1
|
Salama MM, Aborehab NM, El Mahdy NM, Zayed A, Ezzat SM. Nanotechnology in leukemia: diagnosis, efficient-targeted drug delivery, and clinical trials. Eur J Med Res 2023; 28:566. [PMID: 38053150 DOI: 10.1186/s40001-023-01539-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Leukemia is a group of malignant disorders which affect the blood and blood-forming tissues in the bone marrow, lymphatic system, and spleen. Many types of leukemia exist; thus, their diagnosis and treatment are somewhat complicated. The use of conventional strategies for treatment such as chemotherapy and radiotherapy may develop many side effects and toxicity. Hence, modern research is concerned with the development of specific nano-formulations for targeted delivery of anti-leukemic drugs avoiding toxic effects on normal cells. Nanostructures can be applied not only in treatment but also in diagnosis. In this article, types of leukemia, its causes, diagnosis as well as conventional treatment of leukemia shall be reviewed. Then, the use of nanoparticles in diagnosis of leukemia and synthesis of nanocarriers for efficient delivery of anti-leukemia drugs being investigated in in vivo and clinical studies. Therefore, it may contribute to the discovery of novel and emerging nanoparticles for targeted treatment of leukemia with less side effects and toxicities.
Collapse
Affiliation(s)
- Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Nihal M El Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
2
|
Zhang S, Pang S, Pei W, Zhu H, Shi Y, Liu Z, Mao L, Shi X, Tao S, Geng C, Chen S, Yang L, Chen C, Yang Q, Wang W. Layered Double Hydroxide-Loaded miR-30a for the Treatment of Breast Cancer In Vitro and In Vivo. ACS OMEGA 2023; 8:18435-18448. [PMID: 37273596 PMCID: PMC10233669 DOI: 10.1021/acsomega.2c07866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/28/2023] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) play an essential role in cancer therapy, but the disadvantages of its poor inherent stability, rapid clearance, and low delivery efficiency affect the therapeutic efficiency. Loading miRNAs by nanoformulations can improve their bioavailability and enhance therapeutic efficiency, which is an effective miRNA delivery strategy. In this study, we synthesized layered double hydroxides (LDH), which are widely used as carriers of drugs or genes due to the characteristics of good biocompatibility, high loading capacity, and pH sensitivity. We loaded the suppressor oncogene miR-30a on LDH nanomaterials (LDH@miR-30a) and determined the mass ratio of miRNA binding to LDH by agarose gel electrophoresis. LDH@miR-30a was able to escape the lysosomal pathway and was successfully phagocytosed by breast cancer SKBR3 cells and remained detectable in the cells after 24 h of co-incubation. In vitro experiments showed that LDH@miR-30a-treated SKBR3 cells showed decreased proliferation and cell cycle arrest in the G0/G1 phase and LDH@miR-30a was able to regulate the epithelial-mesenchymal transition (EMT) process and inhibit cell migration and invasion by targeting SNAI1. Meanwhile, in vivo experiments showed that nude mice treated with LDH@miR-30a showed a significant reduction in their solid tumors and no significant impairment of vital organs was observed. In conclusion, LDH@miR-30a is an effective drug delivery system for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shiwen Zhang
- Anhui
Province Key Laboratory of Translational Cancer Research, Department
of Life Science, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Siyan Pang
- Anhui
Province Key Laboratory of Translational Cancer Research, Department
of Life Science, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Wenhao Pei
- Anhui
Province Key Laboratory of Translational Cancer Research, Department
of Life Science, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Haitao Zhu
- Department
of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Yingxiang Shi
- Department
of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Ziyang Liu
- Anhui
Province Key Laboratory of Translational Cancer Research, Department
of Life Science, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Lingyu Mao
- Anhui
Province Key Laboratory of Translational Cancer Research, Department
of Life Science, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Xiuru Shi
- Department
of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Shuang Tao
- Department
of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Chenchen Geng
- Anhui
Province Key Laboratory of Translational Cancer Research, Department
of Life Science, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Sulian Chen
- Department
of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Linnan Yang
- The
Centre for Scientific Research of the First Affiliated Hospital of
Anhui Medical University, Hefei, Anhui 230022, China
| | - Changjie Chen
- Department
of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Qingling Yang
- Department
of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Wenrui Wang
- Anhui
Province Key Laboratory of Translational Cancer Research, Department
of Life Science, Bengbu Medical College, Bengbu, Anhui 233030, China
| |
Collapse
|
3
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
4
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
5
|
Mesmar J, Abdallah R, Hamade K, Baydoun S, Al-Thani N, Shaito A, Maresca M, Badran A, Baydoun E. Ethanolic extract of Origanum syriacum L. leaves exhibits potent anti-breast cancer potential and robust antioxidant properties. Front Pharmacol 2022; 13:994025. [PMID: 36299882 PMCID: PMC9589507 DOI: 10.3389/fphar.2022.994025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Breast cancer (BC) is the second most common cancer overall. In women, BC is the most prevalent cancer and the leading cause of cancer-related mortality. Triple-negative BC (TNBC) is the most aggressive BC, being resistant to hormonal and targeted therapies. Hypothesis/Purpose: The medicinal plant Origanum syriacum L. is a shrubby plant rich in bioactive compounds and widely used in traditional medicine to treat various diseases. However, its therapeutic potential against BC remains poorly investigated. In the present study, we screened the phytochemical content of an ethanolic extract of O. syriacum (OSEE) and investigated its anticancer effects and possible underlying mechanisms of action against the aggressive and highly metastatic human TNBC cell line MDA-MB-231. Methods: MTT, trans-well migration, and scratch assays were used to assess cell viability, invasion, or migration, respectively. Antioxidant potential was evaluated in vitro using the DPPH radical-scavenging assay and levels of reactive oxygen species (ROS) were assessed in cells in culture using DHE staining. Aggregation assays were used to determine cell-cell adhesion. Flow cytometry was used to analyze cell cycle progression. Protein levels of markers of apoptosis (BCL-2, pro-Caspase3, p53), proliferation (p21, Ki67), cell migration, invasion, or adhesion (FAK, E-cadherin), angiogenesis (iNOS), and cell signaling (STAT3, p38) were determined by immunoblotting. A chorioallantoic Membrane (CAM) assay evaluated in ovo angiogenesis. Results: We demonstrated that OSEE had potent radical scavenging activity in vitro and induced the generation of ROS in MDA-MB-231 cells, especially at higher OSEE concentrations. Non-cytotoxic concentrations of OSEE attenuated cell proliferation and induced G0/G1 cell cycle arrest, which was associated with phosphorylation of p38 MAPK, an increase in the levels of tumor suppressor protein p21, and a decrease of proliferation marker protein Ki67. Additionally, only higher concentrations of OSEE were able to attenuate inhibition of proliferation induced by the ROS scavenger N-acetyl cysteine (NAC), indicating that the anti-proliferative effects of OSEE could be ROS-dependent. OSEE stimulated apoptosis and its effector Caspase-3 in MDA-MB-231 cells, in correlation with activation of the STAT3/p53 pathway. Furthermore, the extract reduced the migration and invasive properties of MDA-MB-231 cells through the deactivation of focal adhesion kinase (FAK). OSEE also reduced the production of inducible nitric oxide synthase (iNOS) and inhibited in ovo angiogenesis. Conclusion: Our findings reveal that OSEE is a rich source of phytochemicals and has robust anti-breast cancer properties that significantly attenuate the malignant phenotype of MD-MB-231 cells, suggesting that O. syriacum may not only act as a rich source of potential TNBC therapeutics but may also provide new avenues for the design of novel TNBC drugs.
Collapse
Affiliation(s)
- Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Kamar Hamade
- UMRT INRE 1158 BioEcoAgro, Laboratorie BIOPI, University of Picardie Jules Verne, Amiens, France
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha, Qatar
| | - Abdullah Shaito
- Biomedical Research Center, College of Medicine, and Department of Biomedical Sciences at College of Health Sciences, Qatar University, Doha, Qatar
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| | - Marc Maresca
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
- *Correspondence: Abdullah Shaito, ; Marc Maresca, ; Elias Baydoun,
| |
Collapse
|
6
|
Pruteanu LL, Braicu C, Módos D, Jurj MA, Raduly LZ, Zănoagă O, Magdo L, Cojocneanu R, Paşca S, Moldovan C, Moldovan AI, Ţigu AB, Gurzău E, Jäntschi L, Bender A, Berindan-Neagoe I. Targeting Cell Death Mechanism Specifically in Triple Negative Breast Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23094784. [PMID: 35563174 PMCID: PMC9099741 DOI: 10.3390/ijms23094784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) is currently associated with a lack of treatment options. Arsenic derivatives have shown antitumoral activity both in vitro and in vivo; however, their mode of action is not completely understood. In this work we evaluate the response to arsenate of the double positive MCF-7 breast cancer cell line as well as of two different TNBC cell lines, Hs578T and MDA-MB-231. Multimodal experiments were conducted to this end, using functional assays and microarrays. Arsenate was found to induce cytoskeletal alteration, autophagy and apoptosis in TNBC cells, and moderate effects in MCF-7 cells. Gene expression analysis showed that the TNBC cell lines’ response to arsenate was more prominent in the G2M checkpoint, autophagy and apoptosis compared to the Human Mammary Epithelial Cells (HMEC) and MCF-7 cell lines. We confirmed the downregulation of anti-apoptotic genes (MCL1, BCL2, TGFβ1 and CCND1) by qRT-PCR, and on the protein level, for TGFβ2, by ELISA. Insight into the mode of action of arsenate in TNBC cell lines it is provided, and we concluded that TNBC and non-TNBC cell lines reacted differently to arsenate treatment in this particular experimental setup. We suggest the future research of arsenate as a treatment strategy against TNBC.
Collapse
Affiliation(s)
- Lavinia-Lorena Pruteanu
- Department of Chemistry, Centre for Molecular Science Informatics, University of Cambridge, Cambridge CB2 1EW, UK; (L.-L.P.); (D.M.); (A.B.)
- MedFuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400377 Cluj-Napoca, Romania; (C.M.); (A.I.M.); (A.B.Ț.)
- Department of Chemistry and Biology, North University Center at Baia Mare, Technical University of Cluj-Napoca, 4800 Baia Mare, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
- Correspondence:
| | - Dezső Módos
- Department of Chemistry, Centre for Molecular Science Informatics, University of Cambridge, Cambridge CB2 1EW, UK; (L.-L.P.); (D.M.); (A.B.)
| | - Maria-Ancuţa Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Oana Zănoagă
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Lorand Magdo
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Sergiu Paşca
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| | - Cristian Moldovan
- MedFuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400377 Cluj-Napoca, Romania; (C.M.); (A.I.M.); (A.B.Ț.)
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alin Iulian Moldovan
- MedFuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400377 Cluj-Napoca, Romania; (C.M.); (A.I.M.); (A.B.Ț.)
- Department of Pharmaceutical Physics-Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Adrian Bogdan Ţigu
- MedFuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400377 Cluj-Napoca, Romania; (C.M.); (A.I.M.); (A.B.Ț.)
| | - Eugen Gurzău
- Environmental Health Center, 400240 Cluj-Napoca, Romania;
| | - Lorentz Jäntschi
- Institute for Doctoral Studies, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Science Informatics, University of Cambridge, Cambridge CB2 1EW, UK; (L.-L.P.); (D.M.); (A.B.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (M.-A.J.); (L.-Z.R.); (O.Z.); (L.M.); (R.C.); (S.P.); (I.B.-N.)
| |
Collapse
|
7
|
Liu XL, Liu WJ, Chen Q, Liu J, Yang CQ, Zhang G, Zhang SL, Guo WH, Li JB, Zhao G, Yin DC, Zhang CY. miR-506-loaded gelatin nanospheres target PENK and inactivate the ERK/Fos signaling pathway to suppress triple-negative breast cancer aggressiveness. Mol Carcinog 2021; 60:538-555. [PMID: 34062009 DOI: 10.1002/mc.23310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Some microRNAs (miRNAs) were abnormally expressed in TNBC, and they are closely related to the occurrence and progression of TNBC. Here, we found that miR-506 was significantly downregulated in TNBC and relatively lower miR-506 expression predicted a poorer prognosis. Moreover, we found that miR-506 could inhibit MDA-MB-231 cell viability, colony formation, migration, and invasion, and suppress the ERK/Fos oncogenic signaling pathway through upregulating its direct target protein proenkephalin (PENK). Therefore, miR-506 was proposed as a nucleic acid drug for TNBC therapy. However, miRNA is unstable in vivo, which limiting its application as a therapeutic drug via conventional oral or injected therapies. Here, a gelatin nanosphere (GN) delivery system was applied for the first time to load exogenous miRNA. Exogenous miR-506 mimic was loaded on GNs and injected into the in situ TNBC animal model, and the miR-506 could achieve sustained and controlled release. The results confirmed that overexpression of miR-506 and PENK in vivo through loading on GNs inhibited in situ triple-negative breast tumor growth and metastasis significantly in the xenograft model. Moreover, we indicated that the ERK/Fos signaling pathway was intensively inactivated after overexpression of miR-506 and PENK both in vitro and in vivo, which was further validated by the ERK1/2-specific inhibitor SCH772984. In conclusion, this study demonstrates that miR-506-loaded GNs have great potential in anti-TNBC aggressiveness therapy.
Collapse
Affiliation(s)
- Xin-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wen-Jing Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shi-Long Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jing-Bao Li
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Gang Zhao
- Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
8
|
Gao Y, Wang X, Li S, Zhang Z, Li X, Lin F. Identification of a DNA Methylation-Based Prognostic Signature for Patients with Triple-Negative Breast Cancer. Med Sci Monit 2021; 27:e930025. [PMID: 34003815 PMCID: PMC8140526 DOI: 10.12659/msm.930025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation is an important biological regulatory mechanism in malignant tumors. However, it remains underutilized for establishing prognostic models for triple-negative breast cancer (TNBC). MATERIAL AND METHODS Methylation data and expression data downloaded from The Cancer Genome Atlas (TCGA) were used to identify differentially methylated sites (DMSs). The prognosis-related DMSs were selected by univariate Cox regression analysis. Functional enrichment was analyzed using DAVID. A protein-protein interaction (PPI) network was constructed using STRING. Finally, a methylation-based prognostic signature was constructed using LASSO method and further validated in 2 validation cohorts. RESULTS Firstly, we identified 743 DMSs corresponding to 332 genes, including 357 hypermethylated sites and 386 hypomethylated sites. Furthermore, we selected 103 prognosis-related DMSs by univariate Cox regression. Using a LASSO algorithm, we established a 5-DMSs prognostic signature in TCGA-TNBC cohort, which could classify TNBC patients with significant survival difference (log-rank p=4.97E-03). Patients in the high-risk group had shorter overall survival than patients in the low-risk group. The excellent performance was validated in GSE78754 (HR=2.42, 95%CI: 1.27-4.59, log-rank P=0.0055). Moreover, for disease-free survival, the prognostic performance was verified in GSE141441 (HR=2.09, 95%CI: 1.28-3.44, log-rank P=0.0027). Multivariate Cox regression analysis indicated that the 5-DMSs signature could serve as an independent risk factor. CONCLUSIONS We constructed a 5-DMSs signature with excellent performance for the prediction of disease-free survival and overall survival, providing a guide for clinicians in directing personalized therapeutic regimen selection of TNBC patients.
Collapse
Affiliation(s)
- Yinqi Gao
- Department of Breast Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China (mainland)
| | - Xuelong Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China (mainland)
| | - Shihui Li
- Department of Breast Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China (mainland)
| | - Zhiqiang Zhang
- Department of Breast Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China (mainland)
| | - Xuefei Li
- Department of Breast Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China (mainland)
| | - Fangcai Lin
- Department of Breast Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China (mainland)
| |
Collapse
|
9
|
CRISPR-Cas systems for genome editing of mammalian cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:15-30. [PMID: 34127192 DOI: 10.1016/bs.pmbts.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the past decade, ZFNs and TALENs have been used for targeted genome engineering and have gained scientific attention. It has demonstrated huge potential for gene knockout, knock-in, and indels in desired locations of genomes to understand molecular mechanism of diseases and also discover therapy. However, both the genome engineering techniques are still suffering from design, screening and validation in cell and higher organisms. CRISPR-Cas9 is a rapid, simple, specific, and versatile technology and it has been applied in many organisms including mammalian cells. CRISPR-Cas9 has been used for animal models to modify animal cells for understanding human disease for novel drug discovery and therapy. Additionally, base editing has also been discussed herewith for conversion of C/G-to-T/A or A/T-to-G/C without DNA cleavage or donor DNA templates for correcting mutations or altering gene functions. In this chapter, we highlight CRISPR-Cas9 and base editing for desired genome editing in mammalian cells for a better understanding of molecular mechanisms, and biotechnological and therapeutic applications.
Collapse
|
10
|
Xu X, Liu M, Yang Y, Wei C, Zhang X, Song H, Wang Y, Duan X. VSP‑17 suppresses the migration and invasion of triple‑negative breast cancer cells through inhibition of the EMT process via the PPARγ/AMPK signaling pathway. Oncol Rep 2020; 45:975-986. [PMID: 33650675 PMCID: PMC7859999 DOI: 10.3892/or.2020.7916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 01/10/2023] Open
Abstract
VSP-17, a novel peroxisome proliferator-activated receptor γ (PPARγ) agonist, has been previously demonstrated to suppress the metastasis of triple-negative breast cancer (TNBC) by upregulating the expression levels of E-cadherin, which is a key marker of epithelial-mesenchymal transition (EMT). However, the mechanism of action of VSP-17, in particular whether it may be associated with the EMT process, remains unknown. The present study investigated the ability of VSP-17 to inhibit the invasiveness and migratory ability of TNBC cell lines (MDA-MB-231 and MDA-MB-453) performed in in vitro experiments. including cell migration assay, cell invasion assay, cell transfection, RT-qPCR, western blot (WB) analysis and immunofluorescence. The present study aimed to ascertain whether and how the PPARγ/AMP-activated protein kinase (AMPK) signaling pathway serves a role in the inhibitory effects of VSP-17 on cell migration and invasion. The results revealed that both treatment with compound C (an AMPK inhibitor) and transfection with small interfering RNA (si)AMPK notably diminished the inhibitory effect of VSP-17 treatment on the migration and invasion of MDA-MB-231 and MDA-MB-453 cells, indicating that VSP-17 may, at least partly, exert its effects via AMPK. Furthermore, both compound C and siAMPK markedly diminished the VSP-17-induced downregulation of vimentin expression levels and upregulation of E-cadherin expression levels, further indicating that the VSP-17-induced inhibition of the EMT process may be dependent on AMPK. The combination of GW9662 (a PPARγ antagonist) or siPPARγ diminished the inhibitory effect of VSP-17 treatment on the migration and invasion of the TNBC cells, indicating that PPARγ may serve an important role in the VSP-17-induced inhibition of the migration and invasion of TNBC cells. In addition, both GW9662 and siPPARγ significantly reversed the VSP-17-induced downregulation of vimentin expression levels and upregulation of E-cadherin expression levels, implying that the VSP-17-induced inhibition of the EMT process may be dependent on PPARγ. VSP-17 treatment also upregulated the expression levels of p-AMPK, which could be reversed by either GW9662 or siPPARγ, indicating that the VSP-17-induced activation of the AMPK signaling pathway was PPARγ-dependent. In conclusion, the findings of the present study indicated that VSP-17 treatment may inhibit the migration and invasion of TNBC cells by suppressing the EMT process via the PPARγ/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xiaotian Xu
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Meng Liu
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yingying Yang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Chengqiong Wei
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiyang Zhang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Hengzhi Song
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yuhui Wang
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiaoqun Duan
- Guangxi Colleges and Universities Key Laboratory of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
11
|
Wang H, Wang X, Zhang Y, Cheng R, Yuan J, Zhong Z. Systemic Delivery of NAC-1 siRNA by Neuropilin-Targeted Polymersomes Sensitizes Antiangiogenic Therapy of Metastatic Triple-Negative Breast Cancer. Biomacromolecules 2020; 21:5119-5127. [PMID: 33174734 DOI: 10.1021/acs.biomac.0c01253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antiangiogenic therapy with bevacizumab while being interesting for metastatic triple-negative breast cancer (mTNBC) is restrained by tumor hypoxia elevation and cancer stem cell enrichment. Here, we find that neuropilin-1 (NRP-1)-targeted delivery of nucleus accumbens-associated protein-1 (NAC-1) siRNA mediated by tLyP-1 peptide-functionalized chimaeric polymersomes (tLyP-1-Ps) effectively sensitizes antiangiogenic therapy of mTNBC in vivo. tLyP-1-Ps showed good encapsulation (up to 14.4 wt. %) of siNAC-1, giving robust tLyP-1-Ps-siNAC-1 nanoformulation with a defined size of 48.5 nm (PDI = 0.13) and a surface charge of -9.2 mV, and mediated efficient cytoplasmic transportation of siNAC-1 in MDA-MB-231 TNBC cells, resulting in significant silencing of NAC-1 mRNA and the corresponding oncoprotein. Transwell invasion and wound healing assays revealed that tLyP-1-Ps-siNAC-1 potently inhibited MDA-MB-231 cell invasion and migration. Intriguingly, tLyP-1-Ps-siNAC-1 was shown to markedly improve the bevacizumab therapy of mTNBC, significantly curbing lung metastasis and prolonging the survival time of the MDA-MB-231 metastatic model. The combination of targeted NAC-1 gene silencing and antiangiogenic therapy appears to be an innovative treatment for mTNBC.
Collapse
Affiliation(s)
- Hongyu Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Xiaohui Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Jiandong Yuan
- BrightGene Bio-Medical Technology Company, Ltd., Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
12
|
Ciocan-Cartita CA, Jurj A, Zanoaga O, Cojocneanu R, Pop LA, Moldovan A, Moldovan C, Zimta AA, Raduly L, Pop-Bica C, Buse M, Budisan L, Virag P, Irimie A, Diaz SMG, Berindan-Neagoe I, Braicu C. New insights in gene expression alteration as effect of doxorubicin drug resistance in triple negative breast cancer cells. J Exp Clin Cancer Res 2020; 39:241. [PMID: 33187552 PMCID: PMC7664031 DOI: 10.1186/s13046-020-01736-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a heterogeneous disease with aggressive behavior and an unfavorable prognosis rate. Due to the lack of surface receptors, TNBC must be intensely investigated in order to establish a suitable treatment for patients with this pathology. Chemoresistance is an important reason for therapeutic failure in TNBC. METHOD The aim of this study was to investigate the effect of doxorubicin in TNBC cell lines and to highlight cellular and molecular alterations after a long exposure to doxorubicin. RESULTS The results revealed that doxorubicin significantly increased the half maximal inhibitory concentration (IC50) values at P12 and P24 compared to parenteral cells P0. Modifications in gene expression were investigated through microarray technique, and for detection of mutational pattern was used Next Generation Sequencing (NGS). 196 upregulated and 115 downregulated genes were observed as effect of multiple dose exposure, and 15 overexpressed genes were found to be involved in drug resistance. Also, the presence of some additional mutations in both cell lines was observed. CONCLUSION The outcomes of this research may provide novel biomarkers for drug resistance in TNBC. Also, this activity can highlight the potential mechanisms associated with drug resistance, as well as the potential therapies to counteract these mechanisms.
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cartita
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alin Moldovan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Moldovan
- MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Andreea Zimta
- MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihail Buse
- MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Piroska Virag
- Laboratory of Radiotherapy, Radiobiology and Tumor Biology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgical Oncology and Gynecological Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Surgery, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Sandra Martha Gomez Diaz
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Golshan M, Khaleghi S, Shafiee SM, Valaee S, Ghanei Z, Jamshidizad A, Dashtizad M, Shamsara M. Metformin modulates oncogenic expression of HOTAIR gene via promoter methylation and reverses epithelial-mesenchymal transition in MDA-MB-231 cells. J Cell Biochem 2020; 122:385-393. [PMID: 33164274 DOI: 10.1002/jcb.29867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a biological event, which critically regulates migration and invasion of cancer cells. EMT is regulated by several protein and nonprotein factors (such as noncoding RNAs). HOTAIR is an oncogenic long noncoding RNA that stimulates EMT in cancers. In the current study, we investigated the effect of metformin on EMT behavior and HOTAIR expression in MDA-MB-231 breast cancer cells. The minimal effective concentrations of metformin (10 and 20 mM) were obtained by the MTT test. Cell migration and invasion in the metformin-containing medium were assayed in the scratch assay and transwell test. Meaningful decreases in both cell migration and invasion were observed in the presence of metformin. Vimentin, snail, β-catenin, and HOTAIR transcripts were quantified by real-time polymerase chain reaction (PCR). Reduction in the expression of vimentin, β-catenin, and HOTAIR was detected as the result of metformin treatment, but the snail showed a constant expression. Western blottingrevealed the downregulation of vimentin and β-catenin proteins. HOTAIR promoter methylation pattern was also investigated in metformin-exposed cells using bisulfite sequencing PCR which the result showed differences in the methylation profile of CpG islands between the treated and untreated cells. In conclusion, metformin modulated oncogenic expression of the HOTAIR gene in the MDA-MB-231 cells. This downregulation was associated with the modification of promoter methylation patterns. Since HOTAIR induces EMT in breast cancer, HOTAIR decline might be one of the mechanisms by which metformin reverses EMT.
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saeedeh Khaleghi
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shiva Valaee
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Ghanei
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Jamshidizad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mojtaba Dashtizad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
14
|
Desmirean M, Rauch S, Jurj A, Pasca S, Iluta S, Teodorescu P, Berce C, Zimta AA, Turcas C, Tigu AB, Moldovan C, Paris I, Steinheber J, Richlitzki C, Constantinescu C, Sigurjonsson OE, Dima D, Petrushev B, Tomuleasa C. B Cells versus T Cells in the Tumor Microenvironment of Malignant Lymphomas. Are the Lymphocytes Playing the Roles of Muhammad Ali versus George Foreman in Zaire 1974? J Clin Med 2020; 9:jcm9113412. [PMID: 33114418 PMCID: PMC7693982 DOI: 10.3390/jcm9113412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant lymphomas are a heterogeneous group of malignancies that develop both in nodal and extranodal sites. The different tissues involved and the highly variable clinicopathological characteristics are linked to the association between the lymphoid neoplastic cells and the tissues they infiltrate. The immune system has developed mechanisms to protect the normal tissue from malignant growth. In this review, we aim to explain how T lymphocyte-driven control is linked to tumor development and describe the tumor-suppressive components of the resistant framework. This manuscript brings forward a new insight with regard to intercellular and intracellular signaling, the immune microenvironment, the impact of therapy, and its predictive implications. A better understanding of the key components of the lymphoma environment is important to properly assess the role of both B and T lymphocytes, as well as their interplay, just as two legendary boxers face each other in a heavyweight title final, as was the case of Ali versus Foreman.
Collapse
Affiliation(s)
- Minodora Desmirean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
- Department of Pathology, Constantin Papilian Military Hospital, 400124 Cluj Napoca, Romania;
| | - Sebastian Rauch
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Ancuta Jurj
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Cristian Berce
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
| | - Irene Paris
- Department of Pathology, Constantin Papilian Military Hospital, 400124 Cluj Napoca, Romania;
| | - Jakob Steinheber
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Cedric Richlitzki
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
- Department of Anesthesia and Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania
| | - Olafur Eysteinn Sigurjonsson
- The Blood Bank, Landspitali—The National University Hospital of Iceland, 101 Reykjavik, Iceland;
- School of Science and Engineering, Reykjavik University, 101 Reykjavik, Iceland
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania;
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (C.B.); (A.-A.Z.); (A.-B.T.); (C.M.); (B.P.)
- Department of Pathology, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400124 Cluj Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania; (M.D.); (S.R.); (A.J.); (S.P.); (S.I.); (P.T.); (C.T.); (J.S.); (C.R.); (C.C.)
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania;
- Correspondence: ; Tel.: +40741337489
| |
Collapse
|
15
|
Farcas CG, Dehelean C, Pinzaru IA, Mioc M, Socoliuc V, Moaca EA, Avram S, Ghiulai R, Coricovac D, Pavel I, Alla PK, Cretu OM, Soica C, Loghin F. Thermosensitive Betulinic Acid-Loaded Magnetoliposomes: A Promising Antitumor Potential for Highly Aggressive Human Breast Adenocarcinoma Cells Under Hyperthermic Conditions. Int J Nanomedicine 2020; 15:8175-8200. [PMID: 33122905 PMCID: PMC7591238 DOI: 10.2147/ijn.s269630] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Breast cancer presents one of the highest rates of prevalence around the world. Despite this, the current breast cancer therapy is characterized by significant side effects and high risk of recurrence. The present work aimed to develop a new therapeutic strategy that may improve the current breast cancer therapy by developing a heat-sensitive liposomal nano-platform suitable to incorporate both anti-tumor betulinic acid (BA) compound and magnetic iron nanoparticles (MIONPs), in order to address both remote drug release and hyperthermia-inducing features. To address the above-mentioned biomedical purposes, the nanocarrier must possess specific features such as specific phase transition temperature, diameter below 200 nm, superparamagnetic properties and heating capacity. Moreover, the anti-tumor activity of the developed nanocarrier should significantly affect human breast adenocarcinoma cells. METHODS BA-loaded magnetoliposomes and corresponding controls (BA-free liposomes and liposomes containing no magnetic payload) were obtained through the thin-layer hydration method. The quality and stability of the multifunctional platforms were physico-chemically analysed by the means of RAMAN, scanning electron microscopy-EDAX, dynamic light scattering, zeta potential and DSC analysis. Besides this, the magnetic characterization of magnetoliposomes was performed in terms of superparamagnetic behaviour and heating capacity. The biological profile of the platforms and controls was screened through multiple in vitro methods, such as MTT, LDH and scratch assays, together with immunofluorescence staining. In addition, CAM assay was performed in order to assess a possible anti-angiogenic activity induced by the test samples. RESULTS The physico-chemical analysis revealed that BA-loaded magnetoliposomes present suitable characteristics for the purpose of this study, showing biocompatible phase transition temperature, a diameter of 198 nm, superparamagnetic features and heating capacity. In vitro results showed that hyperthermia induces enhanced anti-tumor activity when breast adenocarcinoma MDA-MB-231 cells were exposed to BA-loaded magnetoliposomes, while a low cytotoxic rate was exhibited by the non-tumorigenic breast epithelial MCF 10A cells. Moreover, the in ovo angiogenesis assay endorsed the efficacy of this multifunctional platform as a good strategy for breast cancer therapy, under hyperthermal conditions. Regarding the possible mechanism of action of this multifunctional nano-platform, the immunocytochemistry of the MCF7 and MDA-MB-231 breast carcinoma cells revealed a microtubule assembly modulatory activity, under hyperthermal conditions. CONCLUSION Collectively, these findings indicate that BA-loaded magnetoliposomes, under hyperthermal conditions, might serve as a promising strategy for breast adenocarcinoma treatment.
Collapse
Affiliation(s)
- Claudia Geanina Farcas
- Faculty of Pharmacy, Department of Toxicology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Iulia Andreea Pinzaru
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Vlad Socoliuc
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy – Timisoara Branch, Timisoara, Romania
- Research Center for Complex Fluids Systems Engineering, Politehnica University of Timisoara, Timisoara, Romania
| | - Elena-Alina Moaca
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Stefana Avram
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ioana Pavel
- Department of Chemistry, Wright State University, Dayton, OH, USA
| | | | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Felicia Loghin
- Faculty of Pharmacy, Department of Toxicology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| |
Collapse
|
16
|
Cancer-Associated Stemness and Epithelial-to-Mesenchymal Transition Signatures Related to Breast Invasive Carcinoma Prognostic. Cancers (Basel) 2020; 12:cancers12103053. [PMID: 33092068 PMCID: PMC7589570 DOI: 10.3390/cancers12103053] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Breast cancer is one of the most common oncological diseases in women, as its incidence is rapidly growing. In this study, we have investigated the mechanism of epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs), demonstrating presence of an interconnectedness between them. This interconnectedness plays important roles in patient prognostic, as well as in diagnostic and therapeutic targets. It is identified that there is a common signature between CSCs and EMT, and this is represented by ALDH1A1, SFRP1, miR-139, miR-21, and miR-200c. This finding will provide a better understanding of this mechanism, and will facilitate the development of novel treatment options. Abstract Breast cancer is one of the most common oncological diseases in women, as its incidence is rapidly growing, rendering it unpredictable and causing more harm than ever before on an annual basis. Alterations of coding and noncoding genes are related to tumorigenesis and breast cancer progression. In this study, several key genes associated with epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) features were identified. EMT and CSCs are two key mechanisms responsible for self-renewal, differentiation, and self-protection, thus contributing to drug resistance. Therefore, understanding of the relationship between these processes may identify a therapeutic vulnerability that can be further exploited in clinical practice, and evaluate its correlation with overall survival rate. To determine expression levels of altered coding and noncoding genes, The Cancer Omics Atlas (TCOA) are used, and these data are overlapped with a list of CSCs and EMT-specific genes downloaded from NCBI. As a result, it is observed that CSCs are reciprocally related to EMT, thus identifying common signatures that allow for predicting the overall survival for breast cancer genes (BRCA). In fact, common CSCs and EMT signatures, represented by ALDH1A1, SFRP1, miR-139, miR-21, and miR-200c, are deemed useful as prognostic biomarkers for BRCA. Therefore, by mapping changes in gene expression across CSCs and EMT, suggesting a cross-talk between these two processes, we have been able to identify either the most common or specific genes or miRNA markers associated with overall survival rate. Thus, a better understanding of these mechanisms will lead to more effective treatment options.
Collapse
|
17
|
Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements. Pharmaceutics 2020; 12:pharmaceutics12100929. [PMID: 33003468 PMCID: PMC7599839 DOI: 10.3390/pharmaceutics12100929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive types of breast cancer. Owing to the absenteeism of hormonal receptors expressed at the cancerous breast cells, hormonal therapies and other medications targeting human epidermal growth factor receptor 2 (HER2) are ineffective in TNBC patients, making traditional chemotherapeutic agents the only current appropriate regimen. Patients' predisposition to relapse and metastasis, chemotherapeutics' cytotoxicity and resistance and poor prognosis of TNBC necessitates researchers to investigate different novel-targeted therapeutics. The role of small interfering RNA (siRNA) in silencing the genes/proteins that are aberrantly overexpressed in carcinoma cells showed great potential as part of TNBC therapeutic regimen. However, targeting specificity, siRNA stability, and delivery efficiency cause challenges in the progression of this application clinically. Nanotechnology was highlighted as a promising approach for encapsulating and transporting siRNA with high efficiency-low toxicity profile. Advances in preclinical and clinical studies utilizing engineered siRNA-loaded nanotherapeutics for treatment of TNBC were discussed. Specific and selective targeting of diverse signaling molecules/pathways at the level of tumor proliferation and cell cycle, tumor invasion and metastasis, angiogenesis and tumor microenvironment, and chemotherapeutics' resistance demonstrated greater activity via integration of siRNA-complexed nanoparticles.
Collapse
|
18
|
Ciocan-Cȃrtiţă CA, Jurj A, Raduly L, Cojocneanu R, Moldovan A, Pileczki V, Pop LA, Budişan L, Braicu C, Korban SS, Berindan-Neagoe I. New perspectives in triple-negative breast cancer therapy based on treatments with TGFβ1 siRNA and doxorubicin. Mol Cell Biochem 2020; 475:285-299. [PMID: 32888160 DOI: 10.1007/s11010-020-03881-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancer (TNBC), which accounts for 10-20% of all breast cancers, has the worst prognosis. Although chemotherapy treatment is a standard for TNBC, it lacks a specific target. Therefore, new therapeutic strategies are required to be investigated. In this study, a combined doxorubicin (DOX) and small interfering RNA (siRNA) therapy is proposed as therapeutic strategy for targeting TGFβ1 gene. Hs578T cell line is used as in vitro model for TNBC, wherein TGFβ1siRNA therapy is employed to enhance therapeutic effects. Cell proliferation rate is measured using an MTT test, and morphological alterations are assed using microscopically approached, while gene expression is determined by qRT-PCR analysis. The combined treatment of TGFβ1siRNA and DOX reduced levels of cell proliferation and mitochondrial activity and promoted the alteration of cell morphology (dark-field microscopy). DOX treatment caused downregulation of six genes and upregulation of another six genes. The combined effects of DOX and TGFβ1siRNA resulted in upregulation of 13 genes and downregulation of four genes. Silencing of TGFβ1 resulted in activation of cell death mechanisms in Hs578T cells, to potentiate the effects of DOX, but not in an additive manner, due to the activation of genes involved in resistance to therapy (ABCB1 and IL-6).
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cȃrtiţă
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Ancuţa Jurj
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Alin Moldovan
- MedFuture Research Center for Advanced Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Valentina Pileczki
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Liviuţa Budişan
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
| | - Schuyler S Korban
- Department of Natural and Environmental Sciences, University of Illinois At Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania. .,Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuţă" Oncology Institute, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| |
Collapse
|
19
|
Critical Analysis of Genome-Wide Association Studies: Triple Negative Breast Cancer Quae Exempli Causa. Int J Mol Sci 2020; 21:ijms21165835. [PMID: 32823908 PMCID: PMC7461549 DOI: 10.3390/ijms21165835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) are useful in assessing and analyzing either differences or variations in DNA sequences across the human genome to detect genetic risk factors of diseases prevalent within a target population under study. The ultimate goal of GWAS is to predict either disease risk or disease progression by identifying genetic risk factors. These risk factors will define the biological basis of disease susceptibility for the purposes of developing innovative, preventative, and therapeutic strategies. As single nucleotide polymorphisms (SNPs) are often used in GWAS, their relevance for triple negative breast cancer (TNBC) will be assessed in this review. Furthermore, as there are different levels and patterns of linkage disequilibrium (LD) present within different human subpopulations, a plausible strategy to evaluate known SNPs associated with incidence of breast cancer in ethnically different patient cohorts will be presented and discussed. Additionally, a description of GWAS for TNBC will be presented, involving various identified SNPs correlated with miRNA sites to determine their efficacies on either prognosis or progression of TNBC in patients. Although GWAS have identified multiple common breast cancer susceptibility variants that individually would result in minor risks, it is their combined effects that would likely result in major risks. Thus, one approach to quantify synergistic effects of such common variants is to utilize polygenic risk scores. Therefore, studies utilizing predictive risk scores (PRSs) based on known breast cancer susceptibility SNPs will be evaluated. Such PRSs are potentially useful in improving stratification for screening, particularly when combining family history, other risk factors, and risk prediction models. In conclusion, although interpretation of the results from GWAS remains a challenge, the use of SNPs associated with TNBC may elucidate and better contextualize these studies.
Collapse
|
20
|
Alshareeda AT, Al-Sowayan BS, Alkharji RR, Aldosari SM, Al subayyil AM, Alghuwainem A. Cancer of Unknown Primary Site: Real Entity or Misdiagnosed Disease? J Cancer 2020; 11:3919-3931. [PMID: 32328196 PMCID: PMC7171483 DOI: 10.7150/jca.42880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/31/2020] [Indexed: 01/03/2023] Open
Abstract
Metastasis is a late event in the progression of any tumour. However, invasive cancers are occasionally detected in the form of metastatic lesions without a clearly detectable primary tumour. Cancer of unknown primary site (CUP) is defined as a confirmed metastatic tumour, with unknown primary tumour site, despite the standardized diagnostic approach that includes clinical history, routine laboratory tests, and complete physical examination. Due to the lack of basic research on its primary causes, CUP is appropriately termed an 'orphan' cancer. Nevertheless, CUP accounts for 2-5% of diagnosed malignancies. To date, it is unclear whether CUP is an entity with primary dormancy as its hallmark or an entity with genetic abnormalities that cause it to manifest as a primary metastatic disease. In this review, we discuss different aspects of CUP, including its current diagnostic methods, angiogenesis effectors, relationship with cancer stem cells and current treatments.
Collapse
Affiliation(s)
- Alaa T. Alshareeda
- Stem Cells and Regenerative Medicine Unit, Cell Therapy & Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Batla S. Al-Sowayan
- Stem Cells and Regenerative Medicine Unit, Cell Therapy & Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Reem R. Alkharji
- Research Department, Health Sciences Research Centre, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sahar M. Aldosari
- Cytogenetic and Molecular Genetics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Abdullah M. Al subayyil
- Stem Cells and Regenerative Medicine Unit, Cell Therapy & Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ayidah Alghuwainem
- Stem Cells and Regenerative Medicine Unit, Cell Therapy & Cancer Research Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| |
Collapse
|
21
|
Structural analysis of human SEPHS2 protein, a selenocysteine machinery component, over-expressed in triple negative breast cancer. Sci Rep 2019; 9:16131. [PMID: 31695102 PMCID: PMC6834634 DOI: 10.1038/s41598-019-52718-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Selenophosphate synthetase 2 (SEPHS2) synthesizes selenide and ATP into selenophosphate, the selenium donor for selenocysteine (Sec), which is cotranslationally incorporated into selenoproteins. The action and regulatory mechanisms of SEPHS2 as well as its role in carcinogenesis (especially breast cancer) remain ambiguous and need further clarification. Therefore, lacking an experimentally determined structure for SEPHS2, we first analyzed the physicochemical properties of its sequence, modeled its three-dimensional structure and studied its conformational behavior to identify the key residues (named HUB nodes) responsible for protein stability and to clarify the molecular mechanisms by which it induced its function. Bioinformatics analysis evidenced higher amplification frequencies of SEPHS2 in breast cancer than in other cancer types. Therefore, because triple negative breast cancer (TNBC) is biologically the most aggressive breast cancer subtype and its treatment represents a challenge due to the absence of well-defined molecular targets, we evaluated SEPHS2 expression in two TNBC cell lines and patient samples. We demonstrated mRNA and protein overexpression to be correlated with aggressiveness and malignant tumor grade, suggesting that this protein could potentially be considered a prognostic marker and/or therapeutic target for TNBC.
Collapse
|
22
|
Braicu C, Gulei D, Raduly L, Harangus A, Rusu A, Berindan-Neagoe I. Altered expression of miR-181 affects cell fate and targets drug resistance-related mechanisms. Mol Aspects Med 2019; 70:90-105. [PMID: 31703947 DOI: 10.1016/j.mam.2019.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding transcripts which regulate genetic and epigenetic events by interfering with mRNA translation. miRNAs are involved in regulation of cell fate due to their ability of interfering with physiological or pathological processes. In this review paper, we evaluate the role of miR-181 family members as prognostic or diagnostic markers or therapeutic targets in malignant pathologies in connection with the main hallmarks of cancer that are modulated by the family. Also, we take over the dual role of this family in dependency with the tumour suppressor and oncogenic features presented in cell and cancer type specific manner. Restoration of the altered expression levels contributes to the activation of cell death pathways or to a reduction in the invasion and migration mechanism; moreover, the mechanism of drug resistance is also modulated by miR-181 sequences with important applications in therapeutic strategies for malignant cells sensitisation. Overall, the main miR-181 family regulatory mechanisms are presented in a cancer specific context, emphasizing the possible clinical application of this family in terms of novel diagnosis and therapy approaches.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonia Harangus
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "Leon Daniello" Pneumophtisiology Clinic, 6 Bogdan Petriceicu Hasdeu Street, 400332, Cluj-Napoca, Romania.
| | | | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.
| |
Collapse
|
23
|
FAK is Required for Tumor Metastasis-Related Fluid Microenvironment in Triple-Negative Breast Cancer. J Clin Med 2019; 8:jcm8010038. [PMID: 30609732 PMCID: PMC6352244 DOI: 10.3390/jcm8010038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 01/08/2023] Open
Abstract
Cancer cell metastasis is the main cause of death in patients with cancer. Many studies have investigated the biochemical factors that affect metastasis; however, the role of physical factors such as fluid shear stress (FSS) in tumorigenesis and metastasis have been less investigated. Triple-negative breast cancer (TNBC) has a higher incidence of lymph node invasion and distant metastasis than other subtypes of breast cancer. In this study, we investigated the influence of FSS in regulating the malignant behavior of TNBC cells. Our data demonstrate that low FSS promotes cell migration, invasion, and drug resistance, while high FSS has the opposite results; additionally, we found that these phenomena were regulated through focal adhesion kinase (FAK). Using immunohistochemistry staining, we show that FAK levels correlate with the nodal stage and that FAK is a significant independent predictor of overall survival in patients. Altogether, these data implicate FAK as a fluid mechano-sensor that regulates the cell motility induced by FSS and provide a strong rationale for cancer treatments that combine the use of anti-cancer drugs and strategies to modulate tumor interstitial fluid flow.
Collapse
|
24
|
Aberrant miRNAs expressed in HER-2 negative breast cancers patient. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:257. [PMID: 30342533 PMCID: PMC6196003 DOI: 10.1186/s13046-018-0920-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
Abstract
Background Breast cancer is a highly heterogeneous pathology, exhibiting a number of subtypes commonly associated with a poor outcome. Due to their high stability, microRNAs are often regarded as non-invasive cancer biomarkers, having an expression pattern specific for their ‘cell of origin’. Method Triple negative breast cancer (TNBC: ER-, PR-, Her-2-) and double positive breast cancer (DPBC: ER+, PR+, Her-2) miRNA expression patterns were obtained by analysis of the TCGA (The Cancer Genome Atlas) data, followed by PCR-array analysis on plasma samples from 20 TNBC patients, 14 DPBC patients and 11 controls. Results Three downregulated and nine upregulated miRNAs were obtained from the TNBC analysis. Five overexpressed miRNAs were identified in the DPBC group. Four of the dysregulated miRNAs (miR-10a, miR-125b, miR-210 and miR-489) were common for both groups. The cluster miR-17-92 (miR-17, miR-20a, miR-20b, and miR-93), along with miR-130, miR-22 and miR-29a/c, were found to differentiate between TNBC and DPBC. A panel of five transcripts (miR-10a, miR-125, miR-193b, miR-200b and miR-489) was validated in a new set of plasma samples. The overlapping of TCGA and plasma profiling data revealed miR-200b, miR-200c, miR-210 and miR-29c as common signature. MiR-200b was validated on additional normal and tumor tissue samples. The expression level of this transcript from the TCGA data was correlated with lung and bone metastatic genes. Conclusion The miR-200b presents a great potential for the future advancements in the diagnostic/prognostic and therapeutic approach of TNBC, along with other coding or non-coding transcripts. However, this needs to be further integrated in a regulatory network that acts in conjunction with other markers that affect the patients’ prognosis or response to therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0920-2) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 2018; 8:1483-1507. [PMID: 29978332 PMCID: PMC6133085 DOI: 10.1007/s13346-018-0551-3] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The major current conventional types of metastatic breast cancer (MBC) treatments include surgery, radiation, hormonal therapy, chemotherapy, or immunotherapy. Introducing biological drugs, targeted treatment and gene therapy can potentially reduce the mortality and improve the quality of life in patients with MBC. However, combination of several types of treatment is usually recommended. Triple negative breast cancer (TNBC) accounts for 10-20% of all cases of breast carcinoma and is characterized by the low expression of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). Consequently, convenient treatments used for MBC that target these receptors are not effective for TNBC which therefore requires special treatment approaches. This review discusses the occurrence of MBC, the prognosis and predictive biomarkers of MBC, and focuses on the novel advanced tactics for treatment of MBC and TNBC. Nanotechnology-based combinatorial approach for the suppression of EGFR by siRNA and gifitinib is described.
Collapse
Affiliation(s)
- Sumayah Al-Mahmood
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Olga B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
- Rutgers Cancer Institute, New Brunswick, NJ, 08903, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
26
|
Temian DC, Pop LA, Irimie AI, Berindan-Neagoe I. The Epigenetics of Triple-Negative and Basal-Like Breast Cancer: Current Knowledge. J Breast Cancer 2018; 21:233-243. [PMID: 30275851 PMCID: PMC6158152 DOI: 10.4048/jbc.2018.21.e41] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer has the highest incidence among all malignancies diagnosed in women. Therapies have significantly improved over the years due to extensive molecular and clinical research; in a large number of cases, targeted therapies have provided better prognosis. However, one specific subtype remains elusive to targeted therapies–the triple-negative breast cancer. This immunohistochemically defined subtype is resistant to both endocrine and targeted therapies, leading to its poor prognosis. A field that is of great promise in current cancer research is epigenetics. By studying the epigenetic mechanisms underlying tumorigenesis–DNA methylation, histone modifications, and noncoding RNAs–advances in cancer treatment, diagnosis, and prevention are possible. This review aims to synthesize the epigenetic discoveries that have been made related to the triple-negative breast cancer.
Collapse
Affiliation(s)
- Daiana Cosmina Temian
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Division of Dental Propaedeutics, Aesthetic, Department of Prosthetic Dentistry and Dental Materials, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MedFUTURE Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. I Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|
27
|
Hessel H, Poignée-Heger M, Lohmann S, Hirscher B, Herold A, Assmann G, Budczies J, Sotlar K, Kirchner T. Subtyping Of Triple Negative Breast Carcinoma On The Basis Of RTK Expression. J Cancer 2018; 9:2589-2602. [PMID: 30087699 PMCID: PMC6072816 DOI: 10.7150/jca.23023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background: "Triple-negative breast cancers" (TNBC) comprise a heterogeneous group of about 15% of invasive BCs lacking the expression of estrogen and progesterone receptors (ER, PR) and the expression of HER2 (ERBB2) and are therefore no established candidates for targeted treatment options in BC, i.e., endocrine and anti-HER2 therapy. The aim of the present study was to use gene expression profiling and immunohistochemical (IHC) characterization to identify receptor tyrosine kinase (RTK) profiles that would allow patient stratification for the purposes of target-oriented personalized tumor therapy in TNBC. Methods: Twenty-nine cases of TNBC selected according to routine diagnostic IHC/cytogenetic criteria were examined by reverse transcription polymerase chain reaction (RT-PCR). RTK mRNA expression profiles were generated for a total of 31 tumor-relevant biomarkers, mainly belonging to the IGF- and EGF-receptor families but also including biomarkers related to downstream signaling. Protein expression of selected biomarkers was investigated by IHC. Results: Hierarchical cluster analysis revealed a dichotomous differentiation pattern amongst TNBCs. A significant difference in gene expression was observed for 16 of the 31 RTK-associated tumor relevant biomarkers between the two newly identified TNBC subgroups. The findings were verified at the posttranslational level by the IHC data. The RTKs HER4, IGF-1R and IGF-2R and the hormone receptors ER and PR below the IHC detection limit play a central role in the differentiation of the two TNBC subgroups. Observed survival was reported as Kaplan-Meier estimates and point towards an improved survival of patients with RTK-high with superior three-year survival rate of 100% compared to RTK-low gene signatures with superior three-year survival rate of 60% (log-rank test, p-value = 0.022). Conclusion: Gene-expression and IHC analysis of the EGF and IGF receptor families and biomarkers associated with downstream signaling point to the existence of two distinct TNBC subtypes. The RTKs HER4, IGF-1R, IGF-2R and the hormone receptors ER and PR appear to be of particular importance here. Based on survival analysis the differentiation of TNBC with RTK-high and RTK-low gene signatures seems to be of prognostic relevance. Additionally, correlation analysis of the relationship between RTKs and ER suggests co-regulatory mechanisms that may have potential significance in new therapeutic approaches.
Collapse
Affiliation(s)
- Harald Hessel
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | | | | | | | | | - Gerald Assmann
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
- Pathologiepraxis München, Germany
| | - Jan Budczies
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | - Karl Sotlar
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
- University Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Austria
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| |
Collapse
|
28
|
Traila A, Dima D, Achimas-Cadariu P, Micu R. Fertility preservation in Hodgkin's lymphoma patients that undergo targeted molecular therapies: an important step forward from the chemotherapy era. Cancer Manag Res 2018; 10:1517-1526. [PMID: 29942153 PMCID: PMC6005299 DOI: 10.2147/cmar.s154819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In total, 80%-90% of Hodgkin's lymphoma (HL) patients are curable with combination chemoradiotherapy. Due to improvements in therapeutic strategies, 50% of all relapsed/refractory patients may undergo complete clinical responses and have long-term survival. Treatment options for HL are effective, but may have a negative impact on post-chemotherapy fertility. Thus, cryopreservation of semen prior to treatment is recommended for male patients. For female patients, assisted reproductive techniques (ART) consult and fertility preservation should be offered as a therapeutical option. In the last years, new targeted molecules have been available for HL treatment. These new drugs showed a high rate of overall responses in the setting of heavily pretreated patients, most of them in relapse after autologous stem cell transplantation, a group previously considered very poor risk. Up to 50% of patients have a complete response and an improved overall survival. Future studies will address the usefulness of novel molecules as a frontline therapy. Considering the high response and survival rates with monoclonal antibody-based therapeutics, fertility has become a concerning issue for long-term HL survivors. As progress has been made regarding ART, with the rigorous steps planned for HL patients, more survivors will become parents.
Collapse
Affiliation(s)
- Alexandra Traila
- School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Surgical Oncology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Patriciu Achimas-Cadariu
- School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Surgical Oncology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Romeo Micu
- School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Human Assisted Reproduction of 1st Gynecology Clinic, Cluj Napoca, Romania
| |
Collapse
|
29
|
Expression of semaphorin class 3 is higher in the proliferative phase on the human endometrium. Arch Gynecol Obstet 2018; 297:1175-1179. [PMID: 29450692 DOI: 10.1007/s00404-018-4719-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE The semaphorins are related to angiogenesis and cell proliferation depending on the tissue. The purpose of this study was to assess gene expression of class 3 semaphorin (SEMA3A-F) and protein expression of semaphorin 3A (SEMA3A) within human endometrium throughout the menstrual cycle. METHODS Gene expression of SEMA3A-F was analyzed by real-time PCR (qRT-PCR) and protein expression of SEMA3A was analyzed by ELISA in endometrial biopsies in the proliferative and secretory phase of the menstrual cycle. RESULTS Gene expression of SEMA3A, SEMA3C, SEMA3D, and SEMA3E was statistically significant decreased in secretory compared to proliferative phase endometrium (p < 0.05). Accordingly, SEMA3A protein expression in the secretory phase was lower than protein expression in proliferative phase endometrium (p ≤ 0.05). CONCLUSION SEMA3A, 3C, 3D, and 3E are possibly related to cell proliferation in the endometrium, being more expressed in the proliferative phase of the cycle. This finding may stimulate studies of class 3 semaphorins as a possible target for treatment of endometrial pathologies.
Collapse
|
30
|
Zanoaga O, Jurj A, Raduly L, Cojocneanu-Petric R, Fuentes-Mattei E, Wu O, Braicu C, Gherman CD, Berindan-Neagoe I. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer. Exp Ther Med 2017; 15:1167-1176. [PMID: 29434704 PMCID: PMC5776638 DOI: 10.3892/etm.2017.5515] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer represents one of the most common forms of cancer in women worldwide, with an increase in the number of newly diagnosed patients in the last decade. The role of fatty acids, particularly of a diet rich in ω-3 and ω-6 polyunsaturated fatty acids (PUFAs), in breast cancer development is not fully understood and remains controversial due to their complex mechanism of action. However, a large number of animal models and cell culture studies have demonstrated that high levels of ω-3 PUFAs have an inhibitory role in the development and progression of breast cancer, compared to ω-6 PUFAs. The present review focused on recent studies regarding the correlation between dietary PUFAs and breast cancer development, and aimed to emphasize the main molecular mechanisms involved in the modification of cell membrane structure and function, modulation of signal transduction pathways, gene expression regulation, and antiangiogenic and antimetastatic effects. Furthermore, the anticancer role of ω-3 PUFAs through the modulation of microRNA expression levels was also reviewed.
Collapse
Affiliation(s)
- Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,Department of Physiopathology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Oscar Wu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Texas Tech University Honors College, McClellan Hall, Lubbock, TX 79409, USA
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Surgical Clinic II Hospital, 400006 Cluj-Napoca, Romania.,Department of Surgery, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 400349 Cluj-Napoca, Romania.,Department of Functional Genomics, Proteomics and Experimental Pathology, Prof Dr Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Wu J, Sun Z, Sun H, Li Y. MicroRNA‑27a promotes tumorigenesis via targeting AKT in triple negative breast cancer. Mol Med Rep 2017; 17:562-570. [PMID: 29115608 DOI: 10.3892/mmr.2017.7886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/25/2017] [Indexed: 11/05/2022] Open
Abstract
Altered microRNA (miRNA/miR) expression regulates tumor development and progression in triple‑negative breast cancer (TNBC). The present study examined the effect of miR‑27a on proliferation, migration and invasion of TNBC cells in vitro and in vivo. An MTT assay was performed to examine the proliferation of MDA‑MB‑231 and MDA‑MB‑468 breast cancer cells with either overexpression of miR‑27a or downregulation of miR‑27a, in the presence or absence of radiation. The migratory and invasive abilities of MDA‑MB‑231 and MDA‑MB‑468 breast cancer cells were assessed by Transwell migration and Matrigel invasion assays. The protein expression levels were examined by western blotting. The caspase‑Glo3/7 assay was performed to examine the effect of miR‑27a on radiation‑induced apoptosis in MDA‑MB‑231 and MDA‑MB‑468 breast cancer cells. A luciferase assay was performed to evaluate the effect of miR‑27a on phosphatase and tensin homolog (PTEN) and B cell lymphoma (Bcl)‑2 associated X, apoptosis regulator (BAX) expression. Immunodeficient nude mice were used to examine tumor growth following injection of MDA‑MB‑231 breast cancer cells. miR‑27a promoted proliferation in vitro and in vivo, and enhanced migration and invasion in TNBC cells. miR‑27a improved the survival of TNBC cells following irradiation. miR‑27a inhibited radiation‑induced apoptosis in TNBC cells by regulation of caspase 3/7 and Bcl‑2 expression. Furthermore, the expression levels of PTEN and phosphorylated protein kinase B in MDA‑MB‑231 and MDA‑MB‑468 cells was altered following overexpression of miR‑27a. The luciferase assay demonstrated that miR‑27a regulated PTEN and BAX expression by binding to 3'‑untranslated regions. Overall, miR‑27a exhibits an essential role in tumor development and progression in TNBC and may be used as a potential biomarker to predict radiotherapy response and prognosis for the disease.
Collapse
Affiliation(s)
- Jing Wu
- Daytime Observation Ward, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhihui Sun
- Daytime Observation Ward, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huijie Sun
- Daytime Observation Ward, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanhua Li
- Daytime Observation Ward, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
32
|
Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11:2871-2890. [PMID: 29033548 PMCID: PMC5628667 DOI: 10.2147/dddt.s142337] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the last few years, nanostructures have gained considerable interest for the safe delivery of therapeutic agents. Several therapeutic approaches have been reported, such as molecular diagnosis, disease detection, nanoscale immunotherapy and anticancer drug delivery that could be integrated into clinical use. The current paper aims to highlight the background that supports the use of nanoparticles conjugated with different types of therapeutic agents, applicable in targeted therapy and cancer research, with a special emphasis on hematological malignancies. A particular key point is the functional characterization of nonviral delivery systems, such as gold nanoparticles, liposomes and dendrimers. The paper also presents relevant published data related to microRNA and RNA interference delivery using nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Hematology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Practical Abilities, Department of Medical Education, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Medical Education, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| |
Collapse
|
33
|
Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I. CRISPR/Cas9: Transcending the Reality of Genome Editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624197 PMCID: PMC5415201 DOI: 10.1016/j.omtn.2017.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the expansion of the microbiology field of research, a new genome editing tool arises from the biology of bacteria that holds the promise of achieving precise modifications in the genome with a simplicity and versatility that surpasses previous genome editing methods. This new technique, commonly named CRISPR/Cas9, led to a rapid expansion of the biomedical field; more specifically, cancer characterization and modeling have benefitted greatly from the genome editing capabilities of CRISPR/Cas9. In this paper, we briefly summarize recent improvements in CRISPR/Cas9 design meant to overcome the limitations that have arisen from the nuclease activity of Cas9 and the influence of this technology in cancer research. In addition, we present challenges that might impede the clinical applicability of CRISPR/Cas9 for cancer therapy and highlight future directions for designing CRISPR/Cas9 delivery systems that might prove useful for cancer therapeutics.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania.
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania
| | - Amin Hajitou
- Cancer Phage Therapy Group, Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alina-Andreea Zimta
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania
| | - Pierre Cordelier
- Cancer Research Center of Toulouse, Université Fédérale Toulouse Midi-Pyrénéées, Université Toulouse III Paul Sabatier, INSERM, 31100 Toulouse, France.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania; MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta," Cluj-Napoca, Cluj 400015, Romania
| |
Collapse
|