabolism can modulate the host immune response. Using an in vitro model system involving RAW 264.7 cells, the authors observed that cells cultured with S. aureus aconitase mutant strains produced significantly lower amounts of nitric oxide (NO(•)) and an inducible nitric oxide synthase as compared to those cells exposed to wild-type bacteria. Despite the decrease in NO(•) synthesis, the expression of antigen-presentation and costimulatory molecules was similar in cells cultured with wild-type and those cultured with aconitase mutant bacteria. The data suggest that staphylococci can evade innate immune responses and potentially enhance their ability to survive in infected hosts by altering their metabolism. This may also explain the occurrence of TCA cycle mutants in clinical S. aureus isolates.
Collapse
|
17
|
Young AB, Cooley ID, Chauhan VS, Marriott I. Causative agents of osteomyelitis induce death domain-containing TNF-related apoptosis-inducing ligand receptor expression on osteoblasts. Bone 2011; 48:857-63. [PMID: 21130908 DOI: 10.1016/j.bone.2010.11.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
Bacteria and their products are potent inducers of bone destruction. While inflammatory damage during conditions such as osteomyelitis is associated with increased formation and activity of bone-resorbing osteoclasts, it is likely that bone loss also results from the elimination of the cells responsible for matrix deposition. Consistent with this notion, we have previously demonstrated that bone-forming osteoblasts undergo apoptosis following bacterial challenge and that this cell death is due, at least in part, to the actions of TNF-related apoptosis-inducing ligand (TRAIL). In the present study, we demonstrate that primary osteoblasts constitutively express death domain containing TRAIL receptors. Importantly, we show that cell surface expression of the death-inducing receptors DR4 and DR5 on murine and human osteoblasts is restricted to cells infected with the principle causative agents of osteomyelitis, Staphylococcus aureus and Salmonella. In addition, we show that the robust constitutive production by osteoblasts of the decoy TRAIL receptor, OPG, is inhibited following bacterial infection. Finally, we report that while exogenous administration of TRAIL fails to activate apoptosis signaling pathways in uninfected osteoblasts, acute bacterial exposure sensitizes these cells to this ligand. Based upon these findings we suggest a model in which bacterially challenged osteoblasts express TRAIL while concomitantly decreasing the production of the decoy receptor OPG and upregulating cell surface death receptor expression. Such an increase in TRAIL bioavailability and induced sensitivity of infected osteoblasts to this ligand would result in apoptotic cell death of this bone-forming population, providing an additional mechanism underlying inflammatory bone loss during diseases such as osteomyelitis.
Collapse
Affiliation(s)
- Amy B Young
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
18
|
Díaz-Rodríguez L, García-Martínez O, Morales MA, Rodríguez-Pérez L, Rubio-Ruiz B, Ruiz C. Effects of Indomethacin, Nimesulide, and Diclofenac on Human MG-63 Osteosarcoma Cell Line. Biol Res Nurs 2011; 14:98-107. [DOI: 10.1177/1099800411398933] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely prescribed drugs worldwide and serve as treatment of some degenerative inflammatory joint diseases. The aim of the present study was to investigate the influence of different concentrations of three NSAIDs on cell proliferation, differentiation, antigenic profile, and cell cycle in the human MG-63 osteosarcoma cell line, incubated for 24 hr. All NSAIDs had an inhibiting effect on osteoblastic proliferation. Treatments for 24 hr had small but significant effects on the antigenic profile. No treatment altered osteocalcin synthesis. Indomethacin and nimesulide treatments arrested the cell cycle at G0/G1. These results suggest that indomethacin, nimesulide, and diclofenac appear to have no effects on osteocalcin synthesis and a slight effect on the antigenic profile. They may delay bone regeneration due to their inhibiting effect on osteoblast growth. Therefore, these drugs should only be used in situations that do not require rapid bone healing.
Collapse
Affiliation(s)
| | | | | | | | - Belén Rubio-Ruiz
- Department of Pharmaceutical Chemistry and Organic Chemistry, School of Pharmacy, Universidad Granada, Spain
| | - Concepción Ruiz
- Department of Nursing, Health Sciences Faculty, Universidad Granada, Spain
- Institute of Neuroscience, Universidad Granada, Spain
| |
Collapse
|
19
|
Chauhan VS, Marriott I. Differential roles for NOD2 in osteoblast inflammatory immune responses to bacterial pathogens of bone tissue. J Med Microbiol 2010; 59:755-762. [PMID: 20360399 DOI: 10.1099/jmm.0.015859-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Osteoblasts produce an array of immune molecules following bacterial challenge that can contribute to inflammation and the recruitment of leukocytes to sites of infection during bone diseases such as osteomyelitis. However, the mechanisms by which osteoblasts perceive and respond to facultative intracellular pathogens such as Salmonella species and Staphylococcus aureus have not been determined. Recently, our laboratory has described the expression in osteoblasts of members of the nucleotide-binding domain leucine-rich repeat region containing family of proteins that include nucleotide-binding oligomerization domain-2 (NOD2), a molecule that functions as an intracellular receptor for bacterial peptidoglycans. In the present study, we demonstrate that NOD2 expression is required for select inflammatory mediator production by osteoblasts following infection with the invasive pathogen Salmonella. In contrast, we have found that the inflammatory immune responses of osteoblasts to the passively internalized bacterial species Staphylococcus aureus, heat-killed pathogenic Salmonella, a non-invasive Salmonella strain and specific Toll-like receptor ligands are not reduced in the absence of NOD2 expression but are, in fact, elevated. Based upon these findings, we suggest that NOD2 serves differential roles in osteoblasts, promoting inflammatory responses to invasive bacteria while tempering cell responses to extracellular and/or passively internalized bacterial species.
Collapse
Affiliation(s)
- Vinita S Chauhan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ian Marriott
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
20
|
Díaz-Rodríguez L, García-Martínez O, Arroyo-Morales M, Reyes-Botella C, Ruiz C. Antigenic Phenotype and Phagocytic Capacity of MG-63 Osteosarcoma Line. Ann N Y Acad Sci 2009; 1173 Suppl 1:E46-54. [DOI: 10.1111/j.1749-6632.2009.04950.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
McCall SH, Sahraei M, Young AB, Worley CS, Duncan JA, Ting JPY, Marriott I. Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res 2008; 23:30-40. [PMID: 17907925 PMCID: PMC2663588 DOI: 10.1359/jbmr.071002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Bacterially induced osteoblast apoptosis may be a major contributor to bone loss during osteomyelitis. We provide evidence for the functional expression in osteoblasts of NLRP3, a member of the NLR family of cytosolic receptors that has been implicated in the initiation of programmed cell death. INTRODUCTION Osteoblasts undergo apoptosis after exposure to intracellular bacterial pathogens commonly associated with osteomyelitis. Death of this bone-forming cell type, in conjunction with increased numbers and activity of osteoclasts, may underlie the destruction of bone tissue at sites of bacterial infection. To date, the mechanisms responsible for bacterially induced apoptotic osteoblast cell death have not been resolved. MATERIALS AND METHODS We used flow cytometric techniques to determine whether intracellular invasion is needed for maximal apoptotic cell death in primary osteoblasts after challenge with Salmonella enterica. In addition, we used real-time PCR and immunoblot analyses to assess osteoblast expression of members of the nucleotide-binding domain leucine-rich repeat region-containing family of intracellular receptors (NLRs) that have been predicted to be involved in the induction of programmed cell death. Furthermore, we have used co-immunoprecipitation and siRNA techniques to confirm the functionality of such sensors in this cell type. RESULTS In this study, we showed that invasion of osteoblasts by Salmonella is necessary for maximal induction of apoptosis. We showed that murine and human osteoblasts express NLRP3 (previously known as CIAS1, cryopyrin, PYPAF1, or NALP3) but not NLRC4 (IPAF) and showed that the level of expression of this cytosolic receptor is modulated after bacterial challenge. We showed that osteoblasts express ASC, an adaptor molecule for NLRP3, and that these molecules associate after Salmonella infection. In addition, we showed that a reduction in the expression of NLRP3 attenuates Salmonella-induced reductions in the activity of an anti-apoptotic transcription factor in osteoblasts. Furthermore, we showed that NLRP3 expression is needed for caspase-1 activation and maximal induction of apoptosis in osteoblasts after infection with Salmonella. CONCLUSIONS The functional expression of NLRP3 in osteoblasts provides a potential mechanism underlying apoptotic cell death of this cell type after challenge with intracellular bacterial pathogens and may be a significant contributory factor to bone loss at sites of infection.
Collapse
Affiliation(s)
- Samuel H McCall
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Mahnaz Sahraei
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Amy B Young
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Charles S Worley
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Joseph A Duncan
- Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jenny Pan-Yun Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ian Marriott
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
22
|
Charoonpatrapong K, Shah R, Robling AG, Alvarez M, Clapp DW, Chen S, Kopp RP, Pavalko FM, Yu J, Bidwell JP. HMGB1 expression and release by bone cells. J Cell Physiol 2006; 207:480-90. [PMID: 16419037 DOI: 10.1002/jcp.20577] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Immune and bone cells are functionally coupled by pro-inflammatory cytokine intercellular signaling networks common to both tissues and their crosstalk may contribute to the etiologies of some immune-associated bone pathologies. For example, the receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK) signaling axis plays a critical role in dendritic cell (DC) function as well as bone remodeling. The expression of RANKL by immune cells may contribute to bone loss in periodontitis, arthritis, and multiple myeloma. A recent discovery reveals that DCs release the chromatin protein high mobility group box 1 (HMGB1) as a potent immunomodulatory cytokine mediating the interaction between DCs and T-cells, via HMGB1 binding to the membrane receptor for advanced glycation end products (RAGE). To determine whether osteoblasts or osteoclasts express and/or release HMGB1 into the bone microenvironment, we analyzed tissue, cells, and culture media for the presence of this molecule. Our immunohistochemical and immunocytochemical analyses demonstrate HMGB1 expression in primary osteoblasts and osteoclasts and that both cells express RAGE. HMGB1 is recoverable in the media of primary osteoblast cultures and cultures of isolated osteoclast precursors and osteoclasts. Parathyroid hormone (PTH), a regulator of bone remodeling, attenuates HMGB1 release in cultures of primary osteoblasts and MC3T3-E1 osteoblast-like cells but augments this release in the rat osteosarcoma cell line UMR 106-01, both responses primarily via activation of adenylyl cyclase. PTH-induced HMGB1 discharge by UMR cells exhibits similar release kinetics as reported for activated macrophages. These data confirm the presence of the HMGB1/RAGE signaling axis in bone.
Collapse
Affiliation(s)
- Kanokwan Charoonpatrapong
- Department of Anatomy and Cell Biology, Indiana University School of Medicine (IUSM), Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maruyama K, Sano GI, Matsuo K. Murine osteoblasts respond to LPS and IFN-gamma similarly to macrophages. J Bone Miner Metab 2006; 24:454-60. [PMID: 17072737 DOI: 10.1007/s00774-006-0708-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
Osteoblasts are bone-forming mesenchymal cells, while macrophages are cells of hematopoietic origin responsible for innate immunity. Lipopolysaccharide (LPS) can induce tolerance in macrophages, whereas interferon (IFN)-gamma can activate macrophages to produce cytokines, exert bactericidal effects, and present antigens. In this study, we examined such macrophagic phenotypes regulated by LPS and IFN-gamma in murine osteoblasts. In both primary calvarial osteoblasts and osteoblastic MC3T3-E1 cells, LPS pretreatment resulted in reduced production of IL-6 in response to a subsequent LPS stimulation or to Salmonella infection, indicating the existence of LPS-induced tolerance in osteoblasts. Furthermore, IFN-gamma treatment of MC3T3-E1 cells resulted in both enhanced IL-6 production in response to LPS and upregulation of major histocompatibility complex class II (MHC II). Following infection, Salmonella-containing vacuoles (SCVs) were formed in MC3T3-E1 cells, and IFN-gamma pretreatment enhanced bactericidal effects on intracellular Salmonella. Taken together, these observations indicate that osteoblasts can exhibit a subset of phenotypes reminiscent of macrophages in the course of bacterial infection.
Collapse
Affiliation(s)
- Kenta Maruyama
- Department of Microbiology and Immunology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | |
Collapse
|
24
|
Stanley KT, VanDort C, Motyl C, Endres J, Fox DA. Immunocompetent properties of human osteoblasts: interactions with T lymphocytes. J Bone Miner Res 2006; 21:29-36. [PMID: 16355271 DOI: 10.1359/jbmr.051004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/21/2005] [Accepted: 10/06/2005] [Indexed: 12/25/2022]
Abstract
UNLABELLED We sought to determine whether osteoblasts (OBs) can serve as accessory cells (ACs) for T-cell activation and whether T cells directly activate OB production of IL-6, using primary human OBs (NHOst), the transformed fetal osteoblast line hFOB1.19, and an osteosarcoma line SaOS-2. Robust, bidirectional activating interactions were shown using each of these three human ostoblast lines. INTRODUCTION Osteoblasts (OBs) could come into contact with lymphocytes during inflammatory joint destruction and fracture repair. MATERIALS AND METHODS We used several in vitro assays to assess the ability of T cells and OBs to interact in the generation of immune and inflammatory responses. RESULTS By flow cytometry, three OB cell lines all were found to express ligands for T-cell co-stimulation. The integrin ligand CD54/ICAM-1 was constitutively expressed by hFOB1.19 and NHOst and was upregulated on SaOS-2 by IFN-gamma. MHC Class II was upregulated on all three lines by IFN-gamma. CD166/ALCAM, a ligand of the T-cell molecule CD6, was constitutively expressed on all three lines. A second putative CD6 ligand designated 3A11 was expressed on hFOB1.19 and NHOst, but not consistently on SaOS-2. The ectoenzyme CD26 (dipeptidyl peptidase IV) was expressed on hFOB1.19 and NHOst, but not on SaOS-2. All three cell lines presented superantigen to T cells, especially after treatment with IFN-gamma. Superantigen presentation was inhibited by antibodies to the leukocyte integrin CD11a/CD18 (LFA-1), MHC Class II, and CD54/ICAM-1. T cells, particularly when cytokine activated for 7 days before co-culture, stimulated all three osteoblast lines to produce interleukin (IL)-6, and this effect was boosted when IL-17 was added to the co-cultures with either resting T cells or cytokine-activated T cells. CONCLUSIONS Bidirectional activating interactions are readily shown between human T cells and several types of human OBs. The expression by OBs of ligands for the T cell-specific molecule CD6, as well as other molecules involved in immune interactions, strongly suggests that such in vitro interactions are representative of physiologic or pathologic events that occur in vivo.
Collapse
Affiliation(s)
- Katherine T Stanley
- Division of Rheumatology and Rheumatic Disease Core Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
25
|
Marriott I, Rati DM, McCall SH, Tranguch SL. Induction of Nod1 and Nod2 intracellular pattern recognition receptors in murine osteoblasts following bacterial challenge. Infect Immun 2005; 73:2967-73. [PMID: 15845503 PMCID: PMC1087386 DOI: 10.1128/iai.73.5.2967-2973.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoblasts produce an array of immune molecules following bacterial challenge that could recruit leukocytes to sites of infection and promote inflammation during bone diseases, such as osteomyelitis. Recent studies from our laboratory have shed light on the mechanisms by which this cell type can perceive and respond to bacteria by demonstrating the functional expression of members of the Toll-like family of cell surface pattern recognition receptors by osteoblasts. However, we have shown that bacterial components fail to elicit immune responses comparable with those seen following challenge with the intracellular pathogens salmonellae and Staphylococcus aureus. In the present study, we show that UV-killed bacteria and invasion-defective bacterial strains elicit significantly less inflammatory cytokine production than their viable wild-type counterparts. Importantly, we demonstrate that murine osteoblasts express the novel intracellular pattern recognition receptors Nod1 and Nod2. Levels of mRNA encoding Nod molecules and protein expression are significantly and differentially increased from low basal levels following exposure to these disparate bacterial pathogens. In addition, we have shown that osteoblasts express Rip2 kinase, a critical downstream effector molecule for Nod signaling. Furthermore, to begin to establish the functional nature of Nod expression, we show that a specific ligand for Nod proteins can significantly augment immune molecule production by osteoblasts exposed to either UV-inactivated bacteria or bacterial lipopolysaccharide. As such, the presence of Nod proteins in osteoblasts could represent an important mechanism by which this cell type responds to intracellular bacterial pathogens of bone.
Collapse
Affiliation(s)
- Ian Marriott
- Department of Biology, 9201 University City Boulevard, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | | | | | | |
Collapse
|
26
|
Marriott I. Osteoblast responses to bacterial pathogens: a previously unappreciated role for bone-forming cells in host defense and disease progression. Immunol Res 2005; 30:291-308. [PMID: 15531771 DOI: 10.1385/ir:30:3:291] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although the primary roles of osteoblasts are to synthesize the components of bone matrix and to regulate the activity of bone resorbing osteoclasts, there is growing realization that osteoblasts have an additional function during bone diseases, such as osteomyelitis. Based on our recent studies, we propose a novel role for osteoblasts during bacterial infections of bone, namely, the initiation and maintenance of inflammatory immune responses. In this article, we describe how these nonleukocytic cells can perceive bacterial pathogens of bone to initiate the production of an array of immune regulatory molecules. This pattern of expression is one that could promote the recruitment of leukocytes to sites of bacterial challenge, initiate antigen-specific activation of infiltrating cells, and facilitate the development of cell-mediated host responses to intracellular pathogens of bone tissue, thereby identifying this cell type as a previously unappreciated component in host responses.
Collapse
Affiliation(s)
- Ian Marriott
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
27
|
Madrazo DR, Tranguch SL, Marriott I. Signaling via Toll-like receptor 5 can initiate inflammatory mediator production by murine osteoblasts. Infect Immun 2003; 71:5418-21. [PMID: 12933896 PMCID: PMC187346 DOI: 10.1128/iai.71.9.5418-5421.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine osteoblasts express Toll-like receptor 5 (TLR5), and this expression is upregulated following exposure to bacteria or to the TLR5 agonist, flagellin. Importantly, flagellin activates transcriptional regulators and elicits proinflammatory cytokine production, suggesting TLR5 functionality. TLR5 may represent an important mechanism underlying the recognition of bacterial pathogens by osteoblasts during bone infections.
Collapse
Affiliation(s)
- Denise R Madrazo
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | | | | |
Collapse
|