1
|
Xu Z, Zang J, Zhang X, Zheng Q, Li Y, Field N, Fiserova J, Hua B, Qu X, Kriechbaumer V, Deeks MJ, Hussey PJ, Wang P. The ER-PM interaction is essential for cytokinesis and recruits the actin cytoskeleton through the SCAR/WAVE complex. Proc Natl Acad Sci U S A 2025; 122:e2416927122. [PMID: 39913210 PMCID: PMC11831168 DOI: 10.1073/pnas.2416927122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/27/2024] [Indexed: 02/19/2025] Open
Abstract
Plant cytokinesis requires coordination between the actin cytoskeleton, microtubules, and membranes to guide division plane formation and cell plate expansion; how these regulatory factors are coordinated remains unknown. The actin cytoskeleton assembly is controlled by several actin nucleation factors, such as the SCAR/WAVE complex, which regulates actin nucleation and branching through the activation of the ARP2/3 complex. The activity of these actin regulatory proteins is likely influenced by interactions with specific membranes; however, the molecular basis and the biological relevance of SCAR-membrane interactions are also unclear. In this study, we demonstrate that the ER-PM tethering protein VAP27-1 directly interacts with SCAR2 at the ER membrane and that they colocalize to guide cell plate orientation during cell division. In the root meristem, both VAP27-1 and SCAR2 exhibit polarized localization at the cell plates, where the interaction between ER and PM is abundant. VAP27-1 recruits SCAR2 to the cell division plane, where there is a high concentration of actin filaments. In the vap27-1346 mutant, the densities of cortical ER, SCAR2, and consequently actin filaments are significantly reduced at the cell division plane, affecting cell plate orientation, cell division, and root development. A similar phenomenon is also observed in the scar1234 mutant, suggesting that VAP27 and SCAR proteins regulate cell division through a similar pathway. In conclusion, our data reveal a plant-specific function of VAP27-regulated ER-PM interaction and advance our understanding of plant ER-PM contact site and its role in cell division.
Collapse
Affiliation(s)
- Zhijing Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Xintong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Qiwei Zheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Yifan Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Nadine Field
- School of Biological and Medical Sciences, Oxford Brookes University, OxfordOX3 0BP, United Kingdom
| | - Jindriska Fiserova
- Department of Biosciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Bing Hua
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou225009, China
| | - Xiaolu Qu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| | - Verena Kriechbaumer
- School of Biological and Medical Sciences, Oxford Brookes University, OxfordOX3 0BP, United Kingdom
| | - Michael J. Deeks
- Biosciences, University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Patrick J. Hussey
- Department of Biosciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
| |
Collapse
|
2
|
Müller S. Update: on selected ROP cell polarity mechanisms in plant cell morphogenesis. PLANT PHYSIOLOGY 2023; 193:26-41. [PMID: 37070572 DOI: 10.1093/plphys/kiad229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The unequal (asymmetric) distribution of cell structures and proteins within a cell is designated as cell polarity. Cell polarity is a crucial prerequisite for morphogenetic processes such as oriented cell division and directed cell expansion. Rho-related GTPase from plants (ROPs) are required for cellular morphogenesis through the reorganization of the cytoskeleton and vesicle transport in various tissues. Here, I review recent advances in ROP-dependent tip growth, vesicle transport, and tip architecture. I report on the regulatory mechanisms of ROP upstream regulators found in different cell types. It appears that these regulators assemble in nanodomains with specific lipid compositions and recruit ROPs for activation in a stimulus-dependent manner. Current models link mechanosensing/mechanotransduction to ROP polarity signaling involved in feedback mechanisms via the cytoskeleton. Finally, I discuss ROP signaling components that are upregulated by tissue-specific transcription factors and exhibit specific localization patterns during cell division, clearly suggesting ROP signaling in division plane alignment.
Collapse
Affiliation(s)
- Sabine Müller
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Goldy C, Caillaud MC. Connecting the plant cytoskeleton to the cell surface via the phosphoinositides. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102365. [PMID: 37084498 DOI: 10.1016/j.pbi.2023.102365] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Plants have developed fine-tuned cellular mechanisms to respond to a variety of intracellular and extracellular signals. These responses often necessitate the rearrangement of the plant cytoskeleton to modulate cell shape and/or to guide vesicle trafficking. At the cell periphery, both actin filaments and microtubules associate with the plasma membrane that acts as an integrator of the intrinsic and extrinsic environments. At this membrane, acidic phospholipids such as phosphatidic acid, and phosphoinositides contribute to the selection of peripheral proteins and thereby regulate the organization and dynamic of the actin and microtubules. After recognition of the importance of phosphatidic acid on cytoskeleton dynamics and rearrangement, it became apparent that the other lipids might play a specific role in shaping the cytoskeleton. This review focuses on the emerging role of the phosphatidylinositol 4,5-bisphosphate for the regulation of the peripherical cytoskeleton during cellular processes such as cytokinesis, polar growth, biotic and abiotic responses.
Collapse
Affiliation(s)
- Camila Goldy
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342, Lyon, France
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342, Lyon, France.
| |
Collapse
|
4
|
Caillaud MC. Tools for studying the cytoskeleton during plant cell division. TRENDS IN PLANT SCIENCE 2022; 27:1049-1062. [PMID: 35667969 DOI: 10.1016/j.tplants.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The plant cytoskeleton regulates fundamental biological processes, including cell division. How to experimentally perturb the cytoskeleton is a key question if one wants to understand the role of both actin filaments (AFs) and microtubules (MTs) in a given biological process. While a myriad of mutants are available, knock-out in cytoskeleton regulators, when nonlethal, often produce little or no phenotypic perturbation because such regulators are often part of a large family, leading to functional redundancy. In this review, alternative techniques to modify the plant cytoskeleton during plant cell division are outlined. The different pharmacological and genetic approaches already developed in cell culture, transient assays, or in whole organisms are presented. Perspectives on the use of optogenetics to perturb the plant cytoskeleton are also discussed.
Collapse
Affiliation(s)
- Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France.
| |
Collapse
|
5
|
Glanc M. Plant cell division from the perspective of polarity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5361-5371. [PMID: 35604840 DOI: 10.1093/jxb/erac227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The orientation of cell division is a major determinant of plant morphogenesis. In spite of considerable efforts over the past decades, the precise mechanism of division plane selection remains elusive. The majority of studies on the topic have addressed division orientation from either a predominantly developmental or a cell biological perspective. Thus, mechanistic insights into the links between developmental and cellular factors affecting division orientation are particularly lacking. Here, I review recent progress in the understanding of cell division orientation in the embryo and primary root meristem of Arabidopsis from both developmental and cell biological standpoints. I offer a view of multilevel polarity as a central aspect of cell division: on the one hand, the division plane is a readout of tissue- and organism-wide polarities; on the other hand, the cortical division zone can be seen as a transient polar subcellular plasma membrane domain. Finally, I argue that a polarity-focused conceptual framework and the integration of developmental and cell biological approaches hold great promise to unravel the mechanistic basis of plant cell division orientation in the near future.
Collapse
Affiliation(s)
- Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
6
|
Joe SY, Yang SG, Lee JH, Park HJ, Koo DB. Stabilization of F-Actin Cytoskeleton by Paclitaxel Improves the Blastocyst Developmental Competence through P38 MAPK Activity in Porcine Embryos. Biomedicines 2022; 10:1867. [PMID: 36009414 PMCID: PMC9405004 DOI: 10.3390/biomedicines10081867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in F-actin distribution and cortical F-actin morphology are important for blastocyst developmental competence during embryogenesis. However, the effect of paclitaxel as a microtubule stabilizer on embryonic development in pigs remains unclear. We investigated the role of F-actin cytoskeleton stabilization via P38 MAPK activation using paclitaxel to improve the developmental potential of blastocysts in pigs. In this study, F-actin enrichment and adducin expression based on blastomere fragment rate and cytokinesis defects were investigated in cleaved embryos after in vitro fertilization (IVF). Adducin and adhesive junction F-actin fluorescence intensity were significantly reduced with increasing blastomere fragment rate in porcine embryos. In addition, porcine embryos were cultured with 10 and 100 nM paclitaxel for two days after IVF. Adhesive junction F-actin stabilization and p-P38 MAPK activity in embryos exposed to 10 nM paclitaxel increased significantly with blastocyst development competence. However, increased F-actin aggregation, cytokinesis defects, and over-expression of p-P38 MAPK protein by 100 nM paclitaxel exposure disrupted blastocyst development in porcine embryos. In addition, exposure to 100 nM paclitaxel increased the misaligned α-tubulin of spindle assembly and adhesive junction F-actin aggregation at the blastocyst stage, which might be caused by p-P38 protein over-expression-derived apoptosis in porcine embryos.
Collapse
Affiliation(s)
- Seung-Yeon Joe
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan 38453, Korea; (S.-Y.J.); (S.-G.Y.)
- Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan 38453, Korea
| | - Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan 38453, Korea; (S.-Y.J.); (S.-G.Y.)
- Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan 38453, Korea
| | - Jae-Ho Lee
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon 11160, Korea;
- CHA Fertility Center, Seoul Station, Hangang-daero, Jung-gu, Seoul 04637, Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan 38453, Korea; (S.-Y.J.); (S.-G.Y.)
- Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan 38453, Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan 38453, Korea; (S.-Y.J.); (S.-G.Y.)
- Institute of Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan 38453, Korea
| |
Collapse
|